JP2014014208A - Ground directional relay - Google Patents

Ground directional relay Download PDF

Info

Publication number
JP2014014208A
JP2014014208A JP2012150001A JP2012150001A JP2014014208A JP 2014014208 A JP2014014208 A JP 2014014208A JP 2012150001 A JP2012150001 A JP 2012150001A JP 2012150001 A JP2012150001 A JP 2012150001A JP 2014014208 A JP2014014208 A JP 2014014208A
Authority
JP
Japan
Prior art keywords
current
voltage
calculation unit
product value
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012150001A
Other languages
Japanese (ja)
Other versions
JP5956854B2 (en
Inventor
Masahiro Sugawara
雅寛 菅原
Junji Nagao
淳司 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP2012150001A priority Critical patent/JP5956854B2/en
Publication of JP2014014208A publication Critical patent/JP2014014208A/en
Application granted granted Critical
Publication of JP5956854B2 publication Critical patent/JP5956854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform correct system fault determination even if a system frequency varies, in a ground directional relay in which a maximum sensitivity angle is set.SOLUTION: The ground directional relay includes a memory 1 for storing instantaneous values of voltage and current of power system, an extraction unit 2 for extracting instantaneous value data of voltage and the instantaneous value data of current from the memory, an inner product calculation unit 3 for determining an inner product VIcosθ of voltage and current on the basis of the instantaneous value data extracted in the extraction unit, an outer product calculation unit 5 for determining an outer product VIsinθ of voltage and current on the basis of the instantaneous value data extracted in the extraction unit, a phase difference calculation unit 5 for determining a phase difference θ from the inner product and outer product thus determined, and a determination unit 6 for determining a ground fault point by using the phase difference θ determined in the phase difference calculation unit, and a maximum sensitivity angle φ of the ground directional relay given from an input section 7.

Description

本発明は、電力系統における零相電圧および零相電流など、2つ以上の零相電気量の位相関係から地絡事故点の方向の判別を行い、保護範囲内の事故の場合に遮断器のトリップ信号を出力する地絡方向継電装置に関するもので、より具体的には、所定周期のサンプリングにより得られる電力系統の瞬時値データを使用して零相電気量について位相差演算を行う演算技術の改良に関する。   The present invention determines the direction of the ground fault point from the phase relationship between two or more zero-phase electric quantities, such as zero-phase voltage and zero-phase current in the power system, and in the case of an accident within the protection range, This is related to a ground fault direction relay device that outputs a trip signal, and more specifically, an arithmetic technique that performs phase difference calculation on zero-phase electric quantity using instantaneous value data of the power system obtained by sampling at a predetermined cycle Regarding improvements.

地絡方向継電装置は、電力系統における零相電圧および零相電流など、2つ以上の零相電気量の位相関係を比較して地絡事故点の方向を判別し、保護範囲内の事故の場合に遮断器のトリップ信号を出力する構成になっている。この地絡方向継電装置については、例えば、特許文献1等に開示されるように、一定周期でサンプリングして得られた電圧および電流のアナログ入力データを使用して地絡判定を行うものがある。   The ground fault direction relay device determines the direction of the ground fault point by comparing the phase relationship of two or more zero phase electric quantities such as zero phase voltage and zero phase current in the power system, and the fault within the protection range. In this case, the circuit breaker trip signal is output. As for this ground fault direction relay device, for example, as disclosed in Patent Document 1 and the like, a ground fault determination is performed using analog input data of voltage and current obtained by sampling at a constant cycle. is there.

地絡事故点の方向の判定は、2つ以上の零相電気量として零相電圧,零相電流を利用するものでは、図1に示すように、零相電圧−Vを位相基準とし、零相電流Iが零相電圧−Vに対して遅れとなった場合は前方での地絡事故と判定し、零相電流Iが零相電圧−Vに対して進みとなった場合は後方での地絡事故と判定する。図中に示すφは判定しきい値との境界に対する垂線のなす角になっていて、地絡方向継電装置の最大感度角である。 In the determination of the direction of the ground fault point, when zero phase voltage and zero phase current are used as two or more zero phase electric quantities, as shown in FIG. 1, zero phase voltage −V 0 is used as a phase reference, When the zero-phase current I 0 is delayed with respect to the zero-phase voltage −V 0 , it is determined that a ground fault has occurred ahead, and the zero-phase current I 0 has advanced with respect to the zero-phase voltage −V 0 . In the case, it is determined that there is a ground fault at the rear. Φ shown in the figure is an angle formed by a perpendicular to the boundary with the determination threshold, and is the maximum sensitivity angle of the ground fault direction relay device.

最大感度角が0度の場合、地絡事故は零相電圧と零相電流との位相関係は両者の内積を演算することにより調べることができる(図2参照)。そこで、地絡事故点の方向判定は、零相電圧Vと零相電流Iの内積を演算し、その演算結果を所定値Kと比較することで行い、その判定式(1)は、


|V|・|I|・cosθ ≧ K …(1)

となり、θは零相電圧Vと零相電流Iとの位相差になっている。
When the maximum sensitivity angle is 0 degree, the ground fault can be investigated by calculating the inner product of the zero phase voltage and the zero phase current (see FIG. 2). Therefore, the direction of the ground fault point is determined by calculating the inner product of the zero-phase voltage V 0 and the zero-phase current I 0 and comparing the calculation result with a predetermined value K. The determination formula (1) is


| V 0 | · | I 0 | · cos θ ≧ K (1)

And θ is the phase difference between the zero-phase voltage V 0 and the zero-phase current I 0 .

判定式(1)の左辺は、各相の電圧瞬時値,電流瞬時値により零相電圧V,零相電流Iを演算することで求めることができ、所定周期のサンプリングによる瞬時値データを使用して演算を行う演算方法を適用している。 The left side of the judgment formula (1) can be obtained by calculating the zero phase voltage V 0 and the zero phase current I 0 from the instantaneous voltage value and the instantaneous current value of each phase. The calculation method that uses and calculates is applied.

しかしながら、そうした従来の演算方法では以下に示すような問題がある。電力系統において周波数に変動が生じると、サンプリング周波数と電力系統の電気量との間に成立していた周期性の関係が成り立たなくなり、判定式(1)の左辺は周波数変動に起因した演算誤差を含むものとなる。また、周期波形に対するサンプリングでは、サンプリングする時点つまり時間軸で見た波形位置(サンプリング位置)の影響があり、これに起因した演算誤差がある。このため、地絡方向継電装置が演算誤差に起因した誤動作を起こす問題がある。   However, such a conventional calculation method has the following problems. When the frequency fluctuates in the power system, the relationship of periodicity established between the sampling frequency and the amount of electricity in the power system does not hold, and the left side of the judgment formula (1) shows the calculation error due to the frequency fluctuation. It will be included. In addition, sampling with respect to a periodic waveform is affected by the time of sampling, that is, the waveform position (sampling position) viewed on the time axis, and there is a calculation error due to this. For this reason, there is a problem that the ground fault direction relay device malfunctions due to a calculation error.

この周波数の変動における影響は、以下の通りとなる。地絡方向継電装置において取り込む2つの電気量が電圧v,電流iであるとき、それらは正弦関数なので、


vn(t)=Vn・sin(ωt+θ) …(2)
in(t)=In・sin(ωt) …(3)

となり、それぞれ時刻tでの瞬時値を示している。ここで、Vnは電圧の振幅値、Inは電流の振幅値、ωは電圧および電流の角周波数、θは電流に対する電圧の進み位相である。角周波数ωは電力系統の周波数fに関してω=2πfという関係になる。各電気量において添え字nは、a相,b相,c相それぞれを意味する。
The influence on the fluctuation of the frequency is as follows. When the two electric quantities to be captured in the ground fault direction relay device are voltage v and current i, they are sine functions.


vn (t) = Vn · sin (ωt + θ) (2)
in (t) = In · sin (ωt) (3)

And each shows an instantaneous value at time t. Here, Vn is the amplitude value of the voltage, In is the amplitude value of the current, ω is the angular frequency of the voltage and current, and θ is the leading phase of the voltage with respect to the current. The angular frequency ω has a relationship of ω = 2πf with respect to the frequency f of the power system. In each quantity of electricity, the subscript n means a phase, b phase, and c phase.

電圧vn(t),電流in(t)は各相において所定周期のサンプリングにより得ており、これには電力系統において定格周波数の12倍のサンプリング周波数により電圧,電流の瞬時値をサンプリングして記憶する。電力系統の定格周波数が50Hzの場合、その12倍をサンプリング周波数とすると600Hzとなり、サンプリングの周期Tは1/600secとなる。   The voltage vn (t) and the current in (t) are obtained by sampling at a predetermined cycle in each phase. For this, the instantaneous values of voltage and current are sampled and stored at a sampling frequency 12 times the rated frequency in the power system. To do. When the rated frequency of the power system is 50 Hz, if the sampling frequency is twelve times that is 600 Hz, the sampling period T is 1/600 sec.

零相電気量は、サンプリング周期Tでの各相の電圧瞬時値,電流瞬時値をそれぞれで全相を合成することで演算し、零相電圧V0b,零相電流I0bは、

0b=V・sin(ωkT+θ) …(4)
0b=I・sin(ωkT) …(5)

と表すことができる。
The zero phase electric quantity is calculated by synthesizing all phases of the instantaneous voltage value and the instantaneous current value of each phase in the sampling period T, and the zero phase voltage V 0b and the zero phase current I 0b are

V 0b = V 0 · sin (ωkT + θ) (4)
I 0b = I 0 · sin (ωkT) (5)

It can be expressed as.

ここで、Vは零相電圧の振幅値、Iは零相電流の振幅値、θは零相電圧と零相電流の位相差であり、各電気量において添え字kは瞬時値データの時点を意味し、瞬時値データの時点kは1,2,3,…という値をとることになる。
電力系統の周波数fの変動(周波数変動率α)は基本周波数fに関して、


α=(f−f)/f …(6)

と定義し、例えば基本周波数fが50Hzであるとき、電力系統の周波数fが60Hzに変動したのであれば周波数変動率αは0.2となる。
Here, V 0 is the amplitude value of the zero-phase voltage, I 0 is the amplitude value of the zero-phase current, θ is the phase difference between the zero-phase voltage and the zero-phase current, and the subscript k is the instantaneous value data in each electric quantity. This means the time point, and the time point k of the instantaneous value data takes values of 1, 2, 3,.
The fluctuation (frequency fluctuation rate α) of the frequency f of the power system is related to the fundamental frequency f b .


α = (f−f b ) / f b (6)

Is defined as, for example, when the fundamental frequency f b is 50 Hz, if the frequency f of the electric power system fluctuates to 60Hz frequency variation rate α of 0.2.

そこで、地絡方向継電器において、零相電気量に周波数変動率αを考慮するのと、上記式(4),(5)は、


0b=V・sin{ω(1+α)kT+θ} …(7)
0b=I・sin{ω(1+α)kT} …(8)

となる。
Therefore, in the ground fault direction relay, when the frequency fluctuation rate α is considered in the zero-phase electric quantity, the above formulas (4) and (5) are


V 0b = V 0 · sin {ω (1 + α) kT + θ} (7)
I 0b = I 0 · sin {ω (1 + α) kT} (8)

It becomes.

サンプリングは、サンプリング位置をmとして、ある時点kを基準時点(m−0)とおくことができ、基準時点k=m−0および基準時点から90°前のk=m−3における零相電圧,零相電流は、

0(m−0)=Vsin{ω(1+α)(m−0)T+θ} …(9)
0(m−0)=Isin{ω(1+α)(m−0)T} …(10)

0(m−3)=Vsin{ω(1+α)(m−3)T+θ} …(11)
0(m−3)=Isin{ω(1+α)(m−3)T} …(12)

となる。これらの式(9)〜(12)は判定式(1)の左辺つまり位相差演算に対して代入するので、

|V0b|・|I0b|・cosθ=
0(m−0)・I0(m−0)+V0(m−3)・I0(m−3)
…(13)

となり、この式(13)は数1に示す式(14)となる。
Sampling can be set at a sampling position m, and a certain time point k can be set as a reference time point (m-0). Zero-phase voltage at the reference time point k = m-0 and k = m−3 90 ° before the reference time point. , Zero-phase current is

V 0 (m−0) = V 0 sin {ω (1 + α) (m−0) T + θ} (9)
I 0 (m−0) = I 0 sin {ω (1 + α) (m−0) T} (10)

V 0 (m−3) = V 0 sin {ω (1 + α) (m−3) T + θ} (11)
I 0 (m−3) = I 0 sin {ω (1 + α) (m−3) T} (12)

It becomes. Since these expressions (9) to (12) are substituted for the left side of the determination expression (1), that is, the phase difference calculation,

| V 0b | · | I 0b | · cos θ =
V 0 (m-0) · I 0 (m-0) + V 0 (m-3) · I 0 (m-3)
... (13)

This equation (13) becomes the equation (14) shown in equation (1).

Figure 2014014208

…(14)
Figure 2014014208

... (14)

式(14)には周波数変動率αの項とサンプリング位置mの項が存在するため、周波数変動がない場合(α=0)は位相差演算を正確に行えるが、周波数変動がある場合には誤差が生じることになる。   Since the expression (14) includes the term of the frequency variation rate α and the term of the sampling position m, the phase difference can be accurately calculated when there is no frequency variation (α = 0). An error will occur.

つまり、この式(14)を適用することでは、図3に示す誤差率の特性となる。同図において、横軸は周波数変動率α、縦軸が位相差演算での誤差率であり、演算の条件はθ=0つまり電圧,電流の位相差は0°であると仮定している。図中に示す実線はサンプリング位置mをm−0とした特性であり、点線はサンプリング位置mを変えた場合の特性である。同図から明らかなように、周波数変動があるときに誤差が生じ、時間軸でのサンプリング位置mの違いでも誤差が生じることがわかる。   That is, by applying the equation (14), the error rate characteristics shown in FIG. 3 are obtained. In the figure, the horizontal axis represents the frequency variation rate α, the vertical axis represents the error rate in the phase difference calculation, and the calculation condition is assumed to be θ = 0, that is, the phase difference between voltage and current is 0 °. The solid line in the figure is the characteristic when the sampling position m is m-0, and the dotted line is the characteristic when the sampling position m is changed. As is apparent from the figure, an error occurs when there is a frequency variation, and an error also occurs due to a difference in sampling position m on the time axis.

この周波数による影響を抑制するため、ある時点を基準時点とし、基準時点の電圧瞬時値と電流瞬時値、基準時点から電力系統の定格周波数の電気角90°前の時点における電圧瞬時値と電流瞬時値、基準時点から電力系統の定格周波数の電気角180°前の時点における電圧瞬時値と電流瞬時値とから、2つ以上の電気量について零相電気量を求める技術が提案されている。これにより、電力系統において周波数変動がある際でも、電力系統における2つ以上の零相電気量の位相関係を十分な精度で算出することができる。この種の技術は、例えば特許文献1,2等に開示されている。   In order to suppress the influence of this frequency, a certain time point is set as a reference time point, an instantaneous voltage value and an instantaneous current value at the reference time point, and an instantaneous voltage value and an instantaneous current value at an electrical angle 90 ° before the rated frequency of the power system from the reference time point. There has been proposed a technique for obtaining a zero-phase electric quantity for two or more electric quantities from a value and an instantaneous voltage value and an instantaneous current value at a time point 180 degrees before the electrical angle of the rated frequency of the power system from the reference time point. Thereby, even when there is a frequency variation in the power system, the phase relationship between two or more zero-phase electric quantities in the power system can be calculated with sufficient accuracy. This type of technology is disclosed in, for example, Patent Documents 1 and 2.

一方、地絡方向継電装置は、接地方式、充電電流およびリアクトル電流を考慮して最適な最大感度角が選択される。例えば、直接接地系の最大感度角は−Vに対して遅れ60°、高抵抗接地系では、充電電流やリアクトル電流を考慮して最適な最大感度角が選ばれる。充電電流が多い系統の場合、−Vに対して進みの特性が用いられる。 On the other hand, for the ground fault direction relay device, an optimum maximum sensitivity angle is selected in consideration of the grounding method, the charging current, and the reactor current. For example, the maximum sensitivity angle of the direct grounding system is delayed by 60 ° with respect to −V 0 , and in the high resistance grounding system, the optimum maximum sensitivity angle is selected in consideration of the charging current and the reactor current. If the charging current is large strains, the characteristics of the advance against -V 0 is used.

最大感度角φがあらかじめ選択されている地絡方向継電装置の場合における地絡事故点の方向判定は、図4に示すように零相電圧Vを最大感度角φだけ移相したV’と零相電流Iの内積を演算し、その演算結果を所定値Kと比較することで行い、その判定式(15)は、


|V’|・|I|・cos(θ−φ) ≧ K …(15)

となる。ここでφはあらかじめ選択された最大感度角であり、固定値である。そして最大感度角φが設定で決められている場合にも同様に周波数変動率α(例えば30°)を考慮した場合には、図5に示す誤差率の特性となる。
In the case of the ground fault direction relay device in which the maximum sensitivity angle φ is selected in advance, the direction determination of the ground fault point is V 0 obtained by shifting the zero phase voltage V 0 by the maximum sensitivity angle φ as shown in FIG. Is calculated by calculating the inner product of 'and the zero-phase current I 0 and comparing the calculation result with a predetermined value K.


| V 0 '| · | I 0 | · cos (θ−φ) ≧ K (15)

It becomes. Here, φ is a preselected maximum sensitivity angle and is a fixed value. Similarly, when the maximum sensitivity angle φ is determined by setting, when the frequency variation rate α (for example, 30 °) is taken into consideration, the error rate characteristics shown in FIG. 5 are obtained.

特開昭57−106336号公報JP 57-106336 A

従来の装置では、零相電圧Vを最大感度角φだけ移相したV’の実効値を求める必要があり、例えばサンプリング周期を最大感度角φにあわせて適切に設定したり、|V’|を精度良く求めたりするのが煩雑であり、最大感度角φが固定値に対応するものであった。よって、任意に設定される最大感度角φに対して、精度良く地絡方向判定を行いたいという課題がある。 In the conventional apparatus, it is necessary to obtain the effective value of V 0 ′ obtained by shifting the zero-phase voltage V 0 by the maximum sensitivity angle φ. For example, the sampling period can be appropriately set according to the maximum sensitivity angle φ, or | V Finding 0 ′ | with high accuracy is complicated, and the maximum sensitivity angle φ corresponds to a fixed value. Therefore, there is a problem that it is desired to accurately determine the ground fault direction with respect to the arbitrarily set maximum sensitivity angle φ.

さらに、特許文献1に開示された従来の装置では、周波数変動に強い装置を開発することを目的としているものの、演算式に周波数変動の指数αが残るため周波数変動の影響が完全に回避することはできないという課題もある。   Furthermore, although the conventional device disclosed in Patent Document 1 is intended to develop a device that is resistant to frequency fluctuations, the frequency fluctuation index α remains in the arithmetic expression, so that the influence of frequency fluctuations can be completely avoided. There is also a problem that cannot be done.

この発明は上記した課題を解決するもので、その目的は、電力系統において周波数変動がある際でも、電力系統における2つ以上の零相電気量の位相関係を十分な精度で算出することができ、時間軸でのサンプリング位置にかかわりなく正しく判定が行え、しかも、係る判定が任意に設定される最大感度角に対して行うことのできる地絡方向継電装置を提供することにある。   The present invention solves the above-described problems, and its object is to calculate the phase relationship between two or more zero-phase electric quantities in the power system with sufficient accuracy even when there are frequency fluctuations in the power system. Another object of the present invention is to provide a ground fault direction relay device that can perform a correct determination regardless of the sampling position on the time axis, and that can perform the determination for a maximum sensitivity angle that is arbitrarily set.

上述した課題を解決するために、本発明の地絡方向継電装置は、(1)電力系統の電圧,電流の瞬時値を記憶するメモリ部と、前記メモリ部から電圧の瞬時値データと電流の瞬時値データを抽出する抽出部と、前記抽出部が抽出した瞬時値データに基づき、電圧と電流の内積値であるVI・cosθを求める内積値演算部と、前記抽出部が抽出した瞬時値データに基づき、前記電圧と前記電流の外積値であるVI・sinθを求める外積値演算部と、前記内積値演算部で求めた内積値と、前記外積値演算部で求めた外積値から位相差θを求める位相差演算部と、位相差演算部で求めた位相差θと、設定された地絡方向継電装置の最大感度角φを用いて地洛事故点判定を行う判定部と、を備えた。最大感度角φは、0度の場合もある。   In order to solve the above-described problems, a ground fault direction relay device of the present invention includes (1) a memory unit that stores instantaneous values of voltage and current of an electric power system, and instantaneous value data and current of voltage from the memory unit. An instantaneous value data extracted by the extraction unit, an inner product value calculation unit for obtaining VI · cos θ which is an inner product value of voltage and current based on the instantaneous value data extracted by the extraction unit, and an instantaneous value extracted by the extraction unit Based on the data, an outer product value calculation unit for obtaining VI · sin θ, which is the outer product value of the voltage and the current, an inner product value obtained by the inner product value calculation unit, and a phase difference from the outer product value obtained by the outer product value calculation unit a phase difference calculation unit for obtaining θ, a determination unit that performs a ground fault point determination using the phase difference θ obtained by the phase difference calculation unit and the maximum sensitivity angle φ of the set ground fault direction relay device, Prepared. The maximum sensitivity angle φ may be 0 degrees.

本発明は、sin成分とcos成分から位相差θを直接算出するようにしたため、系統周波数の変動の影響を受けず、仮に系統周波数が基本波から変動している場合でも2つの電気量の位相差を正しく演算することができる。また、位相差θを直接求めることで、最大感度角φが整定されている地絡方向継電装置において、系統周波数が変動しても正しい系統事故判定ができる。さらに、サンプリング周期は任意の所定周期に設定でき、サンプリング周波数に応じた演算式に変更する必要がなく、汎用性が高くなる。   In the present invention, since the phase difference θ is directly calculated from the sin component and the cos component, it is not affected by fluctuations in the system frequency, and even if the system frequency fluctuates from the fundamental wave, the level of the two electric quantities is not affected. The phase difference can be calculated correctly. Further, by directly obtaining the phase difference θ, in the ground fault direction relay device in which the maximum sensitivity angle φ is set, correct system fault determination can be performed even if the system frequency varies. Furthermore, the sampling period can be set to an arbitrary predetermined period, and there is no need to change to an arithmetic expression corresponding to the sampling frequency, so that versatility is enhanced.

(2)前記内積値演算部は、下記式を演算するものであり、

Figure 2014014208
(2) The inner product value calculation unit calculates the following equation:
Figure 2014014208

前記外積値演算部は、下記式を演算するものであり、

Figure 2014014208
The outer product value calculation unit calculates the following equation:
Figure 2014014208

上記の各式において、
基準時点(m−a)で、mがサンプリング位置、aは0以上の整数、xはサンプリングステップで正の整数とするとよい。
In each of the above formulas,
At the reference time point (m−a), m is a sampling position, a is an integer of 0 or more, and x is a positive integer in the sampling step.

a=0とすると、基準時点は、現時点、すなわち、判定処理をするその時点となる。時系列で順次サンプリングしてmの具体的な値はインクリメントされていく。本発明における判定処理はサンプリング位置にとらわれないので、何時の時点で判定しても良い。aが正の整数となると過去のある時点を基準とし、その時に地絡事故があったかの判定を行うことになる。aが小さいほど、メモリ部に記憶保持するデータ数を少なくすることができる。xが大きいほどメモリ部に記憶保持するデータ数は多くなるが、ノイズやサージなど瞬間的な電気量変化によって生じる演算誤差の影響を小さく抑えるメリットを有する。   If a = 0, the reference time point is the current time point, that is, the time point when the determination process is performed. A specific value of m is incremented by sequentially sampling in time series. Since the determination process in the present invention is not limited to the sampling position, it may be determined at any time. When a becomes a positive integer, it is determined whether there has been a ground fault at that time with reference to a certain point in the past. The smaller the value of a, the smaller the number of data stored and held in the memory unit. The larger x is, the more data is stored and held in the memory unit, but there is an advantage of minimizing the influence of calculation errors caused by an instantaneous change in electricity such as noise and surge.

また、xは1とすると、使用するデータは、基準時点の(m−a)の瞬時値データと、1個前の(m−1−a)の瞬時値データと、2個前の(m−2−a)の瞬時値データと、4個前の(m−4−a)の瞬時値データととなり、基準時点からさかのぼる過去のデータは最大で4個前までとなる。xが2とすると基準時点からさかのぼる過去のデータは最大で8個前まで必要となる。つまり、xが小さいほど、メモリ部に記憶保持するデータ数を少なくすることができる。   Also, if x is 1, the data used are (m−a) instantaneous value data at the reference time, the previous (m−1−a) instantaneous value data, and the previous (m−a) instantaneous value data. -A) instantaneous value data and the previous (m-4-a) instantaneous value data, and the past data going back from the reference time is up to four previous. If x is 2, the past data going back from the reference time is required up to 8 data. That is, as x is smaller, the number of data stored in the memory unit can be reduced.

(3)前記判定部は、

Figure 2014014208

を演算するものとするとよい。 (3) The determination unit
Figure 2014014208

Should be calculated.

(4)前記地絡方向継電装置の最大感度角φを入力する入力手段を備えるとよい。入力手段により、ユーザが簡単に最大感度角φを設定し、それに基づいて地絡判定を行うことができる。   (4) It is good to provide the input means which inputs the maximum sensitivity angle (phi) of the said ground fault direction relay apparatus. By the input means, the user can easily set the maximum sensitivity angle φ and perform ground fault determination based on the maximum sensitivity angle φ.

本発明では、外積値演算部と内積値演算部を備え、それらの演算結果に基づいて位相差θを直接求めるようにしたため、電力系統において周波数変動がある際でも、電力系統における2つ以上の零相電気量の位相関係を十分な精度で算出することができ、時間軸でのサンプリング位置にかかわりなく正しく判定が行え、しかも、係る判定が任意に設定される最大感度角に対して行うことができる。   In the present invention, since the outer product value calculation unit and the inner product value calculation unit are provided and the phase difference θ is directly obtained based on the calculation results, even when there is a frequency variation in the power system, two or more in the power system The phase relationship of the zero-phase electric quantity can be calculated with sufficient accuracy, correct judgment can be made regardless of the sampling position on the time axis, and such judgment should be made for the maximum sensitivity angle that is arbitrarily set Can do.

地絡方向の判定に係る位相特性の一例を示すグラフである。It is a graph which shows an example of the phase characteristic which concerns on determination of a ground fault direction. 最大感度角が0度の場合の地絡方向の判定アルゴリズムを説明する図である。It is a figure explaining the determination algorithm of a ground fault direction in case a maximum sensitivity angle is 0 degree | times. 従来の位相差演算式(14)における誤差率を示すグラフである。It is a graph which shows the error rate in the conventional phase difference calculating formula (14). 最大感度角がφ(0度以外)の場合の地絡方向の判定アルゴリズムを説明する図である。It is a figure explaining the determination algorithm of a ground fault direction in case a maximum sensitivity angle is (phi) (other than 0 degree | times). 最大感度角が30度における誤差率を示すグラフである。It is a graph which shows the error rate in case the maximum sensitivity angle is 30 degree | times. 本発明に係る方向継電装置の好適な一実施形態を示す構成図である。It is a block diagram which shows suitable one Embodiment of the direction relay apparatus which concerns on this invention. 周波数が変動した場合の位相差演算の誤差率を示すグラフである。It is a graph which shows the error rate of the phase difference calculation when the frequency fluctuates.

図6は本発明の好適な一実施形態を示している。本実施形態において、地絡方向継電装置は、メモリ部1,抽出部2,内積値演算部3,外積値演算部4,位相差演算部5,判定部6を備える。さらに判定部6に対し、最大感度角φを設定する入力部7を備える。この入力部7は、例えば各種の入力マンマシンインタフェースを利用でき、例えば、最大感度角θの値を直接指定するテンキー・ダイヤル等や、予め用意された複数の候補の中から一つを選択するスイッチ等を用いると良い。最大感度角φは、例えば60〜90°の範囲でユーザが指定し、判定部6に整定値として記録される。角度範囲は、上記のものに限ることは無く、種々の範囲としてもよい。   FIG. 6 shows a preferred embodiment of the present invention. In the present embodiment, the ground fault direction relay device includes a memory unit 1, an extraction unit 2, an inner product value calculation unit 3, an outer product value calculation unit 4, a phase difference calculation unit 5, and a determination unit 6. Furthermore, an input unit 7 for setting the maximum sensitivity angle φ is provided for the determination unit 6. The input unit 7 can use various input man-machine interfaces, for example, and selects one of a plurality of candidates prepared in advance, such as a numeric keypad or the like for directly specifying the value of the maximum sensitivity angle θ. A switch or the like may be used. The maximum sensitivity angle φ is specified by the user in a range of 60 to 90 °, for example, and is recorded as a set value in the determination unit 6. The angle range is not limited to the above, and may be various ranges.

本実施形態では、電力系統の電圧v,電流iのそれぞれの瞬時値データを所定の周期でサンプリングし各相それぞれメモリ部1へ取り込み、抽出部2にてそのメモリ部1に記憶した現在並びに所定の過去の瞬時値データを抽出し、抽出した瞬時値データを用いて各演算部3,4,5に演算処理をして2つの電気量(例えば、電圧・電流)の位相差θを求める。そして、求めた位相差θを判定部6に与え、判定部6において整定値φを使用し、地絡事故点の判定を行う構成になっている。具体的には以下の通りである。   In the present embodiment, the instantaneous value data of the voltage v and current i of the power system is sampled at a predetermined cycle, fetched into the memory unit 1 for each phase, and the current and predetermined values stored in the memory unit 1 by the extraction unit 2 The past instantaneous value data is extracted, and the arithmetic units 3, 4 and 5 are processed using the extracted instantaneous value data to obtain the phase difference θ between the two electric quantities (for example, voltage and current). Then, the determined phase difference θ is given to the determination unit 6, and the determination unit 6 uses the set value φ to determine the ground fault point. Specifically, it is as follows.

例えば電力系統の定格周波数が50Hzの場合、12倍のサンプリング周波数は600Hz、周期T=1/600となる。サンプリング間隔は、例えば定格周波数が50Hzでは電気角30°となる。ここでは、電気角30°でサンプリングしたが、さらに短い周期で細かくサンプリングするとよい。そしてメモリ部1は、各相それぞれ電圧vnk ,電流inkの瞬時値をサンプリング周期Tによりサンプルして記憶する。このサンプリングは、添え字nで示すa相,b相,c相それぞれにおいて、添え字kで示す瞬時値データの時点は1,2,3,…という値をとる。 For example, when the rated frequency of the power system is 50 Hz, the 12-fold sampling frequency is 600 Hz and the cycle T = 1/600. The sampling interval is, for example, an electrical angle of 30 ° when the rated frequency is 50 Hz. Here, the sampling is performed at an electrical angle of 30 °, but it is preferable to sample in a shorter cycle. The memory unit 1 samples and stores instantaneous values of the voltage v nk and the current i nk in each phase by the sampling period T. This sampling takes the values of 1, 2, 3,... In the instantaneous value data indicated by the subscript k in each of the a phase, b phase, and c phase indicated by the subscript n.

抽出部2は、メモリ部1に記憶されている瞬時値データから特定データを抽出する。特定データは、ある時点を基準時点とし、当該基準時点の電圧瞬時値vm0 と電流瞬時値im0 、前記基準時点から電力系統の定格周波数の電気角90°前の時点における電圧瞬時値vm3と電流瞬時値im3、前記基準時点から電力系統の定格周波数の電気角180°前の時点における電圧瞬時値vm6と電流瞬時値im6とを抽出する。各電気量において添え字nは、a相,b相,c相それぞれを意味する。抽出部2は、上記の抽出した各相の瞬時値データを、内積値演算部3と外積値演算部4にそれぞれ与える。 The extraction unit 2 extracts specific data from the instantaneous value data stored in the memory unit 1. The specific data includes a certain time point as a reference time point, an instantaneous voltage value v m0 and an instantaneous current value i m0 at the reference time point, and an instantaneous voltage value v m3 at a time point 90 degrees prior to the electrical angle of the rated frequency of the power system from the reference time point. And the instantaneous current value i m3 , and the instantaneous voltage value v m6 and the instantaneous current value i m6 at the time point of the electrical frequency 180 ° before the rated frequency of the power system from the reference time point are extracted. In each quantity of electricity, the subscript n means a phase, b phase, and c phase. The extraction unit 2 gives the extracted instantaneous value data of each phase to the inner product value calculation unit 3 and the outer product value calculation unit 4, respectively.

内積値演算部3は、電圧と電流の内積値演算をするもので、
VI・cosθ
を求め、求めた内積値を次段の位相差演算部5に渡す。具体的には、内積値演算部3は、取得した6つの各特定データを下記式(16)に代入し、内積値演算処理を実行する。
The inner product value calculation unit 3 calculates the inner product value of voltage and current.
VI ・ cosθ
And the obtained inner product value is passed to the phase difference calculation unit 5 in the next stage. Specifically, the inner product value calculation unit 3 substitutes the acquired six specific data into the following equation (16), and executes the inner product value calculation process.

Figure 2014014208

・・・(16)
Figure 2014014208

... (16)

上記の式(16)により内積値演算が求められるのは、以下の通りである。まず、式(16)の演算式を展開する。分子を構成する各項は、以下のようになる。

Figure 2014014208
The inner product value calculation is obtained by the above equation (16) as follows. First, the arithmetic expression of Expression (16) is expanded. Each term constituting the numerator is as follows.
Figure 2014014208

よって、分子は、

Figure 2014014208

となる。 So the molecule is
Figure 2014014208

It becomes.

同様に分母を構成する各項は、以下のようになる。

Figure 2014014208
Similarly, the terms constituting the denominator are as follows.
Figure 2014014208

よって、分母は、

Figure 2014014208

となる。本実施形態では、式(16)の分母を算出するのに電気量として電圧のサンプリングデータを適用したが、電流を利用してもよい。 So the denominator is
Figure 2014014208

It becomes. In the present embodiment, voltage sampling data is applied as the amount of electricity to calculate the denominator of Expression (16), but a current may be used.

従って、上記のそれぞれ求めた分母・分子から、式(16)は、

Figure 2014014208

となり、cos成分を算出することができる。
Therefore, from the denominator and numerator obtained above, equation (16) is
Figure 2014014208

Thus, the cos component can be calculated.

外積値演算部4は、電圧と電流の外積値演算をするもので、
VI・sinθ
を求め、求めた外積値を次段の位相差演算部5に渡す。具体的には、外積値演算部4は、取得した6つの各特定データを下記式(17)に代入し、外積値演算処理を実行する。
The cross product value calculation unit 4 performs cross product value calculation of voltage and current.
VI ・ sinθ
And the obtained outer product value is passed to the phase difference calculation unit 5 in the next stage. Specifically, the outer product value calculation unit 4 assigns each of the acquired six specific data to the following equation (17), and executes the outer product value calculation process.

Figure 2014014208

・・・(17)
Figure 2014014208

... (17)

上記の式(17)により外積値演算が求められるのは、以下の通りである。まず、式(17)の演算式を展開する。分子を構成する各項は、以下のようになる。

Figure 2014014208
The calculation of the outer product value by the above equation (17) is as follows. First, the arithmetic expression of Expression (17) is developed. Each term constituting the numerator is as follows.
Figure 2014014208

よって、分子は、

Figure 2014014208

となる。 So the molecule is
Figure 2014014208

It becomes.

同様に分母を構成する各項は、以下のようになる。

Figure 2014014208
Similarly, the terms constituting the denominator are as follows.
Figure 2014014208

本実施形態では、式(17)の分母を算出するのに電気量として電圧のサンプリングデータを適用したが、電流を利用してもよい。従って、上記のそれぞれ求めた分母・分子から、式(17)は、

Figure 2014014208

となり、sin成分を算出することができる。
In the present embodiment, voltage sampling data is applied as an electric quantity to calculate the denominator of Expression (17), but a current may be used. Therefore, from each of the obtained denominator and numerator, equation (17) is
Figure 2014014208

Thus, the sin component can be calculated.

位相差演算部5は、内積値演算部3並びに外積値演算部4から取得した内積値と外積値を用い、下記式(18)に代入して位相差θを求める。

Figure 2014014208

・・・(18)
The phase difference calculation unit 5 uses the inner product value and the outer product value acquired from the inner product value calculation unit 3 and the outer product value calculation unit 4 and substitutes them into the following equation (18) to obtain the phase difference θ.
Figure 2014014208

... (18)

上記の式(18)は、式(16)および式(17)より下記式(19)に示すように変換できる。

Figure 2014014208

・・・(19)
The above equation (18) can be converted from the equations (16) and (17) as shown in the following equation (19).
Figure 2014014208

... (19)

式(19)には周波数変動率αおよびサンプリング位置mの項を含んでいない。従って、電圧および電流の位相差を正確に算出することができる。
判定部5は、地絡方向検出演算を行う。具体的には、下記式(20)の左辺を演算して求め、設定値K以上か否かにより地絡事故点の方向判定をする。


|V|・|I|・cos(θ−φ)≧K ・・・ (20)
Equation (19) does not include terms of the frequency variation rate α and the sampling position m. Therefore, the phase difference between the voltage and current can be accurately calculated.
The determination unit 5 performs a ground fault direction detection calculation. Specifically, the left side of the following equation (20) is calculated and obtained, and the direction of the ground fault point is determined based on whether or not it is equal to or greater than the set value K.


| V 0 | · | I 0 | · cos (θ−φ) ≧ K (20)

式(20)中、θは、位相差演算部5で求めた値を取得し代入する。最大感度角φは、入力部7から与えられた値を用い式(20)に代入する。さらに各実効値|V|および|I|については、例えば特開2008−292227号公報に開示された技術を採用することにより、系統周波数の変動によらず正しい実効値を算出することが可能となる。すなわち、例えば電力系統の条件は、定格周波数fbが50Hz、サンプリング周波数fsは12倍では600Hz、サンプリング間隔は電気角30°とし、基準時点(m−0),電気角60°前の時点(m−2),電気角120°前の時点(m−4),電気角240°前の時点(m−8)を使用し、8サンプリング前までの各瞬時値データim−0,im−2,im−4,im−8を用い、下記式(21)から電気量の振幅値、実効値をもとめることができる。 In Expression (20), θ obtains and substitutes the value obtained by the phase difference calculation unit 5. The maximum sensitivity angle φ is substituted into equation (20) using the value given from the input unit 7. Further, for each effective value | V 0 | and | I 0 |, for example, by adopting the technique disclosed in Japanese Patent Application Laid-Open No. 2008-292227, a correct effective value can be calculated regardless of fluctuations in the system frequency. It becomes possible. That is, for example, the power system condition is that the rated frequency fb is 50 Hz, the sampling frequency fs is 12 times 600 Hz, the sampling interval is 30 ° electrical angle, the reference time point (m-0), the time point before 60 ° electrical angle (m -2), using the time point 120 m before the electrical angle (m−4) and the time point 240 m before the electrical angle (m−8), each instantaneous value data i m−0 and im − 2 , i m-4 , i m-8 can be used to obtain the amplitude value and effective value of the electric quantity from the following equation (21).

Figure 2014014208

・・・(21)
Figure 2014014208

... (21)

式(20)の左辺の代入する各値は、いずれも系統周波数の変動の影響を受けない値となるため、算出結果も系統周波数の変動の影響を受けない。よって、精度の良い判定処理が行える。   Since each value to be substituted on the left side of Expression (20) is a value that is not affected by the fluctuation of the system frequency, the calculation result is also not affected by the fluctuation of the system frequency. Therefore, accurate determination processing can be performed.

図7は、周波数が変動した場合の位相差演算の誤差率の特性を示している。図において横軸は周波数変動率α、縦軸は地絡方向判定演算結果の誤差率である。演算条件として、最大感度角φ=30°とした。図中に示す実線はあるサンプリング位置m−0とし、点線はサンプリング位置m−3とした場合の特性である。同図から明らかなように両者は一致していて図中には実線のみとなっている。   FIG. 7 shows the error rate characteristics of the phase difference calculation when the frequency fluctuates. In the figure, the horizontal axis represents the frequency variation rate α, and the vertical axis represents the error rate of the ground fault direction determination calculation result. As a calculation condition, the maximum sensitivity angle φ = 30 °. The solid line shown in the figure is the characteristic when the sampling position m-0 is set, and the dotted line is the sampling position m-3. As is clear from the figure, the two coincide with each other, and only a solid line is shown in the figure.

本実施形態では、電圧および電流の位相差θを正確に算出することができるため、最大感度角φが任意にあたえられる場合でも周波数変動の影響を受けずに地絡事故判定を行うことができる。また、時間軸でのサンプリング位置mにかかわりなく地絡事故点の方向判定を正しく行える。そして、系統誤差に起因した誤動作を回避することができる。   In the present embodiment, since the voltage and current phase difference θ can be accurately calculated, even when the maximum sensitivity angle φ is arbitrarily given, it is possible to determine the ground fault without being affected by the frequency fluctuation. . In addition, it is possible to correctly determine the direction of the ground fault point regardless of the sampling position m on the time axis. And malfunction due to systematic errors can be avoided.

(変形例)
上述した実施形態では、使用するサンプリングデータは、ある任意の時点を基準時点とm−0とし、3回前と6回前のデータ(m−3,m−6)を用いたが、本発明はこれに限ることはなく、例えば下記の一般式(xは正の整数)を用いて外積値演算や内積値演算を行い、位相差を算出する。
(Modification)
In the above-described embodiment, the sampling data to be used has a certain arbitrary time point as the reference time point and m-0, and the data (m-3, m-6) three times before and six times before are used. Is not limited to this, and for example, the following general formula (x is a positive integer) is used to perform outer product value calculation or inner product value calculation to calculate the phase difference.

Figure 2014014208

・・・(16)′
Figure 2014014208

... (16) '

Figure 2014014208

・・・(17)′
Figure 2014014208

... (17) '

上述した実施形態・変形例で示したように、ある時点を基準時点(m−0)として演算・判定処理が行えるため、リアルタイムで何時の時点でも判定処理が行える。さらに、本発明では、基準時点は現時点に限ることは無くサンプリングして記憶した過去の瞬時値データを基準に判定処理をすることもできる。たとえは、現時点のa回前のサンプルデータを基準時点(m−a)として、下記の一般式(16)″,(17)″に基づいて外積値演算や内積値演算を行い、位相差を算出するとよい。ここで、ここで、a≧0、xは0以外の整数である。   As shown in the above-described embodiments and modifications, calculation / determination processing can be performed with a certain time point as a reference time point (m-0), and therefore determination processing can be performed at any time in real time. Further, in the present invention, the reference time is not limited to the present time, and determination processing can be performed based on past instantaneous value data sampled and stored. For example, using the sample data a times before the current time as the reference time point (m−a), the outer product value calculation or inner product value calculation is performed based on the following general formulas (16) ″ and (17) ″, and the phase difference is calculated. It is good to calculate. Here, a ≧ 0 and x is an integer other than 0.

Figure 2014014208

・・・(16)″
Figure 2014014208

... (16) "

Figure 2014014208

・・・(17)″

Figure 2014014208

... (17) "

1 メモリ部
2 抽出部
3 内積値演算部
4 外積値演算部
5 位相差演算部
6 判定部
7 入力部
DESCRIPTION OF SYMBOLS 1 Memory part 2 Extraction part 3 Inner product value calculation part 4 Outer product value calculation part 5 Phase difference calculation part 6 Determination part 7 Input part

Claims (4)

電力系統の電圧,電流の瞬時値を記憶するメモリ部と、
前記メモリ部から電圧の瞬時値データと電流の瞬時値データを抽出する抽出部と、
前記抽出部が抽出した瞬時値データに基づき、電圧と電流の内積値であるVI・cosθを求める内積値演算部と、
前記抽出部が抽出した瞬時値データに基づき、前記電圧と前記電流の外積値であるVI・sinθを求める外積値演算部と、
前記内積値演算部で求めた内積値と、前記外積値演算部で求めた外積値から位相差θを求める位相差演算部と、
位相差演算部で求めた位相差θと、設定された地絡方向継電装置の最大感度角φを用いて地洛事故点判定を行う判定部と、
を備えたことを特徴とする地絡方向継電装置。
A memory unit for storing instantaneous values of voltage and current of the power system;
An extraction unit that extracts instantaneous voltage value data and current instantaneous value data from the memory unit;
Based on the instantaneous value data extracted by the extraction unit, an inner product value calculation unit for obtaining VI · cos θ which is an inner product value of voltage and current;
Based on the instantaneous value data extracted by the extraction unit, an outer product value calculation unit for obtaining VI · sin θ, which is an outer product value of the voltage and the current,
A phase difference calculation unit for obtaining a phase difference θ from the inner product value obtained by the inner product value calculation unit and the outer product value obtained by the outer product value calculation unit;
A determination unit that performs a ground fault point determination using the phase difference θ obtained by the phase difference calculation unit and the maximum sensitivity angle φ of the set ground fault direction relay device;
A ground fault direction relay device comprising:
前記内積値演算部は、下記式を演算するものであり、
Figure 2014014208

前記外積値演算部は、下記式を演算するものであり、
Figure 2014014208

上記の各式において、
基準時点(m−a)で、mがサンプリング位置m、aは0以上の整数
xはサンプリングステップで正の整数であることを特徴とする請求項1に記載の地絡方向継電装置。
The inner product value calculation unit calculates the following equation:
Figure 2014014208

The outer product value calculation unit calculates the following equation:
Figure 2014014208

In each of the above formulas,
2. The ground fault direction relay device according to claim 1, wherein at a reference time (m−a), m is a sampling position m, a is an integer greater than or equal to 0, and an integer x is a positive integer in a sampling step.
前記判定部は、下記式を演算するものであることを特徴とする請求項1または2に記載の地絡方向継電装置。
Figure 2014014208
The ground determination direction relay device according to claim 1, wherein the determination unit calculates the following expression.
Figure 2014014208
前記地絡方向継電装置の最大感度角φを入力する入力手段を備えることを特徴とする請求項1から3のいずれかに記載の地絡方向継電装置。   The ground fault direction relay device according to any one of claims 1 to 3, further comprising input means for inputting a maximum sensitivity angle φ of the ground fault direction relay device.
JP2012150001A 2012-07-03 2012-07-03 Ground fault direction relay device Expired - Fee Related JP5956854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012150001A JP5956854B2 (en) 2012-07-03 2012-07-03 Ground fault direction relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012150001A JP5956854B2 (en) 2012-07-03 2012-07-03 Ground fault direction relay device

Publications (2)

Publication Number Publication Date
JP2014014208A true JP2014014208A (en) 2014-01-23
JP5956854B2 JP5956854B2 (en) 2016-07-27

Family

ID=50109542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012150001A Expired - Fee Related JP5956854B2 (en) 2012-07-03 2012-07-03 Ground fault direction relay device

Country Status (1)

Country Link
JP (1) JP5956854B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269335B2 (en) 2014-01-22 2016-02-23 Yamaha Corporation Installation structure for acoustic transducer
KR101626135B1 (en) * 2014-12-24 2016-05-31 주식회사 포스코 Apparatus for detecting grounding current
CN108196122A (en) * 2018-02-24 2018-06-22 深圳世格赛思医疗科技有限公司 A kind of waveform phase recognition methods, device, system, computer and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322887A (en) * 1997-05-20 1998-12-04 Tokyo Electric Power Co Inc:The Grounding distance relay
JP2000341851A (en) * 1999-05-27 2000-12-08 Toshiba Corp Ground directional relay
JP2001251754A (en) * 2000-03-06 2001-09-14 Mitsubishi Electric Corp Direction discriminating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322887A (en) * 1997-05-20 1998-12-04 Tokyo Electric Power Co Inc:The Grounding distance relay
JP2000341851A (en) * 1999-05-27 2000-12-08 Toshiba Corp Ground directional relay
JP2001251754A (en) * 2000-03-06 2001-09-14 Mitsubishi Electric Corp Direction discriminating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269335B2 (en) 2014-01-22 2016-02-23 Yamaha Corporation Installation structure for acoustic transducer
KR101626135B1 (en) * 2014-12-24 2016-05-31 주식회사 포스코 Apparatus for detecting grounding current
CN108196122A (en) * 2018-02-24 2018-06-22 深圳世格赛思医疗科技有限公司 A kind of waveform phase recognition methods, device, system, computer and storage medium
CN108196122B (en) * 2018-02-24 2023-05-02 深圳世格赛思医疗科技有限公司 Waveform phase identification method, device, system, computer and storage medium

Also Published As

Publication number Publication date
JP5956854B2 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
Zhou et al. Dynamic state estimation of a synchronous machine using PMU data: A comparative study
Zhang et al. A two-stage Kalman filter approach for robust and real-time power system state estimation
JP6399415B2 (en) Interference correction type single detection current sensor for multiple busbars
Zygarlicki et al. A reduced Prony's method in power-quality analysis—parameters selection
Xia et al. Maximum likelihood parameter estimation of unbalanced three-phase power signals
JPWO2008126240A1 (en) Synchronous phasor measuring device and phase angle difference measuring device between buses using the same
Mogharbel et al. Least squares estimation-based synchronous generator parameter estimation using PMU data
Sun et al. Joint voltage and phase unbalance detector for three phase power systems
EP3147681B1 (en) Rotary machine diagnostic system
CN109782206B (en) Calibration compensation method for broadband transient voltage measuring device
JP2012058221A (en) Winding diagnosis system for electrical appliance
JP5956854B2 (en) Ground fault direction relay device
Becejac et al. Analysis of PMU algorithm errors during fault transients and out-of-step disturbances
Wang et al. Observability of nonlinear power system dynamics using synchrophasor data
CN105891585B (en) Effective value calculating method and device when a kind of sine wave freuqency is slowly varying
Meliopoulos et al. PMU data characterization and application to stability monitoring
JP4738274B2 (en) Insulation monitoring apparatus and method for electrical equipment
Najafi et al. An improved sag detection approach based on modified Goertzel algorithm
Li et al. Second‐order matrix pencil‐based phasor measurement algorithm for P‐class PMUs
Bennouna et al. Diagnosis and fault signature analysis of a wind turbine at a variable speed
Das et al. Online identification of fractional order models with time delay: An experimental study
Nicolae et al. Tunning the Parameters for the FFT Analysis of Waveforms Acquired from a Power Plant
CN106018927B (en) A kind of phase three-wire three phase-voltage measurement method
Wehbe et al. PMU-based system identification for a modified classic generator model
Khazraj et al. Addressing single and multiple bad data in the modern PMU-based power system state estimation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160420

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160617

R150 Certificate of patent or registration of utility model

Ref document number: 5956854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees