JP2014012490A - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
JP2014012490A
JP2014012490A JP2012151075A JP2012151075A JP2014012490A JP 2014012490 A JP2014012490 A JP 2014012490A JP 2012151075 A JP2012151075 A JP 2012151075A JP 2012151075 A JP2012151075 A JP 2012151075A JP 2014012490 A JP2014012490 A JP 2014012490A
Authority
JP
Japan
Prior art keywords
wheel
speed
hydraulic pressure
right front
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012151075A
Other languages
Japanese (ja)
Other versions
JP5889736B2 (en
Inventor
Nobuyuki Otsu
伸幸 大津
Satoshi Kashiwamura
聡 柏村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012151075A priority Critical patent/JP5889736B2/en
Publication of JP2014012490A publication Critical patent/JP2014012490A/en
Application granted granted Critical
Publication of JP5889736B2 publication Critical patent/JP5889736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a brake control device capable of suppressing an oscillation in the wheel speed of left and right wheels during anti-lock braking.SOLUTION: In a brake control device for electric vehicles that are run by conveying revolutions of a motor 8 to left and right front wheels 2FL and 2FR mounted on a vehicle, a brake ECU 9 that controls a wheel cylinder fluid pressure by increasing, sustaining, or decreasing the wheel cylinder fluid pressure according to the slipping states of the left and right front wheels 2FL and 2FR with respect to a pseudo vehicle velocity, and thus avoids the locking states of the left and right front wheels 2FL and 2FR, and a left-and-right wheels hunting prevention control unit 9a that adjusts the wheel cylinder fluid pressure which causes a braking force to work on the left and right front wheels 2FL and 2FR during operation of the brake ECU 9, and thus adjusts the numbers of rotations of the left and right front wheels 2FL and 2FR respectively are included.

Description

本発明は、電動車両用のブレーキ制御装置に関する。   The present invention relates to a brake control device for an electric vehicle.

特許文献1には、電気自動車やハイブリッド自動車等の電動車両において、モータトルクによってモータ慣性に起因するアンチロックブレーキ作動時における左右輪の車輪速の振動を抑制する技術が開示されている。   Patent Document 1 discloses a technique for suppressing vibration of wheel speeds of left and right wheels when an antilock brake is activated due to motor inertia in an electric vehicle such as an electric vehicle or a hybrid vehicle.

特開2006−51929号公報JP 2006-51929 A

しかしながら、上記従来技術にあっては、カウンタトルクに伴う駆動トルクの変動によって左右駆動輪の車輪速がさらに変動することがあり、制動性能の劣化が懸念される。
本発明の目的は、アンチロックブレーキ作動時における左右輪の車輪速の振動を抑制できるブレーキ制御装置を提供することにある。
However, in the above prior art, the wheel speed of the left and right drive wheels may further vary due to the variation of the drive torque accompanying the counter torque, and there is a concern about the deterioration of the braking performance.
The objective of this invention is providing the brake control apparatus which can suppress the vibration of the wheel speed of a left-right wheel at the time of an anti-lock brake action | operation.

本発明では、アンチロックブレーキの作動時にホイルシリンダ液圧を調整して左右輪間の車輪回転数を調整する。   In the present invention, the wheel cylinder hydraulic pressure is adjusted during the operation of the antilock brake to adjust the wheel rotation speed between the left and right wheels.

本発明によれば、アンチロックブレーキ作動時における左右輪の車輪速の振動を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration of the wheel speed of a left-right wheel at the time of an anti-lock brake action | operation can be suppressed.

実施例1のブレーキ制御装置を適用した電気自動車の制駆動系のシステム図である。1 is a system diagram of a braking / driving system of an electric vehicle to which a brake control device of Example 1 is applied. 実施例1の液圧制御ユニット10の回路構成図である。1 is a circuit configuration diagram of a hydraulic pressure control unit 10 of Example 1. FIG. 実施例1のブレーキECU9で実施されるアンチロックブレーキ(ABS)制御処理の流れを示すフローチャートである。3 is a flowchart showing a flow of an antilock brake (ABS) control process performed by the brake ECU 9 of the first embodiment. 実施例1の左右ハンチング低減減圧制御作用を示す回転速度、ホイルシリンダ液圧および車体減速度のタイムチャートである。6 is a time chart of rotation speed, wheel cylinder hydraulic pressure, and vehicle body deceleration showing the left and right hunting reduction pressure reducing control operation of the first embodiment.

〔実施例1〕
図1は、実施例1のブレーキ制御装置を適用した電気自動車の制駆動系のシステム図である。
各車輪速センサ1FL,1FR,1RL,1RRは、各車輪2FL,2FR,2RL,2RRの回転速度に応じた車輪速パルスを出力する。
アクセル開度センサ3は、ドライバのアクセル操作量を検出する。
モータECU5は、アクセル開度センサ3からアクセル開度、車内通信線6経由で車速を入力して目標駆動トルクを演算し、目標駆動トルクに基づく駆動指令をインバータ7に出力する。
インバータ7は、駆動指令に基づいて電動機であるモータジェネレータ(以下、モータと略記する。)8を力行運転する。
モータ8は、三相交流モータであり、駆動輪である左右前輪2FL,2FRに駆動トルクを出力する。
モータECU5は、車内通信線6経由で各車輪速を入力し、各車輪速に基づき各車輪のストローク速度を推定し、各ストローク速度から車体のピッチレート、バウンスレートを求める。そして、ピッチレートやバウンスレートを抑制するための車体制振用トルクを演算し、車体制振用トルクによって目標駆動トルクを補正する車体制振制御を実施する。
ブレーキECU(アンチロック制御部)9は、各車輪速センサ1FL,1FR,1RL,1RRから各車輪の車輪速パルスを入力して各車輪の車輪速を計算すると共に車輪速に基づいて擬似車体速度を推定し、各車輪の車輪速が急減圧制御介入閾値に一致するようにホイルシリンダ20(図2参照)の液圧(ホイルシリンダ液圧)を増減または保持するアンチロックブレーキ(ABS)制御を実施する。各車輪の車輪速および擬似車体速度(車速)は車内通信線6に出力する。
液圧制御ユニット10は、ブレーキECU9からの指令に応じてホイルシリンダ液圧を調整する。
[Example 1]
FIG. 1 is a system diagram of a braking / driving system of an electric vehicle to which the brake control device of the first embodiment is applied.
Each wheel speed sensor 1FL, 1FR, 1RL, 1RR outputs a wheel speed pulse corresponding to the rotational speed of each wheel 2FL, 2FR, 2RL, 2RR.
The accelerator opening sensor 3 detects the accelerator operation amount of the driver.
The motor ECU 5 inputs the accelerator opening from the accelerator opening sensor 3 and the vehicle speed via the in-vehicle communication line 6 to calculate the target drive torque, and outputs a drive command based on the target drive torque to the inverter 7.
The inverter 7 power-operates a motor generator (hereinafter abbreviated as a motor) 8 that is an electric motor based on a drive command.
The motor 8 is a three-phase AC motor and outputs drive torque to the left and right front wheels 2FL and 2FR which are drive wheels.
The motor ECU 5 inputs each wheel speed via the in-vehicle communication line 6, estimates the stroke speed of each wheel based on each wheel speed, and obtains the pitch rate and bounce rate of the vehicle body from each stroke speed. Then, the vehicle system vibration control for calculating the vehicle system vibration torque for suppressing the pitch rate and the bounce rate and correcting the target drive torque by the vehicle system vibration torque is performed.
The brake ECU (anti-lock control unit) 9 inputs the wheel speed pulse of each wheel from each wheel speed sensor 1FL, 1FR, 1RL, 1RR, calculates the wheel speed of each wheel, and calculates the pseudo vehicle speed based on the wheel speed. Anti-lock brake (ABS) control that increases / decreases or maintains the hydraulic pressure (wheel cylinder hydraulic pressure) of the wheel cylinder 20 (see FIG. 2) so that the wheel speed of each wheel matches the sudden pressure reduction control intervention threshold. carry out. The wheel speed and pseudo vehicle speed (vehicle speed) of each wheel are output to the in-vehicle communication line 6.
The hydraulic pressure control unit 10 adjusts the wheel cylinder hydraulic pressure in accordance with a command from the brake ECU 9.

図2は、実施例1の液圧制御ユニット10の回路構成図である。
液圧制御ユニット10は、各車輪に配設されたホイルシリンダ20と、ドライバのブレーキ操作量に応じてマスタシリンダ圧を発生するマスタシリンダ21とを連通するブレーキ回路22の途中に設けられている。液圧制御ユニット10は、ホイルシリンダ液圧の増減または保持を切り替え制御するための2つの切り替え制御弁23,24と、ホイルシリンダ20の減圧時にそのブレーキ液が貯えられるリザーバ25と、リザーバ25に貯えられたブレーキ液をブレーキ回路22に戻すためのポンプ26と、ポンプ26を作動させるポンプモータ27とを備えている。
FIG. 2 is a circuit configuration diagram of the hydraulic pressure control unit 10 according to the first embodiment.
The hydraulic pressure control unit 10 is provided in the middle of a brake circuit 22 that communicates a wheel cylinder 20 disposed on each wheel and a master cylinder 21 that generates a master cylinder pressure according to the brake operation amount of the driver. . The hydraulic control unit 10 includes two switching control valves 23 and 24 for switching control of increase / decrease or maintenance of the wheel cylinder hydraulic pressure, a reservoir 25 for storing brake fluid when the wheel cylinder 20 is depressurized, and a reservoir 25 A pump 26 for returning the stored brake fluid to the brake circuit 22 and a pump motor 27 for operating the pump 26 are provided.

[ABS制御処理]
図3は、実施例1のブレーキECU9で実施されるアンチロックブレーキ(ABS)制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。ブレーキECU9は、左右輪間ハンチング防止制御部9aを備える。
ステップS1では、各車輪速センサ1FL,1FR,1RL,1RRの車輪速パルスに基づき各車輪の車輪速を計算する。
ステップS2では、各車輪の車輪速の変化率に基づき各車輪の車輪減速度を演算する。
ステップS3では、各車輪速から、その最大値を求め、これに基づき擬似車体速度を演算する。
ステップS4では、擬似車体速度に基づいて各車輪の目標車輪速を演算する。
ステップS5では、目標車輪速を微分して目標車輪減速度を演算する。
ステップS6では、車輪減速度が目標車輪減速度となるようにホイルシリンダ液圧のフィードバック制御量を演算する。
ステップS7では、左右輪間ハンチング防止制御部9aにおいて、左右ハンチング低減減圧制御の実施条件が成立したか否かを判定し、YESの場合はステップS8へ進み、NOの場合はステップS9へ進む。左右ハンチング低減減圧制御の実施条件については後述する。
ステップS8では、左右輪間ハンチング防止制御部9aにおいて、左右ハンチング低減減圧制御を実施して目標ホイルシリンダ液圧を求める。左右ハンチング低減減圧制御については後述する。
ステップS9では、左右輪間ハンチング防止制御部9aにおいて、モータECU5に対し、車体制振制御を一時的に停止させる要求を出力する。これにより、ABS制御と車体制振制御との制御干渉を回避できる。
ステップS10では、現在のホイルシリンダ液圧が目標ホイルシリンダ液圧となるように液圧サーボ制御による液圧操作を行う。液圧サーボ制御については後述する。
[ABS control processing]
FIG. 3 is a flowchart showing a flow of an antilock brake (ABS) control process performed by the brake ECU 9 of the first embodiment, and each step will be described below. The brake ECU 9 includes a left-right wheel hunting prevention control unit 9a.
In step S1, the wheel speed of each wheel is calculated based on the wheel speed pulse of each wheel speed sensor 1FL, 1FR, 1RL, 1RR.
In step S2, the wheel deceleration of each wheel is calculated based on the change rate of the wheel speed of each wheel.
In step S3, the maximum value is obtained from each wheel speed, and the pseudo vehicle speed is calculated based on the maximum value.
In step S4, the target wheel speed of each wheel is calculated based on the pseudo vehicle speed.
In step S5, the target wheel speed is calculated by differentiating the target wheel speed.
In step S6, the feedback control amount of the wheel cylinder hydraulic pressure is calculated so that the wheel deceleration becomes the target wheel deceleration.
In step S7, the left / right wheel hunting prevention control unit 9a determines whether or not the conditions for executing the left / right hunting reduction pressure reduction control are satisfied. If YES, the process proceeds to step S8. If NO, the process proceeds to step S9. The execution conditions of the left / right hunting reduction pressure reduction control will be described later.
In step S8, the left / right wheel hunting prevention control unit 9a performs left / right hunting reduction pressure reduction control to obtain a target wheel cylinder hydraulic pressure. The left / right hunting reduction pressure reduction control will be described later.
In step S9, the left-right wheel hunting prevention control unit 9a outputs a request to temporarily stop the vehicle system vibration control to the motor ECU 5. Thereby, control interference between ABS control and vehicle system vibration control can be avoided.
In step S10, the hydraulic pressure is controlled by hydraulic servo control so that the current wheel cylinder hydraulic pressure becomes the target foil cylinder hydraulic pressure. The hydraulic servo control will be described later.

[左右ハンチング低減減圧制御の実施条件]
左右ハンチング低減減圧制御の実施条件は以下とする。
(VwFR+VwFL)/2 < (V1-SLIPx1) ∩ ((VwFR<V1-SLIPx2 ∩ VwDFR>5×9.8ms2) ∪ (VwFL<V1-SLIPx2 ∩ VwDFL>5×9.8ms2))
VwFRは右前輪車輪速、VwFLは左前輪車輪速、V1は擬似車体速度、SLIPx1は目標スリップ量1、SLIPx2は目標スリップ量2、VwDFRは右前輪車輪加速度、VwDFLは左前輪車輪加速度である。
すなわち、左右ハンチング低減減圧制御の実施条件は、1輪に大きなスリップが発生し、左右輪の平均回転速度があらかじめ設定された急減圧制御介入閾値よりも低くなった場合、かつ、スリップ発生輪がスリップ復帰方向となったとき、大きな復帰加速度を有している場合とする。
[Conditions for pressure reduction control for left / right hunting reduction]
The execution conditions of the left / right hunting reduction pressure reduction control are as follows.
(VwFR + VwFL) / 2 <(V1-SLIPx1) ∩ ((VwFR <V1-SLIPx2 ∩ VwDFR> 5 × 9.8ms 2 ) ∪ (VwFL <V1-SLIPx2 ∩ VwDFL> 5 × 9.8ms 2 ))
VwFR is the right front wheel speed, VwFL is the left front wheel speed, V1 is the pseudo vehicle speed, SLIPx1 is the target slip amount 1, SLIPx2 is the target slip amount 2, VwDFR is the right front wheel acceleration, and VwDFL is the left front wheel acceleration.
That is, the execution condition of the left / right hunting reduction decompression control is that when a large slip occurs in one wheel and the average rotational speed of the left and right wheels becomes lower than a preset sudden decompression control intervention threshold, It is assumed that there is a large return acceleration when the slip return direction is reached.

[左右ハンチング低減減圧制御]
例えば、左前輪2FLがスリップしモータ回転が低下した場合を考えると、右前輪2FRにスリップを発生させないようにするためには、モータ回転加速度ω'Mと左前輪2FLの回転加速度ω'FLが下記の式(1)を満足すればよい。
ω'M = K × (ω'FL + V')/2 …(1)
Kはギア比、V'は車体減速度(≒XG:前後加速度センサ値)である。
車輪回転運動とモータ回転運動に、ミッションが存在しないため、回転トルクのロスがない。よって、車輪回転トルクとモータ回転トルクとの関係式は、下記の式(2)で表現できる。
I × (ω'FL +ω'FR) × K = IM ×ω'M …(2)
ω'FRは右前輪回転加速度、Iは車輪回転慣性、IMはモータ回転慣性である。
すなわち、上記式(1)に式(2)を代入して得られた下記の式(3)で表現されるタイヤトルクを右前輪2FRに発生させればよい。
I ×ω'FR = (IM/2 - I) × ω'FL + IM/2 - V' …(3)
[Left and right hunting reduction pressure reduction control]
For example, considering the case where the front left wheel 2FL slips and the motor rotation decreases, in order to prevent the right front wheel 2FR from slipping, the motor rotation acceleration ω ′ M and the rotation acceleration ω ′ FL of the left front wheel 2FL are The following equation (1) may be satisfied.
ω ' M = K × (ω' FL + V ') / 2… (1)
K is the gear ratio, and V ′ is the vehicle deceleration (≈XG: longitudinal acceleration sensor value).
Since there is no mission in the wheel rotation motion and the motor rotation motion, there is no loss of rotational torque. Therefore, the relational expression between the wheel rotation torque and the motor rotation torque can be expressed by the following expression (2).
I × (ω ' FL + ω' FR ) × K = I M × ω ' M … (2)
ω 'FR right front wheel rotational acceleration, I is the wheel rotational inertia, and I M is a motor rotational inertia.
That is, the tire torque expressed by the following formula (3) obtained by substituting the formula (2) into the above formula (1) may be generated in the right front wheel 2FR.
I × ω ' FR = (I M / 2-I) × ω' FL + I M / 2-V '… (3)

右前輪2FRに発生する式(3)の制動側のトルクによって、右前輪2FRがスリップしないように、式(3)のトルクをブレーキトルク係数Bで割ることで、トルクをホイルシリンダ液圧に換算する。
ΔP = 1/B × ((IM/2 - I) × ω'FL + IM/2 - V') …(4)
左前輪2FLの車輪復帰過程においては、右前輪2FRのロック液圧からのΔPの液圧分を差し引いた値を、右前輪2FRのホイルシリンダ液圧の上限値とする。
つまり、
VwFR<VwFLの場合
ΔPFR = 1/B × ((IM/2 - I) × ωDFR + IM/2 - VIK)
ΔPFL = 0
VwFL<VwFRの場合
ΔPFR = 1/B × ((IM/2 - I) × ωDFL + IM/2 - VIK)
ΔPFL = 0
v_PBS_FR = v_PBHT_FR - ΔPFR
v_PBS_FL = v_PBHT_FL - ΔPFL
ΔPFRは右前輪ハンチング低減減圧制御量、ΔPFLは左前輪ハンチング低減減圧制御量、VIKは車体減速度、ωDFRは右前輪回転加速度、ωDFLは左前輪回転加速度、v_PBS_FRは右前輪目標ホイルシリンダ液圧、v_PBS_FLは左前輪目標ホイルシリンダ液圧、v_PBHT_FRは右前輪推定ホイルシリンダ液圧、v_PBHT_FLは左前輪推定ホイルシリンダ液圧である。
The torque in equation (3) is divided by the brake torque coefficient B so that the right front wheel 2FR does not slip due to the braking-side torque in equation (3) generated on the right front wheel 2FR. To do.
ΔP = 1 / B × ((I M / 2-I) × ω ' FL + I M / 2-V')… (4)
In the wheel return process of the left front wheel 2FL, a value obtained by subtracting the hydraulic pressure ΔP from the lock hydraulic pressure of the right front wheel 2FR is set as the upper limit value of the wheel cylinder hydraulic pressure of the right front wheel 2FR.
That means
When VwFR <VwFL ΔPFR = 1 / B × ((I M / 2-I) × ωDFR + I M / 2-VIK)
ΔPFL = 0
When VwFL <VwFR ΔPFR = 1 / B × ((I M / 2-I) × ωDFL + I M / 2-VIK)
ΔPFL = 0
v_PBS_FR = v_PBHT_FR-ΔPFR
v_PBS_FL = v_PBHT_FL-ΔPFL
ΔPFR is the right front wheel hunting reduction pressure reduction control amount, ΔPFL is the left front wheel hunting reduction pressure reduction control amount, VIK is the vehicle deceleration, ωDFR is the right front wheel rotation acceleration, ωDFL is the left front wheel rotation acceleration, v_PBS_FR is the right front wheel target wheel cylinder hydraulic pressure, v_PBS_FL is the left front wheel target wheel cylinder hydraulic pressure, v_PBHT_FR is the right front wheel estimated wheel cylinder hydraulic pressure, and v_PBHT_FL is the left front wheel estimated foil cylinder hydraulic pressure.

[液圧サーボ制御]
液圧サーボ制御では、左右ハンチング低減減圧制御で演算された目標ホイルシリンダ液圧に対して現在のホイルシリンダ液圧が小さい場合は液圧制御ユニット10の切り替え制御弁23,24に切り替え信号を送り、マスタシリンダ21とホイルシリンダ20との連通によってホイルシリンダ液圧を増大させる。また、目標ホイルシリンダ液圧と現在のホイルシリンダ液圧とが等しい場合は切り替え制御弁23,24を保持位置に切り替え、マスタシリンダ21とホイルシリンダ20との遮断によってホイルシリンダ液圧を維持する。一方、目標ホイルシリンダ液圧に対して現在のホイルシリンダ液圧が大きい場合は切り替え制御弁23,24に切り替え信号を送り、マスタシリンダ21とホイルシリンダ20との遮断およびホイルシリンダ20とリザーバ25との連通によってホイルシリンダ液圧を低下させる。リザーバ25に流れたブレーキ液は、ポンプモータ27を駆動してポンプ26を作動させることでマスタシリンダ21に還流させる。
[Hydraulic servo control]
In hydraulic servo control, if the current wheel cylinder hydraulic pressure is smaller than the target wheel cylinder hydraulic pressure calculated in the left / right hunting reduction pressure reduction control, a switching signal is sent to the switching control valves 23 and 24 of the hydraulic pressure control unit 10. The wheel cylinder hydraulic pressure is increased by the communication between the master cylinder 21 and the wheel cylinder 20. When the target wheel cylinder hydraulic pressure is equal to the current wheel cylinder hydraulic pressure, the switching control valves 23 and 24 are switched to the holding position, and the wheel cylinder hydraulic pressure is maintained by shutting off the master cylinder 21 and the wheel cylinder 20. On the other hand, when the current wheel cylinder hydraulic pressure is larger than the target wheel cylinder hydraulic pressure, a switching signal is sent to the switching control valves 23 and 24, the master cylinder 21 and the wheel cylinder 20 are shut off, and the wheel cylinder 20 and the reservoir 25 are The wheel cylinder hydraulic pressure is reduced by the communication. The brake fluid that has flowed into the reservoir 25 is returned to the master cylinder 21 by driving the pump motor 27 and operating the pump 26.

次に、作用を説明する。
[ABS作動時の左右駆動輪の車輪速の振動について]
従来の内燃機関を用いた車両に対して、電気自動車やハイブリッド自動車等の電動車両の普及に伴い、駆動源であるモータの慣性の大きさとそれに直結される比較的慣性の小さい車輪の回転をホイルシリンダ液圧の操作により制御するABSの動作により、駆動輪の振動が発生し、制動性能の劣化が見られるようになった。
これに対し、特許文献1に記載されているように、車輪速振動を抑えるカウンタトルクをモータ制御にて発生させる方法が採用されているが、制動中に駆動トルクが変動することはさらにABSの液圧制御の操作量(車輪ロック液圧、車輪復帰液圧)の変動を招き制動性能の劣化を招く結果となることが多い。このため、制動中の駆動トルク制御の禁止を余儀なくされていた。
駆動源であるモータと車輪が直結されている電気自動車では、制動中の車輪速の低下はモータの回転速度の低下と同じであるが、一度モータ回転が下がると、その大きな回転慣性により左右駆動輪の車輪速の振動を引き起こす。具体的には、右駆動輪の車輪速度復帰は左駆動輪のスリップ発生を引き起こす。このため、1輪のスリップが発生すると、左右交互にスリップが連続発生し、ABSによる急減圧制御が連続的に介入する場合があり全体的な減速度低下を引き起こすおそれがある。
Next, the operation will be described.
[Vibration of wheel speed of left and right drive wheels during ABS operation]
With the spread of electric vehicles such as electric vehicles and hybrid vehicles compared to conventional vehicles using an internal combustion engine, the wheel is designed to reduce the inertia of the motor, which is the drive source, and the rotation of the wheels with relatively low inertia that are directly connected to it. Due to the operation of the ABS controlled by the operation of the cylinder hydraulic pressure, the drive wheels vibrated and the braking performance deteriorated.
On the other hand, as described in Patent Document 1, a method of generating counter torque that suppresses wheel speed vibration by motor control is adopted. However, the fluctuation of the drive torque during braking is further affected by ABS. In many cases, the operation amount of the hydraulic pressure control (wheel lock hydraulic pressure, wheel return hydraulic pressure) fluctuates and the braking performance is deteriorated. For this reason, driving torque control during braking has been inevitably prohibited.
In an electric vehicle in which the motor, which is the drive source, and the wheels are directly connected, the decrease in wheel speed during braking is the same as the decrease in motor rotation speed. Cause vibration of the wheel speed of the wheel. Specifically, returning the wheel speed of the right drive wheel causes slippage of the left drive wheel. For this reason, when a slip of one wheel occurs, the slip continuously occurs on the left and right, and the sudden pressure reduction control by ABS may continuously intervene, which may cause a decrease in overall deceleration.

[車輪速の振動抑制ロジック]
電気自動車の特性上、モータの回転速度と駆動輪(左右前輪)の回転速度には、下記の式(A)の関係がある。
ωM × G = (ωFL + ωFR)/2 …(A)
ωMはモータ回転速度、Gはギア比、ωFLは左前輪回転速度、ωFRは右前輪回転速度である。
例えば、左前輪にスリップが発生した後、左前輪に急減圧処理を施してスリップを復帰させる過程を考えると、ωM×G>ωFLの状態から、急減圧処理によってωM×G<ωFLとなるが、式(A)の制約条件のために反対側の輪である右前輪の回転速度はωM×G>ωFRとなる。つまり、左前輪の車輪速度復帰は、右前輪のスリップ発生を引き起こす。このため1輪のスリップが発生すると、左右交互にスリップが連続発生し、急減圧制御が連続的に介入する場合があり、車体減速度の低下を招く場合がある。
実施例1のブレーキ制御装置の狙いとするところは、駆動輪の一方の車輪にスリップが発生した後、当該車輪のスリップを復帰させる過程において、他方の車輪のスリップの発生を抑制することにより、車体減速度の著しい低下を抑えることにあり、これを実現するために、実施例1の左右ハンチング低減減圧制御では、左右前輪の一方の車輪に大きなスリップが発生し、当該車輪の車輪復帰速度が十分大きい場合は、他方の車輪にあらかじめ減圧処理を施すことで、モータ回転の復帰を促し、左右の連続減圧を抑制する。
[Wheel speed vibration suppression logic]
Due to the characteristics of the electric vehicle, the rotational speed of the motor and the rotational speed of the driving wheels (left and right front wheels) have a relationship of the following formula (A).
ω M × G = (ω FL + ω FR ) / 2… (A)
ω M is the motor rotation speed, G is the gear ratio, ω FL is the left front wheel rotation speed, and ω FR is the right front wheel rotation speed.
For example, consider the process of applying a sudden pressure reduction process to the left front wheel after a slip occurs on the left front wheel to restore the slip. From the state of ω M × G> ω FL , a sudden pressure reduction process results in ω M × G <ω Although FL , the rotational speed of the right front wheel, which is the opposite wheel, is ω M × G> ω FR because of the constraint condition of equation (A). That is, returning the wheel speed of the left front wheel causes the right front wheel to slip. For this reason, when a slip of one wheel occurs, the slip is continuously generated alternately to the left and right, and the sudden pressure reduction control may continuously intervene, which may cause a decrease in vehicle deceleration.
The aim of the brake control device of the first embodiment is to suppress the occurrence of slipping of the other wheel in the process of returning the slipping of the other wheel after the occurrence of slipping on one of the drive wheels, In order to achieve this, the left / right hunting reduction pressure reduction control of the first embodiment causes a large slip on one of the left and right front wheels, and the wheel return speed of the wheel is reduced. When it is sufficiently large, a decompression process is performed on the other wheel in advance to promote the return of the motor rotation and suppress the continuous decompression on the left and right.

以下に実施例1の左右ハンチング低減減圧制御のロジックを示す。
制動中を仮定して、駆動トルク=0の状態を考えると、駆動機構の回転運動は下記の式(B)によって記述される。
IM × ω'M =
μFL × FzFL × rFL - KFL × PFL + μFR × FzFR × rFR - KFR × PFR …(B)
IMは駆動機構回転慣性、ω'Mはモータ回転加速度、μFLは左前輪路面−タイヤ間摩擦係数、FzFLは左前輪輪荷重、rFLは左前輪回転動半径、KFLは左前輪ブレーキトルク係数、PFLは左前輪ホイルシリンダ液圧、μFRは右前輪路面−タイヤ間摩擦係数、FzFRは右前輪輪荷重、rFRは右前輪回転動半径、KFRは右前輪ブレーキトルク係数、PFRは右前輪ホイルシリンダ液圧である。
左右前輪の回転運動は、下記の式(C),(D)によって記述される。
IFL × ω'FL = μFL × FzFL × rFL - KFL × PFL …(C)
IFR × ω'FR = μFR × FzFR × rFR - KFR × PFR …(D)
IFLは左前輪回転慣性、ω'FLは左前輪回転加速度、IFRは右前輪回転慣性、ω'FRは右前輪回転加速度である。
ここで、左前輪にΔPFLのホイルシリンダ液圧変化量を与えた場合の左前輪の回転運動変化Δω'FLは、下記の式(E)によって記述される。
IFL × Δω'FL = μFL × FzFL × rFL - KFL(PFL + ΔPFL) …(E)
式(E)を整理すると、下記の式(F)が導出される。
Δω'FL =ω'FL - (KFL × ΔPFL)/IFL …(F)
また、ΔPFLによる駆動機構回転運動変化Δω'Mは下記の式(G)によって記述される。
IM × Δω'M =
μFL × FzFL × rFL - KFL(PFL + ΔPFL) +μFR × FzFR × rFR - KFR × PFR …(G)
式(G)を整理すると、下記の式(H)が導出される。
Δω'M =ω'M - (KFL × ΔPFL)/IM …(H)
式(F)と式(H)とから、駆動機構回転運動の応答性は、回転慣性の差から車輪の回転運動の応答性よりも十分に鈍いことがわかる(電気自動車の例、IM:IFL=7:1)。
The logic of the left and right hunting reduction pressure reduction control of the first embodiment is shown below.
Assuming that braking is being performed and considering a state where the drive torque is 0, the rotational motion of the drive mechanism is described by the following equation (B).
I M × ω ' M =
μ FL × Fz FL × r FL -K FL × P FL + μ FR × Fz FR × r FR -K FR × P FR … (B)
I M is the drive mechanism rotational inertia, ω ' M is the motor rotational acceleration, μ FL is the left front wheel road surface-tire friction coefficient, Fz FL is the left front wheel load, r FL is the left front wheel rotational radius, and K FL is the left front wheel Brake torque coefficient, P FL is the left front wheel wheel cylinder hydraulic pressure, μ FR is the right front wheel road surface-tire friction coefficient, Fz FR is the right front wheel load, r FR is the right front wheel rotational radius, K FR is the right front wheel brake torque The coefficient, P FR, is the right front wheel cylinder hydraulic pressure.
The rotational movement of the left and right front wheels is described by the following equations (C) and (D).
I FL × ω ' FL = μ FL × Fz FL × r FL -K FL × P FL … (C)
I FR × ω ' FR = μ FR × Fz FR × r FR -K FR × P FR … (D)
I FL is the left front wheel rotational inertia, ω ′ FL is the left front wheel rotational acceleration, I FR is the right front wheel rotational inertia, and ω ′ FR is the right front wheel rotational acceleration.
Here, the rotational movement change Δω ′ FL of the left front wheel when the wheel cylinder hydraulic pressure change amount of ΔP FL is given to the left front wheel is described by the following equation (E).
I FL × Δω ' FL = μ FL × Fz FL × r FL -K FL (P FL + ΔP FL )… (E)
When formula (E) is arranged, the following formula (F) is derived.
Δω ' FL = ω' FL- (K FL × ΔP FL ) / I FL … (F)
Further, the drive mechanism rotational motion change Δω ′ M due to ΔP FL is described by the following equation (G).
I M × Δω ' M =
μ FL × Fz FL × r FL -K FL (P FL + ΔP FL ) + μ FR × Fz FR × r FR -K FR × P FR … (G)
When formula (G) is arranged, the following formula (H) is derived.
Δω ' M = ω' M- (K FL × ΔP FL ) / I M … (H)
From the formula (F) and formula (H), it can be seen that the responsiveness of the rotational motion of the drive mechanism is sufficiently duller than the responsiveness of the rotational motion of the wheels due to the difference in rotational inertia (example of electric vehicle, I M : I FL = 7: 1).

ここで、制御にて対象としている運動現象を整理すると、例えば左前輪にのみ大きなスリップが発生した際、式(A)に基づき駆動機構の回転速度も小さくなる(ωFLM×G<ωFR)。左前輪をスリップ状態から速やかに復帰させるために、急減圧処理を実施し、車輪スリップ復帰処理を行った場合、上述の通り車輪の回転復帰速度は大きいが、駆動機構の回転復帰速度は小さいため、左前輪の回転速度は駆動機構の回転速度よりも低速状態(ωFLM×G)から高速状態(ωM×G<ωFL)へ移行するが、式(A)により右前輪の回転速度はωFRM×Gとなる。例えば、駆動機構の回転速度の速度換算値が急減圧制御介入閾値よりも低速であった場合は、右前輪に急減圧制御が介入する。これが左右交互連続スリップの発生メカニズムであると考えられる。
以上より、駆動輪の一方の車輪にスリップ発生後、他方の車輪にスリップが発生する最たる原因は、駆動機構の回転速度が十分に小さいことにあることがわかる。よって、左右の交互連続スリップを防ぐには、駆動機構の回転速度を適正回転速度(車体速度換算回転速度の90%〜95%)へ、速やかに復帰させることが肝心である。実施例1では、左前輪に急減圧操作ΔPFLが加えられた場合に、右前輪にΔPFRを与えることによって、駆動機構の回転速度復帰を促すものである。ΔPFRを与えた駆動機構の回転運動変化Δω'Mは、下記の式(I)にて記述される。
IM × Δω'M =
μFL × FzFL × rFL - KFL(PFL + ΔPFL) +μFR × FzFR × rFR - KFR(PFR + ΔPFR)…(I)
式(I)を整理すると下記の式(J)が導出される。つまり、-(KFR×ΔPFR)/IMが、本制御による駆動機構の回転速度復帰を促進させる制御量となる。
Δω'M =ω'M - (KFL × ΔPFL)/IM - (KFR × ΔPFR)/IM …(J)
Here, when organizing the movement phenomenon that is the object of control, for example, when a large slip occurs only in the left front wheel, the rotational speed of the drive mechanism also decreases based on equation (A) (ω FLM × G < ω FR ). In order to quickly return the left front wheel from the slip state, when performing a sudden pressure reduction process and a wheel slip recovery process, the wheel rotation recovery speed is high as described above, but the drive mechanism rotation recovery speed is small. The rotation speed of the left front wheel shifts from the low speed state (ω FLM × G) to the high speed state (ω M × G <ω FL ) than the rotation speed of the drive mechanism. The rotation speed is ω FRM × G. For example, when the speed conversion value of the rotational speed of the drive mechanism is lower than the sudden pressure reduction control intervention threshold, the sudden pressure reduction control intervenes on the right front wheel. This is considered to be the mechanism of occurrence of left and right alternating continuous slip.
From the above, it can be seen that the main cause of the occurrence of slip on one wheel of the drive wheel after the occurrence of slip on the other wheel is that the rotational speed of the drive mechanism is sufficiently low. Therefore, in order to prevent left and right alternating continuous slip, it is important to quickly return the rotational speed of the drive mechanism to an appropriate rotational speed (90% to 95% of the vehicle body speed conversion rotational speed). In the first embodiment, when the sudden pressure reduction operation ΔP FL is applied to the left front wheel, ΔP FR is given to the right front wheel to promote the return of the rotational speed of the drive mechanism. The rotational motion change Δω ′ M of the drive mechanism given ΔP FR is described by the following equation (I).
I M × Δω ' M =
μ FL × Fz FL × r FL -K FL (P FL + ΔP FL ) + μ FR × Fz FR × r FR -K FR (P FR + ΔP FR )… (I)
When formula (I) is arranged, the following formula (J) is derived. That, - (K FR × ΔP FR ) / I M becomes a control amount to accelerate the rotational speed restoration of the drive mechanism according to the control.
Δω ' M = ω' M- (K FL × ΔP FL ) / I M- (K FR × ΔP FR ) / I M … (J)

図4は、実施例1の左右ハンチング低減減圧制御作用を示す回転速度、ホイルシリンダ液圧および車体減速度のタイムチャートであり、左右ハンチング低減減圧制御を時点t1以降に実施する例を示す。
上述したように、電気自動車では車輪とモータが直結されているため、左前輪2FLのスリップ発生により左前輪回転速度ωFLが低下すると、モータ回転速度ωMも低下する。このとき、ABSの急減圧制御により左前輪ホイルシリンダ液圧PFLを低下させることで左前輪回転速度ωFLは復帰するものの、モータ回転速度ωMはほとんど復帰していない。このため、左右前輪2FL,2FRを繋ぐディファレンシャルギアの作用により、慣性の大きなモータ8の回転速度ωMを支点として右前輪回転速度ωFRが低下し、右前輪2FRにスリップが発生する。これにより、モータ回転速度ωMが復帰するまでの間、左右交互にスリップの連続発生によって左右前輪2FL,2FRの車輪速が振動し、車体減速度XGの低下が継続される。
これに対し、実施例1の左右ハンチング低減減圧制御では、左前輪2FLのスリップ発生により左前輪回転速度ωFLが低下すると、急減圧制御により左前輪ホイルシリンダ液圧PFLを復帰させつつ、左前輪回転速度ωFLの復帰によるトルク変動分を考慮し、右前輪2FRのロック液圧からのΔP(式(4)参照)の液圧分を差し引いた値を右前輪ホイルシリンダ液圧PFRの上限値として右前輪2FRの制動トルクを未然に制限する。
このため、右前輪回転速度ωFRが左前輪回転速度ωFLを下回ることがなく、右前輪2FLのスリップを抑制できる。このとき、式(A)の関係から、モータ回転速度ωMの復帰も促進できる。これにより、左右前輪2FL,2FRの車輪速の振動を抑制でき、車体減速度XGの低下を早期に回復できる。
FIG. 4 is a time chart of the rotational speed, the wheel cylinder hydraulic pressure, and the vehicle body deceleration showing the left and right hunting reduction pressure reduction control operation of the first embodiment, and shows an example in which the left and right hunting reduction pressure reduction control is performed after time t1.
As described above, since the wheel and the motor are directly connected in the electric vehicle, when the left front wheel rotation speed ω FL decreases due to the slip of the left front wheel 2FL, the motor rotation speed ω M also decreases. At this time, the left front wheel rotational speed ω FL is restored by lowering the left front wheel wheel cylinder hydraulic pressure P FL by the ABS sudden pressure reduction control, but the motor rotational speed ω M is hardly restored. Therefore, due to the action of the differential gear that connects the left and right front wheels 2FL and 2FR, the right front wheel rotational speed ω FR decreases with the rotational speed ω M of the motor 8 having a large inertia as a fulcrum, and slip occurs in the right front wheel 2FR. As a result, the wheel speeds of the left and right front wheels 2FL and 2FR vibrate due to the continuous occurrence of slips on the left and right alternately until the motor rotational speed ω M returns, and the vehicle body deceleration XG continues to decrease.
On the other hand, in the left and right hunting reduction pressure reducing control of the first embodiment, when the left front wheel rotational speed ω FL decreases due to the slip of the left front wheel 2FL, the left front wheel wheel cylinder hydraulic pressure P FL is restored by the rapid pressure reducing control, Considering the torque fluctuation due to the return of the front wheel rotational speed ω FL , the value obtained by subtracting the hydraulic pressure of ΔP (see formula (4)) from the lock hydraulic pressure of the right front wheel 2FR is the value of the right front wheel wheel cylinder hydraulic pressure P FR The braking torque for the right front wheel 2FR is limited as an upper limit.
Therefore, the right front wheel rotational speed omega FR is no fall below the left front wheel rotational speed omega FL, can be suppressed slip of the right front wheel 2FL. At this time, the return of the motor rotational speed ω M can be promoted from the relationship of the formula (A). As a result, vibrations of the wheel speeds of the left and right front wheels 2FL and 2FR can be suppressed, and the reduction in the vehicle body deceleration XG can be recovered early.

実施例1のブレーキ制御装置では、以下に列挙する効果を奏する。
(1) モータ8の回転を車両に搭載された左右前輪2FL,2FRに対して伝達して走行する電動車両用のブレーキ制御装置において、擬似車体速度に対する左右前輪2FL,2FRのスリップ状態に応じてホイルシリンダ液圧を増圧、保持、減圧制御して左右前輪2FL,2FRのロック状態を回避するためのブレーキECU9と、ブレーキECU9の作動時に左右前輪2FL,2FRに対して制動力を作用させるためのホイルシリンダ液圧を調整し左右前輪2FL,2FRの車輪回転数を調整する左右輪間ハンチング防止制御部9aと、を備えた。
これにより、ABS作動時における左右前輪2FL,2FRの車輪速の振動を抑制できる。
(2) 左右輪間ハンチング防止制御部9aは、左右前輪2FL,2FRの車輪回転数の大小関係を維持しつつ、モータ回転速度ωMにギア比Gを乗じた回転数(ωM × G)が、左前輪回転速度ωFLと右前輪回転速度ωFRとの和の半分(ωFL + ωFR)/2になるようにホイルシリンダ液圧を調整する。
これにより、車体減速度XGの低下を早期に回復できる。
(3) 左右輪間ハンチング防止制御部9aは、左右前輪2FL,2FRのうち車輪回転数が高い車輪回転数の落ち込みを抑制するためにホイルシリンダ液圧を調整する。
これにより、左右前輪2FL,2FRの車輪回転数の大小関係が反転するのを抑制でき、左右前輪2FL,2FRの車輪速の振動を抑制できる。
The brake control device according to the first embodiment has the following effects.
(1) In a brake control device for an electric vehicle that travels by transmitting the rotation of the motor 8 to the left and right front wheels 2FL and 2FR mounted on the vehicle, depending on the slip state of the left and right front wheels 2FL and 2FR with respect to the pseudo vehicle speed Brake ECU9 to avoid the locked state of the left and right front wheels 2FL, 2FR by increasing, holding, and reducing the hydraulic pressure of the wheel cylinder, and to apply the braking force to the left and right front wheels 2FL, 2FR when the brake ECU9 is operated And a left-right wheel hunting prevention control unit 9a for adjusting the wheel cylinder hydraulic pressure and adjusting the wheel rotational speeds of the left and right front wheels 2FL and 2FR.
Thereby, vibrations of the wheel speeds of the left and right front wheels 2FL and 2FR during ABS operation can be suppressed.
(2) The left / right wheel hunting prevention control unit 9a maintains the magnitude relationship between the wheel speeds of the left and right front wheels 2FL, 2FR, while multiplying the motor rotation speed ω M by the gear ratio G (ω M × G). However, the wheel cylinder hydraulic pressure is adjusted so that it becomes half (ω FL + ω FR ) / 2 of the sum of the left front wheel rotational speed ω FL and the right front wheel rotational speed ω FR .
Thereby, the fall of the vehicle body deceleration XG can be recovered early.
(3) The left / right wheel hunting prevention control unit 9a adjusts the wheel cylinder hydraulic pressure in order to suppress a drop in the wheel rotation speed of the left and right front wheels 2FL, 2FR having a high wheel rotation speed.
Thereby, it can suppress that the magnitude relationship of the wheel rotation speed of right-and-left front wheel 2FL and 2FR is reversed, and the vibration of the wheel speed of left-right front wheel 2FL and 2FR can be suppressed.

(他の実施例)
以上、本発明を実施するための形態を、実施例に基づいて説明したが、本発明の具体的な構成は、実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、実施例では、ABSによる液圧サーボ制御中はモータによる車体制振制御を一時的に停止させる例を示したが、モータ回転を安定させるモータ駆動電流制御を実施している場合には、当該モータ駆動電流制御を一時的に停止させ、ABSとの制御干渉を回避する。
(Other examples)
As mentioned above, although the form for implementing this invention was demonstrated based on the Example, the specific structure of this invention is not limited to the structure shown in the Example, and does not deviate from the summary of invention. Any change in the design of the range is included in the present invention.
For example, in the embodiment, an example in which the vehicle system vibration control by the motor is temporarily stopped during the hydraulic servo control by ABS is shown, but when the motor drive current control to stabilize the motor rotation is performed, The motor drive current control is temporarily stopped to avoid control interference with the ABS.

2FL,2FR 左右前輪(左右輪)
8 モータジェネレータ(電動機)
9 ブレーキECU(アンチロック制御部)
9a 左右輪間ハンチング防止制御部
2FL, 2FR Left and right front wheels (left and right wheels)
8 Motor generator (electric motor)
9 Brake ECU (anti-lock control unit)
9a Hunting prevention control unit between left and right wheels

Claims (3)

電動機の回転を車両に搭載された左右輪に対して伝達して走行する電動車両用のブレーキ制御装置において、
車体速度に対する前記左右輪のスリップ状態に応じてホイルシリンダ液圧を増圧、保持、減圧制御して前記左右輪のロック状態を回避するためのアンチロック制御部と、
前記アンチロック制御部の作動時に前記左右輪に対して制動力を作用させるための前記ホイルシリンダ液圧を調整し前記左右輪の車輪回転数を調整する左右輪間ハンチング防止制御部と、
を備えたことを特徴とするブレーキ制御装置。
In the brake control device for an electric vehicle that travels by transmitting the rotation of the electric motor to the left and right wheels mounted on the vehicle,
An anti-lock control unit for increasing, maintaining and reducing the wheel cylinder hydraulic pressure according to the slip state of the left and right wheels with respect to the vehicle body speed to avoid the locked state of the left and right wheels;
A left-right wheel hunting prevention control unit that adjusts the wheel cylinder hydraulic pressure for applying a braking force to the left and right wheels during operation of the anti-lock control unit and adjusts the wheel rotation speed of the left and right wheels;
A brake control device comprising:
請求項1に記載のブレーキ制御装置において、
前記左右輪間ハンチング防止制御部は、前記左右輪の車輪回転数の大小関係を維持しつつ、前記電動機の回転数が前記左右輪の車輪の回転数の略半分になるようにホイルシリンダ液圧を調整することを特徴とするブレーキ制御装置。
The brake control device according to claim 1, wherein
The left / right wheel hunting prevention control unit maintains the magnitude relationship between the wheel rotation speeds of the left and right wheels, and controls the wheel cylinder hydraulic pressure so that the rotation speed of the motor is substantially half of the rotation speed of the wheels of the left and right wheels. The brake control device characterized by adjusting.
請求項1または請求項2に記載のブレーキ制御装置において、
前記左右輪間ハンチング防止制御部は、前記左右輪のうち車輪回転数が高い車輪回転数の落ち込みを抑制するためにホイルシリンダ液圧を調整することを特徴とするブレーキ制御装置。
In the brake control device according to claim 1 or 2,
The left and right wheel hunting prevention control unit adjusts the wheel cylinder hydraulic pressure in order to suppress a drop in the wheel rotation speed of the left and right wheels having a high wheel rotation speed.
JP2012151075A 2012-07-05 2012-07-05 Brake control device Expired - Fee Related JP5889736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151075A JP5889736B2 (en) 2012-07-05 2012-07-05 Brake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151075A JP5889736B2 (en) 2012-07-05 2012-07-05 Brake control device

Publications (2)

Publication Number Publication Date
JP2014012490A true JP2014012490A (en) 2014-01-23
JP5889736B2 JP5889736B2 (en) 2016-03-22

Family

ID=50108509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151075A Expired - Fee Related JP5889736B2 (en) 2012-07-05 2012-07-05 Brake control device

Country Status (1)

Country Link
JP (1) JP5889736B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131911A (en) * 1991-11-13 1993-05-28 Aisin Seiki Co Ltd Traction controller
JP2000118376A (en) * 1998-10-19 2000-04-25 Akebono Brake Ind Co Ltd Antilock control method
JP2006051929A (en) * 2004-07-30 2006-02-23 Ford Global Technologies Llc Active motor damping method to mitigate electric vehicle driveline oscillation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05131911A (en) * 1991-11-13 1993-05-28 Aisin Seiki Co Ltd Traction controller
JP2000118376A (en) * 1998-10-19 2000-04-25 Akebono Brake Ind Co Ltd Antilock control method
JP2006051929A (en) * 2004-07-30 2006-02-23 Ford Global Technologies Llc Active motor damping method to mitigate electric vehicle driveline oscillation

Also Published As

Publication number Publication date
JP5889736B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5906173B2 (en) Vehicle control device
US10093308B2 (en) Electronic stability control system for vehicle
EP3632733B1 (en) Control method for electric vehicle, and control device
JP5824406B2 (en) Electric drive vehicle
JP5883490B1 (en) Vehicle control apparatus and vehicle control method
KR20170024856A (en) Apparatus and method for controlling of vehicle having motor
JP5405440B2 (en) Electric drive vehicle
KR20170140355A (en) Control device of electric vehicle and control method of electric vehicle
JP2013163422A (en) Vehicle motion control apparatus and vehicle motion control method
JP2018093645A (en) Device for controlling electric vehicle, system for controlling electric vehicle and method for controlling electric vehicle
JP6578146B2 (en) Slip control device
WO2015151193A1 (en) Vehicle traction control device
US20150105953A1 (en) Vibration control apparatus of vehicle with motor
JP6905412B2 (en) Vehicle control device, vehicle control system and vehicle control method
JP2016086536A (en) Vehicular traction control apparatus
JP2016086535A (en) Vehicular traction control apparatus
JP5889736B2 (en) Brake control device
JP7169461B2 (en) Control device
JP2017085846A (en) Control method for electric vehicle, and control apparatus
JP2009173085A (en) Vehicle torque control apparatus
JP2016172494A (en) Brake control device
JP2016199146A (en) Control device of vehicle
JP2013183502A (en) Brake control device of rear wheel electric drive vehicle
JP2016124358A (en) Vehicle motion control device
JP2019187019A (en) Control device of electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5889736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees