JP2014015662A - Method for producing compound semiconductor solar cell - Google Patents

Method for producing compound semiconductor solar cell Download PDF

Info

Publication number
JP2014015662A
JP2014015662A JP2012153789A JP2012153789A JP2014015662A JP 2014015662 A JP2014015662 A JP 2014015662A JP 2012153789 A JP2012153789 A JP 2012153789A JP 2012153789 A JP2012153789 A JP 2012153789A JP 2014015662 A JP2014015662 A JP 2014015662A
Authority
JP
Japan
Prior art keywords
vapor deposition
nozzle
deposition source
group
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012153789A
Other languages
Japanese (ja)
Inventor
Hiroto Nishii
洸人 西井
Seiki Terachi
誠喜 寺地
Taichi Watanabe
太一 渡邉
Yusuke Yamamoto
祐輔 山本
Kazunori Kawamura
和典 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2012153789A priority Critical patent/JP2014015662A/en
Priority to PCT/JP2013/066546 priority patent/WO2014010371A1/en
Publication of JP2014015662A publication Critical patent/JP2014015662A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method that enables producing a compound semiconductor solar cell of high conversion efficiency at low cost.SOLUTION: A compound semiconductor layer is formed on a long substrate 1 by vacuum deposition method while travelling the substrate 1 by using a vapor deposition source A having a nozzle 12 for supplying Se and a vapor deposition source B having a supply port 14 for supplying Cu, In and Ga, in which the supply port 14 is disposed away from the substrate 1 by 5 to 70 mm and a tip opening 13 of the nozzle 12 of the vapor deposition source A, the supply port 14 of the vapor deposition source B and the substrate 1 are arranged at specific positions so that the Se is injected from the tip opening 13 of the nozzle 12.

Description

本発明は、高い光変換効率(以下「変換効率」とする)を有し、I族、III族およびVI族の元素からなるCuInSe2(CIS)あるいはこれにGaを固溶させたCu(In,Ga)Se2(CIGS)化合物半導体(I−III−VI族化合物半導体)を光吸収層に用いた化合物太陽電池を、効率よく製造する方法に関するものである。 The present invention has high light conversion efficiency (hereinafter referred to as “conversion efficiency”), CuInSe 2 (CIS) composed of Group I, Group III and Group VI elements, or Cu (In) in which Ga is dissolved. , Ga) Se 2 (CIGS) compound semiconductor (I-III-VI group compound semiconductor) The present invention relates to a method for efficiently producing a compound solar cell using a light absorption layer.

太陽電池の中でも、CISまたはCIGS(以下「CIGS系」とする)化合物半導体を光吸収層に用いた化合物太陽電池は、高い変換効率を有し薄膜に形成できるとともに、光照射等による変換効率の劣化が少ないという利点を有していることが知られている。   Among solar cells, a compound solar cell using a CIS or CIGS (hereinafter referred to as “CIGS-based”) compound semiconductor for a light absorption layer has a high conversion efficiency and can be formed into a thin film, and has a conversion efficiency due to light irradiation or the like. It is known to have the advantage of less degradation.

本願出願人は、このようなCIGS系化合物半導体を光吸収層に用いた化合物太陽電池を効率よく製造する方法として、下記の特許文献1に記載の発明をすでに提案している。この特許文献1に記載の発明は、長尺状の基材を用いて連続的に光吸収層を蒸着法により形成する際に、基材と蒸着源との距離を近接させることを特徴としており、従来の蒸着法と比して高速かつ安定して光吸収層を形成できるという優れた効果を奏する。   The present applicant has already proposed the invention described in Patent Document 1 below as a method for efficiently producing a compound solar cell using such a CIGS compound semiconductor as a light absorption layer. The invention described in Patent Document 1 is characterized in that when a light absorbing layer is continuously formed by a vapor deposition method using a long substrate, the distance between the substrate and the vapor deposition source is made close. As a result, the light absorbing layer can be formed at high speed and stably as compared with the conventional vapor deposition method.

特開2011−176148号公報JP 2011-176148 A

しかしながら、特許文献1記載の発明は、上記の優れた効果を奏するものの、基材と蒸着源とが近接しているため、VI族の材料を、これ以外の材料(I族およびIII族材料)と充分に反応させることができず、得られる光吸収層におけるVI族の組成比が低くなる傾向にあることがわかった。そして、これを防止するには、VI族の材料を過剰に供給する必要があり、不経済であるため、さらに改善することが求められている。   However, although the invention described in Patent Document 1 exhibits the above-described excellent effects, the base material and the vapor deposition source are close to each other, so that the group VI material is replaced with other materials (group I and group III materials). It was found that the composition ratio of group VI in the obtained light absorption layer tends to be low. In order to prevent this, it is necessary to supply an excessive amount of Group VI material, which is uneconomical. Therefore, further improvement is required.

本発明は、上記の課題に鑑みなされたもので、光吸収層の形成を、基材と蒸着源とを近接させた蒸着法により行う際に、VI族の材料を過剰に供給することなく光吸収層におけるVI族の組成比を充分に高くすることができ、高変換効率を有する化合物太陽電池を、高速で安定して製造する方法を提供することをその目的とする。   The present invention has been made in view of the above-described problems. When the light absorption layer is formed by a vapor deposition method in which a base material and a vapor deposition source are brought close to each other, light can be emitted without excessively supplying a group VI material. It is an object of the present invention to provide a method for stably producing a compound solar cell having a high conversion efficiency, in which the composition ratio of the VI group in the absorption layer can be sufficiently increased.

上記の目的を達成するため、本発明は、長尺状の基材を走行させながら、蒸着法により上記基材上に化合物半導体層を形成する化合物太陽電池の製造方法であって、上記化合物半導体層の形成を、VI族元素材料を供給するためのノズルが付設された蒸着源Aと、それ以外の元素材料を供給する供給口を備えた蒸着源Bを用いて行うようにし、上記蒸着源Bの供給口を基材から5〜70mm離れた位置に配置するとともに、上記蒸着源Aのノズルの先端開口と蒸着源Bの供給口と基材とを下記の一般式(1)〜(4)を満たす位置に配置し、上記VI族元素材料を、上記蒸着源Aのノズルの先端開口から加熱しながら噴射状態で供給するようにした化合物太陽電池の製造方法をその要旨とする。
1/sinθ1≦L2/sinθ2・・・(1)
0°≦θ1≦30°・・・(2)
θ1≦θ2≦90°・・・(3)
1<L2 ・・・(4)
θ1:蒸着源Aのノズルの先端開口からのVI族元素材料の噴出方向を示す仮想線I1と基材とがなす角(°)
θ2:蒸着源Bの供給口からのVI族以外の元素材料の供給方向を示す仮想線I2と基材とがなす角(°)
1:蒸着源Aのノズルの先端開口と基材表面との最短距離(mm)
2:蒸着源Bの供給口と基材表面との最短距離(mm)
In order to achieve the above object, the present invention provides a method for producing a compound solar cell in which a compound semiconductor layer is formed on a substrate by vapor deposition while running a long substrate, and the compound semiconductor The layer is formed by using a vapor deposition source A provided with a nozzle for supplying a group VI element material and a vapor deposition source B having a supply port for supplying other element materials, The B supply port is disposed at a position 5 to 70 mm away from the base material, and the front end opening of the nozzle of the vapor deposition source A, the supply port of the vapor deposition source B, and the base material are represented by the following general formulas (1) to (4). The gist of the method is a compound solar cell manufacturing method in which the group VI element material is supplied in a sprayed state while being heated from the opening of the tip of the nozzle of the evaporation source A.
L 1 / sin θ 1 ≦ L 2 / sin θ 2 (1)
0 ° ≦ θ 1 ≦ 30 ° (2)
θ 1 ≦ θ 2 ≦ 90 ° (3)
L 1 <L 2 (4)
θ 1 : Angle (°) formed by a virtual line I 1 indicating the ejection direction of the group VI element material from the tip opening of the nozzle of the evaporation source A and the base material
θ 2 : Angle (°) formed by a virtual line I 2 indicating the supply direction of elemental material other than the group VI from the supply port of the evaporation source B and the base material
L 1 : Shortest distance (mm) between the nozzle tip opening of the evaporation source A and the substrate surface
L 2 : The shortest distance (mm) between the supply port of the evaporation source B and the substrate surface

なお、蒸着法により「基材上に化合物半導体層を形成する」とは、基材の上方に化合物半導体層を形成することをいい、基材上に他の層を介して化合物半導体層を形成することを含む意味である。すなわち、基材上に直接、化合物半導体層を形成することのみを意味するものではない。   “Forming a compound semiconductor layer on a base material” by vapor deposition means forming a compound semiconductor layer above the base material, and forming the compound semiconductor layer on the base material via another layer. It means to include. That is, it does not mean that the compound semiconductor layer is formed directly on the substrate.

本発明の化合物太陽電池の製法は、化合物半導体層の形成を、VI族元素材料を供給するためのノズルが付設された蒸着源Aと、それ以外の元素材料を供給する供給口を備えた蒸着源Bを用いて行うようにし、上記蒸着源Bの供給口を基材から5〜70mm離れた位置に配置するとともに、上記蒸着源Aのノズルの先端開口と蒸着源Bの供給口と基材とを上記の一般式(1)〜(4)を満たす位置に配置している。この方法によれば、基材と各蒸着源とが極めて近接しているため、高速かつ安定して化合物半導体層を形成することができる。しかも、VI族の元素材料を、上記ノズルを経由させることにより、VI族以外の元素材料の供給口より基材に近い位置から噴射状態で供給するため、VI族の元素材料を、それ以外の元素材料(I族およびIII族材料)と充分に反応させることができ、化合物半導体層におけるVI族の組成比を効率よく高めることができる。また、上記蒸着源Aのノズルの先端開口と蒸着源Bの供給口と基材とを上記の一般式(1)〜(4)を満たす位置に配置しているため、VI族の元素材料を、それ以外の元素材料(I族およびIII族元素材料)の周りに回り込ませることができ、互いに充分に反応させることができる。したがって、本発明の製法によれば、従来のように、VI族元素材料を過剰に供給する必要がなく、変換効率の高いすぐれた化合物太陽電池を、低コストで効率よく製造することができる。   The method for producing a compound solar cell according to the present invention comprises forming a compound semiconductor layer by vapor deposition provided with a vapor deposition source A provided with a nozzle for supplying a group VI element material and a supply port for supplying other elemental material. The source B is used, and the supply port of the vapor deposition source B is disposed at a position 5 to 70 mm away from the base material, and the tip opening of the nozzle of the vapor deposition source A, the supply port of the vapor deposition source B, and the base material Are arranged at positions satisfying the above general formulas (1) to (4). According to this method, since the substrate and each deposition source are extremely close to each other, the compound semiconductor layer can be formed at high speed and stably. In addition, since the group VI element material is supplied in a sprayed state from a position closer to the base material than the supply port of the element material other than group VI by passing through the nozzle, the group VI element material is supplied to other elements. It can be sufficiently reacted with elemental materials (Group I and Group III materials), and the group VI composition ratio in the compound semiconductor layer can be increased efficiently. In addition, since the tip opening of the nozzle of the vapor deposition source A, the supply port of the vapor deposition source B, and the base material are arranged at positions satisfying the general formulas (1) to (4), an element material of group VI is used. It is possible to wrap around other elemental materials (Group I and Group III element materials) and to react sufficiently with each other. Therefore, according to the production method of the present invention, it is not necessary to supply the group VI element material excessively as in the conventional case, and an excellent compound solar cell with high conversion efficiency can be efficiently produced at low cost.

そして、化合物半導体層が、I族とIII族とVI族の元素からなるカルコパイライト構造を有するものであると、薄膜でも高効率の光変換を行うことができるとともに、室温でも安定したものとなる。   If the compound semiconductor layer has a chalcopyrite structure composed of Group I, Group III, and Group VI elements, it is possible to perform high-efficiency light conversion even with a thin film and to be stable at room temperature. .

また、蒸着源Aに付設されたノズルが、複数に分岐するノズルに形成され、VI族元素材料が上記複数の分岐されたノズルによって多方向から噴射状態で供給されるようになっていると、上記VI族の元素材料を、それ以外(I族およびIII族)の元素材料の周りに、さらに一層効率よく回り込ませて、互いに充分反応させることができるため、VI族の元素材料のロスを少なくすることができる。   Further, the nozzle attached to the vapor deposition source A is formed into a plurality of branched nozzles, and the group VI element material is supplied in a sprayed state from multiple directions by the plurality of branched nozzles. The above group VI element materials can be more efficiently circulated around the other (group I and group III) element materials and allowed to sufficiently react with each other, reducing the loss of group VI element materials. can do.

さらに、上記化合物半導体層の形成が、真空槽内で行われており、上記VI族元素材料を噴射するためのノズルが上記真空槽内に配設されるとともに、上記ノズルに着脱可能な弁手段によって連結された蒸着源Aが上記真空槽外に配設され、上記蒸着源Aから真空槽内のノズルに上記VI族元素材料が供給されるようになっていると、蒸着源AからのVI族元素材料供給量の調整が容易であるため、VI族元素材料のロスを少なくできるとともに、化合物半導体層組成の制御性をさらに高めることができる。   Further, the compound semiconductor layer is formed in a vacuum chamber, and a nozzle for injecting the group VI element material is disposed in the vacuum chamber, and valve means detachable from the nozzle When the deposition source A connected by the above is disposed outside the vacuum chamber and the group VI element material is supplied from the deposition source A to the nozzle in the vacuum chamber, the VI from the deposition source A Since the supply amount of the group element material is easy, the loss of the group VI element material can be reduced and the controllability of the compound semiconductor layer composition can be further improved.

本発明の一実施の形態により得られるCIGS太陽電池の断面図である。It is sectional drawing of the CIGS solar cell obtained by one embodiment of this invention. 上記CIGS太陽電池の化合物半導体層形成に用いる蒸着装置の概略図である。It is the schematic of the vapor deposition apparatus used for the compound semiconductor layer formation of the said CIGS solar cell. 上記蒸着装置におけるノズルと蒸着源Bの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the nozzle and the vapor deposition source B in the said vapor deposition apparatus. 上記蒸着装置におけるノズルと蒸着源Bの他の位置関係を示す説明図である。It is explanatory drawing which shows the other positional relationship of the nozzle and the vapor deposition source B in the said vapor deposition apparatus. 上記蒸着装置におけるノズルの変形例を示す説明図である。It is explanatory drawing which shows the modification of the nozzle in the said vapor deposition apparatus. 上記蒸着装置におけるノズルのさらに別の変形例を示す説明図である。It is explanatory drawing which shows another modification of the nozzle in the said vapor deposition apparatus.

つぎに、本発明を実施するための形態について説明する。   Next, an embodiment for carrying out the present invention will be described.

図1は、本発明の一実施の形態により得られるCIGS太陽電池の断面図である。このCIGS太陽電池は、幅20mm×長さ20mm×厚み53μmの大きさで、ステンレス合金(SUS)からなる基材1(厚み50μm)と、モリブデン(Mo)からなる裏面電極層2(厚み800nm)と、カルコパイライト化合物からなる化合物半導体層(CIGS光吸収層)3(厚み2μm)と、ZnOからなるバッファ層4(厚み70nm)と、ITOからなる表面電極層5(厚み200nm)とをこの順で備えており、上記化合物半導体層3が特殊な蒸着法によって形成されている。以下に、このCIGS太陽電池を詳細に説明する。なお、図1において、各層の厚み、大きさ、外観等は模式的に示したものであり、実際とは異なっている(以下の図においても同じ)。   FIG. 1 is a cross-sectional view of a CIGS solar cell obtained according to an embodiment of the present invention. This CIGS solar cell has a size of width 20 mm × length 20 mm × thickness 53 μm, a base material 1 (thickness 50 μm) made of stainless alloy (SUS), and a back electrode layer 2 (thickness 800 nm) made of molybdenum (Mo). And a compound semiconductor layer (CIGS light absorption layer) 3 (thickness 2 μm) made of a chalcopyrite compound, a buffer layer 4 (thickness 70 nm) made of ZnO, and a surface electrode layer 5 (thickness 200 nm) made of ITO in this order. The compound semiconductor layer 3 is formed by a special vapor deposition method. Below, this CIGS solar cell is demonstrated in detail. In FIG. 1, the thickness, size, appearance, and the like of each layer are schematically shown, and are different from actual ones (the same applies to the following drawings).

上記基材1は、支持基板として用いられるものであり、上記SUSの他にも、ソーダライムガラス、柔軟性のある金属箔等を用いることができる。ただし、後の加熱工程での加熱(例えば、520℃を超える高温)に耐えうる材料を用いることが好ましい。   The base material 1 is used as a support substrate, and besides the SUS, soda lime glass, flexible metal foil, and the like can be used. However, it is preferable to use a material that can withstand heating in a subsequent heating step (for example, high temperature exceeding 520 ° C.).

この基材1の上に形成された裏面電極層2としては、上記Moの他にも、タングステン(W)、クロム(Cr)、チタン(Ti)等を用いることができ、単層の他、複層に形成して用いることもできる。そして、その厚みは、100〜1000nmの範囲にあることが好ましい。   As the back electrode layer 2 formed on the substrate 1, tungsten (W), chromium (Cr), titanium (Ti), etc. can be used in addition to the Mo. It can also be used by forming in multiple layers. And it is preferable that the thickness exists in the range of 100-1000 nm.

そして、裏面電極層2の上に形成されたCIGS光吸収層(化合物半導体層)3は、銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)の4元素からなり、カルコパイライト構造を有する化合物半導体からなり、Cu、In、Gaの組成比は、22.1:21.2:7.5であり、Cu/(In+Ga)≒0.77となっている。このCIGS光吸収層3は、後述する特殊な多源蒸着法によって形成されている。   The CIGS light absorption layer (compound semiconductor layer) 3 formed on the back electrode layer 2 is composed of four elements of copper (Cu), indium (In), gallium (Ga), and selenium (Se). It consists of a compound semiconductor having a pyrite structure, and the composition ratio of Cu, In and Ga is 22.1: 21.2: 7.5, and Cu / (In + Ga) ≈0.77. The CIGS light absorption layer 3 is formed by a special multi-source vapor deposition method to be described later.

つぎに、上記CIGS光吸収層上に形成されたバッファ層4は、CIGS光吸収層3とpn接合ができるように、高抵抗のn型半導体であることが好ましく、単層の他、複数の層からなっていてもよい。バッファ層4として、複数の層からなるものを用いると、上記CIGS光吸収層3とのpn接合をより良好にできる。このようなバッファ層4としては、上記ZnOの他にも任意の材料を用いることができ、例えば、CdS、ZnMgO、Zn(O,S)等を用いることができる。また、バッファ層4として、複数の層からなるものを用いる場合には、各層の厚みは、それぞれ30〜200nmの範囲にあることが好ましい。そして、バッファ層4を単層とした場合でも、30〜200nmの厚みとすることが好ましい。   Next, the buffer layer 4 formed on the CIGS light absorption layer is preferably a high-resistance n-type semiconductor so that a pn junction can be formed with the CIGS light absorption layer 3. It may consist of layers. When the buffer layer 4 is composed of a plurality of layers, the pn junction with the CIGS light absorption layer 3 can be improved. As the buffer layer 4, any material other than the above ZnO can be used. For example, CdS, ZnMgO, Zn (O, S), or the like can be used. Moreover, when using what consists of a some layer as the buffer layer 4, it is preferable that the thickness of each layer exists in the range of 30-200 nm, respectively. Even when the buffer layer 4 is a single layer, the thickness is preferably 30 to 200 nm.

上記バッファ層4の上に形成された表面電極層5は、高透過率を有する材料を用いて形成することが好ましく、上記ITOの他、酸化インジウム亜鉛(IZO)、酸化亜鉛アルミニウム(Al:ZnO)等を用いて形成することができる。また、その厚みは、100〜300nmの範囲にあることが好ましい。   The surface electrode layer 5 formed on the buffer layer 4 is preferably formed using a material having a high transmittance. In addition to the ITO, indium zinc oxide (IZO), zinc aluminum oxide (Al: ZnO) ) Or the like. Moreover, it is preferable that the thickness exists in the range of 100-300 nm.

このようなCIGS太陽電池は、例えば、長尺状の基材1の表面に裏面電極層2を形成し、この裏面電極層2の上に、図2に示す蒸着装置6を用いてCIGS光吸収層3を形成し、これを所定のサイズとなるよう基材1を切断した後、上記CIGS光吸収層3の上に、バッファ層4、表面電極層5をこの順で積層することによって製造することができる。以下にその製造方法を詳細に説明する。   In such a CIGS solar cell, for example, a back electrode layer 2 is formed on the surface of a long substrate 1, and CIGS light absorption is performed on the back electrode layer 2 using a vapor deposition apparatus 6 shown in FIG. After the layer 3 is formed and the substrate 1 is cut so as to have a predetermined size, the buffer layer 4 and the surface electrode layer 5 are laminated on the CIGS light absorption layer 3 in this order. be able to. The manufacturing method will be described in detail below.

(裏面電極工程)
ロールトゥロール方式により、長尺状の基材1を走行させながら、その表面にMoからなる裏面電極層2をスパッタリング法により形成する。なお、裏面電極層2は、スパッタリング法の他にも、蒸着法により形成することもできる。
(Back electrode process)
The back electrode layer 2 made of Mo is formed on the surface of the long base material 1 by a sputtering method while running the long base material 1 by the roll-to-roll method. The back electrode layer 2 can also be formed by a vapor deposition method in addition to the sputtering method.

(CIGS光吸収層形成工程)
つぎに、この裏面電極層2が形成された基材1(以下「基材」という)を、同じくロールトゥロール方式で走行させながら、その裏面電極層2の上に、CIGS光吸収層3を形成する。この工程では、例えば図2に示すような蒸着装置6が用いられる。この蒸着装置6は、基材1が巻き回された巻き出しロール7から基材1を巻き出すための巻き出し室8と、基材1に対してCIGS光吸収層3を蒸着により形成するための蒸着室9と、CIGS光吸収層3が形成された基材1を巻き取るための巻き取りロール10を収容するための巻き取り室11とで構成されている。そして、上記各室8,9,11は、圧力差を緩和するための差動排気機構によって連結されており、異なる圧力の室間でも基材1を連続的に移動させることができるようになっている。基材1をこのような各室8,9,11を経由させることにより、長尺状の基材1の上に、CIGS光吸収層3を連続的に形成することができる。
(CIGS light absorption layer forming step)
Next, the CIGS light absorption layer 3 is formed on the back electrode layer 2 while the base material 1 (hereinafter referred to as “base material”) on which the back electrode layer 2 is formed is also run in a roll-to-roll manner. Form. In this step, for example, a vapor deposition apparatus 6 as shown in FIG. 2 is used. This vapor deposition apparatus 6 forms the CIGS light absorption layer 3 with respect to the base material 1 by the vapor deposition chamber 8 for unwinding the base material 1 from the unwinding roll 7 by which the base material 1 was wound, and vapor deposition. Vapor deposition chamber 9 and a winding chamber 11 for accommodating a winding roll 10 for winding the substrate 1 on which the CIGS light absorption layer 3 is formed. The chambers 8, 9, and 11 are connected by a differential exhaust mechanism for reducing the pressure difference, so that the substrate 1 can be continuously moved between chambers having different pressures. ing. The CIGS light absorption layer 3 can be continuously formed on the long base 1 by passing the base 1 through the chambers 8, 9, and 11.

上記蒸着室9には、Se(VI族元素)を供給するためのノズル12が付設された蒸着源Aが3個設けられており、Cu、InおよびGa(VI族元素以外の元素)を供給する供給口を備えた蒸着源Bが、それぞれの元素ごとに設けられている(合計3個)。そして、それぞれの蒸着源Bの供給口14は、基材1から5〜70mm離れた位置に配置されるとともに、上記ノズル12の先端開口13が上記蒸着源Bの供給口14より基材1に近い位置に配置されている。   The vapor deposition chamber 9 is provided with three vapor deposition sources A provided with nozzles 12 for supplying Se (group VI element), and supplies Cu, In and Ga (elements other than group VI elements). The vapor deposition source B provided with the supply port to be provided is provided for each element (three in total). And the supply port 14 of each vapor deposition source B is arrange | positioned in the position 5-70 mm away from the base material 1, and the front-end | tip opening 13 of the said nozzle 12 is made into the base material 1 from the supply port 14 of the said vapor deposition source B. It is arranged at a close position.

上記蒸着源Aに付設されたノズル12の先端開口13と、蒸着源Bの供給口14と、基材1との位置関係について、より詳しく説明すると、図3に示すように、上記蒸着源Bの供給口14は、Cu、InおよびGaの供給方向を示す仮想線I2と基材1とがなす角θ2が60°になるとともに、基材1表面からの最短距離L2が50mmとなる位置に配置されている。また、上記ノズル12の先端開口13は、Seの噴出方向を示す仮想線I1と基材とがなす角θ1が20°になるとともに、基材1表面からの最短距離L1が10mmとなる位置に配置されている。すなわち、これらの関係は、下記の一般式(1)〜(4)を満たすようになっている。
1/sinθ1≦L2/sinθ2・・・(1)
0°≦θ1≦30°・・・(2)
θ1≦θ2≦90°・・・(3)
1<L2 ・・・(4)
θ1:蒸着源Aのノズルの先端開口からのVI族元素材料の噴出方向を示す仮想線I1と基材とがなす角(°)
θ2:蒸着源Bの供給口からのVI族以外の元素材料の供給方向を示す仮想線I2と基材とがなす角(°)
1:蒸着源Aのノズルの先端開口と基材表面との最短距離(mm)
2:蒸着源Bの供給口と基材表面との最短距離(mm)
The positional relationship between the tip opening 13 of the nozzle 12 attached to the deposition source A, the supply port 14 of the deposition source B, and the substrate 1 will be described in more detail. As shown in FIG. In the supply port 14, the angle θ 2 formed by the imaginary line I 2 indicating the supply direction of Cu, In, and Ga and the substrate 1 is 60 °, and the shortest distance L 2 from the surface of the substrate 1 is 50 mm. It is arranged at the position. The tip opening 13 of the nozzle 12 has an angle θ 1 formed by a virtual line I 1 indicating the ejection direction of Se and the base material of 20 °, and a shortest distance L 1 from the surface of the base material 1 of 10 mm. It is arranged at the position. That is, these relationships satisfy the following general formulas (1) to (4).
L 1 / sin θ 1 ≦ L 2 / sin θ 2 (1)
0 ° ≦ θ 1 ≦ 30 ° (2)
θ 1 ≦ θ 2 ≦ 90 ° (3)
L 1 <L 2 (4)
θ 1 : Angle (°) formed by a virtual line I 1 indicating the ejection direction of the group VI element material from the tip opening of the nozzle of the evaporation source A and the base material
θ 2 : Angle (°) formed by a virtual line I 2 indicating the supply direction of elemental material other than the group VI from the supply port of the evaporation source B and the base material
L 1 : Shortest distance (mm) between the nozzle tip opening of the evaporation source A and the substrate surface
L 2 : The shortest distance (mm) between the supply port of the evaporation source B and the substrate surface

そして、上記蒸着源Aに付設されたノズル12の開口径は、10mmであるが、ノズル12の開口径はこれに限らず、1〜30mmの範囲にあることが好ましく、5〜20mmの範囲にあることがより好ましい。すなわち、径が大きすぎると、噴出する材料の分布は良好となるが、Seの噴出圧が低くなり、SeがCu、InおよびGaの周りに充分回り込めなくなるおそれがあり、逆に、径が小さすぎると、Seの噴出圧は向上するが、良好な分布が得られずCIGS光吸収層3内でのSe材料の組成ムラが発生するおそれがあるためである。そして、上記ノズル12の周囲には、蒸着源Aから供給されるSe温度を調整できるよう加熱手段(例えば、電熱線)が配置されている(図示せず)が、他の方法によりSe温度の調整ができる場合にはこの加熱手段は設けなくてもよい。また、上記蒸着源Bには、Cu、InおよびGaの各材料ごとに好適な加熱ができるように、各蒸着源Bごとに独立した状態で加熱手段を設置することが好ましい。   And although the opening diameter of the nozzle 12 attached to the said vapor deposition source A is 10 mm, it is preferable that it is in the range of 1-30 mm, and the opening diameter of the nozzle 12 is in the range of 5-20 mm. More preferably. That is, if the diameter is too large, the distribution of the ejected material will be good, but the ejection pressure of Se will be low, and Se may not be able to sufficiently wrap around Cu, In and Ga. If it is too small, the ejection pressure of Se is improved, but a good distribution cannot be obtained, and compositional unevenness of the Se material in the CIGS light absorption layer 3 may occur. Around the nozzle 12, heating means (for example, heating wire) is arranged (not shown) so that the Se temperature supplied from the vapor deposition source A can be adjusted. If the adjustment can be made, this heating means may not be provided. Moreover, it is preferable to install a heating means in the said vapor deposition source B in the state independent for each vapor deposition source B so that suitable heating for every material of Cu, In, and Ga can be performed.

なお、この例では、図3に示すように、ノズル12の先端開口13からSeの噴出方向(仮想線I1)と、蒸着源Bの供給口14からCu、In、Gaの供給方向(仮想線I2)とが、基材1の表面上(基材1表面からの距離が0mmの位置)で交わるように両者が配置されている。しかし、図4に示すように、両者の交点Pが、基材1の表面から下方に離れた位置となるように配置してもよく、とりわけ、交点Pが、基材1表面から下方に0〜5mm離れた位置となる配置にすることが好ましい。上記交点Pが、基材1表面からの距離が離れすぎるような配置では、Cu、In、Gaに対するSeの回り込みが基板1近傍で起こらず、得られるCIGS光吸収層3におけるSeの組成比が悪くなる傾向にある。 In this example, as shown in FIG. 3, the ejection direction of Se from the tip opening 13 of the nozzle 12 (virtual line I 1 ) and the supply direction of Cu, In, Ga from the supply port 14 of the vapor deposition source B (virtual line) Both of them are arranged so that the line I 2 ) intersects on the surface of the base material 1 (position where the distance from the surface of the base material 1 is 0 mm). However, as shown in FIG. 4, it may be arranged such that the intersection point P between the two is located away from the surface of the base material 1. In particular, the intersection point P is 0 downward from the surface of the base material 1. It is preferable to arrange it at a position away by -5 mm. In the arrangement where the intersection point P is too far away from the surface of the base material 1, the wraparound of Se to Cu, In, and Ga does not occur in the vicinity of the substrate 1, and the composition ratio of Se in the CIGS light absorption layer 3 obtained is It tends to get worse.

この蒸着装置6を用いて、CIGS光吸収層3を得るには、まず、蒸着時の基材1の温度が550℃となるよう、蒸着室9に備えた加熱機構(図示せず)によって加熱する。なお、このとき、蒸着源AおよびBから発せられる熱によって、基材1の温度が高くなりすぎる場合があり、別途、基材1を冷却するための冷却機構(図示せず)を蒸着室9内に設けるようにしてもよい。そして、蒸着室9を真空状態にし、蒸着源A(Se材料ユニット)を350℃に加熱し、ノズル12を450℃に加熱し、その先端開口13から基材1に対して20°の角度でSeを噴射するとともに、蒸着源Bとして配置された、Cu、In、Gaの各材料ユニットを、それぞれ1300℃、1100℃、1100℃に加熱し、供給口14から基材1に向かって60°の角度でCu、In、Gaを供給することにより、基材1と蒸着源A,Bとが近接した状態であっても、Seを充分にCu、In、Gaの周りに回り込ますことができ、所望の組成比を有するカルコパイライト構造〔Cu(In1-X,GaX)Se2〕のCIGS光吸収層3を基材1上に得ることができる。 In order to obtain the CIGS light absorption layer 3 using this vapor deposition apparatus 6, first, it is heated by a heating mechanism (not shown) provided in the vapor deposition chamber 9 so that the temperature of the base material 1 at the time of vapor deposition is 550 ° C. To do. At this time, the temperature of the substrate 1 may become too high due to the heat generated from the vapor deposition sources A and B, and a separate cooling mechanism (not shown) for cooling the substrate 1 is provided in the vapor deposition chamber 9. You may make it provide in. Then, the vapor deposition chamber 9 is evacuated, the vapor deposition source A (Se material unit) is heated to 350 ° C., the nozzle 12 is heated to 450 ° C., and an angle of 20 ° with respect to the substrate 1 from the tip opening 13. While injecting Se, each material unit of Cu, In, and Ga arranged as the vapor deposition source B is heated to 1300 ° C., 1100 ° C., and 1100 ° C., respectively, and 60 ° toward the substrate 1 from the supply port 14. By supplying Cu, In, and Ga at an angle, Se can sufficiently wrap around Cu, In, and Ga even when the substrate 1 and the evaporation sources A and B are close to each other. The CIGS light absorption layer 3 having a chalcopyrite structure [Cu (In 1−X , Ga x ) Se 2 ] having a desired composition ratio can be obtained on the substrate 1.

なお、上記蒸着源Aのノズル12は、その先端開口13からのSeの噴出方向を示す仮想線I1と基材1とがなす角θ1が20°となるように配置されているが、これに限らず、しかし、角θ1が0〜30°の範囲の任意の角度となるように配置することが好ましい。また、上記蒸着源Bの供給口14は、Cu、InおよびGaの供給方向を示す仮想線I2と基材1とがなす角θ2が60°となるように配置されているが、これに限らず、しかし、上記角θ1より大きく、かつ、90°以下の範囲の任意の角度となるように配置することが好ましい。 The nozzle 12 of the vapor deposition source A is disposed so that an angle θ 1 formed by the imaginary line I 1 indicating the ejection direction of Se from the tip opening 13 and the substrate 1 is 20 °. However, the arrangement is not limited to this, but it is preferable that the angle θ 1 is arranged to be an arbitrary angle in the range of 0 to 30 °. Further, the supply port 14 of the vapor deposition source B is arranged so that an angle θ 2 formed by a virtual line I 2 indicating the supply direction of Cu, In, and Ga and the substrate 1 is 60 °. However, it is preferable to dispose it so as to be an arbitrary angle in a range larger than the angle θ 1 and not more than 90 °.

また、上記ノズル12の先端開口13は、基材1表面からの最短距離L1が10mmに設定されているが、これに限らず、上記最短距離L1は、基材1表面から蒸着源Bの供給口14までの最短距離L2より短い距離の任意の範囲に設定することができる。そして、上記最短距離L2が50mmに設定されているが、これに限らず、5〜70mmの範囲の任意の範囲に設定することができる。 The tip opening 13 of the nozzle 12 has a shortest distance L 1 from the surface of the substrate 1 set to 10 mm. However, the present invention is not limited to this, and the shortest distance L 1 is from the surface of the substrate 1 to the evaporation source B. Can be set to any range shorter than the shortest distance L 2 to the supply port 14. Then, although the shortest distance L 2 is set to 50 mm, not limited to this, it can be set to any scope of 5~70Mm.

なお、Seを供給するためのノズル12が付設された蒸着源Aと、Cu、InおよびGaを供給する供給口14を備えた蒸着源Bとが、蒸着室9内に各3個備えられているが、蒸着室9、基材1等のサイズや基材1の搬送速度等を考慮して、その数を増減することができる。また、蒸着源Aと蒸着源Bとが1:1の割合で設置されているが、必ずしもその必要はない。すなわち、図5で示すように、蒸着源Aに付設されたノズル12として、基材1方向へ延びる途中で分岐し、その先端開口13が複数形成されたものを用いると、蒸着源Bの個数に対して蒸着源Aの個数を少なくすることができる。この場合、蒸着源AからのSeの供給を一個所で制御できるため、管理が容易となる。さらに、蒸着源Aと蒸着源Bとを1:1で設置する場合であっても、図6に示すように、蒸着源Aに付設されたノズル12として、基材1方向へ延びる途中で2方向に分岐したものを用い、その分岐した各先端開口13からSeを噴射するようにしてもよい。この場合、蒸着源Bから供給されるその他の元素材料(Cu、In、Ga)の周りに、Seをより一層、回り込ますことができ、変換効率の高いCIGS光吸収層3をより効率よく形成することができる。   In addition, three each of the vapor deposition source A provided with the nozzle 12 for supplying Se and the vapor deposition source B provided with the supply port 14 for supplying Cu, In, and Ga are provided in the vapor deposition chamber 9. However, the number can be increased or decreased in consideration of the size of the vapor deposition chamber 9 and the base material 1, the transport speed of the base material 1, and the like. Moreover, although the vapor deposition source A and the vapor deposition source B are installed in the ratio of 1: 1, it is not necessarily required. That is, as shown in FIG. 5, when the nozzle 12 attached to the vapor deposition source A is branched in the middle of the direction of the substrate 1 and a plurality of tip openings 13 are formed, the number of the vapor deposition sources B is used. In contrast, the number of vapor deposition sources A can be reduced. In this case, since the supply of Se from the vapor deposition source A can be controlled at one place, management becomes easy. Further, even when the vapor deposition source A and the vapor deposition source B are installed at 1: 1, as shown in FIG. 6, the nozzle 12 attached to the vapor deposition source A is 2 in the middle of extending in the direction of the substrate 1. It is also possible to use one that branches in the direction and inject Se from each branched tip opening 13. In this case, it is possible to further surround Se around other elemental materials (Cu, In, Ga) supplied from the evaporation source B, and to form the CIGS light absorption layer 3 with high conversion efficiency more efficiently. can do.

また、この蒸着装置6では、蒸着源Aとこれに付設されたノズル12の双方が、蒸着室9内に配設されているが、ノズル12を蒸着室9内に配設し、このノズル12を、蒸着室9外に配設された蒸着源Aと連結するようにしてもよい。蒸着源Aを蒸着室9の外に配設すると、蒸着源AからのSe供給の調整が容易となるため、Seのロスを少なくできるとともに、CIGS光吸収層の組成比をより容易に制御できる。そして、上記ノズル12と蒸着源Aとを着脱可能な弁手段によって連結すると、蒸着源Aの交換が容易となるため、好ましい。   In the vapor deposition apparatus 6, both the vapor deposition source A and the nozzle 12 attached thereto are disposed in the vapor deposition chamber 9. However, the nozzle 12 is disposed in the vapor deposition chamber 9, and the nozzle 12 May be connected to a vapor deposition source A disposed outside the vapor deposition chamber 9. When the vapor deposition source A is disposed outside the vapor deposition chamber 9, it is easy to adjust the Se supply from the vapor deposition source A, so that Se loss can be reduced and the composition ratio of the CIGS light absorption layer can be more easily controlled. . And it is preferable to connect the nozzle 12 and the vapor deposition source A by a detachable valve means because the vapor deposition source A can be easily exchanged.

そして、CIGS光吸収層3が形成された後、基材1をそのまま巻き取りロール10で巻き取っているが、CIGS光吸収層3の結晶性を高めるために、所定の温度でCIGS光吸収層3を加熱燃成した後、基材1を巻き取りロール10で巻き取るようにしてもよい。また、このCIGS光吸収層3の加熱燃成は、CIGS光吸収層3を形成した基材1を、一旦、巻き取りロール10で巻き取り、その後、巻き取った基材1を巻き出して行ってもよい。   And after CIGS light absorption layer 3 is formed, base material 1 is wound up with winding roll 10 as it is, but in order to raise crystallinity of CIGS light absorption layer 3, CIGS light absorption layer at predetermined temperature After heating and burning 3, the substrate 1 may be wound up by a winding roll 10. The CIGS light absorption layer 3 is heated and burned by temporarily winding the base material 1 on which the CIGS light absorption layer 3 is formed with a take-up roll 10 and then unwinding the wound base material 1. May be.

さらに、上記CIGS光吸収層3の形成は、上記蒸着法だけでなく、その他にも、例えば、3段階法やバイレイヤー法等の蒸着法によっても行うことができる。   Furthermore, the CIGS light absorption layer 3 can be formed not only by the vapor deposition method but also by a vapor deposition method such as a three-stage method or a bilayer method.

(バッファ層形成工程、表面電極層形成工程、電極形成工程)
つぎに、上記巻き取りロール10から、CIGS光吸収層3が形成された基材1を巻き出し、これを一定の長さごとに切断装置で切断し、所定サイズにする。そして、この所定サイズとなった基材1のCIGS光吸収層3上に、スパッタリング法によりバッファ層4を形成する。このバッファ層4は、スパッタリング法の他にも、化学浴堆積法(CBD法)等によっても形成することができる。そして、このバッファ層4上に、スパッタリング法により表面電極層5を形成し、基材1の裏面(CIGS光吸収層3等が形成された面の反対面)に、櫛型電極を形成することにより、CIGS太陽電池を得ることができる。
(Buffer layer forming step, surface electrode layer forming step, electrode forming step)
Next, the base material 1 on which the CIGS light absorption layer 3 is formed is unwound from the take-up roll 10 and is cut into a predetermined size by a cutting device for each predetermined length. And the buffer layer 4 is formed on the CIGS light absorption layer 3 of the base material 1 which became this predetermined size by sputtering method. The buffer layer 4 can be formed by a chemical bath deposition method (CBD method) or the like in addition to the sputtering method. Then, a surface electrode layer 5 is formed on the buffer layer 4 by a sputtering method, and a comb-shaped electrode is formed on the back surface of the substrate 1 (the surface opposite to the surface on which the CIGS light absorption layer 3 and the like are formed). Thus, a CIGS solar cell can be obtained.

上記CIGS太陽電池の製造方法によれば、基材1と蒸着源A,Bとが極めて近接しているため、高速かつ安定してCIGS光吸収層3を形成することができる。しかも、Seを、ノズル12を経由させることにより、Cu、In、Gaの供給口14より基材1に近い位置から噴射状態で供給するため、SeをCu、In、Gaと充分に反応させることができ、CIGS光吸収層3におけるSeの組成比を効率よく高めることができる。特に、蒸着源Aのノズル12の先端開口13と、蒸着源Bの供給口14と、基材1とが、上記の一般式(1)〜(4)を満たす関係にあるため、とりわけ、SeをCu、In、Gaの周りに回り込ませることができ、互いに充分に反応させることができる。さらに、CIGS光吸収層3が、カルコパイライト構造を有するものであるため、薄膜でも高効率の光変換を行うことができるとともに、室温でも安定したものとすることができる。したがって、本発明の製法によれば、従来のように、Seを過剰に供給する必要がなく、変換効率の高いすぐれたCIGS太陽電池を、低コストで効率よく製造することができる。   According to the manufacturing method of the CIGS solar cell, since the base material 1 and the vapor deposition sources A and B are extremely close to each other, the CIGS light absorption layer 3 can be formed at high speed and stably. In addition, since Se is supplied in an injection state from a position closer to the substrate 1 than the supply port 14 for Cu, In, and Ga by passing through the nozzle 12, Se is sufficiently reacted with Cu, In, and Ga. The composition ratio of Se in the CIGS light absorption layer 3 can be increased efficiently. In particular, since the tip opening 13 of the nozzle 12 of the vapor deposition source A, the supply port 14 of the vapor deposition source B, and the base material 1 satisfy the above-described general formulas (1) to (4), Se in particular. Can wrap around Cu, In, and Ga, and can sufficiently react with each other. Furthermore, since the CIGS light absorption layer 3 has a chalcopyrite structure, it is possible to perform high-efficiency light conversion even with a thin film and to be stable at room temperature. Therefore, according to the production method of the present invention, it is not necessary to supply Se excessively as in the prior art, and an excellent CIGS solar cell with high conversion efficiency can be efficiently produced at low cost.

なお、上記の実施の形態では、CIGS光吸収層形成工程までを、長尺状の基材1を用いたロールトゥロール方式で行い、バッファ層4以降の工程を、所定サイズに切断された基材1を用いた枚葉方式で行っているが、バッファ層4以降の工程を、CIGS光吸収層3形成工程と同様にロールトゥロール方式で行うようにしてもよい。この場合、表面電極層5の形成後、所定サイズに基材1を切断する。また、基材1を切断せずに用いてもよい。   In the above-described embodiment, the CIGS light absorption layer forming step is performed by a roll-to-roll method using the long base material 1, and the steps after the buffer layer 4 are cut into a predetermined size. Although the single wafer method using the material 1 is performed, the steps after the buffer layer 4 may be performed by the roll-to-roll method similarly to the CIGS light absorption layer 3 forming step. In this case, after the surface electrode layer 5 is formed, the substrate 1 is cut into a predetermined size. Further, the substrate 1 may be used without being cut.

また、上記の実施の形態では、長尺状の基材1の上に裏面電極層2を形成しているが、基材1に導電性があり、裏面電極層2の働きを兼ねることができる場合には、裏面電極層2を設けなくてもよい。   Moreover, in said embodiment, although the back surface electrode layer 2 is formed on the elongate base material 1, the base material 1 has electroconductivity and can serve as the back surface electrode layer 2 as well. In that case, the back electrode layer 2 may not be provided.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、以下の実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to the following examples.

〔実施例1〕
(裏面電極層の形成)
フェライト系SUS430からなる基材1(幅30nm、長さ100m、厚み50μm)の表面に、ロールトゥロール方式を用い、CrおよびMoをDCマグネトロンスパッタ法により、この順に積層して裏面電極層2(Cr:厚み100nm、Mo:厚み300nm)を形成した。
[Example 1]
(Formation of back electrode layer)
On the surface of a base material 1 (width 30 nm, length 100 m, thickness 50 μm) made of ferrite SUS430, a roll-to-roll method is used, and Cr and Mo are laminated in this order by a DC magnetron sputtering method. Cr: thickness 100 nm, Mo: thickness 300 nm).

(CIGS光吸収層の形成)
つぎに、裏面電極層2が形成された基材1を、上記の実施の形態で用いた蒸着装置6(図2参照)の巻き出しロール7および巻き取りロール10に掛け渡し、裏面電極層2の上に、CIGS光吸収層3を形成した。すなわち、蒸着源Aのノズル12として、その先端開口13の開口径が10mmのノズルを用意するとともに、蒸着源Bとして、その供給口14の開口径が27.5mmのものを用意した。そして、蒸着装置6の蒸着室9において、蒸着源Aのノズル12の先端開口13と、蒸着源Bの供給口14と、基材1とが、下記に示す関係となるように配置した。
・蒸着源Aのノズル12の先端開口13からSeの噴出方向を示す仮想線I1と基材1とがなす角θ1が20°。
・蒸着源Bの供給口14からCu、In、Gaの供給方向を示す仮想線I2と基材1とがなす角θ2が90°。
・蒸着源Aのノズル12の先端開口13と基材1表面との最短距離L1が15mm。
・蒸着源Bの供給口14と基材1表面との最短距離L2が50mm。
・仮想線I1と仮想線I2との交点Pが、基材1表面から下方に2mm離れた位置。
(Formation of CIGS light absorption layer)
Next, the substrate 1 on which the back electrode layer 2 is formed is passed over the unwinding roll 7 and the winding roll 10 of the vapor deposition apparatus 6 (see FIG. 2) used in the above embodiment, and the back electrode layer 2 The CIGS light absorption layer 3 was formed on the substrate. That is, as the nozzle 12 of the vapor deposition source A, a nozzle having an opening diameter of 10 mm at the tip opening 13 was prepared, and as the vapor deposition source B, an nozzle having an opening diameter of 27.5 mm was prepared. And in the vapor deposition chamber 9 of the vapor deposition apparatus 6, the front-end | tip opening 13 of the nozzle 12 of the vapor deposition source A, the supply port 14 of the vapor deposition source B, and the base material 1 were arrange | positioned so that it might become the relationship shown below.
The angle θ 1 formed by the virtual line I 1 indicating the ejection direction of Se from the tip opening 13 of the nozzle 12 of the vapor deposition source A and the substrate 1 is 20 °.
The angle θ 2 formed by the virtual line I 2 indicating the supply direction of Cu, In, and Ga from the supply port 14 of the vapor deposition source B and the substrate 1 is 90 °.
The shortest distance L 1 between the tip opening 13 of the nozzle 12 of the vapor deposition source A and the surface of the substrate 1 is 15 mm.
The shortest distance L 2 between the supply port 14 of the vapor deposition source B and the surface of the substrate 1 is 50 mm.
A position where the intersection point P between the virtual line I 1 and the virtual line I 2 is 2 mm away from the surface of the substrate 1.

そして、蒸着装置6内の圧力を1×10-3Paにし、蒸着室9内に配設されたハロゲンランプを備えた基材加熱機構(図示せず)により、基材1の表面温度が250℃になるよう加熱するとともに、蒸着源Bとして配置されたCu、In、Gaの各材料ユニットを、それぞれ1300℃、1100℃、1100℃となるように加熱した。また、蒸着源Aの材料ユニットを350℃となるように加熱するとともに、ノズル12を450℃となるように加熱した。 And the surface temperature of the base material 1 is 250 by the base material heating mechanism (not shown) provided with the halogen lamp arrange | positioned in the vapor deposition chamber 9 by making the pressure in the vapor deposition apparatus 6 into 1 * 10 < -3 > Pa. In addition to heating to 0 ° C., each of the Cu, In, and Ga material units arranged as the evaporation source B was heated to 1300 ° C., 1100 ° C., and 1100 ° C., respectively. In addition, the material unit of the evaporation source A was heated to 350 ° C., and the nozzle 12 was heated to 450 ° C.

そして、巻き出しロール7から基材1を1m/minの速度で巻き出し、巻き取りロール10に向かって蒸着室9内を走行させ、この基材1に対して、Ga、In、Cuの順で並べられた各材料ユニット由来のGa、In、Cuを蒸着源Bの供給口14から供給するとともに、Seを蒸着源Aのノズル12先端開口13から噴射状態で供給し、カルコパイライト構造を有するCIGS光吸収層3を、基材1の裏面電極層2が形成された面に連続的に形成した。さらに、CIGS光吸収層3の結晶性を良好なものとするため、蒸着室9内に備えられた焼成機構(図示せず)により、上記CIGS光吸収層3を550℃の温度で15分間焼成し、その後、巻き取り室11の巻き取りロール10で巻き取った。   Then, the base material 1 is unwound from the unwinding roll 7 at a speed of 1 m / min, and travels in the vapor deposition chamber 9 toward the take-up roll 10. In addition to supplying Ga, In, and Cu derived from each material unit arranged in the above from the supply port 14 of the vapor deposition source B, Se is supplied in an injection state from the tip opening 13 of the nozzle 12 of the vapor deposition source A to have a chalcopyrite structure. The CIGS light absorption layer 3 was continuously formed on the surface of the substrate 1 on which the back electrode layer 2 was formed. Furthermore, in order to improve the crystallinity of the CIGS light absorption layer 3, the CIGS light absorption layer 3 is baked at a temperature of 550 ° C. for 15 minutes by a baking mechanism (not shown) provided in the vapor deposition chamber 9. Then, it was wound up by the winding roll 10 in the winding chamber 11.

(CIGS太陽電池の製造)
上記巻き取りロール10から、裏面電極層2、CIGS光吸収層3がこの順で形成された基材1を巻き出し、これを100mmごとに切断装置で切断した。そして、この切断された基材1のCIGS光吸収層3が形成された面に、CBD法によりCdSからなるバッファ層4(厚み50μm)を形成した。さらに、上記バッファ層4の上に、スパッタリング法によりZnO層(厚み100nm)、ITO層(厚み300nm)をこの順で形成し、表面電極層5とした。そして、基材1の裏面(CIGS光吸収層3等が形成された面の反対面)に、NiCr/Alからなる櫛型電極を形成し、CIGS太陽電池を完成した。
(Manufacture of CIGS solar cells)
The substrate 1 on which the back electrode layer 2 and the CIGS light absorption layer 3 were formed in this order was unwound from the winding roll 10 and cut with a cutting device every 100 mm. And the buffer layer 4 (thickness 50 micrometers) which consists of CdS was formed in the surface in which the CIGS light absorption layer 3 of this cut | disconnected base material 1 was formed by CBD method. Further, a ZnO layer (thickness: 100 nm) and an ITO layer (thickness: 300 nm) were formed in this order on the buffer layer 4 by a sputtering method to obtain a surface electrode layer 5. And the comb-shaped electrode which consists of NiCr / Al was formed in the back surface (opposite surface where the CIGS light absorption layer 3 grade | etc., Was formed) of the base material 1, and the CIGS solar cell was completed.

〔実施例2〕
蒸着源Aのノズル12として、図6に示すように、2つに分岐するノズルを用い、Seをこの2つに分岐されたノズルによって2方向から噴射状態で供給するようにした他は、実施例1と同様にして、CIGS太陽電池を製造した。
[Example 2]
As shown in FIG. 6, as the nozzle 12 of the evaporation source A, a nozzle bifurcated into two is used, and Se is supplied in an injection state from two directions by this bifurcated nozzle. In the same manner as in Example 1, a CIGS solar cell was produced.

〔実施例3〜12〕および〔比較例1〕、〔比較例3〜8〕
蒸着源Aのノズル12の先端開口13と、蒸着源Bの供給口14と、基材1とが、後記の〔表1〕〜〔表4〕に示す関係となるように配置を変更した他は、実施例1と同様にして、CIGS太陽電池を製造した。
[Examples 3-12] and [Comparative Example 1], [Comparative Examples 3-8]
Other than changing the arrangement so that the tip opening 13 of the nozzle 12 of the vapor deposition source A, the supply port 14 of the vapor deposition source B, and the substrate 1 have the relationships shown in [Table 1] to [Table 4] below. Produced a CIGS solar cell in the same manner as in Example 1.

〔比較例2〕
蒸着源AからのSeの供給を、ノズル12を用いずに行うとともに、その蒸着源Aの供給口と、基材1とが、表4に示す関係となるようにそれぞれの位置を変更し、蒸着源Aの供給口からSeの供給方向を示す仮想線と、仮想線I2との交点が、基材1表面から上方に10mm(下方に−10mm)離れた位置となるように変更した他は、実施例1と同様にして、CIGS太陽電池を製造した。
[Comparative Example 2]
While supplying Se from the vapor deposition source A without using the nozzle 12, the supply port of the vapor deposition source A and the base material 1 are changed their positions so as to have the relationship shown in Table 4, a virtual line showing the direction of supplying Se from the supply port of the evaporation source a, the intersection of the imaginary line I 2 were changed so that from the substrate 1 surface and the position distant 10 mm (-10 mm downwards) upwardly other Produced a CIGS solar cell in the same manner as in Example 1.

上記実施例および比較例のCIGS太陽電池をそれぞれ20個製造し、それらの変換効率を下記の手順に従って測定した。また、上記実施例および比較例におけるCIGS光吸収層3において、Seの回り込みの程度を評価するために、別途用意したフェライト系SUS430からなる基材(幅30nm、長さ100m、厚み50μm)の表面に、各実施例および比較例のCIGS光吸収層3の形成条件と同条件で、SeとInのみを蒸着し、SeとInとからなる蒸着層が積層された試験材を作製した。そして、この試験材の蒸着層におけるSe/Inの組成比を下記の手順に従って算出した。
測定および算出した結果を、後記の〔表1〕〜〔表4〕に併せて示す。
Twenty CIGS solar cells of the above examples and comparative examples were manufactured, and their conversion efficiency was measured according to the following procedure. In addition, in the CIGS light absorption layer 3 in the above examples and comparative examples, the surface of a base material (width 30 nm, length 100 m, thickness 50 μm) prepared separately from ferrite SUS430 in order to evaluate the degree of wraparound of Se In addition, under the same conditions as those for forming the CIGS light absorption layer 3 in each of the examples and comparative examples, only Se and In were vapor-deposited, and a test material in which a vapor-deposited layer composed of Se and In was laminated was produced. And the composition ratio of Se / In in the vapor deposition layer of this test material was computed in accordance with the following procedure.
The measured and calculated results are also shown in the following [Table 1] to [Table 4].

〔変換効率〕
擬似太陽光(AM1.5)を100mm角以上の照射面積となるように、上記実施例および比較例のCIGS太陽電池のそれぞれ各20個に照射し、その変換効率をソーラシミュレータ(セルテスターYSS−150、山下電装社製)で測定した。そして、各実施例および比較例のCIGS太陽電池の平均変換効率を算出した。なお、上記測定は、放射照度1kW/m2、電池温度25℃の条件で行った。
〔Conversion efficiency〕
Pseudo sunlight (AM1.5) was irradiated to each 20 pieces of the CIGS solar cells of the above-mentioned examples and comparative examples so as to have an irradiation area of 100 mm square or more, and the conversion efficiency was measured with a solar simulator (cell tester YSS- 150, manufactured by Yamashita Denso Co., Ltd.). And the average conversion efficiency of the CIGS solar cell of each Example and a comparative example was computed. In addition, the said measurement was performed on the conditions of irradiance 1kW / m < 2 > and battery temperature 25 degreeC.

〔Se/Inの組成比〕
上記で作製した各試験材の蒸着層について、エネルギー分散型蛍光X線装置(EX−250、堀場製作所社製)を用いて、SeおよびIn元素の原子数濃度を測定し、それらの原子数濃度に元に、上記蒸着層のSe/Inの組成比を算出した。
[Se / In composition ratio]
About the vapor deposition layer of each test material produced above, using an energy dispersive X-ray fluorescence apparatus (EX-250, manufactured by HORIBA, Ltd.), the atomic number concentrations of Se and In elements are measured, and the atomic number concentrations thereof. Based on the above, the Se / In composition ratio of the vapor deposition layer was calculated.

Figure 2014015662
Figure 2014015662

Figure 2014015662
Figure 2014015662

Figure 2014015662
Figure 2014015662

Figure 2014015662
Figure 2014015662

上記の結果より、実施例1〜12は、試験材の蒸着層におけるSe/Inの組成比がいずれも1.36以上と高くなっており、本発明の蒸着法を用いることにより、基材と蒸着源との距離が近接していても、SeをInの周りに充分に回り込ますことができ、SeとInの反応が充分に行われたことが示された。これを裏付けるように、本発明の蒸着法によりCIGS光吸収層3を形成している実施例1〜12のCIGS太陽電池は、その変換効率はいずれも11.8%以上と高効率になっていた。一方、蒸着源AからのSeの供給をノズルを用いて行っているものの、ノズルの先端開口と、蒸着源Bの供給口と、基材との位置関係が、本発明の範囲外となっている比較例1は、試験材の蒸着層におけるSe/Inの組成比が0.22と極めて低くなっており、CIGS太陽電池は発電しなかった。また、従来通りの蒸着法(蒸着源AからのSeの供給にノズルを用いない)によりCIGS光吸収層3を形成している比較例2では、試験材の蒸着層におけるSe/Inの組成比が0.92と低く、これに比例するように、CIGS太陽電池の変換効率も9.1%と低くなっていた。さらに、蒸着源Aのノズルの先端開口と蒸着源Bの供給口と基材とが上記の一般式(1)〜(4)を満たす位置に配置されていない比較例3〜8では、Se/Inの組成比が良好でなく、CIGS太陽電池の変換効率も低いものになっていた。   From the above results, in Examples 1 to 12, the Se / In composition ratio in the vapor deposition layer of the test material is all 1.36 or higher, and by using the vapor deposition method of the present invention, Even when the distance to the vapor deposition source was close, Se could sufficiently wrap around In, indicating that the reaction between Se and In was sufficiently performed. In order to support this, the CIGS solar cells of Examples 1 to 12 in which the CIGS light absorption layer 3 is formed by the vapor deposition method of the present invention have a high conversion efficiency of 11.8% or more. It was. On the other hand, Se is supplied from the evaporation source A using a nozzle, but the positional relationship between the nozzle tip opening, the supply port of the evaporation source B, and the substrate is out of the scope of the present invention. In Comparative Example 1, the Se / In composition ratio in the vapor deposition layer of the test material was as extremely low as 0.22, and the CIGS solar cell did not generate power. Further, in Comparative Example 2 in which the CIGS light absorption layer 3 is formed by a conventional vapor deposition method (no nozzle is used for supplying Se from the vapor deposition source A), the composition ratio of Se / In in the vapor deposition layer of the test material Was as low as 0.92, and the conversion efficiency of the CIGS solar cell was as low as 9.1%. Further, in Comparative Examples 3 to 8 in which the tip opening of the nozzle of the vapor deposition source A, the supply port of the vapor deposition source B, and the base material are not arranged at the positions satisfying the general formulas (1) to (4), Se / The composition ratio of In was not good, and the conversion efficiency of the CIGS solar cell was low.

本発明の化合物太陽電池の製造方法は、高変換効率を有する化合物太陽電池を高速で安定して製造するのに適している。   The method for producing a compound solar cell of the present invention is suitable for stably producing a compound solar cell having high conversion efficiency at a high speed.

1 基材
12 ノズル
13 先端開口
14 供給口
A 蒸着源
B 蒸着源
DESCRIPTION OF SYMBOLS 1 Base material 12 Nozzle 13 Tip opening 14 Supply port A Deposition source B Deposition source

Claims (4)

長尺状の基材を走行させながら、蒸着法により上記基材上に化合物半導体層を形成する化合物太陽電池の製造方法であって、上記化合物半導体層の形成を、VI族元素材料を供給するためのノズルが付設された蒸着源Aと、それ以外の元素材料を供給する供給口を備えた蒸着源Bを用いて行うようにし、上記蒸着源Bの供給口を基材から5〜70mm離れた位置に配置するとともに、上記蒸着源Aのノズルの先端開口と蒸着源Bの供給口と基材とを下記の一般式(1)〜(4)を満たす位置に配置し、上記VI族元素材料を、上記蒸着源Aのノズルの先端開口から加熱しながら噴射状態で供給するようにしたことを特徴とする化合物太陽電池の製造方法。
1/sinθ1≦L2/sinθ2・・・(1)
0°≦θ1≦30°・・・(2)
θ1≦θ2≦90°・・・(3)
1<L2 ・・・(4)
θ1:蒸着源Aのノズルの先端開口からのVI族元素材料の噴出方向を示す仮想線I1と基材とがなす角(°)
θ2:蒸着源Bの供給口からのVI族以外の元素材料の供給方向を示す仮想線I2と基材とがなす角(°)
1:蒸着源Aのノズルの先端開口と基材表面との最短距離(mm)
2:蒸着源Bの供給口と基材表面との最短距離(mm)
A method of manufacturing a compound solar cell in which a compound semiconductor layer is formed on a base material by vapor deposition while running a long base material, and the formation of the compound semiconductor layer is supplied with a group VI element material The vapor deposition source A provided with a nozzle for the purpose and the vapor deposition source B provided with a supply port for supplying other elemental materials are used, and the supply port for the vapor deposition source B is separated from the substrate by 5 to 70 mm. In addition, the tip opening of the nozzle of the vapor deposition source A, the supply port of the vapor deposition source B, and the substrate are arranged at positions satisfying the following general formulas (1) to (4), and the group VI element A method for producing a compound solar cell, wherein the material is supplied in a sprayed state while being heated from the tip opening of the nozzle of the vapor deposition source A.
L 1 / sin θ 1 ≦ L 2 / sin θ 2 (1)
0 ° ≦ θ 1 ≦ 30 ° (2)
θ 1 ≦ θ 2 ≦ 90 ° (3)
L 1 <L 2 (4)
θ 1 : Angle (°) formed by a virtual line I 1 indicating the ejection direction of the group VI element material from the tip opening of the nozzle of the evaporation source A and the base material
θ 2 : Angle (°) formed by a virtual line I 2 indicating the supply direction of elemental material other than the group VI from the supply port of the evaporation source B and the base material
L 1 : Shortest distance (mm) between the nozzle tip opening of the evaporation source A and the substrate surface
L 2 : The shortest distance (mm) between the supply port of the evaporation source B and the substrate surface
上記化合物半導体層が、I族とIII族とVI族の元素からなるカルコパイライト構造を有するものである請求項1記載の化合物太陽電池の製造方法。   The method for producing a compound solar cell according to claim 1, wherein the compound semiconductor layer has a chalcopyrite structure composed of elements of Group I, Group III, and Group VI. 上記蒸着源Aに付設されたノズルが、複数に分岐するノズルに形成され、上記VI族元素材料が上記複数の分岐されたノズルによって多方向から噴射状態で供給されるようになっている請求項1または2記載の化合物太陽電池の製造方法。   The nozzle attached to the vapor deposition source A is formed into a plurality of branched nozzles, and the group VI element material is supplied in a sprayed state from multiple directions by the plurality of branched nozzles. A method for producing a compound solar cell according to 1 or 2. 上記化合物半導体層の形成が、真空槽内で行われており、上記VI族元素材料を噴射するためのノズルが上記真空槽内に配設されるとともに、上記ノズルに着脱可能な弁手段によって連結された蒸着源Aが上記真空槽外に配設され、上記蒸着源Aから真空槽内のノズルに上記VI族元素材料が供給されるようになっている請求項1〜3のいずれか一項に記載の化合物太陽電池の製造方法。   The compound semiconductor layer is formed in a vacuum chamber, and a nozzle for injecting the group VI element material is disposed in the vacuum chamber and connected to the nozzle by a detachable valve means. The deposited vapor deposition source A is disposed outside the vacuum chamber, and the group VI element material is supplied from the vapor deposition source A to a nozzle in the vacuum chamber. The manufacturing method of the compound solar cell as described in any one of.
JP2012153789A 2012-07-09 2012-07-09 Method for producing compound semiconductor solar cell Withdrawn JP2014015662A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012153789A JP2014015662A (en) 2012-07-09 2012-07-09 Method for producing compound semiconductor solar cell
PCT/JP2013/066546 WO2014010371A1 (en) 2012-07-09 2013-06-17 Method for manufacturing compound solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153789A JP2014015662A (en) 2012-07-09 2012-07-09 Method for producing compound semiconductor solar cell

Publications (1)

Publication Number Publication Date
JP2014015662A true JP2014015662A (en) 2014-01-30

Family

ID=49915839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153789A Withdrawn JP2014015662A (en) 2012-07-09 2012-07-09 Method for producing compound semiconductor solar cell

Country Status (2)

Country Link
JP (1) JP2014015662A (en)
WO (1) WO2014010371A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052194A (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Method and apparatus for producing laminate
JP2019178360A (en) * 2018-03-30 2019-10-17 株式会社アルバック Vapor deposition source for vacuum deposition apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256909B3 (en) * 2002-11-30 2004-07-29 Hahn-Meitner-Institut Berlin Gmbh Process for producing a chalcogenide semiconductor layer with optical in-situ process control and device for carrying out the process
JP2005126757A (en) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd Apparatus and method for producing compound thin film
JP4474324B2 (en) * 2005-04-28 2010-06-02 パナソニック株式会社 Deposition equipment
JP5352829B2 (en) * 2009-10-02 2013-11-27 株式会社明電舎 Film forming method and film forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052194A (en) * 2015-09-10 2017-03-16 パナソニックIpマネジメント株式会社 Method and apparatus for producing laminate
JP2019178360A (en) * 2018-03-30 2019-10-17 株式会社アルバック Vapor deposition source for vacuum deposition apparatus

Also Published As

Publication number Publication date
WO2014010371A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5246839B2 (en) Semiconductor thin film manufacturing method, semiconductor thin film manufacturing apparatus, photoelectric conversion element manufacturing method, and photoelectric conversion element
US20150357486A1 (en) Solar cell including multiple buffer layer formed by atomic layer deposition and method of fabricating the same
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
KR20130109786A (en) Solar cell and manufacturing method thereof
JP6265362B2 (en) CIGS compound solar cell
CN104115283B (en) Solar cell module and method of fabricating the same
JP2014209586A (en) Thin film solar cell and manufacturing method for the same
TW201344926A (en) Method for manufacturing compound solar cell
WO2012090506A1 (en) Film deposition apparatus and method of manufacturing photoelectric conversion element
CN103765604B (en) The preparation method of CIGS film and use its preparation method of CIGS solaode
WO2014010371A1 (en) Method for manufacturing compound solar cell
KR101415251B1 (en) Multiple-Layered Buffer, and Its Fabrication Method, and Solor Cell with Multiple-Layered Buffer.
WO2012124430A1 (en) Solar cell manufacturing method and manufacturing apparatus, and solar cell module manufacturing method
KR101734362B1 (en) Forming method for acigs film at low temperature and manufacturing method for solar cell by using the forming method
JP2009114481A (en) Method for forming electrodeposition film, thin film solar cell, and method for manufacturing the same
JP2014154762A (en) Method for producing cigs film, and method for manufacturing cigs solar cell using the same
JP2014157931A (en) Cigs-based compound solar cell
JP2017050337A (en) Method of manufacturing cigs semiconductor precursor film, method of manufacturing cigs semiconductor film using the same, and method of manufacturing cigs solar battery using them
US20150087107A1 (en) Method for manufacturing photoelectric conversion device
JP6083785B2 (en) Compound solar cell and method for producing the same
CN113644146B (en) Thin film for solar cell, solar cell and preparation method of thin film
JP2014232797A (en) Semiconductor precursor structure, cigs semiconductor structure produced by use thereof, cigs solar battery arranged by use thereof, and manufacturing method thereof
JP5594949B2 (en) Photovoltaic element and manufacturing method thereof
JP2016072367A (en) Semiconductor layer, manufacturing method thereof, and compound solar cell with semiconductor layer
Cui et al. Improvement of Mo/Cu2ZnSnS4 interface for Cu2ZnSnS4 (CZTS) thin film solar cell application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160330