JP2014015587A - Addition-curable silicone composition, optical element sealing material comprising the composition, and optical element sealed with the optical element sealing material - Google Patents

Addition-curable silicone composition, optical element sealing material comprising the composition, and optical element sealed with the optical element sealing material Download PDF

Info

Publication number
JP2014015587A
JP2014015587A JP2012155839A JP2012155839A JP2014015587A JP 2014015587 A JP2014015587 A JP 2014015587A JP 2012155839 A JP2012155839 A JP 2012155839A JP 2012155839 A JP2012155839 A JP 2012155839A JP 2014015587 A JP2014015587 A JP 2014015587A
Authority
JP
Japan
Prior art keywords
sio
addition
curable silicone
optical element
silicone composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012155839A
Other languages
Japanese (ja)
Other versions
JP6006554B2 (en
Inventor
Shinji Kimura
真司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012155839A priority Critical patent/JP6006554B2/en
Publication of JP2014015587A publication Critical patent/JP2014015587A/en
Application granted granted Critical
Publication of JP6006554B2 publication Critical patent/JP6006554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an addition-curable silicone composition that gives a cured product having high transparency, thermal discoloration resistance, high hardness and excellent adhesiveness and cracking resistance, and an optical element sealing material comprising the composition, and an optical element sealed with the optical element sealing material.SOLUTION: The addition-curable silicone composition comprises: (A) a compound expressed by formula (1) (where Me represents a methyl group, i represents an integer of 2 to 10, and the compound (1) is a single compound having no molecular weight distribution); (B) a three-dimensional mesh-like organopolysiloxane resin expressed by average composition formula (2):(RSiO)(RRSiO)(RRSiO)(RSiO)(RRSiO)(RSiO)(RSiO)(RSiO)(SiO)(where Rrepresents an alkenyl group, Rrepresents an organic group containing no aliphatic unsaturated bond, and at least 80 mol% of the whole Ris a methyl group); and (C) a hydrosilylation catalyst containing a platinum group metal.

Description

本発明は、付加硬化型シリコーン組成物、該組成物からなる光学素子封止材、及び該光学素子封止材で封止した光学素子に関する。   The present invention relates to an addition-curable silicone composition, an optical element sealing material comprising the composition, and an optical element sealed with the optical element sealing material.

付加硬化型シリコーン組成物は、ケイ素原子結合水素原子とアルケニル基等の脂肪族不飽和基を含有するポリオルガノシロキサンを含み、ヒドロシリル化反応によって架橋され硬化物を与える。このようにして得られる硬化物は、耐熱性、耐寒性、電気絶縁性に優れるため、各種の光学用途に用いられている。   The addition-curable silicone composition contains a polyorganosiloxane containing a silicon-bonded hydrogen atom and an aliphatic unsaturated group such as an alkenyl group, and is crosslinked by a hydrosilylation reaction to give a cured product. The cured product thus obtained is excellent in heat resistance, cold resistance, and electrical insulation, and thus is used in various optical applications.

光学用途に使用するシリコーン組成物は、光学素子および銀やポリフタルアミドといった光学素子周辺に使用される部材と接着する必要があり、また、高い透明性、高い耐熱変色性が要求される。   Silicone compositions used for optical applications must adhere to optical elements and members used around optical elements such as silver and polyphthalamide, and are required to have high transparency and high heat discoloration.

さらに、発光素子は発光と消光を繰り返して使用されるため、温度変化が頻繁に起こり、周辺部材に歪みが生じる。特に、これまで提案されている高硬度材料となる組成物は、膨張収縮に耐え切れず、周辺部材からの剥離やクラックを発生しやすい(特許文献1)。   Furthermore, since the light-emitting element is repeatedly used for light emission and quenching, temperature changes frequently occur, and peripheral members are distorted. In particular, compositions that have been proposed so far as high-hardness materials cannot withstand expansion and contraction, and are liable to cause peeling and cracking from peripheral members (Patent Document 1).

剥離を防止するため、プライマー組成物を使用することも可能であるが(特許文献2、3)、溶剤が使用されている場合が多く、工程が増えるといった問題点があるため、使用しない方が好ましい。   In order to prevent peeling, it is possible to use a primer composition (Patent Documents 2 and 3), but there are many cases where a solvent is used, and there is a problem that the number of processes increases, so it is better not to use it. preferable.

クラックを防止するためには、高分子量のシリコーン組成物を使用することが有効であるが、シリコーン組成物を低粘度とするのは難しい(特許文献4)。
また、高硬度で透明性、低波長での光透過性に優れる硬化物を与える発光ダイオード素子用シリコーン樹脂組成物も提案されている(特許文献5)が、従来の架橋剤では架橋剤の重合度に分布があるため、耐クラック性においては更なる改善が望まれていた。
In order to prevent cracking, it is effective to use a high molecular weight silicone composition, but it is difficult to make the silicone composition have a low viscosity (Patent Document 4).
Further, a silicone resin composition for a light-emitting diode element that gives a cured product having high hardness and transparency and excellent light transmission at a low wavelength has been proposed (Patent Document 5). Since there is a distribution in the degree, further improvement in crack resistance has been desired.

特開2009−215420号公報JP 2009-215420 A 特開2004−339450号公報JP 2004-339450 A 特開2008−179694号公報JP 2008-179694 A 特開2011−246581号公報JP 2011-246581 A 特開2004−221308号公報JP 2004-221308 A

本発明は、上記問題を解決するためになされたものであり、高い透明性、耐熱変色性を有し、高硬度でありながら接着性および耐クラック性に優れる硬化物を与える付加硬化型シリコーン組成物、該組成物からなる光学素子封止材、及び該光学素子封止材で封止した光学素子を提供することを目的とする。   The present invention has been made to solve the above problems, and is an addition-curable silicone composition that provides a cured product having high transparency, heat discoloration, high hardness, and excellent adhesion and crack resistance. It is an object of the present invention to provide an optical element sealing material comprising the composition, the composition, and an optical element sealed with the optical element sealing material.

上記目的を達成するため、本発明は、(A)下記式(1)で表される構造を有する化合物、

Figure 2014015587
(式中、Meはメチル基であり、iは2〜10の整数である。式(1)で表わされる構造を有する化合物は実質的に分子量分布を有さない単一の化合物である。)
(B)下記平均組成式(2)で表され、23℃で蝋状又は固体の三次元網状オルガノポリシロキサン樹脂を、上記(A)成分中の全ケイ素原子結合水素原子に対して、(B)成分中のケイ素原子に結合したアルケニル基が、0.5〜5.0倍モルとなる量、
(R SiO1/2(R SiO1/2(R SiO1/2(R SiO1/2(RSiO)(R SiO)(RSiO3/2(RSiO3/2(SiO…(2)
(式中、Rは独立にアルケニル基を表し、Rは独立に脂肪族不飽和結合を含まない有機基を表し、全Rの少なくとも80モル%はメチル基であり、1>k≧0、1>m≧0、1>n≧0、1>p≧0、1>q≧0、1>r≧0、1>s≧0、1>t≧0及び1>u≧0、並びにm+n+p+q+s>0、s+t+u>0であり、かつk+m+n+p+q+r+s+t+u=1を満たす数である。)
(C)白金族金属を含むヒドロシリル化触媒、
を含むことを特徴とする付加硬化型シリコーン組成物を提供する。 In order to achieve the above object, the present invention provides (A) a compound having a structure represented by the following formula (1),
Figure 2014015587
(In the formula, Me is a methyl group, and i is an integer of 2 to 10. The compound having the structure represented by the formula (1) is a single compound having substantially no molecular weight distribution.)
(B) A three-dimensional network organopolysiloxane resin represented by the following average composition formula (2) and having a waxy or solid state at 23 ° C. is expressed as (B) with respect to all silicon-bonded hydrogen atoms in the component (A): ) The amount of the alkenyl group bonded to the silicon atom in the component is 0.5 to 5.0 times mol,
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (R 1 2 R 2 SiO 1/2 ) n (R 1 3 SiO 1/2 ) p (R 1 R 2 SiO Q (R 2 2 SiO) r (R 1 SiO 3/2 ) s (R 2 SiO 3/2 ) t (SiO 2 ) u (2)
(Wherein R 1 independently represents an alkenyl group, R 2 independently represents an organic group not containing an aliphatic unsaturated bond, at least 80 mol% of all R 2 is a methyl group, and 1> k ≧ 0, 1> m ≧ 0, 1> n ≧ 0, 1> p ≧ 0, 1> q ≧ 0, 1> r ≧ 0, 1> s ≧ 0, 1> t ≧ 0 and 1> u ≧ 0, And m + n + p + q + s> 0, s + t + u> 0, and k + m + n + p + q + r + s + t + u = 1.)
(C) a hydrosilylation catalyst containing a platinum group metal,
An addition-curable silicone composition is provided.

このような付加硬化型シリコーン組成物を架橋させて得られる硬化物は、高い透明性、耐熱変色性を有し、高硬度でありながら接着性およびクラック耐性に優れるため、LED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD等の光学素子の封止材等として好適に用いることができる。   A cured product obtained by crosslinking such an addition-curable silicone composition has high transparency and heat discoloration, and has high hardness and excellent adhesion and crack resistance. Therefore, LED, semiconductor laser, photo It can be suitably used as a sealing material for optical elements such as diodes, phototransistors, solar cells, and CCDs.

また、前記付加硬化型シリコーン組成物中の(A)成分が、単一分子量の環状ジメチルシロキサンとジメチルクロロシランと水を反応させることにより得られたものであることが好ましい。   The component (A) in the addition-curable silicone composition is preferably obtained by reacting a single molecular weight cyclic dimethylsiloxane, dimethylchlorosilane, and water.

このように反応させれば、純度の高い(A)成分を得ることができ、耐クラック性をより高めることができる。   If it reacts in this way, (A) component with high purity can be obtained and crack resistance can be improved more.

この場合、前記付加硬化型シリコーン組成物中の(B)成分において、アルケニル基以外のケイ素原子に結合した全有機基の90モル%以上が、メチル基であることが好ましい。   In this case, in the component (B) in the addition-curable silicone composition, 90 mol% or more of all organic groups bonded to silicon atoms other than alkenyl groups are preferably methyl groups.

90モル%以上がメチル基であれば、耐光性や耐候性はより優れたものとなり、得られる硬化物はより変色しにくくなる。   If 90 mol% or more is a methyl group, light resistance and weather resistance will become more excellent, and the hardened | cured material obtained will become more difficult to discolor.

また、前記付加硬化型シリコーン組成物を架橋させて得られる硬化物の400〜800nm波長における光透過率は、厚さ1mmで80%以上であることが好ましい。   Moreover, it is preferable that the light transmittance in the wavelength of 400-800 nm of the hardened | cured material obtained by bridge | crosslinking the said addition curable silicone composition is 80% or more in thickness 1mm.

上記の光透過率を有する硬化物であれば、光学素子の封止材等としてさらに好適に用いることができる。   Any cured product having the above light transmittance can be more suitably used as a sealing material for an optical element.

上記付加硬化型シリコーン組成物からなることを特徴とする光学素子封止材を提供する。   An optical element sealing material comprising the above addition-curable silicone composition is provided.

このような付加硬化型シリコーン組成物からなる光学素子封止材であれば、高い透明性、耐熱変色性を有し、高硬度でありながら接着性および耐クラック性に優れるため、好適に用いることができる。   An optical element sealing material made of such an addition-curable silicone composition has high transparency and heat discoloration, and is excellent in adhesion and crack resistance while having high hardness. Can do.

上記光学素子封止材の硬化物で封止されたことを特徴とする光学素子を提供する。   An optical element is provided which is sealed with a cured product of the optical element sealing material.

このような光学素子封止材の硬化物で封止されることにより、高い透明性、耐熱変色性を有し、高硬度でありながら接着性および耐クラック性に優れた封止材で封止された光学素子となる。   Sealed with a cured product of such an optical element sealing material, it has high transparency and heat discoloration, and it is sealed with a sealing material that has high hardness and excellent adhesion and crack resistance. It becomes the optical element made.

本発明の組成物を架橋させて得られる硬化物は、耐熱性、耐寒性、電気絶縁性に優れる上、高い透明性、耐熱変色性を有し、高硬度でありながら接着性およびクラック耐性に優れるため、LED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD等の光学素子の封止材として好適に用いることができる。   The cured product obtained by crosslinking the composition of the present invention is excellent in heat resistance, cold resistance and electrical insulation, has high transparency and heat discoloration, and has high hardness and adhesion and crack resistance. Since it is excellent, it can be suitably used as a sealing material for optical elements such as LEDs, semiconductor lasers, photodiodes, phototransistors, solar cells, and CCDs.

本発明の付加硬化型シリコーン組成物が好適に用いられる発光半導体装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the light emitting semiconductor device with which the addition-curable silicone composition of this invention is used suitably.

以下、本発明について、さらに詳しく説明する。
上述のように、従来用いられてきた光学用途に使用するシリコーン組成物は、膨張収縮に耐え切れず、周辺部材からの剥離やクラックを発生し易いという問題があった。
Hereinafter, the present invention will be described in more detail.
As described above, conventionally used silicone compositions for optical applications have a problem that they cannot withstand expansion and contraction, and are liable to be peeled off or cracked from peripheral members.

本発明者は、鋭意検討を行った結果、両末端にケイ素原子結合水素原子を有する実質的に単一分子量のオリゴジメチルシロキサンを用い、不飽和基含有三次元網状ポリオルガノシロキサンを架橋することによって、高い透明性、耐熱変色性を有し、高硬度でありながら接着性および耐クラック性に優れる硬化物を与える付加硬化型シリコーン組成物を得られることを見出し、本発明に到達した。   As a result of intensive studies, the inventor of the present invention uses a substantially single molecular weight oligodimethylsiloxane having silicon-bonded hydrogen atoms at both ends and crosslinks an unsaturated group-containing three-dimensional network polyorganosiloxane. The present inventors have found that an addition-curable silicone composition can be obtained that provides a cured product having high transparency, heat discoloration, and high hardness but excellent adhesion and crack resistance.

すなわち、本発明の付加硬化型シリコーン組成物は、
(A)下記式(1)で表される構造を有する化合物、

Figure 2014015587
(式中、Meはメチル基であり、iは2〜10の整数である。式(1)で表わされる構造を有する化合物は実質的に分子量分布を有さない単一の化合物である。)
(B)下記平均組成式(2)で表され、23℃で蝋状又は固体の三次元網状オルガノポリシロキサン樹脂を、上記(A)成分中の全ケイ素原子結合水素原子に対して、(B)成分中のケイ素原子に結合したアルケニル基が、0.5〜5.0倍モルとなる量、
(R SiO1/2(R SiO1/2(R SiO1/2(R SiO1/2(RSiO)(R SiO)(RSiO3/2(RSiO3/2(SiO…(2)
(式中、Rは独立にアルケニル基を表し、Rは独立に脂肪族不飽和結合を含まない有機基を表し、全Rの少なくとも80モル%はメチル基であり、1>k≧0、1>m≧0、1>n≧0、1>p≧0、1>q≧0、1>r≧0、1>s≧0、1>t≧0及び1>u≧0、並びにm+n+p+q+s>0、s+t+u>0であり、かつk+m+n+p+q+r+s+t+u=1を満たす数である。)
(C)白金族金属を含むヒドロシリル化触媒、
を含むことを特徴とする付加硬化型シリコーン組成物である。 That is, the addition-curable silicone composition of the present invention is
(A) a compound having a structure represented by the following formula (1),
Figure 2014015587
(In the formula, Me is a methyl group, and i is an integer of 2 to 10. The compound having the structure represented by the formula (1) is a single compound having substantially no molecular weight distribution.)
(B) A three-dimensional network organopolysiloxane resin represented by the following average composition formula (2) and having a waxy or solid state at 23 ° C. is expressed as (B) with respect to all silicon-bonded hydrogen atoms in the component (A): ) The amount of the alkenyl group bonded to the silicon atom in the component is 0.5 to 5.0 times mol,
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (R 1 2 R 2 SiO 1/2 ) n (R 1 3 SiO 1/2 ) p (R 1 R 2 SiO Q (R 2 2 SiO) r (R 1 SiO 3/2 ) s (R 2 SiO 3/2 ) t (SiO 2 ) u (2)
(Wherein R 1 independently represents an alkenyl group, R 2 independently represents an organic group not containing an aliphatic unsaturated bond, at least 80 mol% of all R 2 is a methyl group, and 1> k ≧ 0, 1> m ≧ 0, 1> n ≧ 0, 1> p ≧ 0, 1> q ≧ 0, 1> r ≧ 0, 1> s ≧ 0, 1> t ≧ 0 and 1> u ≧ 0, And m + n + p + q + s> 0, s + t + u> 0, and k + m + n + p + q + r + s + t + u = 1.)
(C) a hydrosilylation catalyst containing a platinum group metal,
It is an addition-curable silicone composition characterized by including.

以下、各成分について詳細に説明する。なお、本明細書において、Meはメチル基を表し、Viはビニル基を表す。
本発明の組成物は、下記の(A)〜(C)成分を含有するものである。
Hereinafter, each component will be described in detail. In the present specification, Me represents a methyl group, and Vi represents a vinyl group.
The composition of the present invention contains the following components (A) to (C).

[(A)成分]
(A)成分は、得られる付加硬化型シリコーン組成物の粘度を下げるとともに、該付加硬化型シリコーン組成物の硬化後に応力緩和をもたらす成分である。(A)成分は下記式(1)で表わされる化合物である。

Figure 2014015587
(式中、Meはメチル基であり、iは2〜10の整数である。式(1)は実質的に分子量分布を有さない単一の化合物である。) [(A) component]
The component (A) is a component that lowers the viscosity of the resulting addition-curable silicone composition and causes stress relaxation after the addition-curable silicone composition is cured. The component (A) is a compound represented by the following formula (1).
Figure 2014015587
(In the formula, Me is a methyl group, and i is an integer of 2 to 10. Formula (1) is a single compound having substantially no molecular weight distribution.)

この場合、iは、3〜10が好ましく、さらに好ましくは4〜8である。iが2未満であると揮発し易く、組成物の保存安定性が低下することがあり、10を超えると実質的に分子量分布を有さない単一の化合物としての入手が工業的には難しくなると共に組成物の硬化物の硬さが低くなることがある。
尚、本発明において実質的に分子量分布を有さない単一の化合物とは、(A)成分の単一化合物の純度がガスクロマトグラフィー分析において90質量%以上であり、好ましくは95質量%以上、特に好ましくは97質量%以上のものである。
(A)成分の純度が90質量%未満であると、耐クラック性が低下する恐れがある。
In this case, i is preferably from 3 to 10, more preferably from 4 to 8. When i is less than 2, volatilization is likely to occur, and the storage stability of the composition may decrease. When it exceeds 10, it is industrially difficult to obtain a single compound having substantially no molecular weight distribution. In addition, the hardness of the cured product of the composition may be lowered.
In the present invention, the single compound having substantially no molecular weight distribution means that the purity of the single compound (A) is 90% by mass or more, preferably 95% by mass or more in gas chromatography analysis. Particularly preferred is 97% by mass or more.
When the purity of the component (A) is less than 90% by mass, the crack resistance may be lowered.

従来、式(1)のような構造の化合物は、オクタメチルシクロテトラシロキサンのような環状シロキサンと1,3−ジハイドロジェンテトラメチルジシロキサンのような末端封止剤を原料とし、酸存在下、平衡反応を行い得られていた。この方法では、重合度の異なる成分の混合物となり、分子量分布を有し、重合度の小さいものは環状体も含有するものとなり、広い分布を有する混合物となり、蒸留しても分離が困難で、単一の化合物が90質量%以上で含まれることはなかった。   Conventionally, a compound having a structure such as formula (1) is made from a cyclic siloxane such as octamethylcyclotetrasiloxane and an end-capping agent such as 1,3-dihydrogentetramethyldisiloxane in the presence of an acid. An equilibrium reaction was obtained. In this method, a mixture of components having different degrees of polymerization is obtained, a molecular weight distribution is obtained, and a material having a low degree of polymerization also contains a cyclic product. One compound was not contained in 90 mass% or more.

しかしながら、上記組成において、上記従来の合成法により得られるシリコーン組成物を使用すると、調製や加熱硬化の際に低分子成分が揮発してしまい、耐クラック性等が十分満足するものとはならない。   However, in the above composition, when a silicone composition obtained by the above conventional synthesis method is used, the low molecular component volatilizes during preparation and heat curing, and the crack resistance and the like are not sufficiently satisfied.

これに対し、本発明のように実質的に分子量分布を持たない両末端がSiH基で封鎖されたオリゴシロキサンを使用すると、高分子量体や低分子量体が存在しないため、硬化物の耐クラック性等が優れたものとなる。
(A)成分の合成方法としては、蒸留等により精製した単一分子量の環状ジメチルシロキサンと水、好ましくはシリカゲル等の無機固体化合物存在下、ジメチルクロロシランを反応させる方法が挙げられる。得られた生成物は必要に応じて蒸留してもよい。
On the other hand, when an oligosiloxane having both molecular ends substantially free of molecular weight distribution and blocked with SiH groups is used as in the present invention, there is no high molecular weight body or low molecular weight body. Etc. are excellent.
Examples of the method for synthesizing the component (A) include a method in which a single molecular weight cyclic dimethylsiloxane purified by distillation or the like is reacted with water, preferably dimethylchlorosilane in the presence of an inorganic solid compound such as silica gel. The product obtained may be distilled if necessary.

(A)成分の具体例としては、
(HMeSiO1/2(MeSiO)
(HMeSiO1/2(MeSiO)
(HMeSiO1/2(MeSiO)
(HMeSiO1/2(MeSiO)
(HMeSiO1/2(MeSiO)
(HMeSiO1/2(MeSiO)10
等が挙げられる。
As a specific example of the component (A),
(HMe 2 SiO 1/2 ) 2 (Me 2 SiO) 2 ,
(HMe 2 SiO 1/2 ) 2 (Me 2 SiO) 4 ,
(HMe 2 SiO 1/2 ) 2 (Me 2 SiO) 6 ,
(HMe 2 SiO 1/2 ) 2 (Me 2 SiO) 8 ,
(HMe 2 SiO 1/2 ) 2 (Me 2 SiO) 9 ,
(HMe 2 SiO 1/2 ) 2 (Me 2 SiO) 10
Etc.

[(B)成分]
(B)成分は、硬化物の透明性を維持したまま、高硬度化するための成分である。
(B)成分は、下記平均組成式(2)で表され、23℃において蝋状もしくは固体の、分子中に、アルケニル基と、三官能性シロキサン単位及び/又はSiO4/2単位とを必須に含有する、三次元網状のオルガノポリシロキサン樹脂である。
なお、「蝋状」とは、23℃において、10,000,000mPa・s以上、特に100,000,000mPa・s以上の、ほとんど自己流動性を示さないガム状(生ゴム状)であることを意味する。
[Component (B)]
The component (B) is a component for increasing the hardness while maintaining the transparency of the cured product.
The component (B) is represented by the following average composition formula (2), and in the molecule of waxy or solid at 23 ° C., an alkenyl group and a trifunctional siloxane unit and / or SiO 4/2 unit are essential. Is a three-dimensional network-like organopolysiloxane resin.
In addition, “wax” means a gum (raw rubber) that shows no self-fluidity at 23 ° C. of 10,000,000 mPa · s or more, particularly 100,000,000 mPa · s or more. means.

(R SiO1/2(R SiO1/2(R SiO1/2(R SiO1/2(RSiO)(R SiO)(RSiO3/2(RSiO3/2(SiO・・・(2)
(式中、Rは独立にアルケニル基を表し、Rは独立に脂肪族不飽和結合を含まない有機基を表し、全Rの少なくとも80モル%はメチル基であり、1>k≧0、1>m≧0、1>n≧0、1>p≧0、1>q≧0、1>r≧0、1>s≧0、1>t≧0及び1>u≧0、並びにm+n+p+q+s>0、s+t+u>0であり、かつk+m+n+p+q+r+s+t+u=1を満たす数である。)
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (R 1 2 R 2 SiO 1/2 ) n (R 1 3 SiO 1/2 ) p (R 1 R 2 SiO ) Q (R 2 2 SiO) r (R 1 SiO 3/2 ) s (R 2 SiO 3/2 ) t (SiO 2 ) u (2)
(Wherein R 1 independently represents an alkenyl group, R 2 independently represents an organic group not containing an aliphatic unsaturated bond, at least 80 mol% of all R 2 is a methyl group, and 1> k ≧ 0, 1> m ≧ 0, 1> n ≧ 0, 1> p ≧ 0, 1> q ≧ 0, 1> r ≧ 0, 1> s ≧ 0, 1> t ≧ 0 and 1> u ≧ 0, And m + n + p + q + s> 0, s + t + u> 0, and k + m + n + p + q + r + s + t + u = 1.)

前記ケイ素原子に結合したアルケニル基(上記式(2)中のR)は、炭素原子数は、2〜8であり、好ましくは2〜4である。アルケニル基の具体例としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等が挙げられ、好ましくはビニル基である。 The alkenyl group bonded to the silicon atom (R 1 in the above formula (2)) has 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Specific examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group, and a vinyl group is preferable.

(B)成分のオルガノポリシロキサン樹脂において、前記脂肪族不飽和結合以外のケイ素原子に結合した有機基(上記式(2)中のR)は、脂肪族不飽和結合を有さないものであれば特に限定されず、例えば、非置換又は置換の、炭素原子数は、1〜12であり、好ましくは1〜10の炭化水素である。この非置換又は置換の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;これらの基の水素原子の一部又は全部が塩素原子、フッ素原子、臭素原子等のハロゲン原子で置換された、クロロメチル基、3−クロロプロピル基、3,3,3−トリフロロプロピル基等のハロゲン化アルキル基等が挙げられ、好ましくはアルキル基であり、より好ましくはメチル基である。 In the organopolysiloxane resin of component (B), the organic group bonded to the silicon atom other than the aliphatic unsaturated bond (R 2 in the above formula (2)) does not have an aliphatic unsaturated bond. There is no particular limitation as long as it is, for example, unsubstituted or substituted, the number of carbon atoms is 1 to 12, preferably 1 to 10 hydrocarbons. Examples of the unsubstituted or substituted hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; a cycloalkyl group such as a cyclohexyl group; a phenyl group, Aryl groups such as tolyl, xylyl and naphthyl groups; aralkyl groups such as benzyl and phenethyl groups; some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as chlorine, fluorine and bromine In addition, halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group and the like can be mentioned, preferably an alkyl group, more preferably a methyl group.

(B)成分において、Rで表される脂肪族不飽和結合を含まない有機基、すなわちアルケニル基以外の、ケイ素原子に結合した全有機基の80モル%以上がメチル基であれば、耐光性や耐候性が低下せず、硬化物が変色する恐れも少ない。
この場合、アルケニル基以外の、ケイ素原子に結合した全有機基の90モル%以上がメチル基であるのがより好ましく、98〜100モル%がメチル基であるのがさらに好ましい。
In the component (B), if 80 mol% or more of all organic groups bonded to the silicon atom other than the organic group represented by R 2 that does not contain an aliphatic unsaturated bond, that is, an alkenyl group, is a methyl group, light resistance Properties and weather resistance are not deteriorated, and the cured product is less likely to discolor.
In this case, 90 mol% or more of all organic groups bonded to the silicon atom other than the alkenyl group is more preferably a methyl group, and more preferably 98 to 100 mol% is a methyl group.

kは0〜0.65、mは0〜0.65、nは0〜0.65、pは0〜0.65、qは0〜0.5、rは0〜0.5、sは0〜0.8、tは0〜0.8、uは0〜0.6の数であることが好ましい。また、m+n+qは0.01〜0.50、特に0.05〜0.20の数であることが好ましく、m+n+p+q+sは0.01〜0.50、特に0.05〜0.20の数であることが好ましく、s+t+uは0.1〜0.8、特に0.2〜0.6の数であることが好ましい。
また、(B)成分のオルガノポリシロキサン樹脂の展開溶媒をテトラヒドロフランを用いて測定したGPC(ゲルパーミエーションクロマトグラフ)におけるポリスチレン換算重量平均分子量は、好ましくは400〜100,000であり、特に500〜50,000であることが好ましい。
k is 0 to 0.65, m is 0 to 0.65, n is 0 to 0.65, p is 0 to 0.65, q is 0 to 0.5, r is 0 to 0.5, s is 0 to 0.8, t is preferably 0 to 0.8, and u is preferably a number from 0 to 0.6. Further, m + n + q is preferably a number of 0.01 to 0.50, particularly 0.05 to 0.20, and m + n + p + q + s is a number of 0.01 to 0.50, particularly 0.05 to 0.20. It is preferable that s + t + u is a number of 0.1 to 0.8, particularly 0.2 to 0.6.
The weight average molecular weight in terms of polystyrene in GPC (gel permeation chromatograph) measured using tetrahydrofuran as the developing solvent for the organopolysiloxane resin of component (B) is preferably 400 to 100,000, particularly 500 to Preferably it is 50,000.

(B)成分中、ケイ素原子に結合したアルケニル基の含有量は、(B)成分100g当たり、0.01〜1molの範囲であることが好ましく、0.05〜0.5molの範囲であることがより好ましい。アルケニル基の含有量が0.01〜1molの範囲を満たすと、架橋反応が十分に進行し、高硬度の硬化物を得ることができる。   In the component (B), the content of the alkenyl group bonded to the silicon atom is preferably in the range of 0.01 to 1 mol, and in the range of 0.05 to 0.5 mol, per 100 g of the component (B). Is more preferable. When the content of the alkenyl group satisfies the range of 0.01 to 1 mol, the crosslinking reaction proceeds sufficiently, and a cured product with high hardness can be obtained.

(B)成分のオルガノポリシロキサン樹脂は、例えば、以下に表されるものが好ましい。
(R SiO1/2(R SiO1/2(SiO
(R SiO1/2(SiO
(RSiO)(R SiO)(RSiO3/2
(R SiO1/2(R SiO)(RSiO3/2
(R SiO1/2(R SiO)(RSiO3/2
(R SiO1/2(R SiO1/2(R SiO)(RSiO3/2
(R SiO1/2(R SiO1/2(RSiO)(R SiO)(RSiO3/2
(式中、R、R、k、m、n、p、q、r、s、t及びuは、前記平均組成式(2)で定義した通りである。)
As the organopolysiloxane resin as the component (B), for example, those represented below are preferable.
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (SiO 2 ) u
(R 1 R 2 2 SiO 1/2 ) m (SiO 2 ) u
(R 1 R 2 SiO) q (R 2 2 SiO) r (R 2 SiO 3/2 ) t
(R 1 R 2 2 SiO 1/2 ) m (R 2 2 SiO) r (R 1 SiO 3/2 ) s
(R 1 R 2 2 SiO 1/2 ) m (R 2 2 SiO) r (R 2 SiO 3/2 ) t
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (R 2 2 SiO) r (R 2 SiO 3/2 ) t
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (R 1 R 2 SiO) q (R 2 2 SiO) r (R 2 SiO 3/2 ) t
(In the formula, R 1 , R 2 , k, m, n, p, q, r, s, t, and u are as defined in the average composition formula (2).)

(B)成分の具体例としては、
(MeSiO1/2(ViMeSiO1/2(SiOu、
(ViMeSiO)(MeSiO)(MeSiO3/2
(ViMeSiO1/2(MeSiO)(MeSiO3/2
等が挙げられる。
(B)成分は、一種単独で用いても、二種以上を併用してもよい。
As a specific example of the component (B),
(Me 3 SiO 1/2 ) k (ViMe 2 SiO 1/2 ) m (SiO 2 ) u,
(ViMeSiO) q (Me 2 SiO) r (MeSiO 3/2 ) t ,
(ViMe 2 SiO 1/2 ) m (Me 2 SiO) r (MeSiO 3/2 ) t
Etc.
(B) A component may be used individually by 1 type, or may use 2 or more types together.

(B)成分の(A)成分に対する配合割合は、(A)成分中の全ケイ素原子結合水素原子に対して(B)成分中のケイ素原子に結合したアルケニル基が好ましくは0.5〜5.0倍モルとなる量である。より好ましくは0.6〜3.0倍モルであり、特に好ましくは0.8〜2.0倍モルとなる量である。(A)成分と(B)成分の質量比としては、好ましくは1:99〜50:50、より好ましくは5:95〜40:60、特に好ましくは10:90〜30:70である。   The blending ratio of the component (B) to the component (A) is preferably 0.5 to 5 for alkenyl groups bonded to silicon atoms in the component (B) with respect to all silicon atom-bonded hydrogen atoms in the component (A). It is the amount which becomes 0.0 times mole. The amount is more preferably 0.6 to 3.0 times mol, and particularly preferably 0.8 to 2.0 times mol. The mass ratio of the component (A) to the component (B) is preferably 1:99 to 50:50, more preferably 5:95 to 40:60, and particularly preferably 10:90 to 30:70.

[(C)成分]
(C)成分である白金族金属系触媒は、前記(A)および(B)成分のヒドロシリル化反応を進行及び促進させるための成分である。白金族金属系触媒は、特に限定されるものではなく、例えば、白金、パラジウム、ロジウム等の白金族金属;塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィン類、ビニルシロキサン又はアセチレン化合物との配位化合物等の白金化合物、テトラキス(トリフェニルホスフィン)パラジウム、クロロトリス(トリフェニルホスフィン)ロジウム等の白金族金属化合物等が挙げられるが、(A)および(B)成分との相溶性が良好であり、クロル不純物をほとんど含有しないので、塩化白金酸をシリコーン変性したものが好ましい。さらに、あらかじめシリコーンオイルに溶解させておき、前記(A)および(B)成分と混合することが好ましい。
(C)成分は、一種単独で用いても、二種以上を併用してもよい。
[Component (C)]
The platinum group metal catalyst which is the component (C) is a component for proceeding and promoting the hydrosilylation reaction of the components (A) and (B). The platinum group metal catalyst is not particularly limited. For example, platinum group metals such as platinum, palladium, rhodium; chloroplatinic acid, alcohol-modified chloroplatinic acid, chloroplatinic acid and olefins, vinyl siloxane, or acetylene compounds And platinum group metal compounds such as platinum compounds such as coordination compounds, tetrakis (triphenylphosphine) palladium, chlorotris (triphenylphosphine) rhodium, etc., but are compatible with the components (A) and (B). Since it is good and contains almost no chloro impurities, a chloroplatinic acid modified with silicone is preferred. Furthermore, it is preferable to dissolve in silicone oil in advance and mix with the components (A) and (B).
(C) A component may be used individually by 1 type, or may use 2 or more types together.

(C)成分の配合量は、触媒量でよいが、(A)および(B)成分の合計に対して、通常白金族金属元素の質量換算で0.1〜1000ppmであり、好ましくは1〜500ppm、さらに好ましくは3〜100ppmである。   The compounding amount of the component (C) may be a catalytic amount, but is usually 0.1 to 1000 ppm in terms of the mass of the platinum group metal element with respect to the sum of the components (A) and (B), preferably 1 to 1 ppm. 500 ppm, more preferably 3 to 100 ppm.

[その他の成分]
本発明の付加硬化型シリコーン組成物は、上記(A)〜(C)成分以外にも、以下に例示するその他の成分を配合することができる。
[Other ingredients]
The addition-curable silicone composition of the present invention can contain other components exemplified below in addition to the components (A) to (C).

その他の成分としては、例えば、シリカ、酸化チタン等の光散乱剤あるいは補強材;蛍光体;石油系溶剤、ビニル基等のアルケニル基を有するシリコーンオイル等の反応性希釈剤、反応性官能基を有しない非反応性シリコーンオイル等の粘度調整剤;カーボンファクンショナルシラン、エポキシ基、アルコキシ基、ケイ素原子に結合した水素原子(即ち、SiH基)及びケイ素原子に結合したビニル基等のアルケニル基の少なくとも一種を有する(A)および(B)成分以外のシリコーン化合物等の接着性向上剤;エチニルシクロヘキサノール、テトラメチルテトラビニルテトラシクロシロキサン等の反応抑制剤等が挙げられる。この場合、接着性向上剤は、(A)成分と(B)成分の合計100質量部に対して0.1〜20質量部、特には0.2〜10質量部であることが好ましく、反応制御剤は、(A)成分と(B)成分の合計100質量部に対して0.001〜5質量部、特には0.1〜2質量部であることが好ましい。これらのその他の成分は、一種単独で用いても、二種以上を併用してもよい。   Other components include, for example, a light scattering agent or reinforcing material such as silica and titanium oxide; a phosphor; a reactive solvent such as a petroleum solvent, a silicone oil having an alkenyl group such as a vinyl group; and a reactive functional group. Viscosity modifiers such as non-reactive silicone oils; carbon functional silanes, epoxy groups, alkoxy groups, hydrogen atoms bonded to silicon atoms (ie, SiH groups), and alkenyl groups such as vinyl groups bonded to silicon atoms Adhesion improvers such as silicone compounds other than the components (A) and (B) having at least one of the above; reaction inhibitors such as ethynylcyclohexanol and tetramethyltetravinyltetracyclosiloxane; In this case, the adhesion improver is preferably 0.1 to 20 parts by mass, particularly 0.2 to 10 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B). It is preferable that a control agent is 0.001-5 mass parts with respect to a total of 100 mass parts of (A) component and (B) component, especially 0.1-2 mass parts. These other components may be used alone or in combination of two or more.

[付加硬化型シリコーン組成物について]
本発明の付加硬化型シリコーン組成物中の(A)および(B)成分において、脂肪族不飽和結合以外のケイ素原子に結合した全1価炭化水素基の80モル%以上(80〜100モル%)、特に90モル%以上(90〜100モル%)がメチル基であることが、耐熱性、耐光性(耐紫外線性)に優れ、かつ熱的及び紫外線等のストレスによる変色を含んだ劣化に対する耐性に優れるために好ましい。
[Addition-curing type silicone composition]
In the components (A) and (B) in the addition-curable silicone composition of the present invention, 80 mol% or more (80 to 100 mol%) of all monovalent hydrocarbon groups bonded to silicon atoms other than aliphatic unsaturated bonds ) In particular, 90 mol% or more (90 to 100 mol%) is a methyl group, which is excellent in heat resistance and light resistance (ultraviolet light resistance), and for deterioration including discoloration due to thermal and ultraviolet stress. It is preferable because of its excellent resistance.

[調製方法]
本発明の付加硬化型シリコーン組成物は、(A)〜(C)成分又は(A)〜(C)成分に上記その他の成分を混合して調製することができる。この場合、例えば、十分な保存安定性を確保するため(A)成分を含有するパートと(C)成分を含有するパートとを別個に調製しておき、使用時にそれら2パートを混合して使用することもできる。
[Preparation method]
The addition-curable silicone composition of the present invention can be prepared by mixing the above-mentioned other components with the components (A) to (C) or the components (A) to (C). In this case, for example, in order to ensure sufficient storage stability, the part containing the component (A) and the part containing the component (C) are prepared separately, and these two parts are mixed and used at the time of use. You can also

[硬化条件]
本発明の付加硬化型シリコーン組成物の硬化は、公知の条件で行えばよく、室温でもよいが、硬化速度を速めるために加熱することが好ましく、例えば、60〜180℃で1分〜5時間程度加熱することが好ましい。
また、該付加硬化型シリコーン組成物を硬化させて得られる硬化物のショアD硬度は強度面から20以上であるのがより好ましく、より好ましくは25〜90、特に好ましくは30〜70である。
[Curing conditions]
Curing of the addition-curable silicone composition of the present invention may be performed under known conditions and may be performed at room temperature, but is preferably heated to increase the curing rate, for example, at 60 to 180 ° C. for 1 minute to 5 hours. It is preferable to heat to a certain extent.
Further, the Shore D hardness of the cured product obtained by curing the addition curable silicone composition is more preferably 20 or more, more preferably 25 to 90, and particularly preferably 30 to 70 from the strength aspect.

前記付加硬化型シリコーン組成物を架橋させて得られる硬化物の400〜800nm波長における光透過率が、厚さ1mmで80%以上、特には90%以上であることが好ましい。   The light transmittance at a wavelength of 400 to 800 nm of a cured product obtained by crosslinking the addition-curable silicone composition is preferably 80% or more, particularly 90% or more at a thickness of 1 mm.

[用途]
本発明は、上記付加硬化型シリコーン組成物を光学素子封止材として用いることができる。
[Usage]
In the present invention, the above addition-curable silicone composition can be used as an optical element sealing material.

本発明の付加硬化型シリコーン組成物は、光学素子、特にLED素子等の封止材として有用であり、本発明の付加硬化型シリコーン樹脂組成物からなる光学素子封止材は、光学素子を有効に封止することができる。   The addition-curable silicone composition of the present invention is useful as a sealing material for optical elements, particularly LED elements, and the optical element sealing material comprising the addition-curable silicone resin composition of the present invention is effective for optical elements. Can be sealed.

上記光学素子封止材の硬化物で封止された光学素子は、高い透明性、耐熱変色性を有し、高硬度でありながら接着性およびクラック耐性に優れるものである。   An optical element sealed with a cured product of the optical element sealing material has high transparency and heat discoloration, and has excellent adhesion and crack resistance while having high hardness.

以下、調製例、実施例および比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although a preparation example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

下記の例で、粘度は回転粘度計を用いて25℃で測定した値である。   In the following examples, the viscosity is a value measured at 25 ° C. using a rotational viscometer.

下記の例で、硬さはショアD硬度計を用いて25℃で測定した値である。   In the following examples, the hardness is a value measured at 25 ° C. using a Shore D hardness meter.

下記の例で、光透過率は分光光度計を用いて25℃で、400nm波長の透過率を測定した値である。   In the following example, the light transmittance is a value obtained by measuring the transmittance at a wavelength of 400 nm at 25 ° C. using a spectrophotometer.

下記の例において、シリコーンオイルまたはシリコーンレジンの組成を示す記号を以下に示す。又、各シリコーンオイルまたは各シリコーンレジンのモル数は、各成分中に含有されるビニル基又はケイ素原子結合水素原子のモル数を示すものである。
M:(CHSiO1/2
:(CHHSiO1/2
Vi:(CH=CH)(CHSiO1/2
D:(CHSiO2/2
:(CH)HSiO2/2
Q:SiO4/2
In the following examples, symbols indicating the composition of silicone oil or silicone resin are shown below. The number of moles of each silicone oil or each silicone resin indicates the number of moles of vinyl groups or silicon atom-bonded hydrogen atoms contained in each component.
M: (CH 3 ) 3 SiO 1/2
MH : (CH 3 ) 2 HSiO 1/2
M Vi : (CH 2 ═CH) (CH 3 ) 2 SiO 1/2
D: (CH 3 ) 2 SiO 2/2
D H: (CH 3) HSiO 2/2
Q: SiO 4/2

下記の例において、(B)成分はM単位とMVi単位とQ単位とから構成され、MVi単位に対するM単位のモル比が6.0であり、Q単位に対するM単位とMVi単位との合計のモル比が1.0であり、ビニル基の含有量が0.10モル/100gのシリコーンレジン(レジンA)を使用した。レジンAは室温で固体であることから、他のシリコーンと均一にするためにキシレン溶液で混合した。 In the following examples, (B) component is composed of a M units and M Vi units and Q units, a 6.0 molar ratio of M units to M Vi units, and M units and M Vi to Q units A silicone resin (resin A) having a total molar ratio of 1.0 and a vinyl group content of 0.10 mol / 100 g was used. Since Resin A is a solid at room temperature, it was mixed with a xylene solution to make it uniform with other silicones.

[調製例1]白金触媒の調製
本実施例に使用した白金触媒は、六塩化白金酸とsym−テトラメチルジビニルジシロキサンとの反応生成物であり、この反応生成物を白金含量が0.05質量%となるように粘度60mPa・sの液体ジメチルビニルシロキシ末端ポリジメチルシロキサンで希釈したもの(触媒a)である。
[Preparation Example 1] Preparation of platinum catalyst The platinum catalyst used in this example is a reaction product of hexachloroplatinic acid and sym-tetramethyldivinyldisiloxane, and the platinum content is 0.05. It is diluted with liquid dimethylvinylsiloxy-terminated polydimethylsiloxane having a viscosity of 60 mPa · s so as to be mass% (catalyst a).

[調製例2] M の合成
文献(Chemistry Letters 1990,11,2133−2136)を参考に以下のように合成を行った。
1Lのフラスコにドデカメチルシクロヘキサシロキサン200g、ヘキサン200g、水146g及びシリカゲル(メルク(株)製キーゼルゲル60)10gを入れて撹拌し、氷冷下、ジメチルクロロシラン255gを滴下した。滴下終了後、室温で1時間撹拌を続けた。シリカゲルをろ過し、過剰のジメチルクロロシランを留去した後、200gの水で2回洗浄した。その後、減圧蒸留にて単一の化合物である1,15−ジハイドロジェンヘキサデカメチルオクタシロキサン(M )を得た。ガスクロ分析の結果、M の純度は、98.5質量%であった。
[Preparation Example 2] Synthesis was carried out as follows with reference to a synthesis document of MH 2 D 6 (Chemistry Letters 1990, 11, 1233-2136).
In a 1 L flask, 200 g of dodecamethylcyclohexasiloxane, 200 g of hexane, 146 g of water and 10 g of silica gel (Kieselgel 60 manufactured by Merck Co., Ltd.) were added and stirred, and 255 g of dimethylchlorosilane was added dropwise under ice cooling. After completion of the dropwise addition, stirring was continued for 1 hour at room temperature. The silica gel was filtered and excess dimethylchlorosilane was distilled off, followed by washing with 200 g of water twice. Then, 1,15-dihydrogenhexadecamethyloctasiloxane ( MH 2 D 6 ), which is a single compound, was obtained by distillation under reduced pressure. As a result of gas chromatography analysis, the purity of MH 2 D 6 was 98.5% by mass.

[調製例3] M の合成
ヘキサデカメチルシクロオクタシロキサンとジメチルクロロシランを原料に、上記調製例2と同じ方法で反応させ、単一の化合物である1,19−ジハイドロジェンエイコサメチルデカシロキサンを得た。ガスクロ分析の結果、M の純度は、98.3質量%であった。
[Preparation Example 3] Synthesis of MH 2 D 8 1,19-dihydrogeneico which is a single compound by reacting hexadecamethylcyclooctasiloxane and dimethylchlorosilane as raw materials in the same manner as in Preparation Example 2 above. Samethyl decasiloxane was obtained. As a result of gas chromatography analysis, the purity of MH 2 D 8 was 98.3 mass%.

[比較調製例1] 平均組成M の合成
比較のため、調製例3で得られる化合物と平均組成が等しい化合物を従来の方法で合成した。すなわち、1Lのフラスコにオクタメチルシクロテトラシロキサン442g、1,3−ジハイドロジェンテトラメチルジシロキサン100gを入れて撹拌し、トリフルオロメタンスルホン酸0.2gを滴下した。室温で8時間撹拌を続けた後、中和剤(協和化学工業(株)製キョーワード500)1.0gを混合し、2時間中和を行った。ろ過により、中和剤を除去し、平均組成M を得た。これはガスクロ分析の結果、広い分布を持つ混合物であり、M そのものの含有量は、12.7質量%であった。
[Comparative Preparation Example 1] Synthesis of Average Composition M H 2 D 8 For comparison, a compound having the same average composition as the compound obtained in Preparation Example 3 was synthesized by a conventional method. That is, 442 g of octamethylcyclotetrasiloxane and 100 g of 1,3-dihydrogentetramethyldisiloxane were placed in a 1 L flask and stirred, and 0.2 g of trifluoromethanesulfonic acid was added dropwise. After stirring for 8 hours at room temperature, 1.0 g of a neutralizing agent (KYOWARD 500 manufactured by Kyowa Chemical Industry Co., Ltd.) was mixed and neutralized for 2 hours. The neutralizing agent was removed by filtration, and an average composition MH 2 D 8 was obtained. As a result of gas chromatography analysis, this was a mixture having a wide distribution, and the content of MH 2 D 8 itself was 12.7% by mass.

そのほかの平均組成で表されるシリコーンも同様に、酸またはアルカリによる平衡化で調製した。   Silicones represented by other average compositions were similarly prepared by equilibration with acid or alkali.

[実施例1]
調整2で得られたM の構造を有するシリコーンオイル22.5g(ケイ素原子に結合した水素原子77.7ミリモル)と、レジンA77.5g(ケイ素原子に結合したビニル基77.5ミリモル)の50wt%キシレン溶液を混合し、100℃、8mmHgの減圧下でキシレンを除去した。得られた液体に、エチニルシクロヘキサノール0.05g、及びγ−グリシドキシプロピルトリメトキシシラン1g、触媒aを1g混合してシリコーン組成物を得た。このシリコーン組成物の粘度、および150℃4時間加熱硬化させたときの硬さ、1mm厚みの光透過率を表1に示す。
[Example 1]
22.5 g of a silicone oil having the structure of MH 2 D 6 obtained in Preparation 2 (77.7 mmol of hydrogen atoms bonded to silicon atoms) and 77.5 g of resin A (77.5 vinyl groups bonded to silicon atoms) The xylene was removed under a reduced pressure of 100 mm and 8 mmHg. The resulting liquid was mixed with 0.05 g of ethynylcyclohexanol, 1 g of γ-glycidoxypropyltrimethoxysilane, and 1 g of catalyst a to obtain a silicone composition. Table 1 shows the viscosity of the silicone composition, the hardness when heated at 150 ° C. for 4 hours, and the light transmittance of 1 mm thickness.

[実施例2]
調整3で得られたM の構造を有するシリコーンオイル26.7g(ケイ素原子に結合した水素原子73.4ミリモル)と、レジンA73.3g(ケイ素原子に結合したビニル基73.3ミリモル)の50wt%キシレン溶液を混合し、100℃、8mmHgの減圧下でキシレンを除去した。得られた液体に、エチニルシクロヘキサノール0.05g、及びγ−グリシドキシプロピルトリメトキシシラン1g、触媒aを1g混合してシリコーン組成物を得た。この組成物の粘度、および150℃4時間加熱硬化させたときの硬さ、1mm厚みの光透過率、温度サイクル試験結果を表1に示す。
[Example 2]
26.7 g of a silicone oil having the structure of MH 2 D 8 obtained in Preparation 3 (73.4 mmol of hydrogen atoms bonded to silicon atoms) and 73.3 g of resin A (vinyl group 73.3 bonded to silicon atoms) The xylene was removed under a reduced pressure of 100 mm and 8 mmHg. The resulting liquid was mixed with 0.05 g of ethynylcyclohexanol, 1 g of γ-glycidoxypropyltrimethoxysilane, and 1 g of catalyst a to obtain a silicone composition. Table 1 shows the viscosity of this composition, the hardness when heated at 150 ° C. for 4 hours, the light transmittance of 1 mm thickness, and the temperature cycle test results.

[比較例1]
調整例3で得られたシリコーンオイルの代わりに比較調整例1で得られた平均組成M の構造を有するシリコーンオイル26.7g(ケイ素原子に結合した水素原子73.4ミリモル)とした以外は実施例2と同様にしてシリコーン組成物を得た。この組成物の粘度、および150℃4時間加熱硬化させたときの硬さ、1mm厚みの光透過率、温度サイクル試験結果を表1に示す。
[Comparative Example 1]
Instead of the silicone oil obtained in Preparation Example 3, 26.7 g of a silicone oil having a structure of average composition MH 2 D 8 obtained in Comparative Adjustment Example 1 (73.4 mmol of hydrogen atoms bonded to silicon atoms) A silicone composition was obtained in the same manner as in Example 2 except that. Table 1 shows the viscosity of this composition, the hardness when heated at 150 ° C. for 4 hours, the light transmittance of 1 mm thickness, and the temperature cycle test results.

[比較例2]
比較調整例1と同様に合成した分子量分布を有する平均組成M 18の構造を有するシリコーンオイル42.4g(ケイ素原子に結合した水素原子57.7ミリモル)と、レジンA57.6g(ケイ素原子に結合したビニル基57.6ミリモル)の50wt%キシレン溶液を混合し、100℃、8mmHgの減圧下でキシレンを除去した。得られた液体に、エチニルシクロヘキサノール0.05g、及びγ−グリシドキシプロピルトリメトキシシラン1g、触媒aを1g混合してシリコーン組成物を得た。この組成物の粘度、および150℃4時間加熱硬化させたときの硬さ、1mm厚みの光透過率、温度サイクル試験結果を表1に示す。
[Comparative Example 2]
Silicone oil 42.4 g (57.7 mmol of hydrogen atoms bonded to silicon atoms) having a structure of an average composition MH 2 D 18 having a molecular weight distribution synthesized in the same manner as in Comparative Preparation Example 1 and 57.6 g of Resin A (silicon A 50 wt% xylene solution of 57.6 mmol of vinyl groups bonded to the atoms was mixed, and xylene was removed at 100 ° C. under a reduced pressure of 8 mmHg. The resulting liquid was mixed with 0.05 g of ethynylcyclohexanol, 1 g of γ-glycidoxypropyltrimethoxysilane, and 1 g of catalyst a to obtain a silicone composition. Table 1 shows the viscosity of this composition, the hardness when heated at 150 ° C. for 4 hours, the light transmittance of 1 mm thickness, and the temperature cycle test results.

[比較例3]
レジンAの代わりに平均組成MVi 40の構造を有するシリコーンオイル56.9g(ケイ素原子に結合したビニル基77.5ミリモル)とした以外は実施例1と同様にしてシリコーン組成物を得た。この組成物の粘度、および150℃4時間加熱硬化させたときの硬さ、1mm厚みの光透過率、温度サイクル試験結果を表1に示す。
[Comparative Example 3]
A silicone composition was obtained in the same manner as in Example 1, except that 56.9 g of silicone oil having a structure of average composition M Vi 2 D 40 (77.5 mmol of vinyl group bonded to silicon atom) was used instead of Resin A. It was. Table 1 shows the viscosity of this composition, the hardness when heated at 150 ° C. for 4 hours, the light transmittance of 1 mm thickness, and the temperature cycle test results.

[比較例4]
平均組成M の構造を有するシリコーンオイル7.4g(92.0ミリモル)とレジンA92.6g(92.6ミリモル)の50wt%キシレン溶液を混合し、100℃、8mmHgの減圧下でキシレンを除去した。しかしながら、キシレン留去後は固体となり、付加硬化型シリコーン組成物とすることは不可能であった。
[Comparative Example 4]
A mixture of 7.4 g (92.0 mmol) of silicone oil having a structure of average composition M 2 DH 8 and 50 wt% xylene solution of 92.6 g (92.6 mmol) of Resin A was mixed at 100 ° C. under a reduced pressure of 8 mmHg. Xylene was removed. However, after distilling off xylene, it became solid and it was impossible to obtain an addition-curable silicone composition.

[比較例5]
平均組成M の構造を有するシリコーンオイル26.7g(332.0ミリモル)とレジンA73.3g(73.3ミリモル)の50wt%キシレン溶液を混合し、100℃、8mmHgの減圧下でキシレンを除去した。得られた液体に、エチニルシクロヘキサノール0.05g、及びγ−グリシドキシプロピルトリメトキシシラン1g、触媒aを1g混合してシリコーン組成物を得た。この組成物の粘度、および150℃4時間加熱硬化させたときの硬さ、1mm厚みの光透過率を表1に示す。
[Comparative Example 5]
A mixture of 26.7 g (332.0 mmol) of silicone oil having a structure of average composition M 2 DH 8 and 50 wt% xylene solution of 73.3 g (73.3 mmol) of Resin A was mixed at 100 ° C. under a reduced pressure of 8 mmHg. Xylene was removed. The resulting liquid was mixed with 0.05 g of ethynylcyclohexanol, 1 g of γ-glycidoxypropyltrimethoxysilane, and 1 g of catalyst a to obtain a silicone composition. Table 1 shows the viscosity of the composition, the hardness when heated at 150 ° C. for 4 hours, and the light transmittance of 1 mm.

上記実施例及び比較例で調製したシリコーン組成物の評価方法を、下記の要領にて行った。
[評価方法]
発光半導体パッケージ
発光素子として、InGaNからなる発光層を有し、主発光ピークが470nmのLEDチップを搭載した、図1に示すような発光半導体装置を使用した。発光素子2を一対のリード電極3、4を有する筐体1にダイボンド材5を用いて固定した。発光素子2とリード電極3、4を金線6にて接続させた後、封止材(封止樹脂)7をポッティングし、硬化させた。封止材(封止樹脂)7の硬化条件は150℃、4時間である。
The evaluation method of the silicone composition prepared in the above Examples and Comparative Examples was performed as follows.
[Evaluation method]
Light-Emitting Semiconductor Package As a light-emitting element, a light-emitting semiconductor device as shown in FIG. 1 having a light-emitting layer made of InGaN and having an LED chip with a main light emission peak of 470 nm was used. The light emitting element 2 was fixed to the housing 1 having a pair of lead electrodes 3 and 4 using a die bond material 5. After the light emitting element 2 and the lead electrodes 3 and 4 were connected by the gold wire 6, the sealing material (sealing resin) 7 was potted and cured. The curing condition of the sealing material (sealing resin) 7 is 150 ° C. and 4 hours.

[温度サイクル耐性の試験方法]
作製した発光半導体装置10個を、赤外線リフロー装置(260℃)を3回通し、その後、−40℃⇔100℃、各30分の温度サイクルを100回行った。外観の変化を観察し、封止材(封止樹脂)のクラックやLEDパッケージからの剥離が確認されたものをNGとしてカウントした(表1参照)。
[Test method for temperature cycle resistance]
Ten manufactured light-emitting semiconductor devices were passed through an infrared reflow device (260 ° C.) three times, and thereafter a temperature cycle of −40 ° C. to 100 ° C. for 30 minutes was performed 100 times. Changes in the appearance were observed, and those in which cracking of the sealing material (sealing resin) and peeling from the LED package were confirmed were counted as NG (see Table 1).

Figure 2014015587
Figure 2014015587

表1に示されるように、本発明の条件を満たすことによって、高硬度で温度サイクル試験に強い組成物となることがわかる。これに対し、(A)成分を酸平衡(平衡反応)により合成した分子量分布を有するものに変更した比較例1、2は、得られた組成物の調製が不可能であったり、硬さが極端に低下したりした。また、比較例3のように、従来用いられていた3つ以上のケイ素原子結合水素原子を有する成分を含有する組成物を使用した場合、温度サイクル耐性が悪化することが確認された。   As shown in Table 1, it can be seen that by satisfying the conditions of the present invention, a composition having a high hardness and a high resistance to a temperature cycle test can be obtained. In contrast, in Comparative Examples 1 and 2 in which the component (A) was changed to one having a molecular weight distribution synthesized by acid equilibrium (equilibrium reaction), it was impossible to prepare the obtained compositions or the hardness was It was extremely lowered. Moreover, when the composition containing the component which has three or more silicon atom bond hydrogen atoms used conventionally like the comparative example 3 was used, it was confirmed that temperature cycle tolerance deteriorates.

以上の結果から、本発明の付加硬化型シリコーン樹脂組成物であれば、耐熱性、耐寒性、電気絶縁性に優れる上、高い透明性を有し、高硬度であるにもかかわらず、接着性および熱衝撃に対して耐クラック性に優れる硬化物を与えることができるので、本発明の付加硬化型シリコーン樹脂組成物からなる光学素子封止材は、発光と消光を繰り返す過酷な温度サイクル下に供される光学素子の封止材として有用であり、またこのような光学封止材の硬化物で封止された光学素子は、耐熱性に優れ、高硬度でありながら耐クラック性に優れるものであることが実証された。   From the above results, the addition-curable silicone resin composition of the present invention is excellent in heat resistance, cold resistance, and electrical insulation, and has high transparency and high hardness despite its high hardness. Since the cured product having excellent crack resistance against thermal shock can be provided, the optical element sealing material comprising the addition-curable silicone resin composition of the present invention is subjected to severe temperature cycles that repeat light emission and quenching. It is useful as a sealing material for the optical element provided, and an optical element sealed with a cured product of such an optical sealing material has excellent heat resistance, high hardness and excellent crack resistance. It was proved that.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…筐体、 2…発光素子、 3、4…リード電極、 5…ダイボンド材、 6…金線、 7…封止材(封止樹脂)。   DESCRIPTION OF SYMBOLS 1 ... Housing | casing 2 ... Light emitting element 3, 4, ... Lead electrode, 5 ... Die-bonding material, 6 ... Gold wire, 7 ... Sealing material (sealing resin).

Claims (6)

(A)下記式(1)で表される構造を有する化合物、
Figure 2014015587
(式中、Meはメチル基であり、iは2〜10の整数である。式(1)で表わされる構造を有する化合物は実質的に分子量分布を有さない単一の化合物である。)
(B)下記平均組成式(2)で表され、23℃で蝋状又は固体の三次元網状オルガノポリシロキサン樹脂を、上記(A)成分中の全ケイ素原子結合水素原子に対して、(B)成分中のケイ素原子に結合したアルケニル基が、0.5〜5.0倍モルとなる量、
(R SiO1/2(R SiO1/2(R SiO1/2(R SiO1/2(RSiO)(R SiO)(RSiO3/2(RSiO3/2(SiO…(2)
(式中、Rは独立にアルケニル基を表し、Rは独立に脂肪族不飽和結合を含まない有機基を表し、全Rの少なくとも80モル%はメチル基であり、1>k≧0、1>m≧0、1>n≧0、1>p≧0、1>q≧0、1>r≧0、1>s≧0、1>t≧0及び1>u≧0、並びにm+n+p+q+s>0、s+t+u>0であり、かつk+m+n+p+q+r+s+t+u=1を満たす数である。)
(C)白金族金属を含むヒドロシリル化触媒、
を含むことを特徴とする付加硬化型シリコーン組成物。
(A) a compound having a structure represented by the following formula (1),
Figure 2014015587
(In the formula, Me is a methyl group, and i is an integer of 2 to 10. The compound having the structure represented by the formula (1) is a single compound having substantially no molecular weight distribution.)
(B) A three-dimensional network organopolysiloxane resin represented by the following average composition formula (2) and having a waxy or solid state at 23 ° C. is expressed as (B) with respect to all silicon-bonded hydrogen atoms in the component (A): ) The amount of the alkenyl group bonded to the silicon atom in the component is 0.5 to 5.0 times mol,
(R 2 3 SiO 1/2 ) k (R 1 R 2 2 SiO 1/2 ) m (R 1 2 R 2 SiO 1/2 ) n (R 1 3 SiO 1/2 ) p (R 1 R 2 SiO Q (R 2 2 SiO) r (R 1 SiO 3/2 ) s (R 2 SiO 3/2 ) t (SiO 2 ) u (2)
(Wherein R 1 independently represents an alkenyl group, R 2 independently represents an organic group not containing an aliphatic unsaturated bond, at least 80 mol% of all R 2 is a methyl group, and 1> k ≧ 0, 1> m ≧ 0, 1> n ≧ 0, 1> p ≧ 0, 1> q ≧ 0, 1> r ≧ 0, 1> s ≧ 0, 1> t ≧ 0 and 1> u ≧ 0, And m + n + p + q + s> 0, s + t + u> 0, and k + m + n + p + q + r + s + t + u = 1.)
(C) a hydrosilylation catalyst containing a platinum group metal,
An addition-curable silicone composition comprising:
前記付加硬化型シリコーン組成物中の(A)成分が、単一分子量の環状ジメチルシロキサンとジメチルクロロシランと水を反応させることにより得られたものであることを特徴とする請求項1に記載の付加硬化型シリコーン組成物。   The addition according to claim 1, wherein the component (A) in the addition-curable silicone composition is obtained by reacting a single molecular weight cyclic dimethylsiloxane, dimethylchlorosilane, and water. A curable silicone composition. 前記付加硬化型シリコーン組成物中の(B)成分において、アルケニル基以外のケイ素原子に結合した全有機基の90モル%以上が、メチル基であることを特徴とする請求項1又は2に記載の付加硬化型シリコーン組成物。   3. The component (B) in the addition-curable silicone composition, wherein 90 mol% or more of all organic groups bonded to silicon atoms other than alkenyl groups are methyl groups. Addition-curable silicone composition. 前記付加硬化型シリコーン組成物を架橋させて得られる硬化物の400〜800nm波長における光透過率が、厚さ1mmで80%以上であることを特徴とする請求項1〜3のいずれか1項に記載の付加硬化型シリコーン組成物。   The light transmittance at a wavelength of 400 to 800 nm of a cured product obtained by crosslinking the addition-curable silicone composition is 80% or more at a thickness of 1 mm. The addition-curable silicone composition described in 1. 請求項1〜4のいずれか1項に記載の付加硬化型シリコーン組成物からなることを特徴とする光学素子封止材。   An optical element sealing material comprising the addition-curable silicone composition according to any one of claims 1 to 4. 請求項5に記載の光学素子封止材の硬化物で封止されたことを特徴とする光学素子。   An optical element sealed with a cured product of the optical element sealing material according to claim 5.
JP2012155839A 2012-07-11 2012-07-11 Addition-curable silicone composition, optical element sealing material comprising the composition, optical element sealed with the optical element sealing material, and method for producing addition-curable silicone composition Active JP6006554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155839A JP6006554B2 (en) 2012-07-11 2012-07-11 Addition-curable silicone composition, optical element sealing material comprising the composition, optical element sealed with the optical element sealing material, and method for producing addition-curable silicone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155839A JP6006554B2 (en) 2012-07-11 2012-07-11 Addition-curable silicone composition, optical element sealing material comprising the composition, optical element sealed with the optical element sealing material, and method for producing addition-curable silicone composition

Publications (2)

Publication Number Publication Date
JP2014015587A true JP2014015587A (en) 2014-01-30
JP6006554B2 JP6006554B2 (en) 2016-10-12

Family

ID=50110571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155839A Active JP6006554B2 (en) 2012-07-11 2012-07-11 Addition-curable silicone composition, optical element sealing material comprising the composition, optical element sealed with the optical element sealing material, and method for producing addition-curable silicone composition

Country Status (1)

Country Link
JP (1) JP6006554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517277A (en) * 2015-04-14 2018-06-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic device comprising a mixture containing silicone and a fluorinated organic additive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111836A (en) * 2010-11-24 2012-06-14 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device using the same
WO2013008842A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 Sealing agent for optical semiconductor devices, and optical semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111836A (en) * 2010-11-24 2012-06-14 Sekisui Chem Co Ltd Sealing agent for optical semiconductor device, and optical semiconductor device using the same
WO2013008842A1 (en) * 2011-07-14 2013-01-17 積水化学工業株式会社 Sealing agent for optical semiconductor devices, and optical semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018517277A (en) * 2015-04-14 2018-06-28 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic device comprising a mixture containing silicone and a fluorinated organic additive
US10597512B2 (en) 2015-04-14 2020-03-24 Osram Opto Semiconductors Gmbh Optoelectronic device with a mixture having a silicone and a fluoro-organic additive

Also Published As

Publication number Publication date
JP6006554B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
TWI679244B (en) Addition-curable silicone resin composition, method for producing the same, and optical semiconductor device
JP4648099B2 (en) Silicone resin composition for die bonding
JP4862032B2 (en) Addition-curable silicone composition that provides a cured product having a high refractive index, and an optical element sealing material comprising the composition
KR101868167B1 (en) Curable organopolysiloxane composition, sealing materials for optical device and optical device
JP2010285571A (en) Silicone resin composition for die bonding
JPWO2008047892A1 (en) Curable polyorganosiloxane composition
JP2008019385A (en) Curable silicone rubber composition and its cured product
KR101851423B1 (en) Silicone composition for sealing semiconductor
KR20070016988A (en) Addition-curable silicone resin composition for light emitting diode
TWI758469B (en) Addition-hardening polysiloxane composition, method for producing the composition, cured polysiloxane, and optical element
JP2012052035A (en) Addition-curable silicone composition, optical element encapsulating material comprising the composition, and semiconductor device in which optical element is encapsulated with cured product of the optical element encapsulating material
JP6100717B2 (en) Addition-curing silicone composition and optical element
JP2011086844A (en) Die bonding material for light emitting diode
JP2007039483A (en) Curable polyorganosiloxane composition
TWI756411B (en) Addition-hardening polysiloxane composition, method for producing the composition, and optical semiconductor device
CN111484744B (en) Addition-curable silicone resin composition and optical element
KR102561851B1 (en) Organopolysiloxane, method for producing same, and curable silicone composition
JP2010109034A (en) Silicone resin composition for light-emitting diode element, and light-emitting diode element
TW201605934A (en) Organopolysiloxane and method of producing thereof
TW202128846A (en) Addition-curable organic silicone composition, cured product thereof, and semiconductor device
JP6006554B2 (en) Addition-curable silicone composition, optical element sealing material comprising the composition, optical element sealed with the optical element sealing material, and method for producing addition-curable silicone composition
JP2020132757A (en) Die-bonding silicone resin composition, cured product, and optical semiconductor device
JP6998905B2 (en) Additive-curable silicone compositions, cured products and opto-semiconductor devices
JP2019156968A (en) Addition curable silicone composition, optical element encapsulation material, and optical element
JP2020196772A (en) Addition-curable silicone resin composition, method for producing the composition and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150