JP2014015523A - Acrylic acid ester polymer having excellent water and oil repellency, and method of producing the same - Google Patents

Acrylic acid ester polymer having excellent water and oil repellency, and method of producing the same Download PDF

Info

Publication number
JP2014015523A
JP2014015523A JP2012153297A JP2012153297A JP2014015523A JP 2014015523 A JP2014015523 A JP 2014015523A JP 2012153297 A JP2012153297 A JP 2012153297A JP 2012153297 A JP2012153297 A JP 2012153297A JP 2014015523 A JP2014015523 A JP 2014015523A
Authority
JP
Japan
Prior art keywords
polymer
group
general formula
monomer
coo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012153297A
Other languages
Japanese (ja)
Other versions
JP6013055B2 (en
Inventor
Koji Kubota
浩治 久保田
Kenichi Katsukawa
健一 勝川
Kenji Adachi
健二 足達
Tatsuki Kitayama
辰樹 北山
Kenta Kitaura
健大 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Osaka University NUC
Original Assignee
Daikin Industries Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Osaka University NUC filed Critical Daikin Industries Ltd
Priority to JP2012153297A priority Critical patent/JP6013055B2/en
Publication of JP2014015523A publication Critical patent/JP2014015523A/en
Application granted granted Critical
Publication of JP6013055B2 publication Critical patent/JP6013055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polymer which has high isotacticity and exhibits excellent water repellency, oil repellency and antifouling properties.SOLUTION: A polymer has a repeating unit derived from: a monomer represented by the general formula (1) defined by CH=CH-COO-X-Rf, where X represents a C1-C10 divalent aliphatic hydrocarbon group or a C6-C10 aromatic hydrocarbon group or cyclic aliphatic hydrocarbon group, and Rf represents a linear or branched C1-C6 perfluoroalkyl group; or a monomer represented by the general formula (2) defined by CH=C(CH)-COO-R, where R represents a linear or branched C10-C30 aliphatic hydrocarbon group. The stereoregularity of the main chain of the repeating unit has isotacticity of 65% or more.

Description

本発明は、撥水剤、撥油剤、または防汚加工剤の有効成分となる新規な立体構造を有する結晶性の重合体およびその製造方法に関する。   The present invention relates to a crystalline polymer having a novel three-dimensional structure which is an active ingredient of a water repellent, an oil repellent, or an antifouling agent, and a method for producing the same.

従来、一般にパーフルオロアルキル基等のフルオロアルキル基を側鎖に有する含フッ素重合体は、含有するフッ素原子に由来する撥水撥油性などの性質を示し、紙、繊維、プラスチック、金属等用の表面処理剤として広く用いられている。その中でも、含フッ素アクリレート重合体は撥水撥油性が優れており、含フッ素アクリレート単量体のフルオロアルキル基の炭素数は通常8以上のものが用いられている。   Conventionally, a fluoropolymer having a fluoroalkyl group such as a perfluoroalkyl group in the side chain generally exhibits properties such as water and oil repellency derived from the fluorine atom contained therein, and is used for paper, fiber, plastic, metal, etc. Widely used as a surface treatment agent. Among them, the fluorinated acrylate polymer is excellent in water and oil repellency, and the fluoroalkyl group of the fluorinated acrylate monomer usually has 8 or more carbon atoms.

しかしながら、近年、テロメリゼーションによって得られる炭素数8のフルオロアルキル基を含有する化合物が、分解または代謝により perfluoro-octanoic acid(以下、「PFOA」と略す)を生成する可能性があると公表している(EPA OPPT FACT SHEET April 14, 2003(http://www.epa.-gov/opptintr/pfoa/pfoafacts.pdf))。また、EPA(米国環境保護庁)は、PFOAに対して科学的調査を強化することを発表している(EPAレポート"PRELIMINARY RISK ASSESSMENT OF THE DEVELOP-MENTAL TOXICITY ASSOCIATED WITH EXPOSURE TO PERFLUOROOCTANOIC ACID AND ITS SALTS" (http://www.epa.gov/opptintr/pfoa/pfoara.pdf) 参照)。このようにEPAは、PFOAの生体内蓄積性を問題としている。   However, in recent years, it has been announced that compounds containing fluoroalkyl groups having 8 carbon atoms obtained by telomerization may produce perfluoro-octanoic acid (hereinafter abbreviated as “PFOA”) by decomposition or metabolism. (EPA OPPT FACT SHEET April 14, 2003 (http: //www.epa.-gov/opptintr/pfoa/pfoafacts.pdf)). The EPA (US Environmental Protection Agency) has also announced that it will strengthen scientific research against PFOA (EPA report “PRELIMINARY RISK ASSESSMENT OF THE DEVELOP-MENTAL TOXICITY ASSOCIATED WITH EXPOSURE TO PERFLUOROOCTANOIC ACID AND ITS SALTS”). (See http://www.epa.gov/opptintr/pfoa/pfoara.pdf). Thus, EPA is concerned with the bioaccumulation potential of PFOA.

一方、炭素数8未満の短鎖のパーフルオロアルキル、特に炭素数6以下のものはこの生体内蓄積性が低いと言われている。そこで、環境負荷を下げるために、短鎖のパーフルオロアルキル基を側鎖に有する含フッ素アクリレート重合体が求められている。しかしながら、短鎖のパーフルオロアルキル基で構成された含フッ素アクリレート重合体は、パーフルオロアルキル基のフッ素数の減少に伴って、結晶化度が低下し、結晶融点(Tm)を示さなくなり、充分な撥水撥油性が得られないという問題がある。   On the other hand, short-chain perfluoroalkyls having less than 8 carbon atoms, particularly those having 6 or less carbon atoms, are said to have low bioaccumulation properties. Therefore, in order to reduce the environmental burden, a fluorine-containing acrylate polymer having a short-chain perfluoroalkyl group in the side chain is required. However, the fluorine-containing acrylate polymer composed of short-chain perfluoroalkyl groups has a decreased crystallinity and no crystal melting point (Tm) as the number of fluorine atoms in the perfluoroalkyl group decreases. There is a problem that water / oil repellency cannot be obtained.

炭素数6以下の含フッ素アクリレート重合体の撥水撥油性等の独特の性質をより高度に発現させるためには、側鎖フルオロアルキル基の配向性を高めるべく、主鎖もしくは側鎖の立体構造を精密に制御する必要がある。   In order to enhance the unique properties such as the water and oil repellency of the fluorine-containing acrylate polymer having 6 or less carbon atoms, the three-dimensional structure of the main chain or side chain is required to enhance the orientation of the side chain fluoroalkyl group. Need to be precisely controlled.

安田らは、希土類金属錯体触媒を用いて、パーフルオロアルキル基を側鎖に有する含フッ素(メタ)アクリレートを重合して、主鎖の立体規則性を制御した高いシンジオタクチシチィーを有する含フッ素重合体を得ている(特開平11−255829号公報)。岡らは、アニオン重合開始剤を用い、過剰量のアルキルアルミニウムの存在下にパーフルオロアルキル基を側鎖に有する含フッ素メタアクリレートを重合して、高いシンジオタクチシチィーを有する含フッ素重合体を得ている(特開2000−026539号公報)。勝川らは、アニオン重合開始剤を用いて、炭素数3〜7のパーフルオロアルキル基を有する含フッ素メタアクリレートを重合して、高いシンジオタクチシチィーを有する含フッ素重合体を得ている(特開2011−225837号公報)。しかしながら、これらの中では、高いシンジオタクチシチィーが撥水撥油性に優位であることを記載しているものの、高いイソタクチシチィーが撥水撥油性に与える効果に関しては何ら記載していない。   Yasuda et al. Used a rare earth metal complex catalyst to polymerize a fluorine-containing (meth) acrylate having a perfluoroalkyl group in the side chain, and to have a high syndiotacticity in which the stereoregularity of the main chain was controlled. A polymer has been obtained (Japanese Patent Laid-Open No. 11-255829). Oka et al. Polymerized a fluorine-containing methacrylate having a perfluoroalkyl group in the side chain in the presence of an excess amount of alkylaluminum using an anionic polymerization initiator to produce a fluorine-containing polymer having high syndiotacticity. (Japanese Patent Laid-Open No. 2000-026539). Katsukawa et al. Obtained a fluorine-containing polymer having a high syndiotacticity by polymerizing a fluorine-containing methacrylate having a C 3-7 perfluoroalkyl group using an anionic polymerization initiator. No. 2011-225837). However, among these, although it is described that high syndiotacticity is superior in water and oil repellency, there is no description regarding the effect of high isotacticity on water and oil repellency.

特開平11−255829号公報Japanese Patent Laid-Open No. 11-255829 特開2000−026539号公報JP 2000-026539 A 特開2011−225837号公報JP 2011-225837 A

EPA OPPT FACT SHEET April 14, 2003(http://www.epa.gov/-opptintr/pfoa/pfoafacts.pdf)EPA OPPT FACT SHEET April 14, 2003 (http://www.epa.gov/-opptintr/pfoa/pfoafacts.pdf) EPAレポート"PRELIMINARY RISK ASSESSMENT OF THE DEVELOPMENTAL TOXICITY ASSOCIATED WITH EXPOSURE TO PERFLUORO-OCTANOIC ACID AND ITS SALTS" (http://www.epa.gov/opptintr/pfoa/pfoara.pdf)EPA Report "PRELIMINARY RISK ASSESSMENT OF THE DEVELOPMENTAL TOXICITY ASSOCIATED WITH EXPOSURE TO PERFLUORO-OCTANOIC ACID AND ITS SALTS" (http://www.epa.gov/opptintr/pfoa/pfoara.pdf)

本発明の目的は、高い撥水撥油性および防汚性を発現する、高いイソタクチシチィーを有する重合体の提供にある。   An object of the present invention is to provide a polymer having high isotacticity that exhibits high water and oil repellency and antifouling properties.

本発明が提供する重合体は、
一般式(1):
CH2=CH-COO-X-Rf (1)
(式中、Xは、二価の、炭素数1〜10の脂肪族炭化水素基、炭素数6〜10の芳香族炭化水素基もしくは環状脂肪族炭化水素基を表し、Rfは、炭素数1〜6の直鎖状または分岐状のパーフルオロアルキル基を表す。)で表される単量体、もしくは、一般式(2):
CH2=C(CH3)-COO-R (2)
(式中、Rは、炭素数10〜30の直鎖状または分岐状の脂肪族炭化水素基を表す。)で表される単量体から誘導される繰り返し単位を有する重合体であって、その繰返し単位の主鎖の立体規則性が65%以上のイソタクチシチィーを有する重合体であり、優れた撥水性、撥油性および防汚性を示す。
The polymer provided by the present invention is:
General formula (1):
CH 2 = CH-COO-X-Rf (1)
(Wherein X represents a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a cyclic aliphatic hydrocarbon group, and Rf represents 1 carbon atom) Represents a linear or branched perfluoroalkyl group of ˜6), or the general formula (2):
CH 2 = C (CH 3 ) -COO-R (2)
(Wherein R represents a linear or branched aliphatic hydrocarbon group having 10 to 30 carbon atoms), and a polymer having a repeating unit derived from a monomer represented by: It is a polymer having an isotacticity of 65% or more of stereoregularity of the main chain of the repeating unit, and exhibits excellent water repellency, oil repellency and antifouling properties.

本発明は、優れた撥水撥油性および防汚性を発現する、高いイソタクチシチィーを有するアクリル酸エステル重合体、およびアニオン重合開始剤含有触媒を用いる上記重合体の製造方法を提供する。   The present invention provides an acrylic acid ester polymer having high isotacticity that exhibits excellent water and oil repellency and antifouling properties, and a method for producing the above polymer using an anionic polymerization initiator-containing catalyst.

本発明が提供する重合体は、高いイソタクチシチィーを有する重合体であって、優れた撥水性、撥油性および防汚性を有する。   The polymer provided by the present invention is a polymer having high isotacticity, and has excellent water repellency, oil repellency and antifouling property.

本発明の重合体は、
一般式(1)の単量体を含む(または、からなる)含フッ素重合体、
一般式(1)の単量体および一般式(2)の単量体を含む(または、からなる)含フッ素重合体、あるいは
一般式(2)の単量体を含む(または、からなる)非フッ素重合体
である。
一般式(1)の単量体および一般式(2)の単量体を含む含フッ素重合体において、一般式(1)の単量体と一般式(2)の単量体の重量比は、1:99〜99:1、例えば10:90〜90:10であってよい。
The polymer of the present invention is:
A fluorine-containing polymer containing (or consisting of) the monomer of the general formula (1),
A fluoropolymer containing (or consisting of) the monomer of general formula (1) and the monomer of general formula (2), or containing (or consisting of) the monomer of general formula (2) It is a non-fluorine polymer.
In the fluoropolymer containing the monomer of the general formula (1) and the monomer of the general formula (2), the weight ratio of the monomer of the general formula (1) and the monomer of the general formula (2) is 1: 99-99: 1, such as 10: 90-90: 10.

本発明が提供する重合体は、
一般式(1):
CH2=CH-COO-X-Rf (1)
(式中、Xは、二価の、炭素数1〜10の脂肪族炭化水素基、炭素数6〜10の芳香族炭化水素基もしくは環状脂肪族炭化水素基を表し、Rfは、炭素数1〜6の直鎖状または分岐状のパーフルオロアルキル基を表す。)で表される単量体、もしくは、一般式(2):
CH2=C(CH3)-COO-R (2)
(式中、Rは、炭素数10〜30の直鎖状または分岐状の脂肪族炭化水素基を表す。)で表される単量体から誘導される繰り返し単位を有する重合体であって、その繰返し単位の主鎖の立体規則性が65%以上、例えば、75%〜99.9%、特に85%〜95%または90%〜99%という高いイソタクチシチィーを有し得る。
The polymer provided by the present invention is:
General formula (1):
CH 2 = CH-COO-X-Rf (1)
(In the formula, X represents a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a cyclic aliphatic hydrocarbon group, and Rf represents 1 carbon atom. Represents a linear or branched perfluoroalkyl group of ˜6), or a monomer represented by the general formula (2):
CH 2 = C (CH 3 ) -COO-R (2)
(Wherein R represents a linear or branched aliphatic hydrocarbon group having 10 to 30 carbon atoms), and a polymer having a repeating unit derived from a monomer represented by: The stereoregularity of the main chain of the repeating unit may have a high isotacticity of 65% or more, for example, 75% to 99.9%, especially 85% to 95% or 90% to 99%.

本発明の重合体が高いイソタクチシチィーを有することは、Rf基の炭素数が8以下、例えば7以下、特に6以下に低下することに伴う撥水撥油性の低下を補償する意味で重要な特徴点である。同一の炭素数のRf基またはR基を有する重合体同士で比較すれば、イソタクチシチィーが高いほど、重合体の側鎖Rf基または側鎖R基の結晶化が誘起され、その結果、被測定表面に整列したRf基またはR基の運動性が抑制されることによって動的接触角測定において後退接触角が高い値を呈し、撥水性または撥油性が向上し得る。事実、本発明の重合体が良好な撥水性または撥油性を示すことは、後述する実施例に開示されるとおりであり、その原因は、高いイソタクチシチィーに由来する。   The high isotacticity of the polymer of the present invention is important in the sense of compensating for a decrease in water and oil repellency associated with a decrease in the number of carbon atoms in the Rf group to 8 or less, such as 7 or less, particularly 6 or less. It is a special feature point. When comparing polymers having Rf groups or R groups having the same carbon number, the higher the isotacticity, the more the crystallization of the side chain Rf group or side chain R group of the polymer is induced. By suppressing the mobility of the Rf group or R group aligned with the surface to be measured, the receding contact angle exhibits a high value in the dynamic contact angle measurement, and the water repellency or oil repellency can be improved. In fact, the fact that the polymer of the present invention exhibits good water repellency or oil repellency is as disclosed in the examples described later, and its cause is derived from high isotacticity.

一般式(1)におけるRfで表わされるパーフルオロアルキ基の炭素数は1〜6であってよく、4または6が好ましい。特に、Rf基を有する単量体から誘導される含フッ素重合体の撥水撥油性に対して、Rfの炭素数が多いほど良好な撥水撥油性が得られるので、炭素数6のRfがより好ましい。
一般式(2)におけるRで表される直鎖状または分岐状の脂肪族炭化水素基の炭素数は10〜30であってよく、16〜30が好ましい。特に、R基を有する単量体から誘導される繰り返し単位を有する重合体の撥水性に対して、R基の炭素数が多いほど良好な撥水性が得られる点、および側鎖R基の結晶化のし易さ、工業的な製造し易さを勘案すれば、炭素数18〜22の直鎖状の脂肪族炭化水素基がより好ましい。脂肪族炭化水素基の例は、飽和または不飽和の脂肪族炭化水素基、例えば、アルキル基、シクロアルキル基、アルキレン基である。
The perfluoroalkyl group represented by Rf in the general formula (1) may have 1 to 6 carbon atoms, and preferably 4 or 6. In particular, with respect to the water / oil repellency of a fluoropolymer derived from a monomer having an Rf group, the better the water / oil repellency of Rf, the better the water / oil repellency. More preferred.
The linear or branched aliphatic hydrocarbon group represented by R in the general formula (2) may have 10 to 30 carbon atoms, and preferably 16 to 30 carbon atoms. In particular, with respect to the water repellency of a polymer having a repeating unit derived from a monomer having an R group, the better the water repellency is obtained as the carbon number of the R group is larger, and the side chain R group crystals In view of ease of conversion and industrial production, a linear aliphatic hydrocarbon group having 18 to 22 carbon atoms is more preferable. Examples of the aliphatic hydrocarbon group are saturated or unsaturated aliphatic hydrocarbon groups such as an alkyl group, a cycloalkyl group, and an alkylene group.

一般式(1)におけるXは、二価の、炭素数1〜10の脂肪族炭化水素基、炭素数6〜10の芳香族炭化水素基もしくは環状脂肪族炭化水素基を表わす。炭素数1〜10の二価の脂肪族炭化水素基を例示すれば、メチレン基、エチレン基、トリメチレン基、2−メチルエチレン基、スチリル基、へキシレン基、オクチレン基などの直鎖状または分岐状のアルキレン基が挙げられる。炭素数6〜10の二価の芳香族炭化水素基としては、1,4−フェニレン基、1,4−ビスメチレンフェニレン基、1,4−ビスエチレンフェニレン基などが挙げられる。炭素数6〜10の環状脂肪族炭化水素基としては、1,4−シクロへキシレン基、1,4−ビスメチレンシクロへキシレン基、1,4−ビスエチレンシクロへキシレン基などが挙げられる。   X in the general formula (1) represents a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms, or a cyclic aliphatic hydrocarbon group. For example, a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is linear or branched such as a methylene group, an ethylene group, a trimethylene group, a 2-methylethylene group, a styryl group, a hexylene group, and an octylene group. -Like alkylene group. Examples of the divalent aromatic hydrocarbon group having 6 to 10 carbon atoms include a 1,4-phenylene group, a 1,4-bismethylenephenylene group, and a 1,4-bisethylenephenylene group. Examples of the cyclic aliphatic hydrocarbon group having 6 to 10 carbon atoms include 1,4-cyclohexylene group, 1,4-bismethylenecyclohexylene group, and 1,4-bisethylenecyclohexylene group.

本発明の一般式(1)の単量体は、好ましくは、一般式(3):
CH2=CH-COO-(CH2)m-(CF2)n-F (3)
(式中、mは1〜10であり、nは1〜6である。)で表される単量体であってよい。一般式(3)の単量体の具体例としては、
CH2=CH-COO-CH2-(CF2)2F、
CH2=CH-COO-CH2-(CF2)4F、
CH2=CH-COO-CH2-(CF2)6F、
CH2=CH-COO-(CH2)2-(CF2)2F、
CH2=CH-COO-(CH2)2-(CF2)4F、
CH2=CH-COO-(CH2)2-(CF2)6F、
などが挙げられる。これらの中で、好ましくは、
CH2=CH-COO-CH2-(CF2)6F、
CH2=CH-COO-(CH2)2-(CF2)6F、
などが用いられる。
The monomer of the general formula (1) of the present invention is preferably the general formula (3):
CH 2 = CH-COO- (CH 2 ) m- (CF 2 ) n -F (3)
(Wherein m is 1 to 10 and n is 1 to 6). Specific examples of the monomer of the general formula (3) include
CH 2 = CH-COO-CH 2- (CF 2 ) 2 F,
CH 2 = CH-COO-CH 2- (CF 2 ) 4 F,
CH 2 = CH-COO-CH 2- (CF 2 ) 6 F,
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 2 F,
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 4 F,
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 6 F,
Etc. Of these, preferably
CH 2 = CH-COO-CH 2- (CF 2 ) 6 F,
CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 6 F,
Etc. are used.

本発明の一般式(2)の単量体は、好ましくは、一般式(4):
CH2=C(CH3)-COO-(CH2)y-H (4)
(式中、yは10〜30を表す。)で表される単量体であってよい。yは例えば12〜26、特に14〜24であってよい。一般式(4)で表される単量体の具体例としては、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸トリデシル、メタクリル酸テトラデシル、メタクリル酸セチル、メタクリル酸ステアリル、メタクリル酸ベヘニルなどが挙げられる。これらの中で、好ましくは、メタクリル酸ステアリル、メタクリル酸ベヘニルなどが用いられる。
The monomer of the general formula (2) of the present invention is preferably the general formula (4):
CH 2 = C (CH 3 ) -COO- (CH 2 ) y -H (4)
(Wherein y represents 10 to 30). y may for example be 12 to 26, in particular 14 to 24. Specific examples of the monomer represented by the general formula (4) include decyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, tetradecyl methacrylate, cetyl methacrylate, stearyl methacrylate, and behenyl methacrylate. Of these, stearyl methacrylate and behenyl methacrylate are preferably used.

本発明の重合体の結晶化度はイソタクチシチィーの増加に応じて高まる。結晶性の増加に応じて撥水撥油性も向上し得る。一般式(1)または(2)の単量体とこれと共重合し得る他の単量体との共重合体であっても、本発明の単量体の繰り返し単位の主鎖のイソタクチシチィーの増加に応じて撥水撥油性が向上する。   The crystallinity of the polymer of the present invention increases with an increase in isotacticity. As the crystallinity increases, the water and oil repellency can be improved. Even if it is a copolymer of the monomer of the general formula (1) or (2) and another monomer that can be copolymerized therewith, the isotactic structure of the main chain of the repeating unit of the monomer of the present invention The water and oil repellency improves as the city increases.

本発明は、アニオン重合開始剤、例えばアニオン重合開始剤含有触媒の使用による高いイソタクチシチーを有する重合体の製造方法を提供する。アニオン重合開始剤としては、有機リチウム化合物、有機カリウム化合物およびグリニヤール試薬からなる群から選択された少なくとも1種の第一有機金属化合物を用いることができる。第一有機金属化合物は有機リチウム化合物であることが好ましい。   The present invention provides a method for producing a polymer having high isotacticity by using an anionic polymerization initiator, for example, an anionic polymerization initiator-containing catalyst. As the anionic polymerization initiator, at least one first organometallic compound selected from the group consisting of an organic lithium compound, an organic potassium compound, and a Grignard reagent can be used. The first organometallic compound is preferably an organolithium compound.

本発明の触媒は、第一有機金属化合物(アニオン重合開始剤)に加えて、周期律表1族に属する金属から選ばれた少なくとも1種の金属の第二有機金属化合物を含んでよい。   The catalyst of the present invention may contain a second organometallic compound of at least one metal selected from metals belonging to Group 1 of the periodic table, in addition to the first organometallic compound (anionic polymerization initiator).

第一有機金属化合物としては、アルカリ金属やアルカリ土類金属を対カチオンとする公知のアニオン性開始剤を用いることができる。例えば、n-PrLi、i-PrLi、n-BuLi、sec-BuLi、t-BuLi、あるいは、t-AmLiのようなアルキルリチウム化合物、(CH3)2C(Li)COOCH3、(CH3)2C(Li)COOC2H5、(CH3)2C(Li)COO(CH2)2CH3、(CH3)2C(Li)COOCH(CH3)2 (以下、Li-i-PrIBと表す)、(CH3)2C(Li)COOC(CH3)3のようなα−リチオイソ酪酸エステル化合物、n-Pr-MgBr、i-Pr-MgBr、n-Bu-MgBr、sec-Bu-MgBr、t-Bu-MgBr、t-Am-MgBrのようなグリニャール化合物等が挙げられる。これらの内、好ましくは、i-PrLi、Li-i-PrIB、sec-BuLi、t-BuLi、t-AmLi、i-Pr-MgBr、sec-Bu-MgBr、t-Bu-MgBrおよびt-Am-MgBrが用いられてよく、特に好ましくは、t-BuLiおよびLi-i-PrIBを用いることができる。 As the first organometallic compound, a known anionic initiator having an alkali metal or alkaline earth metal as a counter cation can be used. For example, n-PrLi, i-PrLi, n-BuLi, sec-BuLi, t-BuLi, or an alkyl lithium compound such as t-AmLi, (CH 3 ) 2 C (Li) COOCH 3 , (CH 3 ) 2 C (Li) COOC 2 H 5 , (CH 3 ) 2 C (Li) COO (CH 2 ) 2 CH 3 , (CH 3 ) 2 C (Li) COOCH (CH 3 ) 2 (hereinafter Li-i- (Represented as PrIB), α-lithioisobutyric acid ester compounds such as (CH 3 ) 2 C (Li) COOC (CH 3 ) 3 , n-Pr-MgBr, i-Pr-MgBr, n-Bu-MgBr, sec- Examples thereof include Grignard compounds such as Bu-MgBr, t-Bu-MgBr, and t-Am-MgBr. Of these, preferably i-PrLi, Li-i-PrIB, sec-BuLi, t-BuLi, t-AmLi, i-Pr-MgBr, sec-Bu-MgBr, t-Bu-MgBr and t-Am -MgBr may be used, particularly preferably t-BuLi and Li-i-PrIB may be used.

本発明で用いる第二有機金属化合物としては、公知の周期律表1族に属する金属を含む有機金属化合物を挙げることができる。例えば、Me3SiOLi, t-BuMe2SiOLi, Et3SiOLiのようなリチウムシラノレート、t−BuOLi, t-BuOKのような金属アルコキシドが挙げられる。
第一有機金属化合物の量は、単量体に対して、0.1〜10mol%、例えば、0.5〜5mol%であってよく、第二有機金属化合物の量は、第一有機金属化合物に対して、1モル当量以上、例えば、1〜50モル当量であってよい。
As a 2nd organometallic compound used by this invention, the organometallic compound containing the metal which belongs to a well-known periodic table group 1 can be mentioned. Examples thereof include lithium silanolates such as Me 3 SiOLi, t-BuMe 2 SiOLi and Et 3 SiOLi, and metal alkoxides such as t-BuOLi and t-BuOK.
The amount of the first organometallic compound may be 0.1 to 10 mol%, for example 0.5 to 5 mol%, based on the monomer, and the amount of the second organometallic compound may be the first organometallic compound. It may be 1 molar equivalent or more, for example, 1 to 50 molar equivalents.

重合法は一括仕込み法でも分割仕込み法でも連続仕込み法でもよい。特に2種以上の単量体を共重合する場合、いずれか1種以上の単量体を分割または連続して仕込み、重合することにより、均質な組成のブロック共重合体が得られる点で好ましい。   The polymerization method may be a batch charging method, a split charging method or a continuous charging method. In particular, when two or more monomers are copolymerized, it is preferable in that a block copolymer having a homogeneous composition can be obtained by dividing or continuously charging any one or more monomers. .

本発明の重合体の分子量は、数平均分子量(Mn)で2,000〜1,000,000、好ましくは3,000〜500,000、さらに好ましくは、4,000〜300,000である。数平均分子量は、H−NMR測定により、開始末端由来のシグナル強度と、ポリマー主鎖または側鎖に由来のシグナル強度から、重合体中の単量体単位と末端基の比率を計算して求めた。 The molecular weight of the polymer of the present invention is 2,000 to 1,000,000, preferably 3,000 to 500,000, and more preferably 4,000 to 300,000 in terms of number average molecular weight (Mn). The number average molecular weight is calculated by calculating the ratio of the monomer unit to the terminal group in the polymer from the signal intensity derived from the start terminal and the signal intensity derived from the polymer main chain or side chain by 1 H-NMR measurement. Asked.

本発明の含フッ素重合体の分子量分布は、2.5以下であってよく、具体的には、2.0以下、好ましくは、1.5以下、例えば、1.3以下の分子量分布を有してよい。
重合体の結晶性は、重合体の結晶部に由来する、X線回折測定におけるシャープな回折線ピークの本数や、熱特性測定における結晶融点および融解エンタルピーの値により評価した。即ち、回折線ピークの本数が多いことや、結晶融点および融解エンタルピーの値が高いことは、重合体の結晶性が高いことを表す。
The molecular weight distribution of the fluoropolymer of the present invention may be 2.5 or less, specifically 2.0 or less, preferably 1.5 or less, for example, 1.3 or less. You can do it.
The crystallinity of the polymer was evaluated by the number of sharp diffraction line peaks in the X-ray diffraction measurement derived from the crystal part of the polymer, and the crystal melting point and melting enthalpy values in the thermal property measurement. That is, a large number of diffraction line peaks and a high crystal melting point and melting enthalpy value indicate high crystallinity of the polymer.

第一有機金属化合物と第二有機金属化合物を触媒として用いる場合、第二有機金属化合物の使用モル比は、アニオン重合開始剤(第一有機金属化合物)1モルに対して1モル以上であってよい。具体例を挙げるならば、例えばLi-iPrIBが1モルに対してMe3SiOLiが1モル以上であってよい。 When using a 1st organometallic compound and a 2nd organometallic compound as a catalyst, the use molar ratio of a 2nd organometallic compound is 1 mol or more with respect to 1 mol of anionic polymerization initiators (1st organometallic compound), Good. For example, Me 3 SiOLi may be 1 mol or more with respect to 1 mol of Li-iPrIB.

重合反応においては、単量体および得られる重合体が溶解し、かつ低い重合反応温度においても凍結しない溶媒を使用することが好ましい。溶媒としては、例えば、含フッ素溶媒単独、非フッ素溶媒単独、または含フッ素溶媒と非フッ素溶媒との混合溶媒を用いてよい。好ましい含フッ素溶媒としては、例えば、CFC-316(C4Cl4F6)、CFC-519(C6Cl5F9)、HFC−134a(1,1,1,2−テトラフルオロエタン)、HCFC-225(C3HCl2F5)、ソルカン365mfc(C4H5F5)、バートレルXF(C5H2F10)、ゼオローラH(C5H3F7)等の含フッ素脂肪族類化合物、パーフルオロベンゼン、α,α,α-トリフルオロメチルベンゼン、1,3−ビス(トリフルオロメチル)ベンゼン(m−XHF)等の含フッ素芳香族類化合物、パーフルオロブチルメチルエーテル、パーフルオロブチルエチルエーテル等の含フッ素エーテル類化合物が挙げられる。非フッ素溶媒としては、トルエン、キシレンの芳香族類化合物、ジエチルエーテル、ブチルメチルエーテル、ジブチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン、モノグライム、ジグライム、トリグライム、テトラグライム等の炭化水素系エーテル類化合物、塩化メチレン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン等の含塩素脂肪族類化合物が挙げられる。含フッ素重合体を調製する場合には、良好な重合反応および高いイソタクチシチィーの観点から、溶媒は含フッ素溶媒を含んでいることが好ましい。イソタクチシチィーが高くなるので、m−XHFまたはHCFC-225の単独溶媒、m−XHFとHCFC-225の混合溶媒、m−XHFおよび/またはHCFC-225とトルエンおよび/または塩化メチレンとの混合溶媒が好ましい。溶媒の量は、単量体100重量部に対して、1〜10000重量部、例えば10〜1000重量部であってよい。 In the polymerization reaction, it is preferable to use a solvent in which the monomer and the resulting polymer are dissolved and which does not freeze even at a low polymerization reaction temperature. As the solvent, for example, a fluorine-containing solvent alone, a non-fluorine solvent alone, or a mixed solvent of a fluorine-containing solvent and a non-fluorine solvent may be used. Preferred examples of the fluorine-containing solvent include CFC-316 (C 4 Cl 4 F 6 ), CFC-519 (C 6 Cl 5 F 9 ), HFC-134a (1,1,1,2-tetrafluoroethane), Fluorine-containing aliphatics such as HCFC-225 (C 3 HCl 2 F 5 ), Solcan 365 mfc (C 4 H 5 F 5 ), Vertrel XF (C 5 H 2 F 10 ), Zeolora H (C 5 H 3 F 7 ) Compounds, perfluorobenzene, fluorine-containing aromatic compounds such as α, α, α-trifluoromethylbenzene, 1,3-bis (trifluoromethyl) benzene (m-XHF), perfluorobutyl methyl ether, perfluorobenzene Fluorine-containing ether compounds such as fluorobutyl ethyl ether are exemplified. Non-fluorinated solvents include hydrocarbon ethers such as toluene, xylene aromatic compounds, diethyl ether, butyl methyl ether, dibutyl ether, tetrahydrofuran (THF), 1,4-dioxane, monoglyme, diglyme, triglyme, and tetraglyme. And chlorinated aliphatic compounds such as methylene chloride, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane. When preparing a fluorinated polymer, the solvent preferably contains a fluorinated solvent from the viewpoint of good polymerization reaction and high isotacticity. Since isotacticity is high, m-XHF or HCFC-225 single solvent, m-XHF and HCFC-225 mixed solvent, m-XHF and / or HCFC-225 mixed with toluene and / or methylene chloride A solvent is preferred. The amount of the solvent may be 1 to 10000 parts by weight, for example 10 to 1000 parts by weight with respect to 100 parts by weight of the monomer.

重合反応温度は、溶媒が凍結しない温度であり、通常、0℃以下、例えば、−80℃〜0℃の範囲であってよい。   The polymerization reaction temperature is a temperature at which the solvent does not freeze, and is usually 0 ° C. or lower, for example, in the range of −80 ° C. to 0 ° C.

以下、実施例を挙げて本発明を詳しく説明するが、本発明はこれらの実施例に限定され
るものではない。
以下において、部または%は、特記しない限り、重量部または重量%を表わす。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.
In the following, parts or% represents parts by weight or% by weight unless otherwise specified.

重合体の分析および撥水撥油性の測定は以下のようにして行った。   Analysis of the polymer and measurement of water and oil repellency were performed as follows.

「数平均分子量」
含フッ素重合体の数平均分子量(Mn)の測定は、500MHzのH−NMR(Varian Unity INOVA500)または400MHzのH-NMR(JEOL ECS-400)にて、C6F6/C6D6=95/5の混合溶媒中で、70℃で行った。重合開始剤のi−Pr基のメチン基の4.2ppm付近のシグナル強度、ならびに主鎖CH2基由来の1.7〜2.6ppm付近のシグナル強度、または側鎖に存在するエステルCH2基に由来する4.5〜4.7ppm付近のシグナル強度から、重合体中の単量体単位と末端基の比率を計算して求めた。一方、非フッ素重合体の数平均分子量(Mn)の測定は、テトラヒドロフランを溶媒とし、SHOWA DENKO製のShodex GPC−104 (カラムLF604×2直列)を用いて測定した。尚、クロマトグラムは、標準ポリスチレンのサンプルを用いて校正した。
"Number average molecular weight"
The number average molecular weight (Mn) of the fluoropolymer was measured by 1 H-NMR (Varian Unity INOVA500) at 500 MHz or 1 H-NMR (JEOL ECS-400) at 400 MHz, C6F6 / C6D6 = 95/5. It carried out at 70 degreeC in the mixed solvent. Signal intensity around 4.2 ppm of methine group of i-Pr group of polymerization initiator and signal intensity around 1.7 to 2.6 ppm derived from main chain CH 2 group, or ester CH 2 group present in side chain From the signal intensity in the vicinity of 4.5 to 4.7 ppm derived from the above, the ratio of the monomer unit to the terminal group in the polymer was calculated. On the other hand, the number average molecular weight (Mn) of the non-fluorinated polymer was measured using Shodex GPC-104 (column LF604 × 2 series) manufactured by SHOWA DENKO using tetrahydrofuran as a solvent. The chromatogram was calibrated using a standard polystyrene sample.

「立体規則性」
ポリアクリレートの立体規則性の分析は、Matsuzakiら(J.Polym.Sci.,A-1,5,2167(1967))のポリアクリル酸メチルの分析法に従った。即ち、H-NMRにおいて、2ppm付近に現れる主鎖メチレンプロトンに基づく3本の吸収を利用し、低磁場と高磁場の吸収よりイソタクチックダイアド(m)を求めた。一方、ポリメタクリレートの立体規則性の分析法は、Nishioka (J. Polym. Sci., 45, 232(1960)、およびBovey (J. Polym. Sci., 44, 173 (1960) によって確立されているので、重合体の立体規則性は、その方法に従った。即ち、H−NMRにおいて、1ppm付近に現れるα−メチル基のプロトンに基づく3本の吸収を利用し、低磁場の吸収よりイソタクチックトリアド(mm)を求めた。
`` Stereoregularity ''
The stereoregularity analysis of the polyacrylate followed the analysis method of polymethyl acrylate by Matsuzaki et al. (J. Polym. Sci., A-1, 5, 2167 (1967)). That is, in 1 H-NMR, three absorptions based on main chain methylene protons appearing in the vicinity of 2 ppm were used, and isotactic dyad (m) was determined from the absorption of low and high magnetic fields. On the other hand, the analytical method of stereoregularity of polymethacrylate is established by Nishioka (J. Polym. Sci., 45, 232 (1960), and Bovey (J. Polym. Sci., 44, 173 (1960). Therefore, the stereoregularity of the polymer follows that method: In 1 H-NMR, three absorptions based on α-methyl group protons appearing in the vicinity of 1 ppm are utilized, and the isotacticity is less than that of low magnetic field absorption. The tactic triad (mm) was determined.

「熱的特性」
重合体のガラス転移温度(Tg)、結晶融点(Tm)および融解エンタルピー(ΔH)は、熱分析計DSC(SEIKO-RDC220)にて、−50〜150℃の温度範囲で昇温スピード10℃/分で測定した。
"Thermal characteristics"
The glass transition temperature (Tg), crystal melting point (Tm) and melting enthalpy (ΔH) of the polymer were measured with a thermal analyzer DSC (SEIKO-RDC220) in a temperature range of −50 to 150 ° C. Measured in minutes.

「静的接触角」
重合体の撥水撥油性の評価の1つである静的接触角は以下の様にして測定した。撥水性は水滴(表面張力γi=72mN/m)の静的接触角を、撥油性はn−ヘキサデカン液滴(表面張力γi=27mN/m)の静的接触角をそれぞれ測定して求めた。即ち、含フッ素重合体をHCFC−225あるいはHFE7300(1,1,1,2,2,3,4,5,5,5−デカフルオロ−3−メトキシ−4−トリフルオロメチル−ペンタン)、または非フッ素重合体をトルエン溶媒中の1wt%溶液とし、スピンコート法(2000rpm)でガラス基板に塗布して、HCFC−225を用いた場合は75℃で3分間熱処理して、HFE−7300あるいはトルエンを用いた場合は48時間室温乾燥して製膜した。次に、協和界面科学(株)製の接触角計(商品名「CA−VP」)で接触角を測定した。測定環境はJISR3257に準じて、温度15〜20℃、相対湿度50〜70%とした。接触角の角度の大きい方が、撥水撥油性に優れている。
"Static contact angle"
The static contact angle, which is one of the evaluations of the water / oil repellency of the polymer, was measured as follows. The water repellency was determined by measuring the static contact angle of water droplets (surface tension γi = 72 mN / m), and the oil repellency was determined by measuring the static contact angle of n-hexadecane droplets (surface tension γi = 27 mN / m). That is, the fluorinated polymer is HCFC-225 or HFE7300 (1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-trifluoromethyl-pentane), or A non-fluorine polymer is made into a 1 wt% solution in a toluene solvent, applied to a glass substrate by a spin coating method (2000 rpm), and when HCFC-225 is used, it is heat-treated at 75 ° C. for 3 minutes to produce HFE-7300 or toluene. Was used, it was dried at room temperature for 48 hours to form a film. Next, the contact angle was measured with a contact angle meter (trade name “CA-VP”) manufactured by Kyowa Interface Science Co., Ltd. The measurement environment was set to a temperature of 15 to 20 ° C. and a relative humidity of 50 to 70% in accordance with JIS R3257. The larger the contact angle, the better the water and oil repellency.

「動的的接触角・転落角」
重合体の撥水撥油性評価の1つである動的接触角を以下の様にして測定した。撥水性は水滴(表面張力γi=72mN/m)の動的接触角を、撥油性はn−ヘキサデカン液滴(表面張力γi=27mN/m)の動的接触角をそれぞれ測定して求めた。動的接触角の詳細としては、前進接触角:θa(deg)、後退接触角:θr(deg)、および、転落角:α(deg)を測定して求めた。即ち、ガラス基板上に上記と同様の方法で重合体を製膜し、上記と同様に協和界面科学(株)製の接触角計(商品名「CA−VP」)で接触角を測定した。測定環境はJISR3257に準じて、温度15〜20℃、相対湿度50〜70%とした。θaとθrの差を表すヒステリシスおよび転落角の小さい方が、撥水撥油性に優れている。
"Dynamic contact angle and sliding angle"
The dynamic contact angle, which is one of the evaluations of the water and oil repellency of the polymer, was measured as follows. Water repellency was determined by measuring the dynamic contact angle of water droplets (surface tension γi = 72 mN / m), and oil repellency was determined by measuring the dynamic contact angle of n-hexadecane droplets (surface tension γi = 27 mN / m). The details of the dynamic contact angle were obtained by measuring the advancing contact angle: θa (deg), the receding contact angle: θr (deg), and the falling angle: α (deg). That is, a polymer film was formed on a glass substrate by the same method as described above, and the contact angle was measured with a contact angle meter (trade name “CA-VP”) manufactured by Kyowa Interface Science Co., Ltd. as described above. The measurement environment was set to a temperature of 15 to 20 ° C. and a relative humidity of 50 to 70% in accordance with JIS R3257. The smaller the hysteresis representing the difference between θa and θr and the smaller the falling angle, the better the water / oil repellency.

開始剤合成例:α−リチオイソ酪酸エステルの合成
Lochmann L.らの文献(J. Organomet. Chem. 1973, 50, 9.)に従い合成を行った。ジイソプロピルアミン2.80mL(20ミリモル)にn-ブチルリチウムを20ミリモル含むヘキサン溶液12.5mLを乾燥窒素下0℃で加え、1.5時間、0℃に保った。これにイソ酪酸イソプロピル25.6mL(20ミリモル)を室温で加えて、 1 時間保った後減圧濃縮をおこなった。ヘプタンで再結晶を行い、対応するリチウムエノレート(Li-i-P
rIB)の白色結晶を2.3g(収率85%)得た。
Initiator Synthesis Example: Synthesis of α-Lithioisobutyric Acid Lochmann L. The synthesis was performed according to the literature (J. Organomet. Chem. 1973, 50, 9.). 12.5 mL of a hexane solution containing 20 mmol of n-butyllithium in 2.80 mL (20 mmol) of diisopropylamine was added at 0 ° C. under dry nitrogen and kept at 0 ° C. for 1.5 hours. To this, 25.6 mL (20 mmol) of isopropyl isobutyrate was added at room temperature, kept for 1 hour, and then concentrated under reduced pressure. Recrystallize with heptane and use the corresponding lithium enolate (Li-iP
2.3 g (yield 85%) of white crystals of rIB) were obtained.

実施例1
1,3−ビス(トリフルオロメチル)ベンゼン(m−XHF)10mL、含フッ素単量体2−(パーフルオロヘキシル)エチルアクリレート CH2=CH-COO-(CH2)2-(CF2)6F(以下「C6−SFA」と略す。)を4.18g(10ミリモル)をガラスアンプルに入れ、窒素下で−40℃に保った。次いで、リチウムエノレート(Li-i-PrIB)を0.2ミリモル含むベンゼン溶液0.424mLを添加して密封し、−40℃に24時間保って重合反応を行った。反応終了後に少量の塩酸酸性メタノールを添加して重合反応を停止し、反応液を大量のメタノール中に投入して重合体を沈殿させた。得られた沈殿を濾取、洗浄後、真空乾燥して本発明の含フッ素重合体を得た。得られた重合結果、および生成物の分析結果を表1に示す。
Example 1
1,3-bis (trifluoromethyl) benzene (m-XHF) 10 mL, fluorine-containing monomer 2- (perfluorohexyl) ethyl acrylate CH 2 = CH-COO- (CH 2 ) 2- (CF 2 ) 6 4.18 g (10 mmol) of F (hereinafter abbreviated as “C6-SFA”) was placed in a glass ampoule and kept at −40 ° C. under nitrogen. Next, 0.424 mL of a benzene solution containing 0.2 mmol of lithium enolate (Li-i-PrIB) was added and sealed, and the polymerization reaction was carried out by keeping the temperature at −40 ° C. for 24 hours. After the reaction was completed, a small amount of hydrochloric acid methanol was added to stop the polymerization reaction, and the reaction solution was poured into a large amount of methanol to precipitate a polymer. The resulting precipitate was collected by filtration, washed, and then vacuum dried to obtain the fluoropolymer of the present invention. Table 1 shows the obtained polymerization results and product analysis results.

実施例2
m−XHF10mL、Li-i-PrIBを0.2ミリモル含むベンゼン溶液0.245mL、リチウムトリメチルシラノレート(Me3SiOLi)を0.2ミリモル含むトルエン溶液0.237mLをガラスアンプルに入れ、窒素下で−40℃に保った。次いで、C6-SFAを4.18g(10ミリモル)を添加して密封し、−40℃に24時間保って重合反応を行った。重合反応停止と以後の手順は実施例1と同様に行い、本発明の含フッ素重合体を得た。得られた重合結果、および生成物の分析結果を表1に示す。
Example 2
10 mL of m-XHF, 0.245 mL of a benzene solution containing 0.2 mmol of Li-i-PrIB, and 0.237 mL of a toluene solution containing 0.2 mmol of lithium trimethylsilanolate (Me3SiOLi) were placed in a glass ampule and −40 under nitrogen. Kept at ℃. Next, 4.18 g (10 mmol) of C6-SFA was added and sealed, and the polymerization reaction was carried out at -40 ° C. for 24 hours. The polymerization reaction was stopped and the subsequent procedure was carried out in the same manner as in Example 1 to obtain the fluoropolymer of the present invention. Table 1 shows the obtained polymerization results and product analysis results.

実施例3
m−XHF10mLに代えてHCFC-22510mL、リチウムトリメチルシラノレート(Me3SiOLi)を5ミリモル用い、−78℃で重合を行ったこと以外は実施例2と同様の手順を用いた。得られた重合結果、および生成物の分析結果を表1に示す。
Example 3
A procedure similar to that in Example 2 was used, except that HCFC-22510 mL and 5 mmol of lithium trimethylsilanolate (Me 3 SiOLi) were used in place of 10 mL of m-XHF and polymerization was performed at −78 ° C. Table 1 shows the obtained polymerization results and product analysis results.

実施例4
m−XHF10mLに代えてm−XHF7mLとトルエン3mL、エチルアルミニウム ビス-2,6-ジ- tert-ブチルフェノキシド(EtAl(ODBP)2)を0.6ミリモル用い、−78℃で72時間重合を行ったこと以外は実施例2と同様の手順を用いた。得られた重合結果、および生成物の分析結果を表1に示す。
Example 4
Polymerization was carried out at −78 ° C. for 72 hours using 7 mL of m-XHF, 3 mL of toluene, and 0.6 mmol of ethylaluminum bis-2,6-di-tert-butylphenoxide (EtAl (ODBP) 2 ) instead of 10 mL of m-XHF. Except for this, the same procedure as in Example 2 was used. Table 1 shows the obtained polymerization results and product analysis results.

比較例1(ラジカル重合による「C8−SFA」単量体からの含フッ素重合体)
含フッ素単量体C6−SFAに代えて2−(パーフルオロオクチル)エチルアクリレート CH2=CH-COO-(CH2)2-(CF2)8F(以下「C8−SFA」と略す。)5.18g(10ミリモル)を用いること、およびLi-i-PrIBに代えてアゾビスイソブチロニトリル(AIBN)32.8mg(0.2ミリモル)を用いること、および重合温度を60℃とすること以外は、実施例1と同じ手順を繰り返し、含フッ素重合体を得た。得られた重合結果、および生成物の分析結果を表1に示す。
Comparative Example 1 (Fluoropolymer from "C8-SFA" monomer by radical polymerization)
2- (perfluorooctyl) ethyl acrylate CH 2 = CH—COO— (CH 2 ) 2 — (CF 2 ) 8 F (hereinafter abbreviated as “C8-SFA”) instead of fluorine-containing monomer C6-SFA 5.18 g (10 mmol) is used, and 32.8 mg (0.2 mmol) of azobisisobutyronitrile (AIBN) is used instead of Li-i-PrIB, and the polymerization temperature is 60 ° C. Except for this, the same procedure as in Example 1 was repeated to obtain a fluoropolymer. Table 1 shows the obtained polymerization results and product analysis results.

比較例2(ラジカル重合による「C6−SFA」単量体からの含フッ素重合体)
Li-i-PrIBに代えてアゾビスイソブチロニトリル(AIBN)32.8mg(0.2ミリモル)を用いること、および重合温度を60℃とすること以外は実施例1と同じ手順を繰り返し、含フッ素重合体を得た。得られた重合結果、および生成物の分析結果を表1に示す。
Comparative Example 2 (Fluoropolymer from "C6-SFA" monomer by radical polymerization)
The same procedure as in Example 1 was repeated except that 32.8 mg (0.2 mmol) of azobisisobutyronitrile (AIBN) was used instead of Li-i-PrIB, and the polymerization temperature was 60 ° C. A fluoropolymer was obtained. Table 1 shows the obtained polymerization results and product analysis results.

Figure 2014015523
(表中、含フッ素単量体;CH2=CHCOO-(CH2)2-(CF2)n-F、n=6:C6−SFA、n=8:C8−SFA。 m;イソタクチックダイアド。 n. d.: 観測されず。)
Figure 2014015523
(In the table, a fluorine-containing monomer; CH 2 = CHCOO- (CH 2 ) 2 - (CF 2) n -F, n = 6: C6-SFA, n = 8:. C8-SFA m; isotactic Dyado nd: not observed.)

表1から、本発明になる含フッ素重合体は、ラジカル重合で得られた重合体と比較して、任意にイソタクチシチィーを調整でき、且つ、高いイソタクチシチィーでは明確なTmを有し、イソタクチシチィーが高くなるほど融解エンタルピーが増大している。これは、イソタクチシチィーが由来して含フッ素重合体の結晶性が誘起したことを示唆している。   From Table 1, it can be seen that the fluoropolymer according to the present invention can adjust the isotacticity arbitrarily as compared with the polymer obtained by radical polymerization, and has a clear Tm at high isotacticity. However, the higher the isotacticity, the greater the melting enthalpy. This suggests that isotacticity is derived and crystallinity of the fluoropolymer is induced.

「結晶性の測定(X線回折)」
実施例1および比較例2で得られた含フッ素重合体の粉末X線回折パターンを、理学電機(株)製RAD−rA型を用いて、40kV、50mAで単色CuKα線源による反射法にて測定した。得られた結果を表2に示す。
"Measurement of crystallinity (X-ray diffraction)"
The powder X-ray diffraction pattern of the fluoropolymer obtained in Example 1 and Comparative Example 2 was reflected by a reflection method using a monochromatic CuKα radiation source at 40 kV and 50 mA using RAD-rA type manufactured by Rigaku Corporation. It was measured. The obtained results are shown in Table 2.

Figure 2014015523
(表中、n. d.: 観測されず。)
Figure 2014015523
(In the table, nd: not observed.)

表2から、比較例2のラジカル重合で得られた低いイソタクチシチィーの含フッ素重合体では、2θ=18deg付近に分子内のパーフルオロアルキル基間のパッキングに帰属される回析線のみが観測されたのに比べて、本発明の高いイソタクチシチィーを有する含フッ素重合体では、2θ=18deg付近の回折線に加えて2θ=4deg付近と7deg付近と10deg付近にラメラ構造に帰属される回析線も観測され、本発明の含フッ素重合体の結晶性が高いことを示している。   From Table 2, in the low isotacticity fluoropolymer obtained by radical polymerization of Comparative Example 2, only the diffraction line attributed to the packing between perfluoroalkyl groups in the molecule around 2θ = 18 deg. In comparison with the observed, the fluoropolymer having high isotacticity of the present invention is attributed to a lamellar structure in the vicinity of 2θ = 4 deg, 7 deg, and 10 deg in addition to the diffraction line in the vicinity of 2θ = 18 deg. A diffraction line is also observed, indicating that the fluoropolymer of the present invention has high crystallinity.

実施例5
リチウムエノレート(Li-i-PrIB)を0.2ミリモル含むベンゼン溶液0.353mL、リチウムトリメチルシラノレート(Me3SiOLi)を5ミリモル含むトルエン溶液4.63mL、トルエン20mLをガラスアンプルに入れ、窒素下で0℃に保った。次いで、単量体ステアリルメタアクリレート CH2=C(CH3)-COO-(CH2)18H(以下「StMA」と略す。)を3.39g(10ミリモル)添加して密封し、0℃に24時間保って重合反応を行った。反応終了後に少量の塩酸酸性メタノールを添加して重合反応を停止し、反応液を大量のメタノール中に投入して重合体を沈殿させた。得られた沈殿を濾取、洗浄後、真空乾燥して本発明の重合体を得た。得られた重合結果、および生成物の分析結果を表3に示す。
Example 5
0.353 mL of a benzene solution containing 0.2 mmol of lithium enolate (Li-i-PrIB), 4.63 mL of a toluene solution containing 5 mmol of lithium trimethylsilanolate (Me 3 SiOLi), and 20 mL of toluene are placed in a glass ampoule, and nitrogen is added. Maintained at 0 ° C. below. Next, 3.39 g (10 mmol) of monomeric stearyl methacrylate CH 2 ═C (CH 3 ) —COO— (CH 2 ) 18 H (hereinafter abbreviated as “StMA”) was added and sealed, and the mixture was sealed at 0 ° C. The polymerization reaction was carried out for 24 hours. After the reaction was completed, a small amount of hydrochloric acid methanol was added to stop the polymerization reaction, and the reaction solution was poured into a large amount of methanol to precipitate a polymer. The resulting precipitate was collected by filtration, washed and then vacuum dried to obtain the polymer of the present invention. Table 3 shows the obtained polymerization results and the analysis results of the products.

比較例3(ラジカル重合による「StMA」単量体からの非フッ素重合体)
Li-i-PrIBに代えてアゾビスイソブチロニトリル(AIBN)32.8mg(0.2ミリモル)を用いること、および重合温度を60℃とすること以外は、実施例5と同じ手順を繰り返し、非フッ素重合体を得た。得られた重合結果、および生成物の分析結果を表3に示す。
Comparative Example 3 (Non-Fluoropolymer from “StMA” Monomer by Radical Polymerization)
The same procedure as in Example 5 was repeated except that 32.8 mg (0.2 mmol) of azobisisobutyronitrile (AIBN) was used instead of Li-i-PrIB, and the polymerization temperature was 60 ° C. A non-fluorinated polymer was obtained. Table 3 shows the obtained polymerization results and the analysis results of the products.

Figure 2014015523
(表中、非フッ素単量体StMA:CH2=C(CH3)COO-(CH2)18-H。 mm:イソタクチックトリアド。)
表2から、本発明の重合体は、ラジカル重合で得られた重合体と比較して、高いイソタクチシチィーであり、且つ、Tmが高くなっている。これは、イソタクチシチィーが由来して重合体の結晶性が誘起したことを示唆している。
Figure 2014015523
(In the table, fluorine-free monomer StMA: CH 2 = C (CH 3) COO- (CH 2) 18 -H mm:. Isotactic triad.)
From Table 2, the polymer of this invention is high isotacticity compared with the polymer obtained by radical polymerization, and Tm is high. This suggests that isotacticity is derived and the crystallinity of the polymer is induced.

実施例6
実施例1で得られた含フッ素重合体をHFE−7300溶媒中の1%溶液5mLとし、スピンコート法(2000rpm)でガラス基板に塗布後、48時間室温乾燥して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表4に、n−ヘキサデカンに対する静的接触角、および動的接触角の測定結果を表5に示す。
Example 6
The fluoropolymer obtained in Example 1 was made into 5 mL of a 1% solution in a HFE-7300 solvent, applied to a glass substrate by a spin coating method (2000 rpm), and then dried at room temperature for 48 hours to form a film. Table 4 shows the measurement results of the static contact angle and dynamic contact angle with respect to water of this coating film, and Table 5 shows the measurement result of the static contact angle and dynamic contact angle with respect to n-hexadecane.

実施例7
実施例1で得られた含フッ素重合体に代えて実施例2で得られた含フッ素重合体を用いること以外は、実施例6と同じ手順を繰り返して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表4に、n−ヘキサデカンに対する静的接触角、および動的接触角の測定結果を表5に示す。
Example 7
A film was formed by repeating the same procedure as in Example 6 except that the fluoropolymer obtained in Example 2 was used instead of the fluoropolymer obtained in Example 1. Table 4 shows the measurement results of the static contact angle and dynamic contact angle with respect to water of this coating film, and Table 5 shows the measurement result of the static contact angle and dynamic contact angle with respect to n-hexadecane.

実施例8
実施例1で得られた含フッ素重合体に代えて実施例3で得られた含フッ素重合体を用いること以外は、実施例6と同じ手順を繰り返して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表4に、n−ヘキサデカンに対する静的接触角、および動的接触角の測定結果を表5に示す。
Example 8
A film was formed by repeating the same procedure as in Example 6 except that the fluoropolymer obtained in Example 3 was used instead of the fluoropolymer obtained in Example 1. Table 4 shows the measurement results of the static contact angle and dynamic contact angle with respect to water of this coating film, and Table 5 shows the measurement result of the static contact angle and dynamic contact angle with respect to n-hexadecane.

実施例9
実施例1で得られた含フッ素重合体に代えて実施例4で得られた含フッ素重合体を用いること以外は、実施例6と同じ手順を繰り返して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表4に、n−ヘキサデカンに対する静的接触角、および動的接触角の測定結果を表5に示す。
Example 9
A film was formed by repeating the same procedure as in Example 6 except that the fluoropolymer obtained in Example 4 was used instead of the fluoropolymer obtained in Example 1. Table 4 shows the measurement results of the static contact angle and dynamic contact angle with respect to water of this coating film, and Table 5 shows the measurement result of the static contact angle and dynamic contact angle with respect to n-hexadecane.

比較例4
比較例1で得られた含フッ素重合体をHCFC−225溶媒中の1%溶液5mLとし、スピンコート法(2000rpm)でガラス基板に塗布後、75℃で3分間熱処理して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表4に、n−ヘキサデカンに対する静的接触角、および動的接触角の測定結果を表5に示す。
Comparative Example 4
The fluoropolymer obtained in Comparative Example 1 was made into 5 mL of a 1% solution in a HCFC-225 solvent, applied to a glass substrate by a spin coating method (2000 rpm), and then heat-treated at 75 ° C. for 3 minutes to form a film. Table 4 shows the measurement results of the static contact angle and dynamic contact angle with respect to water of this coating film, and Table 5 shows the measurement result of the static contact angle and dynamic contact angle with respect to n-hexadecane.

比較例5
実施例1で得られた含フッ素重合体に代えて比較例2で得られた含フッ素重合体を用いること以外は、実施例7と同じ手順を繰り返して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表4に、n−ヘキサデカンに対する静的接触角、および動的接触角の測定結果を表5に示す。
Comparative Example 5
A film was formed by repeating the same procedure as in Example 7 except that the fluoropolymer obtained in Comparative Example 2 was used instead of the fluoropolymer obtained in Example 1. Table 4 shows the measurement results of the static contact angle and dynamic contact angle with respect to water of this coating film, and Table 5 shows the measurement result of the static contact angle and dynamic contact angle with respect to n-hexadecane.

Figure 2014015523
(表中、m:イソタクチックダイアド。>90:ガラス基板を90degに傾斜しても水滴が転落しなかったことを表す。n.d.:転落角が>90であったため評価できなかったことを表す。)
表4から、本発明の含フッ素重合体は、イソタクチシチィーが高くなるほど、水に対する転落角およびヒステリシスが低下する。即ち、高いイソタクチシチィーを有する本発明の含フッ素重合体は撥水性が優れていることが判る。
Figure 2014015523
(In the table, m: isotactic dyad.> 90: Indicates that the water droplet did not fall even when the glass substrate was tilted to 90 deg.) Nd: Could not be evaluated because the fall angle was> 90. Represents this.)
From Table 4, the fluorinated polymer of the present invention has lower drop angle and hysteresis with respect to water as the isotacticity becomes higher. That is, it can be seen that the fluoropolymer of the present invention having high isotacticity is excellent in water repellency.

Figure 2014015523
(表中、m:イソタクチックダイアド。>90:ガラス基板を90degに傾斜しても水滴が転落しなかったことを表す。n.d.:転落角が>90であったため評価できなかったことを表す。)
表5から、本発明の含フッ素重合体は、イソタクチシチィーが高くなるほど、油(n−ヘキサデカン)に対する転落角およびヒステリシスが低下する。即ち、高いイソタクチシチィーを有する本発明の含フッ素重合体は撥油性が優れていることが判る。
Figure 2014015523
(In the table, m: isotactic dyad.> 90: Indicates that the water droplet did not fall even when the glass substrate was tilted to 90 deg.) Nd: Could not be evaluated because the fall angle was> 90. Represents this.)
From Table 5, as the isotacticity of the fluoropolymer of the present invention increases, the falling angle and hysteresis with respect to oil (n-hexadecane) decrease. That is, it can be seen that the fluoropolymer of the present invention having high isotacticity is excellent in oil repellency.

実施例10
実施例5で得られた重合体をトルエン溶媒中の1%溶液5mLとし、スピンコート法(2000rpm)でガラス基板に塗布後、48時間室温乾燥して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表6に示す。
比較例6
実施例5で得られた重合体に代えて比較例3で得られた重合体を用いること以外は、実施例10と同じ手順を繰り返して製膜した。この塗膜の水に対する静的接触角、および動的接触角の測定結果を表6に示す。
Example 10
The polymer obtained in Example 5 was made into 5 mL of a 1% solution in a toluene solvent, applied to a glass substrate by a spin coating method (2000 rpm), and then dried at room temperature for 48 hours to form a film. Table 6 shows the measurement results of the static contact angle and dynamic contact angle of this coating film with respect to water.
Comparative Example 6
A film was formed by repeating the same procedure as in Example 10 except that the polymer obtained in Comparative Example 3 was used instead of the polymer obtained in Example 5. Table 6 shows the measurement results of the static contact angle and dynamic contact angle of this coating film with respect to water.

Figure 2014015523
(表中、mm:イソタクチックトリアド。)
表6から、本発明の重合体は、イソタクチシチィーが高くなるほど、水に対する転落角およびヒステリシスが低下する。即ち、高いイソタクチシチィーを有する本発明の重合体は撥水性が優れていることが判る。
Figure 2014015523
(In the table, mm: isotactic triad.)
From Table 6, as for the polymer of this invention, the fall angle with respect to water and hysteresis fall, so that isotacticity becomes high. That is, it can be seen that the polymer of the present invention having high isotacticity is excellent in water repellency.

本発明が提供する重合体は、環境に優しい炭素数1〜6のパーフルオロアルキル基、もしくは炭素数10〜30の脂肪族炭化水素基を側鎖に有し、高いイソタクチシチィーを有する重合体であって優れた撥水性または撥油性を有することから、紙、繊維、プラスチック、金属等用の表面処理剤、例えば、撥水剤、撥油剤、防汚加工剤として広範に利用できる。   The polymer provided by the present invention is an environment-friendly polymer having a perfluoroalkyl group having 1 to 6 carbon atoms or an aliphatic hydrocarbon group having 10 to 30 carbon atoms in the side chain and having high isotacticity. Since it is a coalescence and has excellent water repellency or oil repellency, it can be widely used as a surface treatment agent for paper, fiber, plastic, metal and the like, for example, a water repellant, an oil repellant, and an antifouling agent.

Claims (11)

一般式(1):
CH2=CH-COO-X-Rf (1)
(式中、Xは、二価の、炭素数1〜10の脂肪族炭化水素基、炭素数6〜10の芳香族炭化水素基もしくは環状脂肪族炭化水素基を表し、Rfは、炭素数1〜6の直鎖状または分岐状のパーフルオロアルキル基を表す。)で表される単量体、もしくは、一般式(2):
CH2=C(CH3)-COO-R (2)
(式中、Rは、炭素数10〜30の直鎖状または分岐状の脂肪族炭化水素基を表す。)で表される単量体から誘導される繰り返し単位を有する重合体であって、その繰返し単位の主鎖の立体規則性が65%以上のイソタクチシチィーを有する重合体。
General formula (1):
CH 2 = CH-COO-X-Rf (1)
(In the formula, X represents a divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms or a cyclic aliphatic hydrocarbon group, and Rf represents 1 carbon atom. Represents a linear or branched perfluoroalkyl group of ˜6), or a monomer represented by the general formula (2):
CH 2 = C (CH 3 ) -COO-R (2)
(Wherein R represents a linear or branched aliphatic hydrocarbon group having 10 to 30 carbon atoms), and a polymer having a repeating unit derived from a monomer represented by: A polymer having isotacticity in which the stereoregularity of the main chain of the repeating unit is 65% or more.
一般式(1)の単量体が、一般式(3):
CH2=CH-COO-(CH2)m-(CF2)n-F (3)
(式中、mは1〜10であり、nは1〜6である。)で表される単量体である、請求項1に記載の重合体。
The monomer of general formula (1) is represented by general formula (3):
CH 2 = CH-COO- (CH 2 ) m- (CF 2 ) n -F (3)
The polymer of Claim 1 which is a monomer represented by (In formula, m is 1-10 and n is 1-6.).
一般式(2)の単量体が、一般式(4):
CH2=C(CH3)-COO-(CH2)y-H (4)
(式中、yは10〜30を表す。)で表される単量体である、請求項1に記載の重合体。
The monomer of general formula (2) is represented by general formula (4):
CH 2 = C (CH 3 ) -COO- (CH 2 ) y -H (4)
The polymer according to claim 1, wherein y is a monomer represented by the formula:
アニオン重合開始剤を用いて重合反応を行う請求項1〜3のいずれか1つに記載の重合体の製造方法。   The method for producing a polymer according to any one of claims 1 to 3, wherein a polymerization reaction is performed using an anionic polymerization initiator. アニオン重合開始剤が、有機リチウム化合物、有機カリウム化合物およびグリニヤール試薬からなる群から選択された少なくとも1種の第一有機金属化合物である、請求項4に記載の製造方法。   The production method according to claim 4, wherein the anionic polymerization initiator is at least one first organometallic compound selected from the group consisting of an organolithium compound, an organopotassium compound, and a Grignard reagent. 第一有機金属化合物が有機リチウム化合物である、請求項5に記載の製造方法。   The production method according to claim 5, wherein the first organometallic compound is an organolithium compound. 触媒が、第一有機金属化合物に加えて、周期律表1族に属する金属から選ばれた少なくとも1種の金属の第二有機金属化合物を含んでなる、請求項4〜6のいずれか1つに記載の製造方法。   The catalyst according to any one of claims 4 to 6, comprising a second organometallic compound of at least one metal selected from metals belonging to Group 1 of the periodic table in addition to the first organometallic compound. The manufacturing method as described in. 第二有機金属化合物が有機リチウム化合物から選ばれた少なくとも1つの有機金属化合物である、請求項7に記載の製造方法。   The production method according to claim 7, wherein the second organometallic compound is at least one organometallic compound selected from organolithium compounds. 第二有機金属化合物が有機リチウム化合物である、請求項7または8に記載の製造方法。   The production method according to claim 7 or 8, wherein the second organometallic compound is an organolithium compound. 請求項1〜3のいずれか1つに記載の重合体が有機溶剤中または水中に分散された表面処理剤。   A surface treatment agent in which the polymer according to any one of claims 1 to 3 is dispersed in an organic solvent or water. 撥水剤、撥油剤もしくは防汚加工剤の少なくとも1種である請求項10に記載の表面処理剤。   The surface treating agent according to claim 10, which is at least one of a water repellent, an oil repellent and an antifouling agent.
JP2012153297A 2012-07-09 2012-07-09 Acrylic ester polymer having excellent water and oil repellency, and method for producing the same Active JP6013055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153297A JP6013055B2 (en) 2012-07-09 2012-07-09 Acrylic ester polymer having excellent water and oil repellency, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153297A JP6013055B2 (en) 2012-07-09 2012-07-09 Acrylic ester polymer having excellent water and oil repellency, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014015523A true JP2014015523A (en) 2014-01-30
JP6013055B2 JP6013055B2 (en) 2016-10-25

Family

ID=50110512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153297A Active JP6013055B2 (en) 2012-07-09 2012-07-09 Acrylic ester polymer having excellent water and oil repellency, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6013055B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204280A1 (en) * 2016-05-26 2017-11-30 Daikin Industries, Ltd. Perfluoroalkyl acrylate polymeric thickener for enhancing viscosity of fluid co2, critical co2, and supercritical co2
JP2019202459A (en) * 2018-05-23 2019-11-28 東芝テック株式会社 Ink jet head, and ink jet printer
JP2020138012A (en) * 2019-02-28 2020-09-03 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Apparatus and method for air freshening

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170606A (en) * 1984-02-16 1985-09-04 Central Glass Co Ltd Preparation of fluorine-containing polymer
JPS6368608A (en) * 1986-08-29 1988-03-28 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Living polymer and its production
JPH11124365A (en) * 1997-10-17 1999-05-11 Daicel Chem Ind Ltd New methacrylic acid ester, its production and its optical resolution, and new polymethacrylic acid ester, its production and reagent for optical resolution therefrom
JPH11255829A (en) * 1998-03-10 1999-09-21 Asahi Glass Co Ltd Fluorine-containing acrylate ester polymer and preparation thereof
JPH11310614A (en) * 1998-04-28 1999-11-09 Hitachi Chem Co Ltd Production of polymethacrylic ester
JP2011016935A (en) * 2009-07-09 2011-01-27 Osaka Univ Acrylic block copolymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170606A (en) * 1984-02-16 1985-09-04 Central Glass Co Ltd Preparation of fluorine-containing polymer
JPS6368608A (en) * 1986-08-29 1988-03-28 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Living polymer and its production
JPH11124365A (en) * 1997-10-17 1999-05-11 Daicel Chem Ind Ltd New methacrylic acid ester, its production and its optical resolution, and new polymethacrylic acid ester, its production and reagent for optical resolution therefrom
JPH11255829A (en) * 1998-03-10 1999-09-21 Asahi Glass Co Ltd Fluorine-containing acrylate ester polymer and preparation thereof
JPH11310614A (en) * 1998-04-28 1999-11-09 Hitachi Chem Co Ltd Production of polymethacrylic ester
JP2011016935A (en) * 2009-07-09 2011-01-27 Osaka Univ Acrylic block copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204280A1 (en) * 2016-05-26 2017-11-30 Daikin Industries, Ltd. Perfluoroalkyl acrylate polymeric thickener for enhancing viscosity of fluid co2, critical co2, and supercritical co2
JP2019202459A (en) * 2018-05-23 2019-11-28 東芝テック株式会社 Ink jet head, and ink jet printer
JP7068924B2 (en) 2018-05-23 2022-05-17 東芝テック株式会社 Inkjet heads and inkjet printers
JP2020138012A (en) * 2019-02-28 2020-09-03 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Apparatus and method for air freshening
US11712493B2 (en) 2019-02-28 2023-08-01 The Procter & Gamble Company Apparatus and method for air freshening

Also Published As

Publication number Publication date
JP6013055B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis and performance of novel fluorinated acrylate polymers: preparation and reactivity of short perfluoroalkyl group containing monomers
JP5493860B2 (en) Fluoropolymer and surface modifier containing the same as active ingredient
US9518009B2 (en) Multifunctional nitrileoxide compound
WO2010101091A1 (en) Surface modifier containing fluoropolymer as active component
Daglar et al. A straightforward method for fluorinated polythioether synthesis
KR101067970B1 (en) Cyclic fluorine compounds, polymerizable fluoromonomers, fluoropolymers, and resist materials containing the fluoropolymers and method for pattern formation
JP6013055B2 (en) Acrylic ester polymer having excellent water and oil repellency, and method for producing the same
JP2005029527A5 (en)
WO2011099540A1 (en) Method for producing block polymer, block polymers, and surface treatment agent
JP3801888B2 (en) Process for producing vinyl ether group-containing (meth) acrylic acid esters, vinyl ether group pendant radical polymer and crosslinked product
Meskini et al. Unexpected alternated radical copolymerization of vinylidene cyanide with a fluorinated vinyl ether for superhydrophobic and highly oleophobic films
JP2014240476A (en) Polymer and method for producing polymer
KR102190165B1 (en) Fluorinated polymer and rust inhibitor using it as an active ingredient
WO2004096786A1 (en) Fluorinated cyclic compound, polymerizable fluoromonomer, fluoropolymer, resist material comprising the same, and method of forming pattern with the same
JP2004307447A (en) Fluorine-containing cyclic compound, fluorine-containing polymerizable monomer, fluorine-containing polymer compound, resist material produced by using the same and pattern forming method
Shirai et al. Synthesis, structure, and surface properties of Poly (meth) acrylates bearing a vinylene-bridged fluoroalkyl side chain
JP5902397B2 (en) Crystalline fluorine-containing acrylic ester polymer, process for producing the same, and water / oil repellent
JPS61190511A (en) Production of fluorine-contained polymer
US11597696B2 (en) Method for purifying polymerizable fluoromonomer by distillation
CA1280118C (en) 1 .alpha.-FLUOROACRYLIC ACID ESTERS AND POLYMERS THEREOF
Li et al. Synthesis, self-assembly, and formation of Al3+ complex micelles for diblock copolymer of 2-((8-hydroxyquinolin-5-yl) methoxy) ethyl methacrylate and styrene
JP2011140536A (en) Gelling agent for fluorine-containing organic solvent and compatibilizer for fluorine-containing organic solvent and fluorine-free organic solvent
WO2015152273A1 (en) Fluorine-containing compound, polymer composition, and surface treatment agent
WO2022124182A1 (en) Method for producing fluorine-containing polymer and composition
Zhang et al. Monomer reactivity ratios for fluoroacrylate and butyl methacrylate in miniemulsion copolymerizations initiated by potassium persulphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160921

R150 Certificate of patent or registration of utility model

Ref document number: 6013055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250