JP2014014855A - 画像処理方法及び画像処理システム - Google Patents

画像処理方法及び画像処理システム Download PDF

Info

Publication number
JP2014014855A
JP2014014855A JP2012155375A JP2012155375A JP2014014855A JP 2014014855 A JP2014014855 A JP 2014014855A JP 2012155375 A JP2012155375 A JP 2012155375A JP 2012155375 A JP2012155375 A JP 2012155375A JP 2014014855 A JP2014014855 A JP 2014014855A
Authority
JP
Japan
Prior art keywords
bead
image processing
image
line
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155375A
Other languages
English (en)
Inventor
Hidenobu Ishida
英伸 石田
Sai Hagiwara
宰 萩原
Masaki Okajima
正樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2012155375A priority Critical patent/JP2014014855A/ja
Publication of JP2014014855A publication Critical patent/JP2014014855A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】ビーム系接合のビード全体の形状を正確に認識することができ、かつビードの形状を認識するための画像処理を簡略化できる画像処理方法及び画像処理システムを提供する。
【解決手段】ビーム系接合時に残熱発光が生じている状態の溶接領域を撮影かつ取り込んだ画像に基づいて、溶接領域に形成されるビードの形状を認識する画像処理方法であって、ビードに対応する画像内のビード領域の幅中心に沿った線として定義される背骨線を、予め定められた接合用ビーム中心の移動軌跡に基づいて算出する画像処理方法。その方法を用いた画像処理システム。
【選択図】図7

Description

本発明は、ビーム系接合時に残熱発光が生じている状態の溶接領域をモニタ部によって撮影かつ取り込んだ画像に基づいて、溶接領域に形成されるビードの形状を認識する画像処理方法に関し、かつその方法を用いた画像処理システムに関する。
従来より、特許文献1に開示されるように、レーザ溶接中に発光が生じている溶接領域を、カメラ、光センサ等によって撮影し、かつ撮影した溶接領域の画像を取り込み、取り込んだ画像に基づいて、溶接領域のビードの形状を認識する画像処理が行われている。しかしながら、特許文献1の画像処理では、レーザ溶接中に発生するプラズマ光、スパッタ粒子等の影響によって、溶接領域のビードの形状を正確に認識することが難しくなっており、このことが問題になっている。
そこで、特許文献2に開示されるように、プラズマ光、スパッタ粒子等の影響を避けるべく、レーザ溶接直後に金属の発熱が残っている短い時間内にビードの接合終端部分に生じる熱発光(以下、「残熱発光」という)をカメラによって撮影し、かつ撮影した残熱発光の画像を取り込む溶接画像処理が提案されている。この画像処理では、取り込んだ残熱発光の画像に基づいてビードの接合終端部分の形状を認識している。また、この画像処理では、取り込んだ画像にて不連続に分離したビードの形状が認識された場合、及びビードの溶接終端に凹形状が認識された場合に、穴欠陥が発生したと判定している。
特開2006− 43741号公報 特開2012− 45610号公報
しかしながら、特許文献2の画像処理では、レーザ溶接直後に残熱発光が生じているビードの接合終端部分の形状を正確に認識できる一方で、この画像処理では、ビードの接合始端部分、並びに接合始端部分及び接合終端部分間に位置するビードの接合中間部分における残熱発光がレーザ溶接直後には冷えて弱くなっているために、ビードの接合始端部分の形状、及びビードの接合中間部分の形状を正確に認識することが困難になっている。そのため、レーザ溶接のビード全体の形状を正確に認識することが望まれている。その一方で、ビードの形状を認識する画像処理を簡略化することもまた望まれている。
本発明はこのような実状に鑑みてなされたものであって、その目的は、ビード全体の形状を正確に認識することができ、かつビードの形状を認識するための画像処理を簡略化できる画像処理方法及び画像処理システムを提供することにある。
課題を解決するために、本発明の一態様に係る画像処理方法は、ビーム系接合時に残熱発光が生じている状態の溶接領域を撮影かつ取り込んだ画像に基づいて、前記溶接領域に形成されるビードの形状を認識する画像処理方法であって、前記ビードに対応する前記画像内のビード領域の幅中心に沿った線として定義される背骨線を、予め定められた接合用ビーム中心の移動軌跡によって算出する。
本発明の一態様に係る画像処理方法では、前記背骨線が、該背骨線上で間隔を空けて配置される複数の点のうち隣接する点同士を直線で結んだ折れ線によって定義される。
本発明の一態様に係る画像処理方法では、前記複数の点の数がN+1個になっており、各点の座標が(X,Y)(J=1,2,3,・・・,N,N+1)になっており、かつ前記隣接する点同士を結んだ直線がN本である場合に、前記背骨線が後述する式(3)によって計算され、式(3)のAXJ、BXJ、AYJ、BYJ、及びtは、それぞれ後述する式(4)〜式(8)によって定義される。
課題を解決するために、本発明の一態様に係る画像処理システムは、上述の画像処理方法を用いる。
本発明によれば、以下の効果を得ることができる。本発明の一態様に係る画像処理方法は、ビーム系接合時に残熱発光が生じている状態の溶接領域を撮影かつ取り込んだ画像に基づいて、前記溶接領域に形成されるビードの形状を認識する画像処理方法であって、前記ビードに対応する前記画像内のビード領域の幅中心に沿った線として定義される背骨線を、予め定められた接合用ビーム中心の移動軌跡によって算出する。このような接合用ビーム中心の移動軌跡は、ビード領域の幅中心に沿った線に一致する傾向にあるので、プラズマ光及びスパッタ粒子の影響を受けずに、ビード領域の位置及び形状情報として用いられる背骨線を正確に定義できる。そのため、正確な背骨線に基づいて、ビードの接合終端部分に加えて、プラズマ光及びスパッタ粒子の影響を受けるビードの接合始端部分及び接合中間部分を正確に認識できて、ビード全体の形状を正確に認識できる。また、背骨線が予め定められた接合用ビーム中心の移動軌跡に基づいて直接的に算出されるので、ビードの形状を認識するための画像処理を簡略化できる。
本発明の一態様に係る画像処理方法では、前記背骨線が、該背骨線上で間隔を空けて配置される複数の点のうち隣接する点同士を直線で結んだ折れ線によって定義される。また、本発明の一態様に係る画像処理方法では、前記複数の点の数がN+1個になっており、各点の座標が(X,Y)(J=1,2,3,・・・,N,N+1)になっており、かつ前記隣接する点同士を結んだ直線がN本である場合に、前記背骨線が後述する式(3)によって計算され、式(3)のAXJ、BXJ、AYJ、BYJ、及びtは、それぞれ後述する式(4)〜式(8)によって定義される。そのため、背骨線が簡単な折れ線によって定義されて、ビードの形状を認識するための画像処理を簡略化できる。
課題を解決するために、本発明の一態様に係る画像処理システムは、上述の画像処理方法を用いる。そのため、上述のようにビード全体の形状を正確に認識することができ、かつビードの形状を認識するための画像処理を簡略化できる。
溶接領域に形成されるビードを示す模式図である。 本発明の第1実施形態に係る画像処理システムを示すブロック図である。 本発明の第1実施形態における画像取り込み装置のレーザ照射部及びモニタ部を示す模式図である。 黒体放射の輻射強度と波長との関係を示す図である。 シリコン系の半導体から作製される撮像素子の相対感度と撮像素子に入力される波長との関係を示す図である。 本発明の第1実施形態における溶接直後の時間経過と残熱発光の輝度との関係を示す図である。 本発明の第1実施形態における背骨点及び背骨線を表示した画像の一例を示す模式図である。 本発明の第1実施形態において、実際のビードに対応してビード領域を表示した画像の一例を示す模式図である。 本発明の第1実施形態における背骨点、輪郭点、背骨線、及び輪郭線を表示した画像の一例を示す模式図である。 本発明の第1実施形態における画像処理方法の概要を説明するフローチャートである。 図10のフローチャートにおける背骨線事前記録方法を説明するフローチャートである。
[第1実施形態]
本発明の第1実施形態に係る画像処理システムについて説明する。
最初に、図1を参照して、画像処理を実施する対象である溶接部材Mの溶接領域Jに形成されるビードmについて説明する。略円弧状に形成されたビードmは、レーザ溶接の開始地点に形成される接合始端部分(以下、「始端部分」という)m1と、レーザ溶接の溶接終了地点に形成される接合終端部分(以下、「終端部分」という)m2と、始端部分m1及び終端部分m2間に形成される接合中間部分(以下、「中間部分」という)m3とを有している。本実施形態では、一例として、ビードmは略円弧状に形成されているが、直線状、L字状、波状等のようなその他の形状であってもよい。
図2を参照すると、画像処理システム1は画像取り込み装置2を有しており、この画像取り込み装置2は、溶接用のレーザ光L1を溶接部材Mの溶接領域Jに照射可能とし、レーザ溶接時の残熱発光が生じている溶接領域Jを撮影し、かつ撮影した溶接領域Jの画像を取り込むように構成されている。また、画像処理システム1は、画像取り込み装置2に接続される画像処理装置3を有している。画像処理装置3は画像処理部4を有しており、画像処理部4は、画像取り込み装置2により取り込んだ溶接領域Jの画像に基づいてビードmの形状を認識するようになっている。画像処理装置3はビード形状判定部5を有しており、ビード形状判定部5は、画像処理部4により認識されたビードmの形状に基づいて、ビードmに発生する欠陥を判定するようになっている。
ここで、図2及び図3を参照して、画像取り込み装置2の詳細を説明する。図2を参照すると、画像取り込み装置2はレーザ照射部6を有しており、このレーザ照射部6は、溶接部材Mの溶接領域Jに溶接用のレーザ光L1を照射可能とするように構成されている。画像取り込み装置2はモニタ部7を有しており、このモニタ部7はレーザを照射した溶接領域Jの画像を連続的に撮影するように構成されている。画像取り込み装置2は記憶部8を有しており、この記憶部8はモニタ部7により撮影した画像を連続的に記憶するように構成されている。画像取り込み装置2は画像取り込み部9を有しており、この画像取り込み部9は、記憶部8に記憶された画像を取り込むように構成されている。
図3を参照すると、レーザ照射部6はレーザ発振器6aを有しており、レーザ発振器6aはレーザ光L1を発射可能とするように構成されている。レーザ照射部6は略平板状のハーフミラー6bを有しており、ハーフミラー6bは、レーザ発振器6aから発射されたレーザ光L1の光路上に配置されている。このハーフミラー6bの表面6b1及び裏面6b2は、レーザ発振器6aから発射されるレーザ光L1の光路に対して、所定の角度θ1傾斜している。一例として、所定の角度θ1は45度であると好ましい。レーザ照射部6は溶接用集光レンズ6cを有しており、溶接用集光レンズ6cは、ハーフミラー6bを通過したレーザ光L1の光路上に配置され、かつこのレーザ光L1を溶接部材M上に集光するように構成されている。このようなレーザ照射部6においては、レーザ発振器6aから発射されたレーザ光L1が、ハーフミラー6bを通過し、かつ溶接用集光レンズ6cによって集光された後に、溶接部材Mに照射されることとなる。また、溶接部材Mに照射されたレーザ光L1の一部は反射して、この反射した光(以下、「モニタリング光」という)L2が、溶接用集光レンズ6cを通過し、かつハーフミラー6bによって角度を変えられた後に、モニタ部7に送られることとなる。
モニタ部7は略平板状のミラー7aを有しており、ミラー7aは、レーザ照射部6のハーフミラー6cによって角度を変えられたモニタリング光L2の光路上に配置され、ミラー7aの反射面7a1は、このモニタリング光L2の光路に対して、所定の角度θ2傾斜している。モニタ部7は倍率調整レンズ7bを有しており、倍率調整レンズ7bは、撮影倍率を調整するように構成されている。この倍率調整レンズ7bは、ミラー7aにより反射されたモニタリング光L2の光路上に配置されている。モニタ部7は、後述するシリコン系の半導体から作製された撮像素子(以下、「Si系撮像素子」という)7fに対応するロングパスフィルタ(以下、「Si用ロングパスフィルタ」という)7cを有しており、Si用ロングパスフィルタ7cは、800nm以上の波長範囲で光を透過するように構成されている。このSi用ロングパスフィルタ7cは、倍率調整レンズ7bを通過したモニタリング光L2の光路上に配置されている。モニタ部7はNDフィルタ7dを有しており、NDフィルタ7dは、それを通過する光の量を減少するように構成されている。このNDフィルタ7dは、Si用ロングパスフィルタ7cを通過したモニタリング光L2の光路上に配置されている。モニタ部7は撮像用集光レンズ7eを有しており、撮像用集光レンズ7eは、NDフィルタ7dを通過したモニタリング光L2の光路上に配置され、かつこのモニタリング光L2を、後述するSi系撮像素子7fの撮像面上に集光するように構成されている。モニタ部7はSi系撮像素子7fを有しており、Si系撮像素子7fは、モニタリング光L2をアナログ電気信号に変換するように構成されている。また、Si系撮像素子7fは、200nm〜1100nmの波長範囲において光に対する感度を有している。モニタ部7はアンプ7gを有しており、アンプ7gは、Si系撮像素子7fから送られるアナログ電気信号を増幅するように構成されている。モニタ部7はA/D変換器7hを有しており、A/D変換器7hはアンプ7gにより増幅されたアナログ電気信号をデジタル電気信号に変換するように構成されている。このA/D変換器7hにより変換されたデジタル電気信号が記憶部8に送られることとなる。なお、モニタ部7のフレームレートは、50Hz以上かつ1000Hz以下になっている。
Si系撮像素子7fの撮像面の条件について説明する。Si系撮像素子7fの撮像面がビードm全体を配置した領域に対して著しく大きい場合、画像上で表示されるビードmが少ないピクセル数によって表されるので、ビードmの形状を正確に認識できなくなる。そのため、Si系撮像素子7fの撮像面が略正方形状に形成されていると想定した場合、撮像面の一辺の長さをdとし、溶接用集光レンズ6cの焦点距離をf1とし、撮像用集光レンズ7eの焦点距離をf2とし、倍率調整レンズ7bの倍率をsとし、ビードm全体を配置した領域の最大長さをlとすると、Si系撮像素子7fの撮像面の一辺の長さは、次の式(1)の条件を満たすと好ましい。
Figure 2014014855
Si用ロングパスフィルタ7cを透過する光の波長範囲について説明する。レーザ溶接中に発生するプラズマ光は、原子の軌道電子により発生する遷移発光の成分を多く含んでおり、この遷移発光の波長範囲は、典型的には、可視域に相当する200nm〜780nmの範囲になっている。一方で、黒体放射の輻射強度と波長との関係は、黒体放射の式を用いて絶対温度を1200K、1000K、及び800Kとして計算した場合、図4に示したグラフのようになっている。図4のグラフでは、絶対温度を1200Kとした場合の計算結果を実線A1で示し、絶対温度を1000Kとした場合の計算結果を破線A2で示し、かつ絶対温度を800Kとした場合の計算結果を一点鎖線A3で示している。図4のグラフを参照すると、黒体放射の輻射強度は、波長が長くなるに連れて高くなっている。また、黒体放射の輻射強度は、温度が高くなるに連れて高くなっている。そのため、高い温度を有する残熱発光に含まれる黒体放射の輻射強度が高くなることが確認できる。
また、Si系撮像素子7fの相対感度と、Si系撮像素子7fに入力される光の波長との関係は、典型的には、図5に示すようになっている。図5に示すように、Si系撮像素子7fの感度は、600nm以上の波長範囲で低下しており、Si系撮像素子7fは、800nm〜1100nmの波長範囲において、低い強度の光を感知し難く、かつ高い強度の光を感知する傾向にある。
そこで、プラズマ光に多く含まれる遷移発光の波長範囲の上限値780nmと、波長のバラツキとを考慮して、Si用ロングパスフィルタ7cを透過する光の波長範囲は、800nm以上に定められている。そのため、Si系撮像素子7fには、800nm以上の波長範囲で光が送られて、Si系撮像素子7fは、入力される光を800nm〜1100nmの波長範囲で感知することとなる。このような波長範囲では、Si系撮像素子7fは、低い輻射強度を有する遷移発光の成分を含んだプラズマ光を感知し難い一方で、高い輻射強度を有する黒体放射による発光の成分を多く含む残熱発光を感知し易くなっている。なお、Si用ロングパスフィルタ7cは、800nmより小さな波長の光を遮断するように構成されていると好ましい。しかしながら、Si系撮像素子7fは、800nm〜1100nmの波長範囲で光を感知できればよいので、例えば、Si用ロングパスフィルタ7cが、800nm、900nm、又は1000nmより小さな波長の光を遮断するように構成されていてもよい。
また、モニタ部7のフレームレートの範囲について説明する。溶接開始付近では発生するプラズマが大きな領域を占めているので、溶接を既に終えているビードmを観察できないことが多い。そのため、溶接開始から一定時間経過後に、記憶部8に画像を蓄積することが有効である。また、ビードm全体を画像処理の対象とするためには、連続して取得した複数の画像の一部を用いればよいので、このような複数の画像の一部を取得すればよい。また、画像処理に用いる画像は、完全に連続している必要はない。ビードmの終端部分m2においては、高速で複数の画像を撮影しない場合に、金属が冷えるので、画像の撮影は高サンプリングにする必要がある。その一方で、溶接開始から溶接終了までの間の途中観察において、高サンプリングで画像の撮影をした場合、ほとんど変化がない複数の画像が取得されることとなる。このような複数の画像において同様の特性を計算することは無駄になるので、モニタ部7のフレームレートは、計算処理時間の短縮、記憶部8の容量の節約等を考慮して定めることが好ましい。そこで、フレームレートの上限値が高くなるに連れて、撮影される画像の数量が増加することによって、ビードmの形状を認識する精度が高くなる一方で、1秒間に撮影される画像の数量が1000フレームより大きい場合(すなわち、フレームレートが1000Hzより大きい場合)、画像処理の計算負荷が増加することとなることを考慮して、フレームレートの上限値は1000Hzに定められている。
その一方で、フレームレートの下限値が低い場合、1つの画像を撮影するタイミングから次の画像を撮影するタイミングまでの間に、撮影しようとするビードmの溶接領域Jが移動して、モニタ部7により捕らえられた撮影範囲から外れるおそれがある。この場合、ビードmを正確に撮影することができなくなる。そこで、フレームレートの下限値は、次のような条件を満たす必要がある。
フレームレートをfとし、溶接に用いられるレーザ光L1の移動速度をVmとし、かつ撮影範囲の中心から撮影範囲内と撮影範囲外との間の境界までの最短距離をRmとした場合、フレームレートは、次の式(2)の条件を満たすと好ましい。
Figure 2014014855
典型的な条件において、Vmは0.133m/sec(8m/min)になり、かつRmは0.002m(2mm)になるので、式(2)よりfを約67Hzより大きくする必要がある。さらに、レーザ光L1の移動速度のバラツキを考慮して、フレームレートの下限値は50Hzに定められている。
図6を参照すると、画像取り込み部9は、溶接終了直後から所定の時間内に生じる残熱発光の画像を取り込むように構成されている。具体的には、画像取り込み部9は、画像の平均輝度Gが所定の取り込み開始(検査開始)輝度閾値g1以下である場合に、画像の取り込みを開始し、予め設定された枚数の画像の撮影を終了した場合に、又は画像の平均輝度Gが所定の取り込み終了輝度閾値g2以下である場合に、残熱発光が終了したと認識して、画像の取り込みを終了するように構成されている。
ここで、画像取り込み装置2の好ましい形態の一例を説明する。残熱発光は、溶接終了直後から数十ms(ミリ秒)間生じた後に減衰するので、溶接終了直後から約20ms間に生じる光であると好ましい。この場合、モニタ部7には、フレームレート約500Hz(周期2ms)の高速度カメラが用いられるとよく、約10枚(=20ms÷2ms)の画像が取り込まれることとなる。また、モニタ部7には、高ダイナミックレンジカメラが用いられると好ましく、信号検出のダイナミックレンジが広く、かつ計測可能な輝度の範囲が広くなっているので、溶接中及び溶接直後の画像を撮影できる。画像取り込み部9では、画像の取り込みを開始する開始輝度閾値g1が、溶接中及び溶接直後の平均輝度Gの中間値となっていると好ましい。画像の取り込みを終了する終了輝度閾値g2は、開始輝度閾値g1より小さく、かつ残熱発光を確認できない程に暗くなった状態の画像の平均輝度Gより大きくなっていると好ましい。
次に、図2、及び図7〜図9を参照して、画像処理装置3の画像処理部4の詳細を説明する。図2を参照すると、画像処理部4は背骨線記録手段10を有しており、背骨線記録手段10は、図7に示すように、溶接部材Mに照射されるレーザ光L1の中心の移動経路に基づいて、移動経路上で所定の間隔を空けて定められる(N+1)個の背骨点qと、隣接する背骨点q同士を直線で結ぶことによって定義されるN本の背骨線Qとを事前に記録するようになっている。図2を参照すると、画像処理部4はビード認識手段11を有しており、このビード認識手段11は、画像取り込み装置2によって取り込んだ画像に基づいて、ビード領域候補を認識するようになっている。画像処理部4はビード判別手段12を有しており、このビード判別手段12は、複数のビード領域候補が認識された場合に、図8に示すように複数のビード領域候補から実際のビードに対応するビード領域Eを選択するようになっている。なお、ビード領域Eは、ビードmの始端部分m1に対応する始端部分E1、ビードmの終端部分m2に対応する中間部分E2、及びビードmの中間部分m3に対応する終端部分E3を有している。再び図2を参照すると、画像処理部4は輪郭点選択手段13を有しており、この輪郭点選択手段13は、図9に示すように、ビード領域Eの輪郭線上に位置するビード領域点eを輪郭点pとして選択するようになっている。画像処理部4は輪郭線形成手段14を有しており、図9に示すように、この輪郭線形成手段14は、複数の輪郭点pに基づいて輪郭線Pを形成するようになっている。
図7を参照して、背骨線記録手段10の詳細について説明する。背骨線記録手段10では、画像取り込み部9に取り込まれた各画像において、レーザ光L1の中心の移動経路上に(N+1)個(N=1,2,3,・・・)の背骨点qを形成し、かつ隣接する背骨点q同士を直線で結ぶことによってN本の背骨線Qを定義するようになっている。レーザ光L1の中心の移動軌跡は、ビード領域Eの幅中心に沿った線に一致する傾向にあるので、この背骨線Qは、ビード領域Eの幅中心に沿っている線と想定することができる。
図8を参照すると、背骨線Qは、各背骨点qの座標を(X,Y)(J=1,2,3,・・・,N,N+1)と認識した場合に、下記式(3)によって定義される。
Figure 2014014855
式(3)のAXJ、BXJ、AYJ、BYJ、及びtは、それぞれ下記式(4)〜式(8)によって定義される。
Figure 2014014855
ビード認識手段11の詳細について説明する。ビード認識手段11によって認識されるビード領域候補は、所定の輪郭輝度閾値hより残熱発光の輝度Hが大きい領域となっており、輪郭輝度閾値hは、ビードmの輪郭線を識別可能とするように設定されている。なお、このビード領域Eは、複数のビード領域点eから構成されている。一例として、ビード領域点eは、画像上で1つ以上のピクセルにより表され、複数のビード領域点eは、互いに隣接して配置されるか、又はピクセル単位の間隔で配置されているとよい。
ビード判別手段12の詳細について説明する。ビード判別手段12は、各ビード領域候補のアスペクト比(縦横比)を計算し、このアスペクト比に基づいて、複数のビード領域候補から実際のビードmに対応するビード領域Eを選択するようになっている。例えば、アスペクト比が一般的なビードmの横長形状に対応する値より大きくなっている場合に、このようなビード領域候補が実際のビードmに相当すると認識する設定であるとよい。実際のビードmと、溶接時に飛散するスパッタ粒子とにそれぞれ対応するビード領域候補が認識された場合、スパッタ粒子に対応するビード領域候補は、等方的な形状に形成されるのに対して、ビードmは横長形状に形成されることとなる。そのため、実際のビードmに対応するビード領域Eが正確に判別されることとなる。さらに、スパッタ粒子に対応するビード領域候補が、等方的な形状に形成されていない場合を考慮して、ビード判別手段12は、複数のビード領域候補が時間を前後して取り込んだ画像にて移動しているか、又は停止しているかを判定し、かつ停止しているビード領域候補が実際のビードmに対応するビード領域Eであると認識するようになっている。
図9を参照して、輪郭点選択手段13の詳細について説明する。輪郭点選択手段13は、画像取り込み装置2によって取り込んだ画像に基づいて、ビードmの輪郭に相当する境界に位置するビード領域点eを輪郭点pとして選択するようになっている。ビードmの輪郭に相当する境界は、残熱発光の輝度Hが、ビードmの輪郭線を識別するように設定した輪郭輝度閾値hより大きい明領域と、残熱発光の輝度Hが、輪郭輝度閾値hより小さい暗領域との間に位置している。すなわち、輪郭輝度閾値hは、ビードmの輪郭に対応するように、ビードmの輪郭の内側領域に対応する残熱発光の輝度Hより小さく、かつビードmの輪郭の外側領域に対応する残熱発光の輝度Hより大きな値に設定されている。なお、一例として、輪郭輝度閾値hは、ビードmの輪郭と残熱発光の輝度Hとの関係を予め求めておくことによって、設定されているとよい。
図9を参照して、輪郭線形成手段14の詳細について説明する。輪郭線形成手段14は、フィッティング関数fn1を用いて、複数の輪郭点pに基づく輪郭線Pを形成する。一例として、互いに直角に交差するX軸及びY軸を定めた場合、フィッティング関数fn1は、Y=aX+bX+c、又はX=a’Y+b’Y+c’であるとよく、これらの係数a、b及びc、又は係数a’、b’及びc’は、フィッティング関数fn1と複数の輪郭点pとの距離の二乗和を最小とするように定められるとよい(最小二乗法)。さらに、フィッティング関数fn1については、Y=aX+bX+c、及びX=a’Y+b’Y+c’のそれぞれの計算式に基づいて計算し、これらの内でフィッティング誤差が小さい方の計算式を選択し、この選択した計算式を用いて輪郭線Pを形成するとよい。なお、フィッティング関数fn1は、3次関数、4次関数等の多項式関数、指数関数、対数関数等であってもよい。また、フィッティング関数fn1は、輪郭点pに基づいて輪郭線Pを形成できれば、その他のフィッティングに用いられる関数であってもよい。例えば、フィッティング関数fn1は、背骨点qに基づく背骨線Qと同様の折れ線によって定義されてもよい。
画像処理装置3のビード形状判定部5の詳細を説明する。ビード形状判定部5は、画像処理部4により認識された輪郭線P及び背骨線Q間の関係と、背骨線Qに沿った残熱発光の輝度の情報とに基づいて、ビードmに発生する欠陥を判定するようになっている。
ここで、本実施形態の画像処理システム1を用いて溶接領域Jに形成されるビードmの形状を認識する方法を説明する。最初に、画像取り込み装置2における画像取り込み方法について説明する。画像取り込み装置2のレーザ照射部6において、レーザ発振器6aがレーザ光L1を発射する。レーザ発振器6aから発射されたレーザ光L1は、ハーフミラー6bを通過し、かつ溶接用集光ミラー6cによって集光された後に、溶接部材Mの溶接領域Jに照射される。その後、溶接部材Mの溶接領域Jに照射されたレーザ光L1によりビードmを形成した部分から残熱発光が出射してモニタリング光L2となる。このモニタリング光L2が、溶接用集光レンズ6cを通過し、かつハーフミラー6bによって角度を変えられた後に、モニタ部7に送られる。
画像取り込み装置2のモニタ部7において、レーザ照射部6から送られたモニタリング光L2は、ミラー7aによって角度を変えられた後に、倍率調整レンズ7bに送られる。モニタリング光L2が倍率調整レンズ6bを通過する際、その倍率が調整される。倍率調整レンズ7bにより倍率調整されたモニタリング光L2は、Si用ロングパスフィルタ7cに送られる。Si用ロングパスフィルタ7cにおいて、モニタリング光L2の800nmより小さな波長成分が遮断され、かつモニタリング光L2の800nmより大きな波長成分がSi用ロングパスフィルタ7cを透過する。Si用ロングパスフィルタ7cを通過したモニタリング光L2は、NDフィルタ7dに送られる。NDフィルタ7dにおいて、モニタリング光L2の光の量が、画像処理装置3の画像処理部4によってビードmの形状を明確に認識可能とするように減少する。NDフィルタ7dを通過したモニタリング光L2は、撮像用集光レンズ7eに送られる。撮像用集光レンズ7eにおいて、モニタリング光L2が集光される。撮影用集光レンズ7eにより集光されたモニタリング光L2は、Si系撮像素子7fに照射される。Si系撮像素子7fにおいて、モニタリング光L2における800nm〜1100nmの波長範囲の成分が感知され、感知されたモニタリング光L2がアナログ電気信号に変換され、このアナログ電気信号はアンプ7gに送られる。アンプ7gにおいて、アナログ電気信号は増幅され、増幅されたアナログ電気信号はA/D変換器7hに送られる。A/D変換器7hにおいて、アナログ電気信号はデジタル電気信号に変換され、このデジタル電気信号は記憶部8に送られる。記憶部8において、デジタル電気信号は1つの画像として記憶される。このようにSi系撮像素子7fにモニタリング光L2を照射し、Si系撮像素子7fによりモニタリング光L2をアナログ電気信号に変換し、A/D変換器7hによりアナログ電気信号をデジタル電気信号に変換し、かつこのデジタル電気信号を1つの画像として記憶する動作は、50Hzより大きくかつ1000Hzより小さなフレームレートに基づいて連続的に実施される。さらに、記憶部8に記憶された画像は画像取り込み部9に取り込まれる。
次に、図10のフローチャートを参照して、画像処理装置3の画像処理部4における画像処理方法の概要を説明する。溶接部材Mに照射されるレーザ光L1の中心の予め定められた移動経路上で所定の間隔を空けた位置に対応して(N+1)個の背骨点qを設定し、隣接する背骨点q同士を直線で結ぶことによってN本の背骨線Qを定義し、かつ背骨点q及び背骨線Qに関する情報を記録する(S1)。画像取り込み装置2の画像取り込み部9に取り込んだ画像に基づいて、所定の輪郭輝度閾値hより残熱発光の輝度Hが大きくなっているビード領域候補を認識し、複数のビード領域候補が認識された場合に、複数のビード領域候補の1つを読み出す(S2)。読み出されたビード領域候補がビードmに相当するビード領域Eであるか否かを判別する(S3)。
ここで、ビード領域候補がビードmに相当するビード領域Eであると判別された場合(YES)、ビード領域Eの輪郭線上に位置する輪郭点pを選択し(S4)、複数の輪郭点pに基づく輪郭線Pを形成する(S5)。その後、ビード領域候補のすべてを確認したか否かを判定する(S6)。ビード領域候補のすべてを確認した場合(YES)、画像処理を終了する。ビード領域候補のすべてを確認していない場合(NO)、複数のビード領域候補の別の1つを読み出し(S7)、読み出されたビード領域候補がビードmに相当するビード領域Eであるか否かを判別する(S3)。
その一方で、ビード領域候補がビードmに相当するビード領域Eでないと判別された場合(NO)、すなわち、ビード領域候補がスパッタ粒子であると判別された場合、ビード領域候補のすべてを確認したか否かを判定する(S6)。ビード領域候補のすべてを確認した場合(YES)、画像処理を終了する。ビード領域候補のすべてを確認していない場合(NO)、複数のビード領域候補の別の1つを読み出し(S7)、読み出されたビード領域候補がビードmに相当するビード領域Eであるか否かを判別する(S3)。
図11のフローチャートを参照して、背骨線記録手段10における背骨点q及び背骨線Qの記録方法の詳細について説明する。画像取り込み部9に取り込まれた複数枚の画像のうちi番目の画像(i=1,2,3,・・・)を読み出す(S11)。読み出された画像において、(N+1)個の背骨点qを設定する(S12)。上述の式(8)を用いて、背骨線Q上の節点を表す各背骨点qの座標(X,Y)に基づいて、節点を示すための変数tを算出する(S13)。上述の式(6)を用いてAXJ、BXJ、AYJ、及びBYJを算出する(S14)。i番目の画像におけるAXJ、BXJ、AYJ、BYJ、及びNのパラメータをテキストデータとして記録する(S15)。画像取り込み部9に取り込まれた複数枚の画像すべてに対して処理をしたか否かを判定する(S16)。複数枚の画像すべてにおける上述のパラメータがテキストデータとして記録された場合(YES)、背骨点q及び背骨線Qに関連する情報の記録作業を終了する。複数枚の画像すべてにおける上述のパラメータがテキストデータとして記録されていない場合(NO)、i+1番目の画像を読み出し(S17)、この読み出された画像において、(N+1)個の背骨点qを設定する(S12)。このような処理を、1番目の画像から順に繰り返す。
次に、画像処理装置3におけるビード形状判定方法を説明する。画像処理装置3のビード形状判定部5において、画像処理部4により記録されたm番目の画像におけるAXJ、BXJ、AYJ、BYJ、及びNのパラメータを読み出し、この読み出されたパラメータに基づいて背骨点q及び背骨線Qを算出する。このように算出された線Qの位置及び形状と、輪郭線Pの位置及び形状と、輪郭線P及び背骨線Q間の関係と、背骨線Qに沿った残熱発光の輝度の情報とに基づいて、ビードmに発生する欠陥を判定する。
以上のように本実施形態によれば、ビードmに対応する画像内のビード領域Eの幅中心に沿った線として定義される背骨線Qが、レーザ光L1の中心の予め定められた移動軌跡によって算出される。レーザ光L1の中心の移動軌跡は、ビード領域Eの幅中心に沿った線に一致する傾向にあるので、プラズマ光及びスパッタ粒子の影響を受けずに、ビード領域Eの位置及び形状の情報として用いられる背骨線Qを正確に定義できる。そのため、正確な背骨線Qに基づいて、ビードmの終端部分m3に加えて、プラズマ光及びスパッタ粒子の影響を受けるビードmの始端部分m1及び中間部分m3を正確に認識できて、ビードm全体の形状を正確に認識できる。また、背骨線Qが予め定められたレーザ光L1の中心の移動軌跡に基づいて直接的に算出されるので、ビードmの形状を認識するための画像処理を簡略化できる。
本実施形態によれば、背骨線Qが簡単な折れ線によって定義されるので、ビードmの形状を認識するための画像処理を簡略化できる。
[第2実施形態]
本発明の第2実施形態に係る画像処理システムについて以下に説明する。第2実施形態は、基本的には、第1実施形態と同様になっている。第1実施形態と同様な要素は、第1実施形態と同様の符号および名称を用いて説明する。ここでは、第1実施形態と異なる構成について説明する。
本実施形態では、第1実施形態におけるSi用ロングパスフィルタ7cの代わりに、後述するインジウムガリウムヒ素系の半導体から作製された撮像素子(以下、「InGaAs系撮像素子」という)に対応するInGaAs用ロングパスフィルタが設けられている。InGaAs用ロングパスフィルタは、1200nm以上の波長範囲で光を透過するように構成されている。本実施形態では、撮像器6fが、第1実施形態のSi系撮像素子6f1の代わりに、InGaAs系撮像素子を有している。InGaAs系撮像素子は、800nm〜2000nmの波長範囲において光に対する感度を有している。InGaAs系撮像素子は、モニタリング光L2をアナログ電気信号に変換するように構成されている。また、InGaAs系撮像素子の撮像面の条件は、第1実施形態におけるSi系撮像素子7fの撮像面の条件と同様になっている。
InGaAs用ロングパスフィルタを透過する光の波長範囲について説明する。上述したように、レーザ溶接中に発生するプラズマ光は、原子の軌道電子により発生する遷移発光の成分を多く含んでおり、この遷移発光の波長範囲は、典型的には、可視域に相当する200nm〜780nmの範囲になっている。一方で、黒体放射の輻射強度は、波長が長くなるに連れて高くなっている。また、黒体放射の輻射強度は、温度が高くなるに連れて高くなっている。そのため、高い温度を有する残熱発光に含まれる黒体放射の輻射強度が高くなることが確認できる。また、レーザ等の発光は、1060nm付近の波長成分を含んでいるので、InGaAs系撮像素子に入力される光は、1060nm周辺の波長範囲を避けることが好ましい。
そこで、プラズマ光に多く含まれる遷移発光の波長範囲の上限値780nmと、レーザ等の発光波長に相当する1060nm付近の波長の光を避けることと、レーザ等の発光波長のバラツキとを考慮して、InGaAs用ロングパスフィルタを透過する光の波長範囲は、1200nm以上に定められている。そのため、InGaAs系撮像素子には、1200nm以上の波長範囲で光が送られて、InGaAs系撮像素子は、入力される光を1200nm〜2000nmの波長範囲で感知することとなる。なお、InGaAs用ロングパスフィルタは、1200nmより小さな波長の光を遮断するように構成されていると好ましい。しかしながら、InGaAs系撮像素子は、800nm〜2000nmの波長範囲で光を感知できればよいので、例えば、InGaAs用ロングパスフィルタが、1300nm、1400nm、1500nm、1600nm、1700nm、1800nm、又は1900nmより小さな波長の光を遮断するように構成されていてもよい。
また、本実施形態の画像処理システム1を用いて溶接領域Jに形成されるビードmの形状を認識する方法は、本実施形態の上述した構成を除いて、第1実施形態と同様になっている。
以上のように本実施形態によれば、第1実施形態と同様の効果が得られる。
[第3実施形態]
本発明の第3実施形態に係る画像処理システムについて以下に説明する。第3実施形態は、基本的には、第1実施形態と同様になっている。第1実施形態と同様な要素は、第1実施形態と同様の符号および名称を用いて説明する。ここでは、第1実施形態と異なる構成について説明する。
本実施形態では、第1実施形態におけるSi用ロングパスフィルタ7cの代わりに、Si用バンドパスフィルタが設けられている。Si用バンドパスフィルタは、800nm以上かつ1050nm以下の波長範囲で光を透過するように構成されている。
Si用バンドパスフィルタを透過する光の波長範囲について説明する。Si用バンドパスフィルタを透過する光の波長範囲の下限値は、第1実施形態におけるSi用ロングパスフィルタ7cを透過する光の波長範囲の下限値を800nmとしたことと同様の理由に基づいて、800nmに定められている。また、レーザ等の発光波長に相当する1060nm付近の波長の光を避けることと、レーザ等の発光波長のバラツキとを考慮して、Si用バンドパスフィルタを透過する光の波長範囲の上限値は、1050nmに定められている。
本実施形態の画像処理システム1を用いて溶接領域Jに形成されるビードmの形状を認識する方法は、本実施形態の上述した構成を除いて、第1実施形態と同様になっている。
以上のように本実施形態によれば、第1実施形態と同様の効果が得られる。
[第4実施形態]
本発明の第4実施形態に係る画像処理システムについて以下に説明する。第4実施形態は、基本的には、第2実施形態と同様になっている。第2実施形態と同様な要素は、第2実施形態と同様の符号および名称を用いて説明する。ここでは、第2実施形態と異なる構成について説明する。
本実施形態では、第2実施形態におけるInGaAs用ロングパスフィルタの代わりに、InGaAs用バンドパスフィルタが設けられている。InGaAs用バンドパスフィルタは、1200nm以上かつ2000nm以下の波長範囲で光を透過するように構成されている。
InGaAs用バンドパスフィルタを透過する光の波長範囲について説明する。InGaAs用バンドパスフィルタを透過する光の波長範囲の下限値は、第2実施形態におけるInGaAs用ロングパスフィルタを透過する光の波長範囲の下限値を1200nmとしたことと同様の理由に基づいて、1200nmに定められている。また、長波長高感度タイプのInGaAs系撮像素子における光に対する感度の上限は2600nmとされ、短波長高感度タイプのInGaAs系撮像素子における光に対する感度の上限は1700nmとされている。さらに、短波長高感度タイプのInGaAs系撮像素子は、そのバンドギャップが緩やかに減少するために、1700nm〜2000nmの範囲においても一定の感度(応答性能)を有している。そのため、長波長高感度タイプ、短波長高感度タイプ等のあらゆるInGaAs系撮像素子に対応すべく、InGaAs用バンドパスフィルタを透過する光の波長範囲の上限値は2000nmに定められている。
以上のように本実施形態によれば、第2実施形態と同様の効果が得られる。
ここまで本発明の実施形態について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
例えば、本発明の変形例として、レーザ溶接以外のビーム系接合時に残熱発光が生じている状態の溶接領域Jをモニタ部7によって撮影及び取り込んだ画像に基づいて、溶接領域Jに形成されるビードmの形状を認識してもよい。この場合、ビーム系接合は、レーザブレージング、レーザクラッディング、プラズマ溶接、電子ビーム溶接等であるとよい。
1 画像処理システム
3 画像処理装置
4 画像処理部
6 レーザ照射部
10 背骨線記録手段
M 溶接部材
J 溶接領域
m ビード
m1 接合始端部分(始端部分)
m2 接合終端部分(終端部分)
m3 接合中間部分(中間部分)
L1 レーザ光
L2 モニタリング光
θ1,θ2 角度
G 平均輝度
g1 開始輝度閾値
g2 終了輝度閾値
E ビード領域
E1 始端部分
E2 終端部分
E3 中間部分
e ビード領域点
P 輪郭線
p 輪郭点
Q 背骨線
q 背骨点
A1 実線
A2 破線
A3 一点鎖線
S1〜S7,S11〜S17 ステップ

Claims (4)

  1. ビーム系接合時に残熱発光が生じている状態の溶接領域を撮影かつ取り込んだ画像に基づいて、前記溶接領域に形成されるビードの形状を認識する画像処理方法であって、
    前記ビードに対応する前記画像内のビード領域の幅中心に沿った線として定義される背骨線を、予め定められた接合用ビーム中心の移動軌跡によって算出する画像処理方法。
  2. 前記背骨線が、該背骨線上で間隔を空けて配置される複数の点のうち隣接する点同士を直線で結んだ折れ線によって定義される、請求項1に記載の画像処理方法。
  3. 前記複数の点の数がN+1個になっており、
    各点の座標が(X,Y)(J=1,2,3,・・・,N,N+1)になっており、かつ
    前記隣接する点同士を結んだ直線がN本である場合に、
    前記背骨線が下記式(a)
    Figure 2014014855

    によって算出され、
    式(a)のAXJ、BXJ、AYJ、BYJ、及びtは、それぞれ下記式(b)〜式(f)
    Figure 2014014855

    によって定義される、請求項2に記載の画像処理方法。
  4. 請求項1〜3のいずれか一項に記載の画像処理方法を用いる画像処理システム。
JP2012155375A 2012-07-11 2012-07-11 画像処理方法及び画像処理システム Pending JP2014014855A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155375A JP2014014855A (ja) 2012-07-11 2012-07-11 画像処理方法及び画像処理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155375A JP2014014855A (ja) 2012-07-11 2012-07-11 画像処理方法及び画像処理システム

Publications (1)

Publication Number Publication Date
JP2014014855A true JP2014014855A (ja) 2014-01-30

Family

ID=50110021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155375A Pending JP2014014855A (ja) 2012-07-11 2012-07-11 画像処理方法及び画像処理システム

Country Status (1)

Country Link
JP (1) JP2014014855A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828892A (zh) * 2021-10-29 2021-12-24 广东福维德焊接股份有限公司 基于hdr图像的熔池中心识别系统及焊缝跟踪方法
CN117773339A (zh) * 2024-02-27 2024-03-29 宁波吉宁汽车零部件有限公司 一种视觉检测防错系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828892A (zh) * 2021-10-29 2021-12-24 广东福维德焊接股份有限公司 基于hdr图像的熔池中心识别系统及焊缝跟踪方法
CN113828892B (zh) * 2021-10-29 2022-05-10 广东福维德焊接股份有限公司 基于hdr图像的熔池中心识别系统及焊缝跟踪方法
CN117773339A (zh) * 2024-02-27 2024-03-29 宁波吉宁汽车零部件有限公司 一种视觉检测防错系统

Similar Documents

Publication Publication Date Title
US10340280B2 (en) Method and system for object reconstruction
JP5338890B2 (ja) レーザ溶接の溶接位置検出装置および溶接位置検出方法
JP6429444B2 (ja) 画像処理装置、撮像装置及び画像処理方法
US20210144307A1 (en) Control apparatus, control method, and storage medium
CN105717513A (zh) 一种基于普通摄像头芯片的低成本激光测距装置及方法
JP2024028237A (ja) 分光カメラ、撮像方法、プログラム及び記録媒体
JP2014014857A (ja) 画像処理方法及び画像処理システム
JP6337131B2 (ja) 赤外線撮像装置、固定パターンノイズ算出方法、及び固定パターンノイズ算出プログラム
JP6076106B2 (ja) 撮像装置及び撮像方法
JP2014014855A (ja) 画像処理方法及び画像処理システム
JP6547472B2 (ja) 形状測定装置
JP6190974B2 (ja) 赤外線撮像装置、絞り制御方法、及び絞り制御プログラム
JP2014014856A (ja) 画像処理方法及び画像処理システム
JP2014016304A (ja) 画像処理方法及び画像処理システム
JP5124929B2 (ja) 焦点調節装置およびデジタルカメラ
US20140071260A1 (en) Digital confocal optical profile microscopy
WO2016002490A1 (ja) 波面計測装置及び波面計測方法
JP2014016926A (ja) 画像処理システム
JPH11108625A (ja) 面形状測定装置
JP2018010245A (ja) 信号処理装置、その制御方法
JP2018097176A (ja) 焦点調節装置および焦点調節方法
JP3067285B2 (ja) 画像処理を用いた火災検出装置
JP6595858B2 (ja) 画像処理装置及び画像処理方法
JP6421032B2 (ja) 焦点検出装置、焦点検出方法及び焦点検出プログラム
JP3232269B2 (ja) ガラス容器の肉厚測定装置