JP2014014902A5 - Robot system - Google Patents

Robot system Download PDF

Info

Publication number
JP2014014902A5
JP2014014902A5 JP2012154584A JP2012154584A JP2014014902A5 JP 2014014902 A5 JP2014014902 A5 JP 2014014902A5 JP 2012154584 A JP2012154584 A JP 2012154584A JP 2012154584 A JP2012154584 A JP 2012154584A JP 2014014902 A5 JP2014014902 A5 JP 2014014902A5
Authority
JP
Japan
Prior art keywords
force value
robot
mass
correction unit
intercept
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154584A
Other languages
Japanese (ja)
Other versions
JP6003312B2 (en
JP2014014902A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012154584A priority Critical patent/JP6003312B2/en
Priority claimed from JP2012154584A external-priority patent/JP6003312B2/en
Publication of JP2014014902A publication Critical patent/JP2014014902A/en
Publication of JP2014014902A5 publication Critical patent/JP2014014902A5/en
Application granted granted Critical
Publication of JP6003312B2 publication Critical patent/JP6003312B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ロボットシステム等に関係する。 The present invention relates to a robot system and the like.

Claims (10)

ロボットシステムであって、
ロボットと、
前記ロボットの機械機構に対応して設けられる力覚センサーから力覚値を取得して、前記力覚値の補正処理を行う力覚値補正部と、
前記補正処理後の前記力覚値に基づいて、前記ロボットの制御を行う制御部と、
を含み、
前記力覚値補正部は、
前記ロボットの複数の姿勢において得られた複数の前記力覚値に基づいて、前記補正処理を行うことを特徴とするロボットシステム
A robot system ,
With robots,
A force value correction unit that acquires a force value from a force sensor provided corresponding to the mechanical mechanism of the robot and performs correction processing of the force value;
A control unit that controls the robot based on the force value after the correction process;
Including
The force value correction unit
Robot system on the basis of the plurality of the power objective value obtained in a plurality of postures of the robot, and performs the correction processing.
請求項1において、
前記力覚値補正部は、
前記ロボットの第1〜第N(Nは2以上の整数)の姿勢において得られた第1〜第Nの力覚値に基づいて、前記機械機構の質量中心位置を推定し、推定した前記質量中心位置に基づいて、前記補正処理を行うことを特徴とするロボットシステム
In claim 1,
The force value correction unit
The first to N robot (N is an integer of 2 or more) based on ChikaraSatoshichi first to N obtained in the attitude of the mass the estimated center of mass position of the mechanical system, it was estimated A robot system that performs the correction processing based on a center position.
請求項2において、
前記力覚値補正部は、
前記機械機構の質量、前記質量中心位置、及び前記ロボットの前記姿勢に基づいて、前記機械機構により前記力覚センサーに作用する前記力覚値を推定することで、前記補正処理を行うことを特徴とするロボットシステム
In claim 2,
The force value correction unit
The correction processing is performed by estimating the force value acting on the force sensor by the mechanical mechanism based on the mass of the mechanical mechanism, the center position of the mass, and the posture of the robot. A robot system .
請求項2又は3において、
前記力覚値補正部は、
前記ロボットの第1の姿勢において得られた第1の力覚値に基づいて、前記機械機構の前記質量中心位置を推定する処理を行い、
前記制御部は、
前記力覚値補正部により前記質量中心位置の推定が不可と判定された場合には、前記ロボットの姿勢を前記第1の姿勢とは異なる第2の姿勢に変更する制御を行い、
前記力覚値補正部は、
前記制御部により前記ロボットが第2の姿勢となる制御が行われた後に取得された第2の力覚値に基づいて、前記機械機構の前記質量中心位置を推定し、推定した前記質量中心位置に基づいて、前記補正処理を行うことを特徴とするロボットシステム
In claim 2 or 3,
The force value correction unit
Based on the first haptic value obtained in the first posture of the robot , a process of estimating the mass center position of the mechanical mechanism is performed,
The controller is
If the force value correction unit determines that the center of mass position cannot be estimated, control is performed to change the posture of the robot to a second posture different from the first posture;
The force value correction unit
The mass center position of the mechanical mechanism is estimated based on a second haptic value acquired after the control unit performs control for the robot to be in the second posture, and the estimated mass center position The robot system is characterized in that the correction process is performed based on the above.
請求項2乃至4のいずれかにおいて、
前記力覚値補正部は、
推定した前記質量中心位置が所定誤差以内ではないと判定された場合には、エラー処理を実行することを特徴とするロボットシステム
In any of claims 2 to 4,
The force value correction unit
If the estimated the centroid position is determined not to be within a predetermined error, a robot system and executes error processing.
請求項5において、
前記力覚値補正部により推定された前記質量中心位置が所定誤差以内ではないと判定された場合には、
前記制御部は、
前記ロボットの姿勢を所与の姿勢とする制御を行い、
前記力覚値補正部は、
前記制御部により前記ロボットが前記所与の姿勢となる制御が行われた後の前記力覚値を取得し、取得した前記力覚値に対応する値をオフセット値として設定し、設定した前記オフセット値によるオフセット除去処理を、前記エラー処理として実行することを特徴とするロボットシステム
In claim 5,
When it is determined that the mass center position estimated by the force value correction unit is not within a predetermined error,
The controller is
Control the robot posture to a given posture,
The force value correction unit
The control unit acquires the force value after the robot is controlled to be in the given posture, sets a value corresponding to the acquired force value as an offset value, and sets the offset A robot system , wherein offset removal processing by value is executed as the error processing.
請求項2乃至6のいずれかにおいて、
前記力覚センサーが、X軸、Y軸及びZ軸の並進力Fx,Fy,Fzと、各軸まわりのモーメントMx,My,Mzを取得する6軸力覚センサーである場合に、
前記力覚値補正部は、
Fx,Fy及びMzにより決定される第1の平面と、Fy,Fz及びMxにより決定される第2の平面と、Fz,Fx及びMyにより決定される第3の平面を求め、
前記第1〜第3の平面の交点を前記質量中心位置として推定することを特徴とするロボットシステム
In any one of Claims 2 thru | or 6.
When the force sensor is a six-axis force sensor that obtains translational forces Fx, Fy, Fz on the X, Y, and Z axes and moments Mx, My, Mz around each axis,
The force value correction unit
Obtaining a first plane determined by Fx, Fy and Mz, a second plane determined by Fy, Fz and Mx, and a third plane determined by Fz, Fx and My;
A robot system , wherein an intersection of the first to third planes is estimated as the mass center position.
請求項7において、
前記第1の平面のx切片をA1,y切片をB1、z切片をC1とし、前記第2の平面のx切片をA2,y切片をB2、z切片をC2とし、前記第3の平面のx切片をA3,y切片をB3、z切片をC3として、行列M及びベクトルqを
Figure 2014014902
とした場合に、
前記力覚値補正部は、
前記質量中心位置を表す3次元ベクトルpを
Mp=q
に従って求めることで、前記質量中心位置を推定することを特徴とするロボットシステム
In claim 7,
The first plane x-intercept is A1, y-intercept B1, z-intercept is C1, the second plane x-intercept is A2, y-intercept B2, z-intercept is C2, and the third plane The x-intercept is A3, the y-intercept is B3, the z-intercept is C3, and the matrix M and vector q are
Figure 2014014902
If
The force value correction unit
A three-dimensional vector p representing the center of mass position is expressed as Mp = q
The robot system is characterized in that the center of mass position is estimated by obtaining according to:
請求項8において、
前記力覚値補正部は、
前記行列Mが正則でない場合に、前記質量中心位置の推定が不可であると判定することを特徴とするロボットシステム
In claim 8,
The force value correction unit
Robot system the matrix M and judging the if not regular, it is impossible to estimate the center of mass position.
請求項2乃至9のいずれかにおいて、
前記力覚値補正部は、
前記質量中心位置及び、前記機械機構の質量を含む情報を実行時パラメーターとして算出する実行時パラメーター算出部と、
算出された前記実行時パラメーターを記憶する実行時パラメーター記憶部と、
を含むことを特徴とするロボットシステム
In any one of Claims 2 thru | or 9.
The force value correction unit
A runtime parameter calculator that calculates information including the mass center position and the mass of the mechanical mechanism as runtime parameters;
A runtime parameter storage unit for storing the calculated runtime parameter;
A robot system characterized by including:
JP2012154584A 2012-07-10 2012-07-10 Robot system Expired - Fee Related JP6003312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154584A JP6003312B2 (en) 2012-07-10 2012-07-10 Robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154584A JP6003312B2 (en) 2012-07-10 2012-07-10 Robot system

Publications (3)

Publication Number Publication Date
JP2014014902A JP2014014902A (en) 2014-01-30
JP2014014902A5 true JP2014014902A5 (en) 2015-08-20
JP6003312B2 JP6003312B2 (en) 2016-10-05

Family

ID=50110059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154584A Expired - Fee Related JP6003312B2 (en) 2012-07-10 2012-07-10 Robot system

Country Status (1)

Country Link
JP (1) JP6003312B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931167B1 (en) * 2014-12-11 2016-06-08 ファナック株式会社 Human cooperative robot system
DE112016002797B4 (en) 2015-06-22 2019-12-12 Mitsubishi Electric Corporation CALIBRATION DEVICE AND ROBOT SYSTEM WITH SUCH A CALIBRATION DEVICE
KR101991571B1 (en) * 2017-07-26 2019-06-20 김철준 Air cleaner
KR102543596B1 (en) * 2018-08-31 2023-06-19 삼성전자주식회사 An electronic device and a method for caculating at least one parameter for measuring an external force
US20240131725A1 (en) 2021-04-30 2024-04-25 Fanuc Corporation Robot control device
CN116038726B (en) * 2022-12-28 2024-02-20 深圳市人工智能与机器人研究院 Nucleic acid sampling human-computer interaction device, method and robot based on visual and auditory sense

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639070B2 (en) * 1985-09-30 1994-05-25 松下電器産業株式会社 Robot device force sensor calibration method
JPS6284991A (en) * 1985-10-09 1987-04-18 株式会社日立製作所 Method of computing weight and position of centroid by forcesensor
JP2702015B2 (en) * 1991-10-25 1998-01-21 日立建機株式会社 Weight and center of gravity position correction device for force control work machine
JP3086104B2 (en) * 1993-05-07 2000-09-11 日立建機株式会社 Weight and center of gravity position correction device for force control work machine
JPH07205075A (en) * 1994-01-25 1995-08-08 Nippon Steel Corp Weight compensation method of end effector at force control robot
JP2681035B2 (en) * 1995-03-23 1997-11-19 工業技術院長 Force control robot for force detection compensation
JP5618066B2 (en) * 2010-08-18 2014-11-05 株式会社Ihi Force control robot calibration apparatus and method
JP5720876B2 (en) * 2010-11-29 2015-05-20 株式会社Ihi Processing robot and gravity compensation method thereof

Similar Documents

Publication Publication Date Title
JP2014014902A5 (en) Robot system
JP2014018931A5 (en) Robot control system and robot control apparatus
JP6007636B2 (en) Robot control system and robot control apparatus
JP7015068B2 (en) Collision processing by robot
US8515579B2 (en) Systems and methods associated with handling an object with a gripper
Vorndamme et al. Collision detection, isolation and identification for humanoids
JP2013025666A5 (en)
CN110032816B (en) Mechanical arm torque estimation method and estimation system
JP6003312B2 (en) Robot system
Su et al. Grasping objects: The relationship between the cage and the form-closure grasp
Guadarrama-Olvera et al. Pressure-driven body compliance using robot skin
Zaidi et al. Interaction modeling in the grasping and manipulation of 3D deformable objects
WO2017080649A3 (en) Sensitive robots using sensor technology arranged before the first robot axis
Bonnet et al. Inertial parameters identification of a humanoid robot hanged to a fix force sensor
Kawamura et al. Dynamic object manipulation using a multi-fingered hand-arm system: Enhancement of a grasping capability using relative attitude constraints of fingers
Qiu et al. A sensorless collision detection approach based on virtual contact points
Kawamura et al. Robust manipulation for temporary lack of sensory information by a multi-fingered hand-arm system
CN113442118B (en) Collision response control method and system for wearable outer limb robot
Al Mashhadany Hybrid ANFIS Controller for 6-DOF Manipulator with 3D Model
Cai et al. Design and Simulation of a dsp Controller for a Larm Hand
Lin et al. A projected inverse dynamics approach for dual-arm cartesian impedance control
Wilmart et al. Computation of the safety zmp zone for a biped robot based on error factors
Watanabe et al. Shape computation of closed elastica under external forces
Takeo et al. Rotation control of polygonal prism by multi-legged robot
WEI et al. Design and modeling for a kind of humanoid dexterous hand with elastic palm