JP2014015188A - Drive device for vehicle - Google Patents

Drive device for vehicle Download PDF

Info

Publication number
JP2014015188A
JP2014015188A JP2012156000A JP2012156000A JP2014015188A JP 2014015188 A JP2014015188 A JP 2014015188A JP 2012156000 A JP2012156000 A JP 2012156000A JP 2012156000 A JP2012156000 A JP 2012156000A JP 2014015188 A JP2014015188 A JP 2014015188A
Authority
JP
Japan
Prior art keywords
cylindrical portion
hole
axial direction
friction member
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012156000A
Other languages
Japanese (ja)
Inventor
Satoru Kasuya
悟 糟谷
Masashi Kito
昌士 鬼頭
Hiroaki Mitsuharu
広明 三治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2012156000A priority Critical patent/JP2014015188A/en
Publication of JP2014015188A publication Critical patent/JP2014015188A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/10Clutch systems with a plurality of fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0661Hydraulically actuated multiple lamellae clutches

Abstract

PROBLEM TO BE SOLVED: To realize a drive device for a vehicle capable of suppressing increase of drag loss while appropriately cooling an engagement device in the start of the vehicle in an electric travel mode, etc.SOLUTION: A drive device for a vehicle includes: a first engagement device CL1; a rotary electric machine MG; and a second engagement device CL2 in order on a power transmission path connecting an internal combustion engine with wheels. A first inner cylindrical part 46 of the first engagement device CL1 is arranged outside in a radial direction than a second outer cylindrical part 72 of the second engagement device CL2. A second inner cylindrical part 66, the second outer cylindrical part 72 and a first outer cylindrical part 52 have: a first through hole 11; a second through hole 12; and a third through hole 13 in the radial direction, respectively. The first inner cylindrical part 46 has an opening end 48, and is arranged at a position where the opening end 48 overlaps with the third through hole 13 at a released state of the first engagement device CL1.

Description

本発明は、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に、入力部材の側から順に、第一係合装置、回転電機、及び第二係合装置を備えた車両用駆動装置に関する。   The present invention provides, in order from the input member side, a first engagement device, a rotating electrical machine, and a second engagement member in a power transmission path that connects an input member that is drivingly connected to an internal combustion engine and an output member that is drivingly connected to wheels. The present invention relates to a vehicle drive device including a combination device.

上記のような車両用駆動装置として、例えば特開2010−196868号公報(特許文献1)に記載されたものが知られている。特許文献1の装置では、第一係合装置〔第1クラッチCL1〕及び第二係合装置〔第2クラッチCL2〕が、回転電機〔モータジェネレータMG〕のステータの径方向内側に軸方向に並んで配置されている。そして、これらの冷却等を行うための油は、共通の流通経路〔循環油路700〕を通って、相対的に発熱量の小さい第一係合装置、相対的に発熱量の大きい第二係合装置、の順に直列的に流通するように構成されている。これにより、油の流量を低減して燃費を改善するとともに、2つの係合装置への油の供給バランスを一定化して冷却性能の安定化を図っている。   As a vehicle drive device as described above, for example, one described in Japanese Patent Application Laid-Open No. 2010-196868 (Patent Document 1) is known. In the device of Patent Document 1, the first engagement device [first clutch CL1] and the second engagement device [second clutch CL2] are arranged in the axial direction radially inward of the stator of the rotating electrical machine [motor generator MG]. Is arranged in. The oil for cooling and the like passes through a common distribution path (circulation oil path 700), and the first engagement device having a relatively small heat generation amount and the second engagement unit having a relatively large heat generation amount. It is configured to circulate in series in the order of the combined device. Thereby, the flow rate of oil is reduced to improve fuel consumption, and the supply balance of oil to the two engagement devices is made constant to stabilize the cooling performance.

ところで、例えば停車中の車両が回転電機のトルクにより発進するような状況で、当該回転電機のトルクを利用してオイルポンプを駆動し、必要な油圧を確保する場合がある。このような状況下では、一般に内燃機関の停止中に解放状態とされる第一係合装置は発熱しないのに対して、回転電機よりも出力部材側に設けられた第二係合装置はスリップ係合状態とされて発熱する場合がある。このような場合には、発熱する第二係合装置のみを優先的に冷却することが好ましいが、特許文献1の装置では第一係合装置、第二係合装置の順に直列的に油が流通するため、第一係合装置(第一摩擦部材)にも油が供給されてしまう。このため、特許文献1の装置では、第一摩擦部材の周囲に多量に存在する油によって引き摺り損失が増大する可能性がある。   By the way, for example, in a situation where a stopped vehicle starts with the torque of the rotating electrical machine, the oil pump may be driven using the torque of the rotating electrical machine to ensure a necessary hydraulic pressure. Under such circumstances, the first engagement device, which is generally released while the internal combustion engine is stopped, does not generate heat, whereas the second engagement device provided on the output member side of the rotating electrical machine slips. There is a case where heat is generated in the engaged state. In such a case, it is preferable to preferentially cool only the second engagement device that generates heat. However, in the device of Patent Document 1, oil is serially connected in the order of the first engagement device and the second engagement device. Since it circulates, oil will be supplied also to a 1st engagement apparatus (1st friction member). For this reason, in the apparatus of Patent Document 1, drag loss may increase due to a large amount of oil around the first friction member.

特開2010−196868号公報JP 2010-196868 A

そこで、回転電機のトルクを利用した車両の発進時等に、係合装置を適切に冷却しながら、引き摺り損失の増大を抑制することが可能な車両用駆動装置の実現が望まれる。   Therefore, it is desired to realize a vehicle drive device that can suppress an increase in drag loss while appropriately cooling the engagement device when the vehicle starts using the torque of the rotating electrical machine.

本発明に係る、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に、前記入力部材の側から順に、第一係合装置、回転電機、及び第二係合装置を備えた車両用駆動装置の特徴構成は、前記第一係合装置は、第一内側摩擦部材及び第一外側摩擦部材を含む第一摩擦部材と、前記第一内側摩擦部材の径方向内側に配置されて当該第一内側摩擦部材を支持する第一内側筒状部と、前記第一外側摩擦部材の径方向外側に配置されて当該第一外側摩擦部材を支持する第一外側筒状部と、前記第一摩擦部材を軸方向に押圧する押圧部材と、を有し、前記第二係合装置は、第二内側摩擦部材及び第二外側摩擦部材を含む第二摩擦部材と、前記第二内側摩擦部材の径方向内側に配置されて当該第二内側摩擦部材を支持する第二内側筒状部と、前記第二外側摩擦部材の径方向外側に配置されて当該第二外側摩擦部材を支持する第二外側筒状部と、を有し、前記第一内側筒状部が、前記第二外側筒状部よりも径方向外側に配置され、前記第二内側筒状部は、径方向に見て前記第二摩擦部材と軸方向に重複する位置において径方向に貫通する第一貫通孔を有し、前記第二外側筒状部は、径方向に見て前記第二摩擦部材と軸方向に重複する位置において径方向に貫通する第二貫通孔を有し、前記第一外側筒状部は、径方向に貫通する第三貫通孔を有し、前記第一内側筒状部は、前記押圧部材による前記第一摩擦部材の押圧方向とは反対方向である反押圧方向に向かって開口する開口端部を有し、前記開口端部と前記第三貫通孔とが、径方向に見て軸方向に重複する位置に配置されている点にある。   In order from the input member side to the power transmission path connecting the input member drivingly connected to the internal combustion engine and the output member drivingly connected to the wheels according to the present invention, in order from the input member side, The vehicle drive device including the two engagement devices is characterized in that the first engagement device includes a first friction member including a first inner friction member and a first outer friction member, and the first inner friction member. A first inner cylindrical portion that is arranged radially inside and supports the first inner friction member, and a first outer portion that is arranged radially outside the first outer friction member and supports the first outer friction member. A cylindrical member and a pressing member that presses the first friction member in the axial direction, and the second engagement device includes a second friction member including a second inner friction member and a second outer friction member; The second inner friction member is disposed radially inside the second friction member and supports the second inner friction member A second inner cylindrical portion that is disposed radially outside the second outer friction member and supports the second outer friction member, and the first inner cylindrical portion. Is disposed radially outside the second outer cylindrical portion, and the second inner cylindrical portion penetrates in the radial direction at a position overlapping the second friction member in the axial direction when viewed in the radial direction. The second outer cylindrical portion has a second through hole penetrating in the radial direction at a position overlapping with the second friction member in the axial direction when viewed in the radial direction, The first outer cylindrical portion has a third through hole penetrating in the radial direction, and the first inner cylindrical portion is counter-pressing in a direction opposite to the pressing direction of the first friction member by the pressing member. An opening end portion that opens in the direction, and the opening end portion and the third through hole overlap in the axial direction when viewed in the radial direction. In that it is disposed.

本願において、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれても良い。
また、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、2つの部材(ここでは、孔等の無体物をも含む概念)の配置に関して、「径方向に見て軸方向に重複する」とは、周方向の少なくとも一部の領域において、視線方向となる径方向に平行な仮想直線を軸方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる軸方向の領域が存在することを表す。
In the present application, “drive connection” means a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque). This concept includes a state in which the two rotating elements are connected so as to rotate integrally, and a state in which the driving force is transmitted through one or more transmission members. Such transmission members include various members (shafts, gear mechanisms, belts, etc.) that transmit rotation at the same speed or at different speeds, and engaging devices (frictions) that selectively transmit rotation and driving force. Engagement devices, meshing engagement devices, etc.).
The “rotary electric machine” is used as a concept including a motor (electric motor), a generator (generator), and a motor / generator that performs both functions of the motor and the generator as necessary.
In addition, regarding the arrangement of two members (here, a concept including intangibles such as holes), “overlapping in the axial direction when viewed in the radial direction” means that in at least a partial region in the circumferential direction When an imaginary straight line parallel to the radial direction is moved in the axial direction, it represents that there is an axial region where the imaginary straight line intersects both of the two members.

この特徴構成によれば、第一貫通孔を有する第二内側筒状部、第二貫通孔を有する第二外側筒状部、開口端部を有する第一内側筒状部、及び第三貫通孔を有する第一外側筒状部は、径方向内側から径方向外側に向かって記載の順に配置される。例えば第二内側筒状部の径方向内側から供給される油は、第一貫通孔を通って第二摩擦部材に到達し、当該第二摩擦部材を冷却する。その後、油は第二貫通孔から排出され、径方向における第二外側筒状部と第一内側筒状部との間の空間に到達する。この油は、少なくとも第一係合装置の解放状態では、第一内側筒状部の開口端部から径方向に見てそれと軸方向に重複する位置に配置される第三貫通孔を通って、第一外側筒状部の径方向外側へと円滑に導かれる。すなわち、第二内側筒状部の径方向内側から第一貫通孔を通って第二摩擦部材に供給された後、第二外側筒状部の第二貫通孔から径方向外側に排出される油の多くは、第一内側筒状部及び第一摩擦部材を迂回して、開口端部から第三貫通孔へと円滑に導かれる。よって、例えば内燃機関の停止中に第一係合装置の解放状態で回転電機のトルクを利用して行われる車両の発進時に、第二係合装置(第二摩擦部材)へ供給される油量に比べて、第一係合装置(第一摩擦部材)へ供給される油量を少なく抑えることができる。これにより、第二係合装置(第二摩擦部材)を適切に冷却しながら、第一係合装置(第一摩擦部材)に生じ得る引き摺り損失を小さく抑えることができる。   According to this characteristic configuration, the second inner cylindrical portion having the first through hole, the second outer cylindrical portion having the second through hole, the first inner cylindrical portion having the open end, and the third through hole The first outer cylindrical portion having the is arranged in the order described from the radially inner side to the radially outer side. For example, oil supplied from the radially inner side of the second inner cylindrical portion reaches the second friction member through the first through hole and cools the second friction member. Thereafter, the oil is discharged from the second through hole and reaches the space between the second outer cylindrical portion and the first inner cylindrical portion in the radial direction. At least in the released state of the first engagement device, this oil passes through the third through hole disposed at a position overlapping with the axial direction when viewed from the opening end of the first inner cylindrical portion, It is smoothly guided to the radially outer side of the first outer cylindrical portion. That is, oil that is supplied from the radially inner side of the second inner cylindrical portion to the second friction member through the first through hole and then discharged radially outward from the second through hole of the second outer cylindrical portion. Most of them are smoothly guided from the opening end portion to the third through hole, bypassing the first inner cylindrical portion and the first friction member. Therefore, for example, the amount of oil supplied to the second engagement device (second friction member) when the vehicle is started using the torque of the rotating electrical machine while the first engagement device is released while the internal combustion engine is stopped. Compared to the above, the amount of oil supplied to the first engagement device (first friction member) can be reduced. Thereby, drag loss that can occur in the first engagement device (first friction member) can be reduced while appropriately cooling the second engagement device (second friction member).

ここで、前記押圧部材、及び、前記押圧部材によって直接的に押圧される被押圧部材の少なくとも一方が、径方向に連通する径方向連通部を有し、少なくとも前記第一係合装置の解放状態で、前記開口端部と前記径方向連通部とが、径方向に見て軸方向に重複する位置に配置されていると好適である。   Here, at least one of the pressing member and the pressed member that is directly pressed by the pressing member has a radial communication portion that communicates in the radial direction, and at least the first engagement device is released. Thus, it is preferable that the opening end portion and the radial direction communication portion are arranged at positions overlapping in the axial direction when viewed in the radial direction.

この構成によれば、第一係合装置の解放状態で、開口端部からの油が、径方向連通部を通って第三貫通孔へと円滑に導かれる。よって、開口端部からの油を、第三貫通孔を通って第一外側筒状部の径方向外側へと円滑に排出することができる。結果として、第二係合装置を適切に冷却しながら、第一係合装置に生じ得る引き摺り損失を小さく抑えることができる。   According to this configuration, in the released state of the first engagement device, the oil from the opening end is smoothly guided to the third through hole through the radial communication portion. Therefore, the oil from the opening end can be smoothly discharged through the third through hole to the radially outer side of the first outer cylindrical portion. As a result, drag loss that can occur in the first engagement device can be suppressed while the second engagement device is appropriately cooled.

また、少なくとも前記第一係合装置の解放状態で、更に、前記径方向連通部と前記第三貫通孔とが、径方向に見て軸方向に重複する位置に配置されていると好適である。   Further, it is preferable that at least in the released state of the first engagement device, the radial communication portion and the third through hole are arranged at positions overlapping in the axial direction when viewed in the radial direction. .

この構成によれば、径方向連通部を通った油が適切に第三貫通孔に導かれ、第一外側筒状部の径方向外側へと円滑に排出される。   According to this structure, the oil which passed through the radial direction communication part is appropriately guide | induced to the 3rd through-hole, and is discharged | emitted smoothly to the radial direction outer side of a 1st outer side cylindrical part.

また、前記第三貫通孔の面積が、前記径方向連通部の断面積よりも大きく設定されていると好適である。   In addition, it is preferable that the area of the third through hole is set larger than the cross-sectional area of the radial communication portion.

この構成によれば、開口端部から径方向連通部を通って第三貫通孔に到達した油を、停滞させることなく、第一外側筒状部の径方向外側へと円滑に排出することができる。   According to this configuration, the oil that has reached the third through hole from the opening end through the radial communication portion can be smoothly discharged to the radially outer side of the first outer cylindrical portion without stagnation. it can.

また、前記第三貫通孔の周方向中心が前記径方向連通部の周方向中心と同位相となるように、前記第三貫通孔及び前記径方向連通部の位置が設定されていると好適である。   Further, it is preferable that the positions of the third through hole and the radial communication portion are set so that the circumferential center of the third through hole is in phase with the circumferential center of the radial communication portion. is there.

この構成によれば、第三貫通孔と径方向連通部とが径方向に見て重複する位置に配置された構成を確実に実現できる。   According to this structure, the structure arrange | positioned in the position which a 3rd through-hole and a radial direction communication part overlap in a radial direction can be implement | achieved reliably.

また、前記車輪を車両の前進方向に回転させるための前記第一外側筒状部の回転方向を正回転方向とし、前記第三貫通孔の周方向中心が、前記径方向連通部の周方向中心に対して前記正回転方向とは反対方向にずれた位相となるように、前記第三貫通孔及び前記径方向連通部の位置が設定されていると好適である。   Further, the rotation direction of the first outer cylindrical portion for rotating the wheel in the forward direction of the vehicle is a normal rotation direction, and the circumferential center of the third through hole is the circumferential center of the radial communication portion. On the other hand, it is preferable that the positions of the third through hole and the radial direction communication portion are set so that the phase is shifted in the direction opposite to the normal rotation direction.

この構成によれば、第一外側筒状部が正回転方向に回転する際に、径方向連通部を通って径方向外側に流れる油を、円滑に第三貫通孔へと導くことができる。よって、開口端部からの油が、径方向連通部及び第三貫通孔を通って第一外側筒状部の径方向外側へと円滑に排出される。   According to this configuration, when the first outer cylindrical portion rotates in the forward rotation direction, oil that flows radially outward through the radial communication portion can be smoothly guided to the third through hole. Therefore, the oil from the opening end is smoothly discharged to the radially outer side of the first outer cylindrical portion through the radial communication portion and the third through hole.

また、前記押圧部材は、軸方向に延びる押圧筒状部を有し、前記径方向連通部が、前記押圧筒状部を径方向に貫通する第四貫通孔を含むと好適である。   In addition, it is preferable that the pressing member includes a pressing cylindrical portion extending in the axial direction, and the radial communication portion includes a fourth through hole penetrating the pressing cylindrical portion in the radial direction.

この構成によれば、押圧部材の押圧筒状部により、第一内側筒状部の開口端部側から第一摩擦部材を軸方向に適切に押圧することができる。また、押圧部材がそのような押圧筒状部を有する場合において、当該押圧筒状部を径方向に貫通する第四貫通孔により、径方向に連通する径方向連通部を適切に構成できる。そして、開口端部からの油が、第四貫通孔を通って第三貫通孔へと円滑に導かれる。   According to this configuration, the first friction member can be appropriately pressed in the axial direction from the opening end side of the first inner cylindrical portion by the pressing cylindrical portion of the pressing member. Moreover, when a press member has such a press cylindrical part, the radial direction communication part connected to radial direction can be appropriately comprised by the 4th through-hole which penetrates the said press cylindrical part to radial direction. And the oil from an opening edge part is smoothly guide | induced to a 3rd through-hole through a 4th through-hole.

また、前記径方向連通部が、前記押圧部材における前記被押圧部材との当接面、及び前記被押圧部材における前記押圧部材との当接面の少なくとも一方に、径方向に延びるように形成された径方向溝部を含むと好適である。   Further, the radial communication portion is formed to extend in a radial direction on at least one of a contact surface of the pressing member with the pressed member and a contact surface of the pressed member with the pressing member. It is preferable that a radial groove is included.

この構成によれば、車両用駆動装置において一般的に用いられる押圧部材及び被押圧部材の構造を大きく変更することなく、これらのうちの少なくとも一方に形成される径方向溝部により、径方向に連通する径方向連通部を適切に構成できる。そして、開口端部からの油が、径方向溝部を通って第三貫通孔へと円滑に導かれる。   According to this configuration, the structure of the pressing member and the pressed member generally used in the vehicle drive device is not significantly changed, and the radial communication is performed in the radial direction by the radial groove formed in at least one of them. It is possible to appropriately configure the radial communication portion. And the oil from an opening edge part is smoothly guide | induced to a 3rd through-hole through a radial direction groove part.

また、前記第一係合装置と前記第二係合装置とが、径方向に見て軸方向に互いに重複する状態で、前記回転電機のステータの径方向内側であって径方向に見て前記ステータと軸方向に重複する位置に配置されていると好適である。   In addition, the first engagement device and the second engagement device overlap each other in the axial direction when viewed in the radial direction, and are radially inward of the stator of the rotating electrical machine and viewed in the radial direction. It is preferable that they are arranged at positions overlapping with the stator in the axial direction.

この構成によれば、径方向に見て互いに軸方向に重複する第一係合装置と第二係合装置とが、径方向に見てさらに回転電機のステータとも軸方向に重複する。これにより、2つの係合装置をステータの径方向内側に配置しつつ軸方向に並べて配置する構成と比較して、それらの全体が占める軸方向長さを短く抑えることができる。よって、軸方向寸法に関して、装置全体を有効に小型化することができる。   According to this configuration, the first engagement device and the second engagement device that overlap in the axial direction when viewed in the radial direction further overlap in the axial direction with the stator of the rotating electrical machine when viewed in the radial direction. Thereby, compared with the structure arrange | positioned along with an axial direction, arrange | positioning two engaging devices in the radial inside of a stator, the axial direction length which those whole occupies can be restrained short. Therefore, the entire apparatus can be effectively downsized with respect to the axial dimension.

また、前記第一内側筒状部と前記入力部材とが、前記第一摩擦部材に対して前記押圧方向側で連結され、前記第二内側筒状部と前記出力部材とが、前記第二摩擦部材に対して前記押圧方向側で連結され、前記第一外側筒状部と前記第二外側筒状部とが、前記第二内側筒状部と前記出力部材との連結部に対して前記反押圧方向側で連結され、前記第一外側筒状部と前記回転電機のロータとが、前記第一外側筒状部の径方向外側で連結されていると好適である。   The first inner cylindrical portion and the input member are connected to the first friction member on the pressing direction side, and the second inner cylindrical portion and the output member are connected to the second friction member. The first outer cylindrical portion and the second outer cylindrical portion are connected to the member on the pressing direction side, and the reaction between the second inner cylindrical portion and the output member is opposite to the connection portion between the second inner cylindrical portion and the output member. It is preferable that the first outer cylindrical portion and the rotor of the rotating electrical machine are connected on the pressing direction side and are connected on the radially outer side of the first outer cylindrical portion.

この構成によれば、入力部材と出力部材とを結ぶ動力伝達経路に第一係合装置、回転電機、及び第二係合装置がこの順に設けられた構成を、コンパクトに実現できる。   According to this configuration, a configuration in which the first engagement device, the rotating electrical machine, and the second engagement device are provided in this order on the power transmission path connecting the input member and the output member can be realized in a compact manner.

また、前記回転電機のロータを支持するロータ支持部材を備えるとともに、前記ロータ支持部材は前記ロータを径方向内側から支持する筒状支持部を有し、前記筒状支持部は、当該筒状支持部の他の部位の内周面よりも径方向内側に向かって隆起しているとともに径方向に見て前記第三貫通孔とは軸方向に重複しない位置で前記第一外側筒状部の外周部に係合する隆起係合部を有し、前記筒状支持部は、更に、軸方向における前記隆起係合部を挟んだ前記第三貫通孔側とは反対側に、径方向内側から供給される油を前記回転電機のステータのコイルエンド部へと導く冷却油路の入口を備えると好適である。   The rotor support member includes a rotor support member that supports the rotor of the rotating electrical machine, and the rotor support member includes a cylindrical support portion that supports the rotor from a radially inner side, and the cylindrical support portion includes the cylindrical support portion. The outer periphery of the first outer cylindrical portion protrudes radially inward from the inner peripheral surface of the other part of the portion and does not overlap in the axial direction with the third through hole when viewed in the radial direction. The cylindrical support portion is further supplied from the radially inner side to the side opposite to the third through hole side sandwiching the raised engagement portion in the axial direction. It is preferable to provide an inlet for a cooling oil passage that guides the oil to be supplied to the coil end portion of the stator of the rotating electrical machine.

この構成によれば、径方向内側から供給される油を、ロータ支持部材の筒状支持部に形成された冷却油路によりステータのコイルエンド部へと導き、当該コイルエンド部を冷却することができる。また、回転電機(筒状支持部)と第一係合装置(第一外側筒状部)との駆動連結を隆起係合部により実現することで、当該隆起係合部を、筒状支持部に沿って油が流通することを規制する堰としても機能させることができる。よって、隆起係合部に対して第三貫通孔側とは反対側において径方向内側から供給される油を、筒状支持部に形成された入口を介して効率的に冷却油路へと導くことができる。これにより、効率的にコイルエンド部を冷却することができる。また、第二係合装置(第二摩擦部材)の冷却後の油は比較的高温となっている場合があるが、隆起係合部に対して第三貫通孔側を流れる比較的高温の油が冷却油路を通ってコイルエンド部に供給されるのを抑制することができる。   According to this configuration, the oil supplied from the radially inner side is guided to the coil end portion of the stator by the cooling oil passage formed in the cylindrical support portion of the rotor support member, and the coil end portion can be cooled. it can. In addition, by realizing the drive connection between the rotating electrical machine (cylindrical support portion) and the first engagement device (first outer cylindrical portion) by the bulge engagement portion, the bulge engagement portion is connected to the cylindrical support portion. It can be made to function also as a weir which regulates oil circulation along. Therefore, the oil supplied from the radially inner side on the side opposite to the third through hole side with respect to the raised engagement portion is efficiently guided to the cooling oil passage through the inlet formed in the cylindrical support portion. be able to. Thereby, a coil end part can be cooled efficiently. Moreover, although the oil after cooling of a 2nd engagement apparatus (2nd friction member) may be comparatively high temperature, the comparatively high temperature oil which flows through the 3rd through-hole side with respect to a protruding engagement part Can be prevented from being supplied to the coil end portion through the cooling oil passage.

また、前記回転電機、前記第一係合装置、及び前記第二係合装置に対して軸方向に隣接して径方向に延びるケース壁を有するケースを備え、前記筒状支持部は、軸方向における前記ケース壁側に向かって開口する支持開口端部を有し、前記支持開口端部が、径方向に見て前記コイルエンド部と軸方向に重複する位置に配置され、前記ケース壁が、径方向における前記支持開口端部と前記コイルエンド部との間に、径方向に見て少なくとも前記支持開口端部と軸方向に重複する位置まで突出する遮蔽突出部を有すると好適である。   The rotating electrical machine, the first engagement device, and the second engagement device include a case having a case wall that extends in a radial direction adjacent to the axial direction, and the cylindrical support portion has an axial direction. A support opening end portion that opens toward the case wall side, and the support opening end portion is arranged at a position overlapping with the coil end portion in the axial direction when viewed in the radial direction, and the case wall is It is preferable that a shielding protrusion that protrudes at least to a position overlapping with the support opening end portion in the axial direction when viewed in the radial direction is provided between the support opening end portion and the coil end portion in the radial direction.

第二係合装置(第二摩擦部材)の冷却後の油は、比較的高温となっている場合がある。このため、第三貫通孔から排出された油が、第一外側筒状部及び筒状支持部に沿って支持開口端部に向かって流れ、当該支持開口端部から更にコイルエンド部に到達すると、コイルエンド部の冷却効果が減弱される可能性がある。そこで、上記の構成のように、ケース壁が遮蔽突出部を有する構成とすることで、比較的高温の油がコイルエンド部に到達するのを抑制することができる。よって、冷却油路を通って供給される油によるコイルエンド部の冷却性能を確保することができる。   The oil after cooling of the second engagement device (second friction member) may be at a relatively high temperature. For this reason, when the oil discharged from the third through hole flows toward the support opening end along the first outer cylindrical portion and the cylindrical support portion, and further reaches the coil end portion from the support opening end portion. The cooling effect of the coil end portion may be attenuated. Therefore, as described above, the case wall has a configuration including the shielding protrusion, so that relatively high temperature oil can be prevented from reaching the coil end portion. Therefore, the cooling performance of the coil end part by the oil supplied through the cooling oil passage can be ensured.

実施形態に係る車両用駆動装置の概略構成を示す模式図The schematic diagram which shows schematic structure of the vehicle drive device which concerns on embodiment. 車両用駆動装置の部分断面図Partial cross-sectional view of a vehicle drive device 車両用駆動装置の要部断面図Cross-sectional view of the main part of the vehicle drive device 車両用駆動装置の要部断面図Cross-sectional view of the main part of the vehicle drive device 図4におけるV−V断面図VV sectional view in FIG. 第三貫通孔と第四貫通孔との位置関係の他形態を示す図The figure which shows the other form of the positional relationship of a 3rd through-hole and a 4th through-hole. その他の実施形態に係る車両用駆動装置の要部断面図Sectional drawing of the principal part of the vehicle drive device which concerns on other embodiment. 図7におけるVIII−VIII断面図VIII-VIII sectional view in FIG. 第三貫通孔と径方向溝部との位置関係の他形態を示す図The figure which shows the other form of the positional relationship of a 3rd through-hole and radial direction groove part.

本発明に係る車両用駆動装置の実施形態について、図面を参照して説明する。本実施形態に係る車両用駆動装置1は、車輪Wの駆動力源として内燃機関E及び回転電機MGの双方を備えた車両(ハイブリッド車両)を駆動するための車両用駆動装置(ハイブリッド車両用駆動装置)である。具体的には、車両用駆動装置1は、1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。   An embodiment of a vehicle drive device according to the present invention will be described with reference to the drawings. The vehicle drive device 1 according to this embodiment is a vehicle drive device (hybrid vehicle drive) for driving a vehicle (hybrid vehicle) provided with both the internal combustion engine E and the rotating electrical machine MG as a driving force source for the wheels W. Device). Specifically, the vehicle drive device 1 is configured as a drive device for a 1-motor parallel type hybrid vehicle.

以下の説明では、特に明記している場合を除き、「軸方向L」、「径方向」、「周方向」は、回転電機MGの回転軸心(図2に示す軸心X)を基準として定義している。また、軸方向Lの一方側である相対的に内燃機関E側(図2の右側)を軸第一方向L1側と定義し、その反対側(軸方向Lの他方側)である相対的に変速機構TM側(図2の左側)を軸第二方向L2側と定義している。なお、各部材についての方向は、それらが車両用駆動装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態をも含む概念である。   In the following description, unless otherwise specified, “axial direction L”, “radial direction”, and “circumferential direction” are based on the rotational axis (axial center X shown in FIG. 2) of rotating electrical machine MG. Defined. Further, the internal combustion engine E side (the right side in FIG. 2) that is one side in the axial direction L is defined as the first axial direction L1 side, and the opposite side (the other side in the axial direction L) is relatively. The speed change mechanism TM side (left side in FIG. 2) is defined as the second axial direction L2 side. In addition, the direction about each member represents the direction in the state in which they were assembled | attached to the vehicle drive device 1. FIG. Moreover, the term regarding the direction, position, etc. about each member is a concept including the state which has the difference by the error which can be accept | permitted on manufacture.

1.車両用駆動装置の概略構成
本実施形態に係る車両用駆動装置1の概略構成について説明する。図1に示すように、車両用駆動装置1は、内燃機関Eに駆動連結される入力軸Iと、車輪Wに駆動連結される中間軸Mと、回転電機MGと、第一係合装置CL1と、第二係合装置CL2とを備えている。第一係合装置CL1、回転電機MG、及び第二係合装置CL2は、入力軸Iと中間軸Mとを結ぶ動力伝達経路Tに、入力軸Iの側から記載の順に設けられている。また、図1に示すように、車両用駆動装置1は、変速機構TMと、カウンタギヤ機構Cと、差動歯車装置DFとを備えている。これらは、ケース(駆動装置ケース)2内に収容されている。
1. Schematic Configuration of Vehicle Drive Device A schematic configuration of the vehicle drive device 1 according to the present embodiment will be described. As shown in FIG. 1, the vehicle drive device 1 includes an input shaft I that is drivingly connected to the internal combustion engine E, an intermediate shaft M that is drivingly connected to the wheels W, a rotating electrical machine MG, and a first engagement device CL1. And a second engagement device CL2. The first engagement device CL1, the rotating electrical machine MG, and the second engagement device CL2 are provided in the power transmission path T connecting the input shaft I and the intermediate shaft M in the order described from the input shaft I side. As shown in FIG. 1, the vehicle drive device 1 includes a speed change mechanism TM, a counter gear mechanism C, and a differential gear device DF. These are accommodated in a case (drive device case) 2.

内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(ガソリンエンジンやディーゼルエンジン等)である。本実施形態では、入力軸IはダンパDA(図2を参照)を介して内燃機関Eの出力軸(クランクシャフト等)に駆動連結されている。なお、入力軸Iが、ダンパDAを介さずに内燃機関Eの出力軸に駆動連結されても良い。本実施形態では、入力軸Iが本発明における「入力部材」に相当する。   The internal combustion engine E is a prime mover (such as a gasoline engine or a diesel engine) that is driven by combustion of fuel inside the engine to extract power. In the present embodiment, the input shaft I is drivingly connected to the output shaft (crankshaft or the like) of the internal combustion engine E via a damper DA (see FIG. 2). The input shaft I may be drivingly connected to the output shaft of the internal combustion engine E without passing through the damper DA. In the present embodiment, the input shaft I corresponds to the “input member” in the present invention.

第一係合装置CL1は、動力伝達経路Tにおける入力軸Iと回転電機MGとの間に設けられている。第一係合装置CL1は、内燃機関Eに駆動連結される入力軸Iと回転電機MGとを選択的に駆動連結する。この第一係合装置CL1は、車輪Wから内燃機関Eを切り離す内燃機関切離用係合装置として機能する。第一係合装置CL1は、油圧駆動式の摩擦係合装置として構成されている。第一係合装置CL1は、当該第一係合装置CL1に供給される油圧に基づいて、係合の状態(直結係合状態/スリップ係合状態/解放状態)が制御される。   The first engagement device CL1 is provided between the input shaft I and the rotating electrical machine MG in the power transmission path T. The first engagement device CL1 selectively drives and connects the input shaft I and the rotating electrical machine MG that are drivingly connected to the internal combustion engine E. The first engagement device CL1 functions as an internal combustion engine separation engagement device that separates the internal combustion engine E from the wheel W. The first engagement device CL1 is configured as a hydraulically driven friction engagement device. The first engagement device CL1 is controlled in its engagement state (direct engagement state / slip engagement state / release state) based on the hydraulic pressure supplied to the first engagement device CL1.

回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果たすことが可能とされている。そのため、回転電機MGは、蓄電装置(バッテリやキャパシタ等)と電気的に接続されている。回転電機MGは、蓄電装置から電力の供給を受けて力行し、或いは、内燃機関Eのトルクや車両の慣性力により発電した電力を蓄電装置に供給して蓄電させる。   The rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. ing. Therefore, the rotating electrical machine MG is electrically connected to a power storage device (battery, capacitor, etc.). The rotating electrical machine MG is powered by receiving power from the power storage device, or supplies the power storage device with power generated by the torque of the internal combustion engine E or the inertial force of the vehicle.

第二係合装置CL2は、動力伝達経路Tにおける回転電機MGと変速機構TMとの間に設けられている。第二係合装置CL2は、回転電機MGと変速機構TMに駆動連結される中間軸Mとを選択的に駆動連結する。第二係合装置CL2は、油圧駆動式の摩擦係合装置として構成されている。第二係合装置CL2は、当該第二係合装置CL2に供給される油圧に基づいて、係合の状態(直結係合状態/スリップ係合状態/解放状態)が制御される。本実施形態では、中間軸Mが本発明における「出力部材」に相当する。この中間軸Mは、変速機構TMの入力軸(変速入力軸)となっている。   The second engagement device CL2 is provided between the rotating electrical machine MG and the speed change mechanism TM in the power transmission path T. The second engagement device CL2 selectively connects the rotating electrical machine MG and the intermediate shaft M that is drivingly connected to the speed change mechanism TM. The second engagement device CL2 is configured as a hydraulically driven friction engagement device. The engagement state (direct engagement state / slip engagement state / release state) of the second engagement device CL2 is controlled based on the hydraulic pressure supplied to the second engagement device CL2. In the present embodiment, the intermediate shaft M corresponds to the “output member” in the present invention. The intermediate shaft M is an input shaft (transmission input shaft) of the speed change mechanism TM.

変速機構TMは、本実施形態では、複数の変速用係合装置を備え、変速比の異なる複数の変速段を切替可能に備えた自動有段変速機構である。なお、変速機構TMとして、変速比を無段階に変更可能な自動無段変速機構や、変速比の異なる複数の変速段を切替可能に備えた手動式有段変速機構等を用いても良い。変速機構TMは、中間軸Mに入力される回転及びトルクを、各時点における変速比に応じて変速するとともにトルク変換して、変速出力ギヤGに伝達する。   In this embodiment, the speed change mechanism TM is an automatic stepped speed change mechanism that includes a plurality of speed change engagement devices and is capable of switching a plurality of speed stages having different speed ratios. As the speed change mechanism TM, an automatic continuously variable speed change mechanism that can change the speed ratio steplessly, a manual stepped speed change mechanism that is capable of switching a plurality of speed stages having different speed ratios, or the like may be used. The speed change mechanism TM changes the rotation and torque input to the intermediate shaft M in accordance with the speed change ratio at each time point, converts the torque, and transmits it to the speed change output gear G.

変速出力ギヤGは、カウンタギヤ機構Cを介して差動歯車装置DFに駆動連結されている。差動歯車装置DFは、車軸Aを介して車輪Wに駆動連結されている。差動歯車装置DFは、当該差動歯車装置DFに入力される回転及びトルクを左右2つの車輪Wに分配して伝達する。これにより、車両用駆動装置1は、内燃機関E及び回転電機MGの一方又は双方のトルクを車輪Wに伝達させて車両を走行させることができる。   The transmission output gear G is drivingly connected to the differential gear unit DF via the counter gear mechanism C. The differential gear unit DF is drivably coupled to the wheel W via the axle A. The differential gear device DF distributes and transmits the rotation and torque input to the differential gear device DF to the two left and right wheels W. Accordingly, the vehicle drive device 1 can cause the vehicle to travel by transmitting the torque of one or both of the internal combustion engine E and the rotating electrical machine MG to the wheels W.

なお、本実施形態に係る車両用駆動装置1では、入力軸Iと中間軸Mとが同軸上に配置されるとともに、車軸Aが入力軸I及び中間軸Mとは異なる軸上に互いに平行に配置された複軸構成とされている。このような構成は、例えばFF(Front Engine Front Drive)車両に搭載される車両用駆動装置1の構成として適している。   In the vehicle drive device 1 according to the present embodiment, the input shaft I and the intermediate shaft M are arranged coaxially, and the axle A is parallel to each other on an axis different from the input shaft I and the intermediate shaft M. The arrangement is a multi-axis arrangement. Such a configuration is suitable as a configuration of the vehicle drive device 1 mounted on, for example, an FF (Front Engine Front Drive) vehicle.

2.車両用駆動装置の各部の構成
本実施形態に係る車両用駆動装置1の各部の構成について説明する。図2に示すように、ケース2は、回転電機MG、第一係合装置CL1、及び第二係合装置CL2等の各収容部品の外周を覆う周壁21と、当該周壁21の軸第一方向L1側の開口を塞ぐ第一支持壁22と、当該第一支持壁22よりも軸第二方向L2側において回転電機MGと変速機構TMとの間に配置される第二支持壁25とを備えている。また、ケース2は、周壁21の軸第二方向L2側の端部を塞ぐ端部支持壁(図示せず)を備えている。
2. Configuration of Each Part of Vehicle Drive Device A configuration of each part of the vehicle drive device 1 according to the present embodiment will be described. As shown in FIG. 2, the case 2 includes a peripheral wall 21 that covers the outer periphery of each housing component such as the rotating electrical machine MG, the first engagement device CL1, and the second engagement device CL2, and the axial first direction of the peripheral wall 21. A first support wall 22 that closes the opening on the L1 side, and a second support wall 25 disposed between the rotating electrical machine MG and the speed change mechanism TM on the second axial direction L2 side of the first support wall 22. ing. The case 2 includes an end support wall (not shown) that closes the end of the peripheral wall 21 on the second axial direction L2 side.

第一支持壁22は、回転電機MG、第一係合装置CL1、及び第二係合装置CL2の軸第一方向L1側を径方向及び周方向に延在している。第一支持壁22は、回転電機MG等に対して軸第一方向L1側に所定間隔を空けて隣接して配置されている。第一支持壁22は軸方向Lの貫通孔を有しており、この貫通孔に入力軸Iが挿通されている。これにより、入力軸Iは、第一支持壁22を貫通してケース2内に挿入されている。第一支持壁22は、その径方向内側の端部に、軸第二方向L2側に向かって軸方向Lに突出する円筒状の内端突出部23を有している。第一支持壁22は、この内端突出部23により、入力軸受81を介して、回転電機MGの軸第一方向L1側でロータ支持部材30を回転可能に支持している。   The first support wall 22 extends in the radial direction and the circumferential direction on the first axial direction L1 side of the rotating electrical machine MG, the first engagement device CL1, and the second engagement device CL2. The first support wall 22 is disposed adjacent to the rotating electrical machine MG or the like at a predetermined interval on the first axial direction L1 side. The first support wall 22 has a through hole in the axial direction L, and the input shaft I is inserted through the through hole. As a result, the input shaft I passes through the first support wall 22 and is inserted into the case 2. The first support wall 22 has a cylindrical inner end protruding portion 23 that protrudes in the axial direction L toward the second axial direction L2 at the radially inner end thereof. The first support wall 22 rotatably supports the rotor support member 30 on the first axial direction L1 side of the rotating electrical machine MG via the input bearing 81 by the inner end protruding portion 23.

第二支持壁25は、回転電機MG、第一係合装置CL1、及び第二係合装置CL2の軸第二方向L2側を径方向及び周方向に延在している。第二支持壁25は、回転電機MG等に対して軸第二方向L2側に所定間隔を空けて隣接して配置されている。第二支持壁25は、その径方向内側の端部に、軸第一方向L1側に向かって軸方向Lに突出する円筒状のスリーブ部26を有している。このスリーブ部26には中間軸Mが挿通されている。これにより、中間軸Mは、第二支持壁25を貫通する状態でケース2内に配置されている。本実施形態では、第二支持壁25が本発明における「ケース壁」に相当する。   The second support wall 25 extends in the radial direction and the circumferential direction on the second axial direction L2 side of the rotating electrical machine MG, the first engagement device CL1, and the second engagement device CL2. The second support wall 25 is disposed adjacent to the rotating electrical machine MG or the like at a predetermined interval on the second axial direction L2 side. The second support wall 25 has a cylindrical sleeve portion 26 that protrudes in the axial direction L toward the axial first direction L1 at the radially inner end thereof. An intermediate shaft M is inserted through the sleeve portion 26. Thereby, the intermediate shaft M is disposed in the case 2 so as to penetrate the second support wall 25. In the present embodiment, the second support wall 25 corresponds to the “case wall” in the present invention.

回転電機MGは、ケース2に固定されたステータStと、ケース2に対して回転可能に支持されたロータRoとを備えている。ステータStは、軸方向Lの両側にコイルエンド部Ceを備えている。ロータRoは、ステータStの径方向内側に配置されている。また、ロータRoは、当該ロータRoから径方向内側に延びるロータ支持部材30を介してケース2に対して回転可能に支持されている。   The rotating electrical machine MG includes a stator St fixed to the case 2 and a rotor Ro supported to be rotatable with respect to the case 2. The stator St includes coil end portions Ce on both sides in the axial direction L. The rotor Ro is disposed on the radially inner side of the stator St. The rotor Ro is rotatably supported with respect to the case 2 via a rotor support member 30 extending radially inward from the rotor Ro.

図3に示すように、ロータRoを支持するロータ支持部材30は、軸方向Lに延びる筒状支持部31と、径方向に延びる板状支持部35とを備えている。筒状支持部31は、ロータRoの内周面に接する本体部及びロータRoの側面に接する鍔部を有する略円筒状に形成されている。筒状支持部31は、径方向内側及び軸第一方向L1側から接する状態でロータRoを支持している。ロータRoは、係止保持部34によって軸第二方向L2側から保持されている。また、筒状支持部31は、その内周側に、当該筒状支持部31の他の部位の内周面よりも径方向内側に向かって隆起する隆起係合部32を有する。この隆起係合部32を介して、回転電機MGと第一係合装置CL1の第一外側支持部材51とが一体回転するように駆動連結されている。また、筒状支持部31は、軸第二方向L2側(第二支持壁25側)に向かって開口するように形成されている。筒状支持部31におけるこの支持開口端部33は、径方向に見てコイルエンド部Ceと軸方向Lに重複する位置に配置されている。本例では、軸第二方向L2側(第二支持壁25側)のコイルエンド部Ceと重複する位置に配置されている。   As shown in FIG. 3, the rotor support member 30 that supports the rotor Ro includes a cylindrical support portion 31 that extends in the axial direction L and a plate-like support portion 35 that extends in the radial direction. The cylindrical support part 31 is formed in a substantially cylindrical shape having a main body part in contact with the inner peripheral surface of the rotor Ro and a flange part in contact with the side surface of the rotor Ro. The cylindrical support portion 31 supports the rotor Ro in a state of being in contact with the radially inner side and the first axial direction L1 side. The rotor Ro is held from the second axial direction L2 side by the locking holding portion 34. Moreover, the cylindrical support part 31 has the protruding engaging part 32 which protrudes toward the radial inner side from the inner peripheral surface of the other site | part of the said cylindrical support part 31 in the inner peripheral side. The rotating electrical machine MG and the first outer support member 51 of the first engagement device CL1 are drivingly connected via the raised engagement portion 32 so as to rotate integrally. Moreover, the cylindrical support part 31 is formed so that it may open toward the axial 2nd direction L2 side (2nd support wall 25 side). The support opening end portion 33 in the cylindrical support portion 31 is disposed at a position overlapping the coil end portion Ce and the axial direction L when viewed in the radial direction. In this example, it arrange | positions in the position which overlaps with the coil end part Ce of the axial 2nd direction L2 side (2nd support wall 25 side).

板状支持部35は、筒状支持部31の軸第一方向L1側の端部から、径方向内側に延びる円環板状に形成されている。板状支持部35は、径方向内側の端部に、軸第一方向L1側に向かって突出する円筒状の第一突出部36を備えている。また、板状支持部35は、その径方向の中間部に、軸第一方向L1側に向かって突出する円筒状の第二突出部37を備えている。第二突出部37は第一突出部36よりも大径に形成されている。   The plate-like support portion 35 is formed in an annular plate shape extending radially inward from the end portion of the cylindrical support portion 31 on the first axial direction L1 side. The plate-like support part 35 is provided with a cylindrical first protruding part 36 that protrudes toward the first axial direction L1 side at the radially inner end. Further, the plate-like support portion 35 includes a cylindrical second protruding portion 37 that protrudes toward the first axial direction L1 side at the radial intermediate portion. The second protrusion 37 is formed with a larger diameter than the first protrusion 36.

ロータ支持部材30は、第一突出部36と内端突出部23との間に配置された入力軸受81により、ケース2(第一支持壁22)に径方向に支持されている。本実施形態では、ロータ支持部材30が軸第一方向L1側で片持ち支持されることに対応して、入力軸受81としては、複数のボールからなるボール群を軸方向Lに2列有する二連軸受(二連式ボールベアリング)が用いられている。また、内端突出部23と入力軸Iとの間には、内燃機関E(ダンパDA)側への油の漏出を規制するシール部材82が配置されている。   The rotor support member 30 is supported in the radial direction by the case 2 (first support wall 22) by an input bearing 81 disposed between the first protrusion 36 and the inner end protrusion 23. In the present embodiment, in response to the rotor support member 30 being cantilevered on the first axial direction L1 side, the input bearing 81 has two groups of balls composed of a plurality of balls in the axial direction L. A continuous bearing (double ball bearing) is used. A seal member 82 that restricts oil leakage to the internal combustion engine E (damper DA) side is disposed between the inner end protruding portion 23 and the input shaft I.

軸方向Lにおけるロータ支持部材30(板状支持部35)と第一支持壁22との間に、回転センサ18が設けられている。回転センサ18は、回転電機MGのステータStに対するロータRoの回転位置を検出するためのセンサである。このような回転センサ18として、本例ではレゾルバを用いている。回転センサ18のセンサロータは、第二突出部37の外周面に固定されている。回転センサ18のセンサステータは、センサロータの径方向外側に配置された状態で、第一支持壁22に固定されている。   A rotation sensor 18 is provided between the rotor support member 30 (plate-like support portion 35) and the first support wall 22 in the axial direction L. The rotation sensor 18 is a sensor for detecting the rotational position of the rotor Ro relative to the stator St of the rotating electrical machine MG. In this example, a resolver is used as such a rotation sensor 18. The sensor rotor of the rotation sensor 18 is fixed to the outer peripheral surface of the second protrusion 37. The sensor stator of the rotation sensor 18 is fixed to the first support wall 22 in a state of being arranged on the radially outer side of the sensor rotor.

図2〜図4に示すように、第一係合装置CL1は、第一摩擦部材41と、第一内側支持部材45と、第一外側支持部材51と、第一押圧部材57とを有する湿式の摩擦係合装置である。第一係合装置CL1を構成する各部材は、入力軸I及び中間軸Mと同軸状に配置されている。第一係合装置CL1は、回転電機MGのステータStの径方向内側であって径方向に見てステータStと軸方向Lに重複する位置に配置されている。   As shown in FIGS. 2 to 4, the first engagement device CL <b> 1 includes a first friction member 41, a first inner support member 45, a first outer support member 51, and a first pressing member 57. This is a friction engagement device. Each member constituting the first engagement device CL1 is arranged coaxially with the input shaft I and the intermediate shaft M. The first engagement device CL1 is disposed at a position that is radially inward of the stator St of the rotating electrical machine MG and overlaps the stator St and the axial direction L when viewed in the radial direction.

第一摩擦部材41は、対となる第一内側摩擦部材42と第一外側摩擦部材43とを含んでいる(図4を参照)。第一内側摩擦部材42及び第一外側摩擦部材43は、いずれも円環板状に形成されており、互いに回転軸を一致させて配置されている。また、第一内側摩擦部材42及び第一外側摩擦部材43はそれぞれ複数枚ずつ備えられており、これらは軸方向Lに沿って交互に配置されている。第一内側摩擦部材42及び第一外側摩擦部材43は、いずれか一方をフリクションプレートとし、他方をセパレートプレートとすることができる。   The first friction member 41 includes a pair of first inner friction member 42 and first outer friction member 43 (see FIG. 4). The first inner friction member 42 and the first outer friction member 43 are both formed in an annular plate shape and are arranged with their rotation axes coinciding with each other. A plurality of first inner friction members 42 and first outer friction members 43 are provided, and these members are alternately arranged along the axial direction L. One of the first inner friction member 42 and the first outer friction member 43 can be a friction plate and the other can be a separate plate.

第一内側支持部材45は、第一内側摩擦部材42を径方向内側から支持する第一内側筒状部46と、当該第一内側筒状部46から径方向内側に延びる第一内側板状部47とを有する。第一内側筒状部46は、軸方向Lに沿って延びる円筒状に形成されている。第一内側筒状部46は、内燃機関E側とは反対側(軸第二方向L2側)に向かって開口するように形成されている。すなわち、第一内側筒状部46は、軸第二方向L2側に向かって開口する開口端部48を有する。第一内側筒状部46の外周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第一内側摩擦部材42の内周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第一内側摩擦部材42が第一内側支持部材45により径方向内側から支持されている。これにより、第一内側摩擦部材42は、第一内側支持部材45に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。本実施形態では、第一内側筒状部46には、後述する第一外側筒状部52、第二内側筒状部66、及び第二外側筒状部72とは異なり、当該第一内側筒状部46を径方向に貫通する貫通孔は形成されていない。すなわち、第一内側筒状部46は、径方向の貫通孔を有さない無孔筒状部(連続体筒状部)とされている。   The first inner support member 45 includes a first inner cylindrical portion 46 that supports the first inner friction member 42 from the radially inner side, and a first inner plate-shaped portion that extends radially inward from the first inner cylindrical portion 46. 47. The first inner cylindrical portion 46 is formed in a cylindrical shape extending along the axial direction L. The first inner cylindrical portion 46 is formed so as to open toward the side opposite to the internal combustion engine E side (the second axial direction L2 side). That is, the first inner cylindrical portion 46 has an opening end portion 48 that opens toward the second axial direction L2 side. A plurality of spline teeth extending in the axial direction L are formed on the outer peripheral portion of the first inner cylindrical portion 46 so as to be dispersed in the circumferential direction. Similar spline teeth are formed on the inner peripheral portion of the first inner friction member 42, and the first inner friction member 42 is radially inward by the first inner support member 45 with both spline teeth engaged. It is supported from. Accordingly, the first inner friction member 42 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the first inner support member 45. In the present embodiment, the first inner cylindrical portion 46 is different from the first outer cylindrical portion 52, the second inner cylindrical portion 66, and the second outer cylindrical portion 72, which will be described later. A through hole penetrating the shape portion 46 in the radial direction is not formed. That is, the first inner cylindrical portion 46 is a non-porous cylindrical portion (continuous cylindrical portion) that does not have a radial through hole.

第一内側板状部47は、第一内側筒状部46の軸第一方向L1側の端部から径方向内側に延びる円環板状の部材である。第一内側筒状部46と第一内側板状部47とは一体的に形成されている。第一内側板状部47は、その径方向内側の端部において、入力軸Iのフランジ部に連結されている。これにより、第一内側筒状部46と入力軸Iとが、第一内側板状部47を介して、第一摩擦部材41に対して軸第一方向L1側で一体的に連結されている。   The first inner plate-like portion 47 is an annular plate-like member extending radially inward from the end portion on the first axial direction L1 side of the first inner cylindrical portion 46. The first inner cylindrical portion 46 and the first inner plate-like portion 47 are integrally formed. The first inner plate-like portion 47 is connected to the flange portion of the input shaft I at the radially inner end thereof. Thus, the first inner cylindrical portion 46 and the input shaft I are integrally connected to the first friction member 41 on the first axial direction L1 side via the first inner plate-like portion 47. .

第一外側支持部材51は、第一外側摩擦部材43を径方向外側から支持する第一外側筒状部52と、当該第一外側筒状部52から径方向内側に延びる第一外側板状部53と、第二係合装置CL2の第二外側支持部材71に連結される第一筒状連結部54とを有する。第一外側筒状部52は、軸方向Lに沿って延びる円筒状に形成されている。第一外側筒状部52は、内燃機関E側(軸第一方向L1側)に向かって開口するように形成されている。第一外側筒状部52の内周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第一外側摩擦部材43の外周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第一外側摩擦部材43が第一外側支持部材51により径方向外側から支持されている。これにより、第一外側摩擦部材43は、第一外側支持部材51に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。   The first outer support member 51 includes a first outer cylindrical portion 52 that supports the first outer friction member 43 from the radially outer side, and a first outer plate-shaped portion that extends radially inward from the first outer cylindrical portion 52. 53 and a first cylindrical connecting portion 54 connected to the second outer support member 71 of the second engagement device CL2. The first outer cylindrical portion 52 is formed in a cylindrical shape extending along the axial direction L. The first outer cylindrical portion 52 is formed so as to open toward the internal combustion engine E side (the first axial direction L1 side). A plurality of spline teeth extending in the axial direction L are formed on the inner peripheral portion of the first outer cylindrical portion 52 so as to be dispersed in the circumferential direction. Similar spline teeth are formed on the outer peripheral portion of the first outer friction member 43, and the first outer friction member 43 is moved from the radially outer side by the first outer support member 51 in a state where both spline teeth are engaged. It is supported. Accordingly, the first outer friction member 43 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the first outer support member 51.

また、第一外側筒状部52は、その外周部においてロータ支持部材30の筒状支持部31に設けられた隆起係合部32と係合することにより、ロータRoと一体回転するように駆動連結されている。すなわち、第一外側筒状部52と筒状支持部31とが、第一外側筒状部52の径方向外側で隆起係合部32を介して連結されている。第一外側筒状部52と隆起係合部32との係合部は、例えば、軸方向Lに延びる複数のスプライン歯どうしが噛み合うスプライン係合部として構成することができる。また、第一外側筒状部52には、当該第一外側筒状部52を径方向に貫通する(その内周面と外周面とを連通する)第三貫通孔13が形成されている。   Further, the first outer cylindrical portion 52 is driven to rotate integrally with the rotor Ro by engaging with a raised engagement portion 32 provided on the cylindrical support portion 31 of the rotor support member 30 at the outer peripheral portion thereof. It is connected. That is, the first outer cylindrical portion 52 and the cylindrical support portion 31 are connected via the raised engagement portion 32 on the radially outer side of the first outer cylindrical portion 52. The engaging portion between the first outer cylindrical portion 52 and the raised engaging portion 32 can be configured as, for example, a spline engaging portion in which a plurality of spline teeth extending in the axial direction L mesh with each other. The first outer cylindrical portion 52 is formed with a third through-hole 13 that penetrates the first outer cylindrical portion 52 in the radial direction (communication between the inner peripheral surface and the outer peripheral surface).

第一外側板状部53は、第一外側筒状部52の軸第二方向L2側の端部から径方向内側に延びる円環板状の部材である。第一外側筒状部52と第一外側板状部53とは一体的に形成されている。第一筒状連結部54は、軸方向Lに沿って延びる円筒状に形成されている。第一筒状連結部54は、第一外側板状部53の径方向内側の端部において、当該第一外側板状部53に連結されている。第一筒状連結部54は、主に、第一外側板状部53から軸第一方向L1側に向かって延びるように形成されている。第一筒状連結部54は、その内周部において、第二係合装置CL2の第二外側支持部材71を構成する第二筒状連結部74に連結されている。また、図2に示すように、この第一筒状連結部54は、オイルポンプOPのポンプロータに駆動連結されている。   The first outer plate-like portion 53 is an annular plate-like member that extends radially inward from the end portion of the first outer tubular portion 52 on the second axial direction L2 side. The first outer cylindrical portion 52 and the first outer plate-like portion 53 are integrally formed. The first cylindrical connecting portion 54 is formed in a cylindrical shape extending along the axial direction L. The first cylindrical connecting portion 54 is connected to the first outer plate-like portion 53 at the radially inner end of the first outer plate-like portion 53. The first cylindrical connecting portion 54 is mainly formed so as to extend from the first outer plate-like portion 53 toward the first axial direction L1 side. The 1st cylindrical connection part 54 is connected with the 2nd cylindrical connection part 74 which comprises the 2nd outer side support member 71 of 2nd engagement apparatus CL2 in the inner peripheral part. Further, as shown in FIG. 2, the first cylindrical connecting portion 54 is drivingly connected to the pump rotor of the oil pump OP.

第一押圧部材57は、油圧制御装置(図示せず)から所定油圧の油が第一作動油室H1に供給された際に、油圧に応じて軸方向Lに摺動して第一摩擦部材41を押圧する部材(第一ピストン)である。第一押圧部材57は、第一摩擦部材41を軸第一方向L1側に押圧する。本実施形態では、第一押圧部材57が本発明における「押圧部材」に相当する。また、軸第一方向L1が本発明における「押圧方向」に一致し、軸第二方向L2が本発明における「反押圧方向」に一致する。図3及び図4に示すように、第一押圧部材57は、軸方向Lに延びる円筒状の押圧筒状部58を有する。そして、第一押圧部材57は、軸方向Lに摺動した際に、押圧筒状部58の軸第一方向L1側の端部の当接面によって第一摩擦部材41を押圧する。押圧筒状部58には、当該押圧筒状部58を径方向に貫通する(その内周面と外周面とを連通する)第四貫通孔14が形成されている。本実施形態では、第四貫通孔14が本発明における「径方向連通部」に相当する。   The first pressing member 57 slides in the axial direction L according to the hydraulic pressure when oil of a predetermined hydraulic pressure is supplied from the hydraulic control device (not shown) to the first hydraulic oil chamber H1. 41 is a member that presses 41 (first piston). The first pressing member 57 presses the first friction member 41 toward the first axial direction L1. In the present embodiment, the first pressing member 57 corresponds to a “pressing member” in the present invention. The first axial direction L1 coincides with the “pressing direction” in the present invention, and the second axial direction L2 coincides with the “counterpressing direction” in the present invention. As shown in FIGS. 3 and 4, the first pressing member 57 includes a cylindrical pressing cylindrical portion 58 extending in the axial direction L. When the first pressing member 57 slides in the axial direction L, the first friction member 41 is pressed by the contact surface of the end portion of the pressing cylindrical portion 58 on the axial first direction L1 side. A fourth through hole 14 is formed in the pressing cylindrical portion 58 so as to penetrate the pressing cylindrical portion 58 in the radial direction (communication between the inner peripheral surface and the outer peripheral surface). In the present embodiment, the fourth through hole 14 corresponds to the “radial communication portion” in the present invention.

図2〜図4に示すように、第二係合装置CL2は、第二摩擦部材61と、第二内側支持部材65と、第二外側支持部材71と、第二押圧部材77とを有する湿式の摩擦係合装置である。第二係合装置CL2を構成する各部材は、入力軸I及び中間軸Mと同軸状に配置されている。第二係合装置CL2は、回転電機MGのステータStの径方向内側であって径方向に見てステータStと軸方向Lに重複する位置に配置されている。   As shown in FIGS. 2 to 4, the second engagement device CL <b> 2 includes a second friction member 61, a second inner support member 65, a second outer support member 71, and a second pressing member 77. This is a friction engagement device. Each member constituting the second engagement device CL2 is arranged coaxially with the input shaft I and the intermediate shaft M. The second engagement device CL2 is disposed at a position that is radially inward of the stator St of the rotating electrical machine MG and overlaps the stator St and the axial direction L when viewed in the radial direction.

第二摩擦部材61は、対となる第二内側摩擦部材62と第二外側摩擦部材63とを含んでいる(図4を参照)。第二内側摩擦部材62及び第二外側摩擦部材63の構成は、上述した第一内側摩擦部材42及び第一外側摩擦部材43の構成と同様とすることができる。   The second friction member 61 includes a pair of second inner friction member 62 and second outer friction member 63 (see FIG. 4). The configurations of the second inner friction member 62 and the second outer friction member 63 can be the same as the configurations of the first inner friction member 42 and the first outer friction member 43 described above.

第二内側支持部材65は、第二内側摩擦部材62を径方向内側から支持する第二内側筒状部66と、当該第二内側筒状部66から径方向内側に延びる第二内側板状部67とを有する。第二内側筒状部66は、軸方向Lに沿って延びる円筒状に形成されている。第二内側筒状部66は、第一内側筒状部46と同様に、内燃機関E側とは反対側(軸第二方向L2側)に向かって開口するように形成されている。第二内側筒状部66の外周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第二内側摩擦部材62の内周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第二内側摩擦部材62が第二内側支持部材65により径方向内側から支持されている。これにより、第二内側摩擦部材62は、第二内側支持部材65に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。また、第二内側筒状部66には、当該第二内側筒状部66を径方向に貫通する(その内周面と外周面とを連通する)第一貫通孔11が形成されている。   The second inner support member 65 includes a second inner cylindrical portion 66 that supports the second inner friction member 62 from the radially inner side, and a second inner plate-shaped portion that extends radially inward from the second inner cylindrical portion 66. 67. The second inner cylindrical portion 66 is formed in a cylindrical shape extending along the axial direction L. Similar to the first inner cylindrical portion 46, the second inner cylindrical portion 66 is formed so as to open toward the side opposite to the internal combustion engine E side (the axial second direction L2 side). A plurality of spline teeth extending in the axial direction L are formed on the outer peripheral portion of the second inner cylindrical portion 66 so as to be dispersed in the circumferential direction. Similar spline teeth are formed on the inner peripheral portion of the second inner friction member 62, and the second inner friction member 62 is radially inward by the second inner support member 65 with both the spline teeth engaged. It is supported from. Accordingly, the second inner friction member 62 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the second inner support member 65. The second inner cylindrical portion 66 is formed with a first through hole 11 that penetrates the second inner cylindrical portion 66 in the radial direction (communication between the inner peripheral surface and the outer peripheral surface).

第二内側板状部67は、第二内側筒状部66の軸第一方向L1側の端部から径方向内側に延びる円環板状の部材である。第二内側筒状部66と第二内側板状部67とは一体的に形成されている。第二内側板状部67は、その径方向内側の端部において、中間軸Mに駆動連結されたフランジ部材84に連結されている。これにより、第二内側筒状部66と中間軸M(フランジ部材84)とが、第二内側板状部67を介して、第二摩擦部材61に対して軸第一方向L1側で連結されている。   The second inner plate-shaped portion 67 is an annular plate-shaped member extending radially inward from the end portion of the second inner cylindrical portion 66 on the first axial direction L1 side. The second inner cylindrical portion 66 and the second inner plate-shaped portion 67 are integrally formed. The second inner plate-like portion 67 is connected to a flange member 84 that is drivingly connected to the intermediate shaft M at the radially inner end thereof. Accordingly, the second inner cylindrical portion 66 and the intermediate shaft M (flange member 84) are coupled to the second friction member 61 on the first axial direction L1 side via the second inner plate-shaped portion 67. ing.

第二外側支持部材71は、第二外側摩擦部材63を径方向外側から支持する第二外側筒状部72と、当該第二外側筒状部72から径方向内側に延びる第二外側板状部73と、第一係合装置CL1の第一外側支持部材51に連結される第二筒状連結部74とを有する。第二外側筒状部72は、軸方向Lに沿って延びる円筒状に形成されている。第二外側筒状部72は、第一外側筒状部52と同様に、内燃機関E側(軸第一方向L1側)に向かって開口するように形成されている。第二外側筒状部72の内周部には、軸方向Lに延びる複数のスプライン歯が周方向に分散して形成されている。第二外側摩擦部材63の外周部にも同様のスプライン歯が形成されており、両スプライン歯が係合された状態で、第二外側摩擦部材63が第二外側支持部材71により径方向外側から支持されている。これにより、第二外側摩擦部材63は、第二外側支持部材71に対して相対回転が規制された状態で軸方向Lに摺動可能に支持されている。また、第二外側筒状部72には、当該第二外側筒状部72を径方向に貫通する(その内周面と外周面とを連通する)第二貫通孔12が形成されている。   The second outer support member 71 includes a second outer cylindrical portion 72 that supports the second outer friction member 63 from the radially outer side, and a second outer plate-shaped portion that extends radially inward from the second outer cylindrical portion 72. 73 and a second cylindrical connecting portion 74 connected to the first outer support member 51 of the first engagement device CL1. The second outer cylindrical portion 72 is formed in a cylindrical shape extending along the axial direction L. Similar to the first outer cylindrical portion 52, the second outer cylindrical portion 72 is formed so as to open toward the internal combustion engine E side (the axial first direction L1 side). A plurality of spline teeth extending in the axial direction L are formed on the inner peripheral portion of the second outer cylindrical portion 72 so as to be dispersed in the circumferential direction. Similar spline teeth are formed on the outer peripheral portion of the second outer friction member 63, and the second outer friction member 63 is moved from the radially outer side by the second outer support member 71 in a state where both the spline teeth are engaged. It is supported. Thus, the second outer friction member 63 is supported so as to be slidable in the axial direction L in a state where relative rotation is restricted with respect to the second outer support member 71. The second outer cylindrical portion 72 is formed with a second through-hole 12 that penetrates the second outer cylindrical portion 72 in the radial direction (communication between the inner peripheral surface and the outer peripheral surface).

第二外側板状部73は、第二外側筒状部72の軸第二方向L2側の端部から径方向内側に延びる円環状の異形板状部材である。第二筒状連結部74は、軸方向Lに沿って延びる円筒状に形成されている。第二筒状連結部74は、第二外側板状部73の径方向内側の端部において、当該第二外側板状部73に連結されている。第二外側筒状部72と第二外側板状部73と第二筒状連結部74とは一体的に形成されている。第二筒状連結部74は、第二外側板状部73の径方向内側の端部から軸第一方向L1側に向かって延びるように形成されている。第二筒状連結部74は、その内周部において、第一係合装置CL1の第一外側支持部材51を構成する第一筒状連結部54に連結されている。第一外側筒状部52を有する第一外側支持部材51と第二外側筒状部72を有する第二外側支持部材71とは、第二内側板状部67を介した第二内側筒状部66と中間軸Mとの連結部に対して、軸第二方向L2側で一体的に連結されている。本実施形態では、2つの外側支持部材51,71は、径方向に見て第一摩擦部材41及び第二摩擦部材61と軸方向Lに重複する位置で一体的に連結されている。   The second outer plate-like portion 73 is an annular deformed plate-like member that extends radially inward from the end portion on the second axial direction L2 side of the second outer tubular portion 72. The second cylindrical connecting portion 74 is formed in a cylindrical shape extending along the axial direction L. The second cylindrical connecting portion 74 is connected to the second outer plate-shaped portion 73 at the radially inner end of the second outer plate-shaped portion 73. The second outer cylindrical portion 72, the second outer plate-shaped portion 73, and the second cylindrical connecting portion 74 are integrally formed. The second cylindrical connecting portion 74 is formed to extend from the radially inner end of the second outer plate-like portion 73 toward the first axial direction L1 side. The 2nd cylindrical connection part 74 is connected in the inner peripheral part to the 1st cylindrical connection part 54 which comprises the 1st outer side support member 51 of 1st engagement apparatus CL1. The first outer support member 51 having the first outer cylindrical part 52 and the second outer support member 71 having the second outer cylindrical part 72 are the second inner cylindrical part via the second inner plate-like part 67. 66 and the intermediate shaft M are integrally connected on the second axial direction L2 side. In the present embodiment, the two outer support members 51 and 71 are integrally connected to the first friction member 41 and the second friction member 61 at positions overlapping in the axial direction L when viewed in the radial direction.

第二押圧部材77は、油圧制御装置(図示せず)から所定油圧の油が第二作動油室H2に供給された際に、油圧に応じて軸方向Lに摺動して第二摩擦部材61を軸第一方向L1側に押圧する部材(第二ピストン)である。第二押圧部材77には、第一押圧部材57とは異なり、当該第一押圧部材57を径方向に貫通する貫通孔は形成されていない。   The second pressing member 77 slides in the axial direction L according to the hydraulic pressure when oil of a predetermined hydraulic pressure is supplied from the hydraulic control device (not shown) to the second hydraulic oil chamber H2, and the second friction member. A member (second piston) that presses 61 toward the first axial direction L1. Unlike the first pressing member 57, the second pressing member 77 is not formed with a through hole that penetrates the first pressing member 57 in the radial direction.

本実施形態では、第一内側筒状部46が、第二外側筒状部72よりも径方向外側に配置されている(第二外側筒状部72が、第一内側筒状部46よりも径方向内側に配置されている)。よって、第二内側筒状部66、第二外側筒状部72、第一内側筒状部46、及び第一外側筒状部52は、径方向内側から径方向外側に向かって記載の順に配置されている。これらは、径方向に見て互いに軸方向Lに重複する位置に配置されている。これにより、第一摩擦部材41と第二摩擦部材61との配置関係も、径方向に見て互いに軸方向Lに重複する位置関係となっている。このように、本実施形態では、第一摩擦部材41と第二摩擦部材61とが、径方向に見て互いに軸方向Lに重複する状態で、更にステータStとも重複する位置に配置されている。これにより、軸方向Lの寸法に関して、車両用駆動装置1の全体が有効に小型化されている。   In the present embodiment, the first inner cylindrical portion 46 is disposed on the radially outer side than the second outer cylindrical portion 72 (the second outer cylindrical portion 72 is more than the first inner cylindrical portion 46. Arranged radially inward). Therefore, the second inner cylindrical portion 66, the second outer cylindrical portion 72, the first inner cylindrical portion 46, and the first outer cylindrical portion 52 are arranged in the order described from the radially inner side to the radially outer side. Has been. These are arranged at positions overlapping each other in the axial direction L when viewed in the radial direction. Thereby, the positional relationship between the first friction member 41 and the second friction member 61 is also a positional relationship overlapping each other in the axial direction L when viewed in the radial direction. As described above, in the present embodiment, the first friction member 41 and the second friction member 61 are arranged at positions overlapping with the stator St in a state where they overlap each other in the axial direction L when viewed in the radial direction. . As a result, with respect to the dimension in the axial direction L, the entire vehicle drive device 1 is effectively downsized.

3.各係合装置及び回転電機の冷却構造
本実施形態に係る車両用駆動装置1における、各係合装置CL1,CL2及び回転電機MGの冷却構造について説明する。本実施形態では、一例として、停車中の車両が電動走行モードにて回転電機MGのトルクにより発進する状況を想定して説明する。このような発進時には、回転電機MGがトルクを出力している状態で、少なくともその下流側に設けられた第二係合装置CL2に所定油圧の油を供給して当該第二係合装置CL2を係合させる必要がある。また、本実施形態のように、変速機構TMが自動有段変速機構である場合には、当該変速機構TMに備えられる複数の変速用係合装置のうちの1つ以上に所定油圧の油を供給してそれ(それら)を係合させる必要がある。
3. Cooling structure of each engaging device and rotating electrical machine The cooling structure of each engaging device CL1, CL2 and rotating electrical machine MG in the vehicle drive device 1 according to the present embodiment will be described. In the present embodiment, as an example, a description will be given on the assumption that a stopped vehicle starts with the torque of the rotating electrical machine MG in the electric travel mode. At the time of such a start, in a state where the rotating electrical machine MG is outputting torque, oil of a predetermined hydraulic pressure is supplied to at least the second engagement device CL2 provided on the downstream side thereof, and the second engagement device CL2 is Must be engaged. Further, when the speed change mechanism TM is an automatic stepped speed change mechanism as in the present embodiment, oil of a predetermined hydraulic pressure is supplied to one or more of the plurality of speed change engagement devices provided in the speed change mechanism TM. There is a need to feed and engage them.

本実施形態では、回転電機MGと一体回転するように駆動連結された第一係合装置CL1の第一外側支持部材51に、オイルポンプOPが駆動連結されている(図2を参照)。そして、車両の発進時には、車輪Wの駆動用に出力される回転電機MGのトルクを利用してオイルポンプOPを駆動する構成となっている。オイルポンプOPから吐出された油は、第二係合装置CL2及び変速機構TM内の変速用係合装置に供給され、それらを係合させる。これにより、電動走行モードでの発進を適切に行うことが可能とされている。なお、車両用駆動装置1には、オイルポンプOPとは別の、専用の駆動モータを有するポンプ(電動ポンプ)は設けられていない。そのような電動ポンプの設置を省略することで、車両用駆動装置1の低コスト化が図られている。但し、そのような構成に限定されず、電動ポンプが設けられていても良い。   In the present embodiment, the oil pump OP is drivably coupled to the first outer support member 51 of the first engagement device CL1 that is drivably coupled to the rotating electrical machine MG (see FIG. 2). When the vehicle starts, the oil pump OP is driven using the torque of the rotating electrical machine MG output for driving the wheels W. The oil discharged from the oil pump OP is supplied to the second engagement device CL2 and the shift engagement device in the transmission mechanism TM to engage them. Thereby, it is possible to appropriately start in the electric travel mode. Note that the vehicle drive device 1 is not provided with a pump (electric pump) having a dedicated drive motor different from the oil pump OP. By omitting the installation of such an electric pump, cost reduction of the vehicle drive device 1 is achieved. However, it is not limited to such a configuration, and an electric pump may be provided.

ところで、オイルポンプOPが吐出する油の油圧を、各係合装置を係合させるのに必要な油圧にまで高めるためには、回転電機MGは予め定められた基準回転数以上の回転数で回転する必要がある。一方、変速機構TMでの特定の変速段の形成時に車速に応じて定まる中間軸Mの回転数は、ある程度車速が低い状態では基準回転数未満となってしまう。そのため、これらの回転数差(差回転)を吸収するために、第二係合装置CL2をスリップさせながら係合させる(スリップ係合状態とする)必要がある。第二係合装置CL2のスリップ係合状態では、当該第二係合装置CL2の第二摩擦部材61がフリクション等によって発熱するため、これを有効に冷却する必要性が生じる。また、回転電機MGでは、ステータStのコイルに電流を流すと、ジュール熱の発生によりコイルが発熱する。そこで、当該コイル(例えば、ステータコアから軸方向Lに突出する部分であるコイルエンド部Ce)を有効に冷却する必要性が生じる。   By the way, in order to increase the hydraulic pressure of the oil discharged from the oil pump OP to the hydraulic pressure necessary to engage each engagement device, the rotating electrical machine MG rotates at a rotational speed equal to or higher than a predetermined reference rotational speed. There is a need to. On the other hand, the rotational speed of the intermediate shaft M determined according to the vehicle speed when the specific gear stage is formed by the speed change mechanism TM is less than the reference rotational speed when the vehicle speed is low to some extent. Therefore, in order to absorb these rotational speed differences (differential rotations), it is necessary to engage the second engagement device CL2 while slipping (to set the slip engagement state). In the slip engagement state of the second engagement device CL2, the second friction member 61 of the second engagement device CL2 generates heat due to friction or the like, and thus it is necessary to cool it effectively. In the rotating electrical machine MG, when a current is passed through the coil of the stator St, the coil generates heat due to the generation of Joule heat. Therefore, there is a need to effectively cool the coil (for example, the coil end portion Ce that is a portion protruding in the axial direction L from the stator core).

そこで、本実施形態に係る車両用駆動装置1は、図2〜図4に示すように、主に第二係合装置CL2の第二摩擦部材61を冷却するための第一冷却油路P1と、主に回転電機MGのコイルエンド部Ceを冷却するための第二冷却油路P2とを備えている。これらは、独立した2系統の油路となっている。オイルポンプOPから吐出された油は、ケース2内に形成された油流通路、及びスリーブ部26の内周面と中間軸Mの外周面との間に形成された軸周油路91を介して、第二外側筒状部72(第二摩擦部材61)の径方向内側の空間に供給される。また、ケース2内に形成された油流通路、中間軸Mの内部に形成された軸内油路92、及び第一係合装置CL1の第一内側板状部47とロータ支持部材30の板状支持部35との間に形成された連絡油路93を介して、ロータ支持部材30の筒状支持部31の径方向内側の空間にも供給される。なお、図2〜図4には、主な油の流れを破線矢印で示している。   Therefore, as shown in FIGS. 2 to 4, the vehicle drive device 1 according to the present embodiment mainly includes a first cooling oil passage P <b> 1 for cooling the second friction member 61 of the second engagement device CL <b> 2. The second cooling oil passage P2 is mainly provided for cooling the coil end portion Ce of the rotating electrical machine MG. These are two independent oil passages. The oil discharged from the oil pump OP passes through an oil flow passage formed in the case 2 and a shaft peripheral oil passage 91 formed between the inner peripheral surface of the sleeve portion 26 and the outer peripheral surface of the intermediate shaft M. The second outer cylindrical portion 72 (second friction member 61) is supplied to the space inside in the radial direction. Further, an oil flow passage formed in the case 2, an in-shaft oil passage 92 formed in the intermediate shaft M, and the first inner plate-like portion 47 of the first engagement device CL <b> 1 and the plate of the rotor support member 30. It is also supplied to the radially inner space of the cylindrical support portion 31 of the rotor support member 30 through a communication oil passage 93 formed between the cylindrical support portion 35 and the cylindrical support portion 35. 2 to 4, main oil flows are indicated by broken-line arrows.

第一冷却油路P1は、第二外側筒状部72の径方向内側の空間に供給された油を、第二摩擦部材61に供給して当該第二摩擦部材61を冷却し、第一外側筒状部52の径方向外側へと導くための油路である。このような第一冷却油路P1を形成するため、第二内側筒状部66、第二外側筒状部72、及び第一外側筒状部52は、それぞれ第一貫通孔11、第二貫通孔12、及び第三貫通孔13を有する有孔筒状部とされている。   The first cooling oil passage P1 supplies the oil supplied to the radially inner space of the second outer cylindrical portion 72 to the second friction member 61 to cool the second friction member 61, and It is an oil passage for guiding the cylindrical portion 52 to the outside in the radial direction. In order to form such a first cooling oil passage P1, the second inner cylindrical portion 66, the second outer cylindrical portion 72, and the first outer cylindrical portion 52 are respectively formed in the first through hole 11 and the second through hole. It is a perforated cylindrical portion having a hole 12 and a third through hole 13.

具体的には、第二内側筒状部66は、径方向に見て第二摩擦部材61と軸方向Lに重複する位置において径方向に貫通する第一貫通孔11を有する。第一貫通孔11は、軸方向L及び周方向にそれぞれ所定幅を有して形成された長穴状貫通孔とされている。第一貫通孔11は、第二内側筒状部66が有する複数のスプライン歯の部分に形成されている。第二外側筒状部72は、径方向に見て第二摩擦部材61と軸方向Lに重複する位置において径方向に貫通する第二貫通孔12を有する。第二貫通孔12は、軸方向L及び周方向にそれぞれ所定幅を有して形成された長穴状貫通孔とされている。第二貫通孔12は、第二外側筒状部72が有する複数のスプライン歯の部分に形成されている。   Specifically, the second inner cylindrical portion 66 has the first through hole 11 that penetrates in the radial direction at a position overlapping with the second friction member 61 in the axial direction L when viewed in the radial direction. The first through hole 11 is an elongated through hole formed with a predetermined width in the axial direction L and the circumferential direction. The 1st through-hole 11 is formed in the part of the some spline teeth which the 2nd inner side cylindrical part 66 has. The second outer cylindrical portion 72 has a second through hole 12 that penetrates in the radial direction at a position overlapping with the second friction member 61 in the axial direction L when viewed in the radial direction. The second through-hole 12 is an elongated through-hole formed with a predetermined width in the axial direction L and the circumferential direction. The second through hole 12 is formed in a plurality of spline tooth portions of the second outer cylindrical portion 72.

第一外側筒状部52は、径方向に見て少なくとも第一摩擦部材41とは軸方向Lに重複しない位置において径方向に貫通する第三貫通孔13を有する。第三貫通孔13は、第一外側筒状部52における少なくとも第一摩擦部材41よりも第一押圧部材57側である軸第二方向L2側の部分に形成されている。本実施形態では、第一摩擦部材41が第一外側筒状部52における軸第一方向L1側の部分に寄せて配置されており、第三貫通孔13が第一外側筒状部52における軸第二方向L2側の部分に形成されている。第三貫通孔13は、軸方向L及び周方向にそれぞれ所定幅を有して形成された長穴状貫通孔とされている(図5を参照)。第三貫通孔13は、第一外側筒状部52が有する複数のスプライン歯の部分に形成されている。   The first outer cylindrical portion 52 has a third through hole 13 penetrating in the radial direction at a position not overlapping with the first friction member 41 in the axial direction L when viewed in the radial direction. The third through hole 13 is formed in a portion on the second axial direction L2 side which is the first pressing member 57 side of at least the first friction member 41 in the first outer cylindrical portion 52. In the present embodiment, the first friction member 41 is disposed close to the portion on the first axial direction L1 side in the first outer cylindrical portion 52, and the third through hole 13 is the shaft in the first outer cylindrical portion 52. It is formed in a portion on the second direction L2 side. The third through-hole 13 is an elongated through-hole formed with a predetermined width in the axial direction L and the circumferential direction (see FIG. 5). The third through hole 13 is formed in a plurality of spline tooth portions of the first outer cylindrical portion 52.

これらの第一貫通孔11、第二貫通孔12、及び第三貫通孔13は、それぞれ、周方向に1つ又は複数設けることができる。また、それぞれ、軸方向Lに1列又は複数列設けることができる。本実施形態では、第一貫通孔11が周方向に複数分散配置されるとともに軸方向Lに2列設けられ、第二貫通孔12及び第三貫通孔13がそれぞれ周方向に複数分散配置されるとともに軸方向Lに1列設けられている。なお、これらの個数及び列数、形状等は、各種の狙いに応じて適宜設定変更が可能である。   Each of the first through hole 11, the second through hole 12, and the third through hole 13 can be provided in the circumferential direction. In addition, one or more rows can be provided in the axial direction L, respectively. In the present embodiment, a plurality of first through holes 11 are distributed in the circumferential direction and two rows are provided in the axial direction L, and a plurality of second through holes 12 and third through holes 13 are distributed in the circumferential direction. In addition, one row is provided in the axial direction L. Note that the number, the number of rows, the shape, and the like can be appropriately set and changed according to various purposes.

また、本実施形態では、径方向における第一内側筒状部46と第一外側筒状部52との間に、第一押圧部材57の押圧筒状部58が、径方向に見て少なくとも第一内側筒状部46の開口端部48と軸方向Lに重複する位置に配置されている。本実施形態では、この押圧筒状部58は、径方向に貫通する第四貫通孔14を有する有孔筒状部とされている。第四貫通孔14は、本例では点状に形成された丸穴状貫通孔とされている(図5を参照)。第四貫通孔14は、周方向に1つ又は複数設けることができる。また、軸方向Lに1列又は複数列設けることができる。本実施形態では、第四貫通孔14が周方向に複数分散配置されるとともに軸方向Lに1列設けられている。なお、これらの個数及び列数、形状等は、各種の狙いに応じて適宜設定変更が可能である。   In the present embodiment, the pressing cylindrical portion 58 of the first pressing member 57 is at least first when viewed in the radial direction between the first inner cylindrical portion 46 and the first outer cylindrical portion 52 in the radial direction. The inner cylindrical portion 46 is disposed at a position overlapping the opening end 48 in the axial direction L. In the present embodiment, the pressing cylindrical portion 58 is a perforated cylindrical portion having the fourth through hole 14 penetrating in the radial direction. The fourth through hole 14 is a round hole-like through hole formed in a dot shape in this example (see FIG. 5). One or more fourth through holes 14 may be provided in the circumferential direction. Further, one or more rows can be provided in the axial direction L. In the present embodiment, a plurality of fourth through holes 14 are dispersedly arranged in the circumferential direction and provided in a row in the axial direction L. Note that the number, the number of rows, the shape, and the like can be appropriately set and changed according to various purposes.

ここで、第一内側筒状部46の開口端部48、押圧筒状部58の第四貫通孔14、及び第一外側筒状部52の第三貫通孔13の軸方向Lにおける位置関係に注目する。なお、ここでは、停車中の車両が電動走行モードで発進する状況を想定している点に鑑み、第一係合装置CL1の解放状態での位置関係に注目する。すると、第四貫通孔14が、軸方向Lにおける開口端部48の位置に対してその両側の位置を包含するような位置に配置されている。これにより、開口端部48と第四貫通孔14とが、径方向に見て軸方向Lに重複する位置に配置されている。また、第三貫通孔13が、軸方向Lにおいて第四貫通孔14が占める領域に対してその全体を包含するような位置に配置されている。これにより、第四貫通孔14と第三貫通孔13とが、径方向に見て軸方向Lに重複する位置に配置されている。このような位置関係では、開口端部48、第四貫通孔14、及び第三貫通孔13は、径方向に見て互いに軸方向Lに重複する位置に配置されている。   Here, the positional relationship in the axial direction L of the opening end portion 48 of the first inner cylindrical portion 46, the fourth through hole 14 of the pressing cylindrical portion 58, and the third through hole 13 of the first outer cylindrical portion 52. Focus on it. Here, in view of the situation where the stopped vehicle is assumed to start in the electric travel mode, attention is paid to the positional relationship in the released state of the first engagement device CL1. Then, the 4th through-hole 14 is arrange | positioned in the position which includes the position of the both sides with respect to the position of the opening edge part 48 in the axial direction L. As shown in FIG. Thereby, the opening edge part 48 and the 4th through-hole 14 are arrange | positioned in the position which overlaps with the axial direction L seeing in radial direction. Further, the third through hole 13 is arranged at a position including the entirety of the region occupied by the fourth through hole 14 in the axial direction L. Thereby, the 4th through-hole 14 and the 3rd through-hole 13 are arrange | positioned in the position which overlaps with the axial direction L seeing in radial direction. In such a positional relationship, the opening end 48, the fourth through hole 14, and the third through hole 13 are arranged at positions that overlap each other in the axial direction L when viewed in the radial direction.

また、周方向では、図5に示すように、第三貫通孔13の周方向中心が第四貫通孔14の周方向中心と同位相となるように、第三貫通孔13及び第四貫通孔14の位置が設定されている。なお、図5(a)は軸方向Lに見た断面図であり、図5(b)は径方向に見た場合の位置関係を示す図である。本実施形態では、径方向に見て軸方向Lに重複する一組の第三貫通孔13及び第四貫通孔14に関して、それぞれの周方向中心が互いに一致するように、第三貫通孔13及び第四貫通孔14が配置されている。このとき、図5(b)から理解できるように、第三貫通孔13の面積は、第四貫通孔14の面積よりも大きく設定されている。第三貫通孔13の面積は、例えば第四貫通孔14の面積の1.1〜4倍程度とすることができる。図示の例では、約2倍とされている。   Further, in the circumferential direction, as shown in FIG. 5, the third through hole 13 and the fourth through hole so that the circumferential center of the third through hole 13 is in phase with the circumferential center of the fourth through hole 14. 14 positions are set. 5A is a cross-sectional view seen in the axial direction L, and FIG. 5B is a diagram showing a positional relationship when seen in the radial direction. In the present embodiment, with respect to the set of third through holes 13 and fourth through holes 14 that overlap in the axial direction L when viewed in the radial direction, the third through holes 13 and A fourth through hole 14 is arranged. At this time, as can be understood from FIG. 5B, the area of the third through hole 13 is set larger than the area of the fourth through hole 14. The area of the third through hole 13 can be, for example, about 1.1 to 4 times the area of the fourth through hole 14. In the example shown in the figure, it is approximately doubled.

第一内側筒状部46の開口端部48は、周方向に連続して形成されている。開口端部48は、全周に亘って同じ軸方向L位置を占めるように配置されている。   The opening end 48 of the first inner cylindrical portion 46 is formed continuously in the circumferential direction. The opening end portion 48 is arranged so as to occupy the same position in the axial direction L over the entire circumference.

図4に示すように、軸周油路91を通って第二内側筒状部66の径方向内側に供給された油は、第一冷却油路P1に沿って流れる。具体的には、油は、第二内側筒状部66に形成された第一貫通孔11を通って第二摩擦部材61に到達し、当該第二摩擦部材61を冷却する。その後、油は第二外側筒状部72に形成された第二貫通孔12から径方向外側に排出され、第二外側筒状部72と第一内側筒状部46との間の空間に到達する。このとき、本実施形態では、第一内側筒状部46は無孔構造を有するので、当該空間に到達した油は、第一内側筒状部46及び第一摩擦部材41を迂回して、開口端部48側(軸第二方向L2側)に向かって流れる。開口端部48に到達した油は、径方向に見て当該開口端部48と軸方向Lに重複する位置に配置される第四貫通孔14及び第三貫通孔13を通って、第一外側筒状部52の径方向外側へと円滑に導かれる。   As shown in FIG. 4, the oil supplied to the radially inner side of the second inner cylindrical portion 66 through the axial circumferential oil passage 91 flows along the first cooling oil passage P1. Specifically, the oil reaches the second friction member 61 through the first through hole 11 formed in the second inner cylindrical portion 66 and cools the second friction member 61. Thereafter, the oil is discharged radially outward from the second through-hole 12 formed in the second outer cylindrical portion 72 and reaches the space between the second outer cylindrical portion 72 and the first inner cylindrical portion 46. To do. At this time, in the present embodiment, since the first inner cylindrical portion 46 has a non-porous structure, the oil that has reached the space bypasses the first inner cylindrical portion 46 and the first friction member 41 and opens. It flows toward the end 48 side (second axial direction L2 side). The oil that has reached the opening end 48 passes through the fourth through hole 14 and the third through hole 13 that are arranged in a position overlapping with the opening end 48 in the axial direction L when viewed in the radial direction, and passes through the first outer side. It is smoothly guided to the radially outer side of the cylindrical portion 52.

このように、第一冷却油路P1は、第二内側筒状部66の径方向内側から第一貫通孔11を通って第二摩擦部材61に供給された後、第二外側筒状部72の第二貫通孔12から径方向外側に排出される油を、第一外側筒状部52の第三貫通孔13へと誘導するように構成されている。第一冷却油路P1は、第二内側筒状部66と第二外側筒状部72との間を第二摩擦部材61に沿って延びる摩擦部材間油路P1aと、当該摩擦部材間油路P1aの出口(第二貫通孔12)から第一内側筒状部46に沿って延びる迂回油路P1bと、迂回油路P1bと第三貫通孔13とをつなぐように径方向に沿って延びる導出油路P1cとを有する。導出油路P1cは、第四貫通孔14を通って、径方向に沿って直線状に延びるように形成されている。   Thus, the first cooling oil passage P1 is supplied from the radially inner side of the second inner cylindrical portion 66 to the second friction member 61 through the first through hole 11, and then the second outer cylindrical portion 72. The oil that is discharged radially outward from the second through hole 12 is guided to the third through hole 13 of the first outer cylindrical portion 52. The first cooling oil passage P1 includes an inter-friction member oil passage P1a extending along the second friction member 61 between the second inner tubular portion 66 and the second outer tubular portion 72, and the inter-friction member oil passage. A bypass oil passage P1b extending along the first inner cylindrical portion 46 from the outlet (second through hole 12) of P1a, and a derivation extending along the radial direction so as to connect the bypass oil passage P1b and the third through hole 13 And an oil passage P1c. The lead-out oil passage P1c is formed to extend linearly along the radial direction through the fourth through hole 14.

本実施形態では、第一冷却油路P1が迂回油路P1bを有し、この迂回油路P1bを流れる際に油は第一摩擦部材41を迂回するので、第二摩擦部材61に比べて第一摩擦部材41へ供給される油量を少なく抑えることができる。よって、電動走行モードでの車両の発進時に、第二摩擦部材61がスリップ係合状態とされる場合であっても、当該第二摩擦部材61に対して十分な量の油を供給して、これを効果的に冷却することができる。一方、第一摩擦部材41に対しては、導出油路P1cや連絡油路93を介して必要最小限の油のみを供給して、第一摩擦部材41に生じ得る引き摺り損失を小さく抑えることができる。なお、内燃機関Eが停止される電動走行モードでは、一般に第一係合装置CL1は解放状態とされるので、当該第一係合装置CL1の第一摩擦部材41は発熱しない。また、第一係合装置CL1がスリップするのも、内燃機関Eの始動時等、短時間に限られる。よって、引き摺り損失を抑制するべく第一摩擦部材41への供給油量を少なく抑えても、第一係合装置CL1の熱的保護の観点からは特に問題はない。   In the present embodiment, the first cooling oil passage P1 has a bypass oil passage P1b, and the oil bypasses the first friction member 41 when flowing through the bypass oil passage P1b. The amount of oil supplied to the one friction member 41 can be reduced. Therefore, even when the second friction member 61 is in the slip engagement state at the start of the vehicle in the electric travel mode, a sufficient amount of oil is supplied to the second friction member 61, This can be cooled effectively. On the other hand, only the minimum necessary oil is supplied to the first friction member 41 via the lead-out oil passage P1c and the communication oil passage 93, so that the drag loss that may occur in the first friction member 41 is kept small. it can. In the electric travel mode in which the internal combustion engine E is stopped, the first engagement device CL1 is generally in a released state, so the first friction member 41 of the first engagement device CL1 does not generate heat. Further, the first engagement device CL1 slips only in a short time such as when the internal combustion engine E is started. Therefore, even if the amount of oil supplied to the first friction member 41 is reduced to suppress drag loss, there is no particular problem from the viewpoint of thermal protection of the first engagement device CL1.

本実施形態では、ロータ支持部材30の筒状支持部31の支持開口端部33が、径方向に見て軸第二方向L2側(第二支持壁25側)のコイルエンド部Ceと軸方向Lに重複する位置に配置されている。そのため、第三貫通孔13を通って第一外側筒状部52の径方向外側へと導かれた油は、支持開口端部33から径方向外側に向かって流れ、通常であればコイルエンド部Ceに到達する。しかし、本実施形態では、支持開口端部33に対して軸方向Lに隣接する第二支持壁25が、径方向における支持開口端部33とコイルエンド部Ceとの間に、軸第一方向L1側に向かって突出する遮蔽突出部27を有している。遮蔽突出部27は、径方向に見て少なくとも支持開口端部33と軸方向Lに重複する位置まで突出している。遮蔽突出部27は、周方向全域に亘って連続するように形成されても良いし、周方向の一部の領域(例えば鉛直上方側の領域)で不連続となるように形成されても良い。本実施形態では、このような遮蔽突出部27を有するので、第二摩擦部材61を冷却した後の比較的高温の油がコイルエンド部Ceに到達することを妨げることができる。   In this embodiment, the support opening end portion 33 of the cylindrical support portion 31 of the rotor support member 30 is axially aligned with the coil end portion Ce on the second axial direction L2 side (second support wall 25 side) when viewed in the radial direction. It is arranged at a position overlapping L. Therefore, the oil guided to the radially outer side of the first outer cylindrical portion 52 through the third through hole 13 flows from the support opening end portion 33 toward the radially outer side, and is normally a coil end portion. Reach Ce. However, in the present embodiment, the second support wall 25 adjacent to the support opening end portion 33 in the axial direction L has a first axial direction between the support opening end portion 33 and the coil end portion Ce in the radial direction. It has the shielding protrusion 27 which protrudes toward the L1 side. The shielding protrusion 27 protrudes at least to a position overlapping with the support opening end 33 in the axial direction L when viewed in the radial direction. The shielding protrusion 27 may be formed so as to be continuous over the entire circumferential direction, or may be formed so as to be discontinuous in a partial region in the circumferential direction (for example, a region on the vertically upper side). . In this embodiment, since it has such a shielding protrusion part 27, it can prevent that the comparatively high temperature oil after cooling the 2nd friction member 61 arrives at the coil end part Ce.

図2〜図4に示すように、第二冷却油路P2は、筒状支持部31の径方向内側の空間に供給された油を、軸方向Lの両側のコイルエンド部Ceに供給して両コイルエンド部Ceを冷却するための油路である。第二冷却油路P2は、筒状支持部31、ロータRoを構成するコア(ロータコア)、及び係止保持部34の少なくとも1つに形成されている。本実施形態では、第二冷却油路P2は、筒状支持部31の鍔部を径方向に延びて軸第一方向L1側のコイルエンド部Ceの径方向内側の空間に連通する油路を含む(図2を参照)。また、第二冷却油路P2は、ロータコアの内周面及び係止保持部34のロータコア側の側面に形成されて軸第二方向L2側のコイルエンド部Ceの径方向内側の空間に連通する油路を含む。本実施形態では、第二冷却油路P2が本発明における「冷却油路」に相当する。   As shown in FIGS. 2 to 4, the second cooling oil passage P <b> 2 supplies oil supplied to the space on the radially inner side of the cylindrical support portion 31 to the coil end portions Ce on both sides in the axial direction L. It is an oil passage for cooling both coil end parts Ce. The second cooling oil passage P <b> 2 is formed in at least one of the cylindrical support portion 31, the core (rotor core) that constitutes the rotor Ro, and the locking holding portion 34. In the present embodiment, the second cooling oil passage P2 is an oil passage that extends in the radial direction from the flange portion of the cylindrical support portion 31 and communicates with the space inside the coil end portion Ce on the first axial direction L1 side in the radial direction. Included (see FIG. 2). The second cooling oil passage P2 is formed on the inner peripheral surface of the rotor core and the side surface on the rotor core side of the locking holding portion 34, and communicates with the space on the radially inner side of the coil end portion Ce on the second axial direction L2 side. Includes oilway. In the present embodiment, the second cooling oil passage P2 corresponds to the “cooling oil passage” in the present invention.

本実施形態では、筒状支持部31に形成された隆起係合部32は、径方向に見て第三貫通孔13と軸方向Lに重複しない位置で第一外側筒状部52の外周部に係合している。本例では、第三貫通孔13よりも軸第一方向L1側の、径方向に見て第一摩擦部材41と軸方向Lに重複する位置で係合している。そして、筒状支持部31に設けられる第二冷却油路P2の入口Inは、軸方向Lにおける隆起係合部32を挟んだ第三貫通孔13側とは反対側(隆起係合部32よりも更に軸第一方向L1側)に配置されている。   In the present embodiment, the raised engagement portion 32 formed in the cylindrical support portion 31 is an outer peripheral portion of the first outer cylindrical portion 52 at a position that does not overlap with the third through hole 13 and the axial direction L when viewed in the radial direction. Is engaged. In this example, the first friction member 41 is engaged with the first through-hole 13 at a position overlapping with the first friction member 41 in the axial direction L as viewed in the radial direction, on the axial first direction L1 side. And the inlet In of the 2nd cooling oil path P2 provided in the cylindrical support part 31 is on the opposite side to the 3rd through-hole 13 side which pinched | interposed the protrusion engagement part 32 in the axial direction L (from the protrusion engagement part 32). Is further arranged on the first axial direction L1 side).

このような構成では、隆起係合部32を、連絡油路93から供給された油が筒状支持部31に沿って第三貫通孔13側(軸第二方向L2側)に流通することを規制する堰として機能させることができる。よって、連絡油路93から供給される油を、筒状支持部31に形成された入口Inを介して効率的に第二冷却油路P2へと導くことができる。その結果、効率的にコイルエンド部Ceを冷却することができる。また、隆起係合部32を、第三貫通孔13から供給された油が筒状支持部31に沿って第二冷却油路P2の入口In側(軸第一方向L1側)に流通することを規制する堰としても機能させることができる。よって、隆起係合部32に対して第三貫通孔13側を流れる比較的高温の油が第二冷却油路P2を通ってコイルエンド部Ceに供給されることを抑制することができる。なお、上述したように、遮蔽突出部27により、第一冷却油路P1から排出される比較的高温の油からコイルエンド部Ceを遮蔽しているので、第二冷却油路P2を通って供給される油によるコイルエンド部Ceの冷却性能が適切に確保されている。   In such a configuration, the oil supplied from the communication oil passage 93 flows through the raised engagement portion 32 along the cylindrical support portion 31 to the third through hole 13 side (second axial direction L2 side). It can function as a regulating weir. Therefore, the oil supplied from the communication oil passage 93 can be efficiently guided to the second cooling oil passage P <b> 2 through the inlet In formed in the cylindrical support portion 31. As a result, the coil end portion Ce can be efficiently cooled. In addition, the oil supplied from the third through hole 13 flows through the raised engagement portion 32 along the cylindrical support portion 31 to the inlet In side (the first axial direction L1 side) of the second cooling oil passage P2. It can also function as a weir that regulates Therefore, it can suppress that the comparatively high temperature oil which flows into the 3rd through-hole 13 side with respect to the protrusion engagement part 32 is supplied to the coil end part Ce through the 2nd cooling oil path P2. As described above, since the coil end portion Ce is shielded from the relatively high temperature oil discharged from the first cooling oil passage P1 by the shielding protrusion 27, the coil protrusion portion Ce is supplied through the second cooling oil passage P2. The cooling performance of the coil end portion Ce by the oil is appropriately ensured.

4.その他の実施形態
最後に、本発明に係る車両用駆動装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
4). Other Embodiments Finally, other embodiments of the vehicle drive device according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises.

(1)上記の実施形態では、第三貫通孔13の周方向中心と第四貫通孔14の周方向中心とが同位相とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。第四貫通孔14と第三貫通孔13とが径方向に見て軸方向Lに重複する位置に配置されつつ、これらの周方向中心が互いに異なる位相とされても良い。例えば図6に示すように、第三貫通孔13の周方向中心が、第四貫通孔14の周方向中心に対して第一外側筒状部52の負回転方向にずれた位相となるように、第三貫通孔13及び第四貫通孔14の位置が設定されても良い。なお、ここでは、車輪Wを車両の前進方向に回転させるための第一外側筒状部52の回転方向を「正回転方向」と定義している。第一外側筒状部52の「負回転方向」は、正回転方向とは反対方向であり、車輪Wを車両の後進方向に回転させるための回転方向である。油の流通に要する時間と第一外側筒状部52の回転との関係も考慮して、このような位置関係で第四貫通孔14と第三貫通孔13とを設けることで、車両の前進走行時に、第四貫通孔14を通って流れる油をより円滑に第三貫通孔へと導くことができる。 (1) In the above embodiment, the configuration in which the circumferential center of the third through hole 13 and the circumferential center of the fourth through hole 14 are in phase has been described as an example. However, the embodiment of the present invention is not limited to this. While the fourth through hole 14 and the third through hole 13 are arranged at positions overlapping in the axial direction L when viewed in the radial direction, their circumferential centers may be in different phases. For example, as shown in FIG. 6, the circumferential center of the third through-hole 13 is shifted in the negative rotation direction of the first outer cylindrical portion 52 with respect to the circumferential center of the fourth through-hole 14. The positions of the third through hole 13 and the fourth through hole 14 may be set. Here, the rotation direction of the first outer cylindrical portion 52 for rotating the wheel W in the forward direction of the vehicle is defined as the “forward rotation direction”. The “negative rotation direction” of the first outer cylindrical portion 52 is a direction opposite to the positive rotation direction, and is a rotation direction for rotating the wheel W in the reverse direction of the vehicle. Considering the relationship between the time required for oil circulation and the rotation of the first outer cylindrical portion 52, the fourth through hole 14 and the third through hole 13 are provided in this positional relationship, so that the vehicle advances. During traveling, the oil flowing through the fourth through hole 14 can be more smoothly guided to the third through hole.

(2)上記の実施形態では、第一押圧部材57の押圧筒状部58に第四貫通孔14(「径方向連通部」の一形態)が形成され、第一冷却油路P1の導出油路P1cが、第四貫通孔14を通って径方向に延びるように形成された構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。この場合の例について、図7を参照して説明する。本例では、第一係合装置CL1は、第一押圧部材57と第一摩擦部材41との間に摺動可能に設けられて、これらを保持する第一摺動保持部44を有している。この第一摺動保持部44は、第一押圧部材57によって直接的に押圧される部材であり、本発明における「被押圧部材」に相当する。第一摺動保持部44は、軸第二方向L2側の側面(第一押圧部材57との当接面44e)に、径方向に連通する径方向溝部16を有する。本例では、この径方向溝部16が本発明における「径方向連通部」に相当する。径方向溝部16は、軸方向L及び周方向にそれぞれ所定幅を有して形成された断面矩形状溝部とされている(図8を参照)。本例では、第三貫通孔13の長手方向と径方向溝部16の長手方向とが交差する(本例では直交する)ように、第三貫通孔13及び径方向溝部16の形状が設定されている。 (2) In the above embodiment, the fourth through hole 14 (one form of “radial communication portion”) is formed in the pressing cylindrical portion 58 of the first pressing member 57, and the derived oil of the first cooling oil passage P1. The configuration in which the path P1c is formed to extend in the radial direction through the fourth through hole 14 has been described as an example. However, the embodiment of the present invention is not limited to this. An example of this case will be described with reference to FIG. In this example, the first engagement device CL1 includes a first sliding holding portion 44 that is slidably provided between the first pressing member 57 and the first friction member 41 and holds them. Yes. The first sliding holding portion 44 is a member that is directly pressed by the first pressing member 57 and corresponds to a “pressed member” in the present invention. The first sliding holding portion 44 has a radial groove portion 16 communicating in the radial direction on the side surface (contact surface 44e with the first pressing member 57) on the second axial direction L2 side. In this example, the radial groove 16 corresponds to the “radial communication portion” in the present invention. The radial groove 16 is a groove having a rectangular cross section formed with a predetermined width in the axial direction L and the circumferential direction (see FIG. 8). In this example, the shapes of the third through hole 13 and the radial groove portion 16 are set so that the longitudinal direction of the third through hole 13 and the longitudinal direction of the radial groove portion 16 intersect (orthogonal in this example). Yes.

開口端部48、径方向溝部16、及び第三貫通孔13は、径方向に見て互いに軸方向Lに重複する位置に配置されている。第一冷却油路P1の導出油路P1cが、径方向溝部16を通って、径方向に沿って直線状に延びるように形成されている。なお、本例では図8に示すように第三貫通孔13の周方向中心が径方向溝部16の周方向中心と同位相となるように、第三貫通孔13及び径方向溝部16の位置が設定されている。第三貫通孔13の面積は、径方向溝部16の面積よりも大きく(図示の例では約3倍に)設定されている。このような構成であっても、上記の実施形態と同様の効果を得ることができる。   The open end 48, the radial groove 16, and the third through-hole 13 are arranged at positions overlapping each other in the axial direction L when viewed in the radial direction. An outlet oil passage P1c of the first cooling oil passage P1 is formed so as to extend linearly along the radial direction through the radial groove portion 16. In this example, as shown in FIG. 8, the positions of the third through hole 13 and the radial groove portion 16 are such that the circumferential center of the third through hole 13 is in phase with the circumferential center of the radial groove portion 16. Is set. The area of the third through-hole 13 is set larger than the area of the radial groove 16 (about 3 times in the illustrated example). Even if it is such a structure, the effect similar to said embodiment can be acquired.

なお、このような径方向溝部16を有する構成において、種々の改変が可能である。例えば、径方向溝部16が、第一摺動保持部44の内部に形成されても良いし、第一押圧部材57における第一摺動保持部44との当接面57eに形成されても良い。また、第一摺動保持部44が設けられていない場合には、第一内側摩擦部材42又は第一外側摩擦部材43における第一押圧部材57との当接面に径方向溝部16が形成されても良い。この場合、第一内側摩擦部材42又は第一外側摩擦部材43が本発明における「被押圧部材」に相当する。なお、径方向溝部16が、第一押圧部材57、第一摺動保持部44、及び第一内側摩擦部材42又は第一外側摩擦部材43のうちの2つ以上に同時に形成されていても良い。また、例えば図9に示すように、第三貫通孔13の周方向中心が、径方向溝部16の周方向中心に対して第一外側筒状部52の負回転方向にずれた位相となるように、第三貫通孔13及び径方向溝部16の位置が設定されても良い。或いは、第四貫通孔14と径方向溝部16とが同時に形成されていても良い。   It should be noted that various modifications can be made to the configuration having such a radial groove portion 16. For example, the radial groove portion 16 may be formed inside the first sliding holding portion 44 or may be formed on the contact surface 57 e of the first pressing member 57 with the first sliding holding portion 44. . When the first sliding holding portion 44 is not provided, the radial groove portion 16 is formed on the contact surface of the first inner friction member 42 or the first outer friction member 43 with the first pressing member 57. May be. In this case, the first inner friction member 42 or the first outer friction member 43 corresponds to the “pressed member” in the present invention. The radial groove 16 may be simultaneously formed in two or more of the first pressing member 57, the first sliding holding portion 44, and the first inner friction member 42 or the first outer friction member 43. . For example, as shown in FIG. 9, the circumferential center of the third through-hole 13 is shifted in the negative rotation direction of the first outer cylindrical portion 52 with respect to the circumferential center of the radial groove portion 16. In addition, the positions of the third through hole 13 and the radial groove 16 may be set. Or the 4th through-hole 14 and the radial direction groove part 16 may be formed simultaneously.

(3)上記の実施形態では、第三貫通孔13の面積が第四貫通孔14の面積よりも大きく設定された構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、第三貫通孔13の面積が第四貫通孔14の面積と等しく設定されても良い。或いは、第三貫通孔13の面積が第四貫通孔14の面積よりも小さく設定された構成とすることも可能である。 (3) In the above embodiment, the configuration in which the area of the third through hole 13 is set larger than the area of the fourth through hole 14 has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the area of the third through hole 13 may be set equal to the area of the fourth through hole 14. Alternatively, a configuration in which the area of the third through hole 13 is set to be smaller than the area of the fourth through hole 14 is also possible.

(4)上記の実施形態では、少なくとも第一係合装置CL1の解放状態で、開口端部48、第四貫通孔14、及び第三貫通孔13が、径方向に見て互いに軸方向Lに重複する位置に配置されている構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば第一係合装置CL1の係合状態でも、これらが径方向に見て互いに軸方向Lに重複していても良い。 (4) In the above embodiment, at least in the released state of the first engagement device CL1, the opening end 48, the fourth through hole 14, and the third through hole 13 are axially L with respect to each other when viewed in the radial direction. The configuration arranged at the overlapping position has been described as an example. However, the embodiment of the present invention is not limited to this. For example, even in the engaged state of the first engagement device CL1, they may overlap with each other in the axial direction L when viewed in the radial direction.

(5)上記の実施形態では、第二支持壁25に軸第一方向L1側に向かって突出する遮蔽突出部27が設けられた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、筒状支持部31の支持開口端部33が、径方向に見て軸第二方向L2側のコイルエンド部Ceとは軸方向Lに重複しないように、それよりも更に軸第二方向L2側の位置に配置されても良い。或いは、筒状支持部31の径方向外側に設けられる係止保持部34が、径方向に見て軸第二方向L2側のコイルエンド部Ceとは軸方向Lに重複しないように、それよりも更に軸第二方向L2側の位置まで突出する第2の遮蔽突出部を有しても良い。第二支持壁25の遮蔽突出部27と係止保持部34の第2の遮蔽突出部とを併用することも可能である。この場合、第一冷却油路P1からの油がコイルエンド部Ceに到達することを妨げる観点からは、係止保持部34の第2の遮蔽突出部は、少なくとも径方向に見て遮蔽突出部27と軸方向Lに重複する位置まで突出するように形成されていれば良い。 (5) In the above embodiment, the configuration in which the shielding protrusion 27 that protrudes toward the first axial direction L1 side is provided on the second support wall 25 has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the support opening end portion 33 of the cylindrical support portion 31 does not overlap in the axial direction L with the coil end portion Ce on the axial second direction L2 side when viewed in the radial direction. It may be arranged at a position on the L2 side. Alternatively, the locking holding portion 34 provided on the radially outer side of the cylindrical support portion 31 does not overlap with the coil end portion Ce on the second axial direction L2 side in the radial direction when viewed in the radial direction. Furthermore, you may have the 2nd shielding protrusion part which protrudes to the position of the axial second direction L2 side. It is also possible to use the shielding protrusion 27 of the second support wall 25 and the second shielding protrusion of the locking holding part 34 in combination. In this case, from the viewpoint of preventing the oil from the first cooling oil passage P1 from reaching the coil end portion Ce, the second shielding projection of the latch holding portion 34 is at least a shielding projection as viewed in the radial direction. 27 may be formed so as to protrude to a position overlapping with 27 in the axial direction L.

(6)上記の実施形態では、第一内側筒状部46が径方向の貫通孔を有さない無孔筒状部(連続体筒状部)とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。第一内側筒状部46が、径方向に見て第一摩擦部材41と軸方向Lに重複する位置において径方向に貫通する貫通小孔を有する構成としても良い。このような貫通小孔は、第一摩擦部材41の冷却等のために最低限必要とされる量の油を供給可能な断面積を有するものであれば良い。貫通小孔は、第一貫通孔11、第二貫通孔12、第三貫通孔13、及び第四貫通孔14と比較して、小さい(例えば、無視できる程度に小さい)断面積を有する小孔とすることができる。 (6) In the above-described embodiment, the configuration in which the first inner cylindrical portion 46 is a non-porous cylindrical portion (continuous cylindrical portion) that does not have a radial through hole has been described as an example. However, the embodiment of the present invention is not limited to this. The first inner cylindrical portion 46 may have a through hole that penetrates in the radial direction at a position overlapping with the first friction member 41 in the axial direction L when viewed in the radial direction. Such through-holes only need to have a cross-sectional area capable of supplying a minimum amount of oil required for cooling the first friction member 41. The through hole is a small hole having a small (for example, negligibly small) cross-sectional area as compared with the first through hole 11, the second through hole 12, the third through hole 13, and the fourth through hole 14. It can be.

(7)上記の実施形態では、第一内側筒状部46、第一外側筒状部52、第二内側筒状部66、及び第二外側筒状部72と、入力軸I、中間軸M、及び回転電機MGとの連結関係について、具体的な構造を示して説明した。しかし、本発明の実施形態はこれに限定されない。入力軸Iと中間軸Mとを結ぶ動力伝達経路Tに第一係合装置CL1、回転電機MG、及び第二係合装置CL2がこの順に設けられた構造を実現可能なものであれば、それ以外の連結構造を採用することも可能である。例えば第一外側筒状部52と入力軸Iとが連結され、第一内側筒状部46と第二内側筒状部66とが連結され、当該第一内側筒状部46及び第二内側筒状部66に回転電機MGが連結され、第二外側筒状部72と中間軸Mとが連結された構成等としても良い。 (7) In the above embodiment, the first inner cylindrical portion 46, the first outer cylindrical portion 52, the second inner cylindrical portion 66, the second outer cylindrical portion 72, the input shaft I, and the intermediate shaft M. The connection relationship with the rotating electrical machine MG has been described with a specific structure. However, the embodiment of the present invention is not limited to this. If the structure in which the first engagement device CL1, the rotating electrical machine MG, and the second engagement device CL2 are provided in this order on the power transmission path T that connects the input shaft I and the intermediate shaft M is possible, It is also possible to adopt a connecting structure other than the above. For example, the first outer cylindrical portion 52 and the input shaft I are connected, the first inner cylindrical portion 46 and the second inner cylindrical portion 66 are connected, and the first inner cylindrical portion 46 and the second inner cylindrical portion are connected. The rotary electric machine MG may be connected to the shape portion 66, and the second outer cylindrical portion 72 and the intermediate shaft M may be connected.

(8)上記の実施形態では、車両用駆動装置1が、FF(Front Engine Front Drive)車両に搭載される場合に適した複軸構成とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば変速機構TMの出力軸が、入力軸I及び中間軸Mと同軸上に配置されるとともにそのまま差動歯車装置DFに駆動連結される一軸構成の車両用駆動装置1としても良い。このような構成の車両用駆動装置1は、FR(Front Engine Rear Drive)車両に搭載される場合に適している。 (8) In the above embodiment, the case where the vehicle drive device 1 has a multi-axis configuration suitable for being mounted on an FF (Front Engine Front Drive) vehicle has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, the output shaft of the speed change mechanism TM may be arranged on the same axis as the input shaft I and the intermediate shaft M, and may be a single-shaft vehicle drive device 1 that is directly connected to the differential gear device DF. The vehicle drive device 1 having such a configuration is suitable when mounted on an FR (Front Engine Rear Drive) vehicle.

(9)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 (9) Regarding other configurations as well, the embodiments disclosed herein are illustrative in all respects, and embodiments of the present invention are not limited thereto. In other words, configurations that are not described in the claims of the present application can be modified as appropriate without departing from the object of the present invention.

本発明は、いわゆる1モータパラレル方式のハイブリッド車両用の駆動装置に利用することができる。   The present invention can be used in a drive device for a so-called one-motor parallel type hybrid vehicle.

1 :車両用駆動装置
2 :ケース
11 :第一貫通孔
12 :第二貫通孔
13 :第三貫通孔
14 :第四貫通孔(径方向連通部)
16 :径方向溝部(径方向連通部)
25 :第二支持壁(ケース壁)
27 :遮蔽突出部
30 :ロータ支持部材
31 :筒状支持部
32 :隆起係合部
33 :支持開口端部
41 :第一摩擦部材
42 :第一内側摩擦部材
43 :第一外側摩擦部材
44 :第一摺動保持部(被押圧部材)
46 :第一内側筒状部
48 :開口端部
52 :第一外側筒状部
57 :第一押圧部材(押圧部材)
58 :押圧筒状部
61 :第二摩擦部材
62 :第二内側摩擦部材
63 :第二外側摩擦部材
66 :第二内側筒状部
72 :第二外側筒状部
E :内燃機関
MG :回転電機
Ro :ロータ
Ce :コイルエンド部
I :入力軸(入力部材)
M :中間軸(出力部材)
CL1 :第一係合装置
CL2 :第二係合装置
W :車輪
P2 :第二冷却油路(冷却油路)
1: Vehicle drive device 2: Case 11: First through hole 12: Second through hole 13: Third through hole 14: Fourth through hole (radial direction communication portion)
16: Radial groove (radial communication part)
25: Second support wall (case wall)
27: Shielding protrusion 30: Rotor support member 31: Cylindrical support portion 32: Raised engagement portion 33: Support opening end portion 41: First friction member 42: First inner friction member 43: First outer friction member 44: First sliding holding part (member to be pressed)
46: First inner cylindrical portion 48: Open end 52: First outer cylindrical portion 57: First pressing member (pressing member)
58: Pressing cylindrical part 61: Second friction member 62: Second inner friction member 63: Second outer friction member 66: Second inner cylindrical part 72: Second outer cylindrical part E: Internal combustion engine MG: Rotating electric machine Ro: Rotor Ce: Coil end I: Input shaft (input member)
M: Intermediate shaft (output member)
CL1: First engaging device CL2: Second engaging device W: Wheel P2: Second cooling oil passage (cooling oil passage)

Claims (12)

内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に、前記入力部材の側から順に、第一係合装置、回転電機、及び第二係合装置を備えた車両用駆動装置であって、
前記第一係合装置は、第一内側摩擦部材及び第一外側摩擦部材を含む第一摩擦部材と、前記第一内側摩擦部材の径方向内側に配置されて当該第一内側摩擦部材を支持する第一内側筒状部と、前記第一外側摩擦部材の径方向外側に配置されて当該第一外側摩擦部材を支持する第一外側筒状部と、前記第一摩擦部材を軸方向に押圧する押圧部材と、を有し、
前記第二係合装置は、第二内側摩擦部材及び第二外側摩擦部材を含む第二摩擦部材と、前記第二内側摩擦部材の径方向内側に配置されて当該第二内側摩擦部材を支持する第二内側筒状部と、前記第二外側摩擦部材の径方向外側に配置されて当該第二外側摩擦部材を支持する第二外側筒状部と、を有し、
前記第一内側筒状部が、前記第二外側筒状部よりも径方向外側に配置され、
前記第二内側筒状部は、径方向に見て前記第二摩擦部材と軸方向に重複する位置において径方向に貫通する第一貫通孔を有し、
前記第二外側筒状部は、径方向に見て前記第二摩擦部材と軸方向に重複する位置において径方向に貫通する第二貫通孔を有し、
前記第一外側筒状部は、径方向に貫通する第三貫通孔を有し、
前記第一内側筒状部は、前記押圧部材による前記第一摩擦部材の押圧方向とは反対方向である反押圧方向に向かって開口する開口端部を有し、
前記開口端部と前記第三貫通孔とが、径方向に見て軸方向に重複する位置に配置されている車両用駆動装置。
In order from the input member side, a first engagement device, a rotating electrical machine, and a second engagement device are connected to a power transmission path that connects an input member that is drivingly connected to the internal combustion engine and an output member that is drivingly connected to the wheels. A vehicle drive device comprising:
The first engagement device is disposed on the radially inner side of the first friction member including a first inner friction member and a first outer friction member, and supports the first inner friction member. A first inner cylindrical portion, a first outer cylindrical portion that is disposed radially outside the first outer friction member and supports the first outer friction member, and presses the first friction member in the axial direction. A pressing member,
The second engagement device is disposed on the radially inner side of the second friction member including a second inner friction member and a second outer friction member, and supports the second inner friction member. A second inner cylindrical portion, and a second outer cylindrical portion disposed on the radially outer side of the second outer friction member and supporting the second outer friction member,
The first inner cylindrical portion is disposed on a radially outer side than the second outer cylindrical portion,
The second inner cylindrical portion has a first through hole penetrating in the radial direction at a position overlapping with the second friction member in the axial direction when viewed in the radial direction,
The second outer cylindrical portion has a second through hole penetrating in the radial direction at a position overlapping with the second friction member in the axial direction when viewed in the radial direction,
The first outer cylindrical portion has a third through hole penetrating in the radial direction,
The first inner cylindrical portion has an opening end that opens in a counter-pressing direction that is opposite to the pressing direction of the first friction member by the pressing member;
The vehicle drive device in which the opening end portion and the third through hole are arranged at positions overlapping in the axial direction when viewed in the radial direction.
前記押圧部材、及び、前記押圧部材によって直接的に押圧される被押圧部材の少なくとも一方が、径方向に連通する径方向連通部を有し、
少なくとも前記第一係合装置の解放状態で、前記開口端部と前記径方向連通部とが、径方向に見て軸方向に重複する位置に配置されている請求項1に記載の車両用駆動装置。
At least one of the pressing member and a member to be pressed that is directly pressed by the pressing member has a radial communication portion that communicates in the radial direction,
2. The vehicle drive according to claim 1, wherein the opening end portion and the radial direction communication portion are arranged at positions overlapping in the axial direction when viewed in the radial direction at least in a released state of the first engagement device. apparatus.
少なくとも前記第一係合装置の解放状態で、更に、前記径方向連通部と前記第三貫通孔とが、径方向に見て軸方向に重複する位置に配置されている請求項2に記載の車両用駆動装置。   3. The apparatus according to claim 2, wherein at least in the released state of the first engagement device, the radial communication portion and the third through hole are arranged at positions overlapping in the axial direction when viewed in the radial direction. Vehicle drive device. 前記第三貫通孔の面積が、前記径方向連通部の断面積よりも大きく設定されている請求項2又は3に記載の車両用駆動装置。   The vehicle drive device according to claim 2 or 3, wherein an area of the third through hole is set to be larger than a cross-sectional area of the radial communication portion. 前記第三貫通孔の周方向中心が前記径方向連通部の周方向中心と同位相となるように、前記第三貫通孔及び前記径方向連通部の位置が設定されている請求項2から4のいずれか一項に記載の車両用駆動装置。   The position of the said 3rd through-hole and the said radial direction communication part is set so that the circumferential direction center of the said 3rd through-hole may become the same phase as the circumferential direction center of the said radial direction communication part. The vehicle drive device according to any one of the above. 前記車輪を車両の前進方向に回転させるための前記第一外側筒状部の回転方向を正回転方向とし、
前記第三貫通孔の周方向中心が、前記径方向連通部の周方向中心に対して前記正回転方向とは反対方向にずれた位相となるように、前記第三貫通孔及び前記径方向連通部の位置が設定されている請求項2から4のいずれか一項に記載の車両用駆動装置。
The rotation direction of the first outer cylindrical portion for rotating the wheel in the forward direction of the vehicle is a normal rotation direction,
The third through hole and the radial communication so that the circumferential center of the third through hole is in a phase shifted in a direction opposite to the normal rotation direction with respect to the circumferential center of the radial communication portion. The vehicle drive device according to any one of claims 2 to 4, wherein the position of the portion is set.
前記押圧部材は、軸方向に延びる押圧筒状部を有し、
前記径方向連通部が、前記押圧筒状部を径方向に貫通する第四貫通孔を含む請求項2から6のいずれか一項に記載の車両用駆動装置。
The pressing member has a pressing cylindrical portion extending in the axial direction,
The vehicle drive device according to any one of claims 2 to 6, wherein the radial communication portion includes a fourth through hole penetrating the pressing cylindrical portion in the radial direction.
前記径方向連通部が、前記押圧部材における前記被押圧部材との当接面、及び前記被押圧部材における前記押圧部材との当接面の少なくとも一方に、径方向に延びるように形成された径方向溝部を含む請求項2から7のいずれか一項に記載の車両用駆動装置。   A diameter formed so that the radial communication portion extends in a radial direction on at least one of a contact surface of the pressing member with the pressed member and a contact surface of the pressed member with the pressing member. The vehicle drive device according to any one of claims 2 to 7, including a directional groove. 前記第一係合装置と前記第二係合装置とが、径方向に見て軸方向に互いに重複する状態で、前記回転電機のステータの径方向内側であって径方向に見て前記ステータと軸方向に重複する位置に配置されている請求項1から8のいずれか一項に記載の車両用駆動装置。   With the first engagement device and the second engagement device overlapping each other in the axial direction when viewed in the radial direction, the stator and the stator when viewed in the radial direction inside the stator of the rotating electrical machine The vehicle drive device according to any one of claims 1 to 8, wherein the vehicle drive device is disposed at a position overlapping in an axial direction. 前記第一内側筒状部と前記入力部材とが、前記第一摩擦部材に対して前記押圧方向側で連結され、
前記第二内側筒状部と前記出力部材とが、前記第二摩擦部材に対して前記押圧方向側で連結され、
前記第一外側筒状部と前記第二外側筒状部とが、前記第二内側筒状部と前記出力部材との連結部に対して前記反押圧方向側で連結され、
前記第一外側筒状部と前記回転電機のロータとが、前記第一外側筒状部の径方向外側で連結されている請求項1から9のいずれか一項に記載の車両用駆動装置。
The first inner cylindrical portion and the input member are connected to the first friction member on the pressing direction side,
The second inner cylindrical portion and the output member are connected to the second friction member on the pressing direction side,
The first outer cylindrical portion and the second outer cylindrical portion are connected to the connecting portion between the second inner cylindrical portion and the output member on the side opposite to the pressing direction,
The vehicular drive apparatus according to any one of claims 1 to 9, wherein the first outer cylindrical portion and the rotor of the rotating electrical machine are coupled to each other on the radially outer side of the first outer cylindrical portion.
前記回転電機のロータを支持するロータ支持部材を備えるとともに、前記ロータ支持部材は前記ロータを径方向内側から支持する筒状支持部を有し、
前記筒状支持部は、当該筒状支持部の他の部位の内周面よりも径方向内側に向かって隆起しているとともに径方向に見て前記第三貫通孔とは軸方向に重複しない位置で前記第一外側筒状部の外周部に係合する隆起係合部を有し、
前記筒状支持部は、更に、軸方向における前記隆起係合部を挟んだ前記第三貫通孔側とは反対側に、径方向内側から供給される油を前記回転電機のステータのコイルエンド部へと導く冷却油路の入口を備える請求項1から10のいずれか一項に記載の車両用駆動装置。
A rotor support member that supports the rotor of the rotating electrical machine, and the rotor support member includes a cylindrical support portion that supports the rotor from a radially inner side;
The cylindrical support portion protrudes radially inward from the inner peripheral surface of another portion of the cylindrical support portion and does not overlap with the third through hole in the axial direction when viewed in the radial direction. A raised engagement portion that engages with the outer periphery of the first outer tubular portion at a position;
The cylindrical support portion further supplies oil supplied from the radially inner side to the side opposite to the third through hole side sandwiching the raised engagement portion in the axial direction, and the coil end portion of the stator of the rotating electrical machine The vehicle drive device according to claim 1, further comprising an inlet of a cooling oil passage that leads to the vehicle.
前記回転電機、前記第一係合装置、及び前記第二係合装置に対して軸方向に隣接して径方向に延びるケース壁を有するケースを備え、
前記筒状支持部は、軸方向における前記ケース壁側に向かって開口する支持開口端部を有し、
前記支持開口端部が、径方向に見て前記コイルエンド部と軸方向に重複する位置に配置され、
前記ケース壁が、径方向における前記支持開口端部と前記コイルエンド部との間に、径方向に見て少なくとも前記支持開口端部と軸方向に重複する位置まで突出する遮蔽突出部を有する請求項11に記載の車両用駆動装置。
A case having a case wall extending in the radial direction adjacent to the rotating electrical machine, the first engagement device, and the second engagement device in the axial direction;
The cylindrical support portion has a support opening end portion that opens toward the case wall side in the axial direction,
The support opening end is disposed at a position overlapping the coil end portion in the axial direction when viewed in the radial direction,
The said case wall has the shielding protrusion part which protrudes to the position which overlaps at least the said support opening end part and an axial direction seeing in a radial direction between the said support opening end part and the said coil end part in radial direction. Item 12. The vehicle drive device according to Item 11.
JP2012156000A 2012-07-11 2012-07-11 Drive device for vehicle Pending JP2014015188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156000A JP2014015188A (en) 2012-07-11 2012-07-11 Drive device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156000A JP2014015188A (en) 2012-07-11 2012-07-11 Drive device for vehicle

Publications (1)

Publication Number Publication Date
JP2014015188A true JP2014015188A (en) 2014-01-30

Family

ID=50110269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156000A Pending JP2014015188A (en) 2012-07-11 2012-07-11 Drive device for vehicle

Country Status (1)

Country Link
JP (1) JP2014015188A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499742A (en) * 2015-09-03 2017-03-15 舍弗勒技术股份两合公司 Clutch apparatus
WO2018091036A1 (en) * 2016-11-21 2018-05-24 Schaeffler Technologies AG & Co. KG Cvt drive train
WO2018181352A1 (en) * 2017-03-28 2018-10-04 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle
CN113692498A (en) * 2019-04-17 2021-11-23 Zf腓特烈斯哈芬股份公司 Cooling oil guide and power train having the same
WO2021239693A1 (en) * 2020-05-28 2021-12-02 Valeo Embrayages Multidisc-type wet double clutch

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499742A (en) * 2015-09-03 2017-03-15 舍弗勒技术股份两合公司 Clutch apparatus
CN106499742B (en) * 2015-09-03 2019-11-19 舍弗勒技术股份两合公司 Clutch apparatus
CN109906325A (en) * 2016-11-21 2019-06-18 舍弗勒技术股份两合公司 CVT drive system
WO2018091036A1 (en) * 2016-11-21 2018-05-24 Schaeffler Technologies AG & Co. KG Cvt drive train
US10995837B2 (en) 2016-11-21 2021-05-04 Schaeffler Technologies AG & Co. KG CVT drive train
CN109906325B (en) * 2016-11-21 2022-05-24 舍弗勒技术股份两合公司 CVT drive system
WO2018181352A1 (en) * 2017-03-28 2018-10-04 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle
CN110290959A (en) * 2017-03-28 2019-09-27 爱信艾达株式会社 Vehicle driving apparatus
JPWO2018181352A1 (en) * 2017-03-28 2019-11-07 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
US11104216B2 (en) 2017-03-28 2021-08-31 Aisin Aw Co., Ltd. Vehicle drive apparatus
CN110290959B (en) * 2017-03-28 2022-05-10 株式会社爱信 Vehicle drive device
CN113692498A (en) * 2019-04-17 2021-11-23 Zf腓特烈斯哈芬股份公司 Cooling oil guide and power train having the same
WO2021239693A1 (en) * 2020-05-28 2021-12-02 Valeo Embrayages Multidisc-type wet double clutch
FR3110879A1 (en) * 2020-05-28 2021-12-03 Valeo Embrayages Wet double clutch

Similar Documents

Publication Publication Date Title
JP6844690B2 (en) Vehicle drive
WO2011062266A1 (en) Drive device for vehicle
JP5168598B2 (en) Hybrid drive device
WO2011062264A1 (en) Drive device for vehicle
WO2012039370A1 (en) Vehicle drive device
JP5707656B2 (en) Vehicle drive device
WO2011062265A1 (en) Drive device for vehicle
WO2012017770A1 (en) Rotary electric machine and vehicle drive device
US20130213043A1 (en) Hybrid Drive Device
WO2013008625A1 (en) Vehicle drive apparatus
JP6137429B1 (en) Hybrid vehicle
JP2014015188A (en) Drive device for vehicle
JP6020401B2 (en) Hybrid drive unit
WO2017057190A1 (en) Vehicular drive device
KR20190008288A (en) Transaxle unit
JP2011213190A (en) Hybrid drive device
WO2013018201A1 (en) Hybrid drive device
JP5115465B2 (en) Drive device
JP5250013B2 (en) Vehicle drive device
CN113261182A (en) Vehicle drive device
JP2004132440A (en) Lubricating structure of power transmission
JP5261461B2 (en) Vehicle drive device
JP6390750B2 (en) Hybrid vehicle
JP5406815B2 (en) Vehicle drive device
WO2015146513A1 (en) Coolant supply device and cooling structure for friction plate unit