JP2014010399A - Imaging device and lens device - Google Patents

Imaging device and lens device Download PDF

Info

Publication number
JP2014010399A
JP2014010399A JP2012148731A JP2012148731A JP2014010399A JP 2014010399 A JP2014010399 A JP 2014010399A JP 2012148731 A JP2012148731 A JP 2012148731A JP 2012148731 A JP2012148731 A JP 2012148731A JP 2014010399 A JP2014010399 A JP 2014010399A
Authority
JP
Japan
Prior art keywords
optical system
imaging optical
imaging
focus lens
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012148731A
Other languages
Japanese (ja)
Other versions
JP2014010399A5 (en
JP5755187B2 (en
Inventor
Takashi Oniki
崇 鬼木
Tomoaki Inoue
智暁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012148731A priority Critical patent/JP5755187B2/en
Priority to US13/927,197 priority patent/US8988538B2/en
Priority to CN201310263984.8A priority patent/CN103533227B/en
Priority to EP13174470.8A priority patent/EP2683154B1/en
Publication of JP2014010399A publication Critical patent/JP2014010399A/en
Publication of JP2014010399A5 publication Critical patent/JP2014010399A5/ja
Application granted granted Critical
Publication of JP5755187B2 publication Critical patent/JP5755187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compound-eye imaging device capable of concurrently acquiring focused images with different field angles for a subject ranged in distance from infinite to extremely close.SOLUTION: A compound-eye imaging device has: a plurality of imaging optical systems 110a, 110b, 120a, 120b, 130a, 130b, 140a and 140b which perform partial focusing and have different focal distances; imaging elements 210a to 210f with imaging areas corresponding to respective imaging optical systems; and satisfies a predetermined conditional equation.

Description

本発明は、複眼撮像装置およびレンズ装置に関する。   The present invention relates to a compound eye imaging device and a lens device.

特許文献1は、画角の異なる短焦点レンズと長焦点レンズが被写体の同じ部分を含むように撮像する複眼撮像装置を提案している。この複眼撮像装置では、短焦点レンズに対応した撮像素子から得られた画像の一部に、長焦点レンズに対応した撮像素子から得られたズームアップした画像を嵌め込む。特許文献2は、焦点距離の異なる複数の単焦点レンズ系を切り替えて使用し、撮影時に受光部が所望の焦点距離を有するレンズ系の光軸上に移動させる撮像装置を提案している。特許文献3は、各個眼を前群と後群で構成し、前群と後群が一体成型された複眼撮像装置を提案している。   Patent Document 1 proposes a compound eye imaging device that captures images so that a short-focus lens and a long-focus lens having different angles of view include the same part of the subject. In this compound-eye imaging device, a zoomed-up image obtained from an image sensor corresponding to a long focus lens is fitted into a part of an image obtained from an image sensor corresponding to a short focus lens. Patent Document 2 proposes an imaging apparatus in which a plurality of single-focus lens systems having different focal lengths are switched and used, and a light receiving unit moves on the optical axis of a lens system having a desired focal length during photographing. Patent Document 3 proposes a compound eye imaging device in which each individual eye is composed of a front group and a rear group, and the front group and the rear group are integrally molded.

特開2005−303694号公報JP 2005-303694 A 特開2001−330878号公報JP 2001-330878 A 特開2005−341301号公報Japanese Patent Laying-Open No. 2005-341301

特許文献1、3の構成では、異なる焦点距離を有する複数の光学系において一体成型で構成されたレンズ群でフォーカシングを行おうとした場合、異なる画角の合焦画像を同時に取得することができない。レンズ群が一体成型でない場合には、レンズ群を個別に制御することによって異なる画角の合焦画像を同時に取得することはできるであろうが、駆動機構をレンズ群ごとに設けて制御することになるため、複眼撮像装置が大型になったり、構成が複雑になったりする。特許文献2も、複数の光学系に対して一つのセンサしかないため、異なる画角の合焦画像を同時に取得することはそもそもできない。   In the configurations of Patent Documents 1 and 3, when focusing is performed with a lens group configured by integral molding in a plurality of optical systems having different focal lengths, in-focus images with different angles of view cannot be acquired simultaneously. If the lens groups are not integrally molded, it will be possible to simultaneously acquire in-focus images with different angles of view by controlling the lens groups individually, but a drive mechanism should be provided for each lens group and controlled. Therefore, the compound-eye imaging device becomes large and the configuration becomes complicated. Since Patent Document 2 also has only one sensor for a plurality of optical systems, it is impossible to acquire in-focus images with different angles of view at the same time.

本発明は、無限遠から至近までの被写体に対し、異なる画角の合焦画像を同時に取得することが可能で、焦点距離の異なる複数の光学系を有する撮像装置およびレンズ装置を提供することを例示的な目的とする。   The present invention exemplifies providing an imaging device and a lens device having a plurality of optical systems with different focal lengths capable of simultaneously acquiring in-focus images with different angles of view for subjects from infinity to the nearest. Purpose.

本発明の撮像装置は、異なる焦点距離を有し、物体の光学像を形成する複数の結像光学系と、前記複数の結像光学系にそれぞれ対応する撮像領域を有し、対応する結像光学系が形成した前記光学像を光電変換する撮像素子と、を有し、各結像光学系は、前記結像光学系の最も物体側に配置されて被写体位置が変化する際に移動されるフォーカスレンズユニットと固定される固定レンズユニットを有し、前記フォーカスレンズユニットがフォーカスレンズを有する。前記フォーカスレンズは、該フォーカスレンズを有する結像光学系と該結像光学系の光軸に垂直な方向に隣接し且つ該結像光学系と異なる焦点距離を有する結像光学系のフォーカスレンズとは異なる面形状を有し、以下の条件式を満たすことを特徴とする。
0.8<|ffi/ffh|<1.2
|(ΔOf+Δf)/ft|<2.1
ただし、
Δf=ffi−ffh
ΔOf=Ofi−Ofh
ftは前記複数の結像光学系のうち最も長い焦点距離、ffhは前記複数の結像光学系のうち任意の結像光学系hのフォーカスレンズユニットの焦点距離、ffiは前記複数の結像光学系のうち任意の結像光学系iのフォーカスレンズユニットの焦点距離、Ofhは前記結像光学系hのフォーカスレンズユニットの前側主点位置から像面までの距離、Ofiは前記結像光学系iのフォーカスレンズユニットの前側主点位置から像面までの距離である。
An imaging apparatus according to the present invention has a plurality of imaging optical systems that have different focal lengths and form an optical image of an object, and imaging regions that respectively correspond to the plurality of imaging optical systems. An imaging device that photoelectrically converts the optical image formed by the optical system, and each imaging optical system is disposed closest to the object side of the imaging optical system and is moved when the subject position changes. A fixed lens unit fixed to the focus lens unit is included, and the focus lens unit includes a focus lens. The focus lens includes: an imaging optical system having the focus lens; and a focusing lens of the imaging optical system that is adjacent in a direction perpendicular to the optical axis of the imaging optical system and has a different focal length from the imaging optical system; Have different surface shapes and satisfy the following conditional expressions.
0.8 <| ffi / ffh | <1.2
| (ΔOf + Δf) / ft | <2.1
However,
Δf = ffi-ffh
ΔOf = Ofi-Ofh
ft is the longest focal length of the plurality of imaging optical systems, ffh is the focal length of the focus lens unit of any imaging optical system h among the plurality of imaging optical systems, and fi is the plurality of imaging optics. Of the system, the focal length of the focus lens unit of any imaging optical system i, Ofh is the distance from the front principal point position of the focus lens unit of the imaging optical system h to the image plane, Ofi is the imaging optical system i. This is the distance from the front principal point position of the focus lens unit to the image plane.

本発明によれば、無限遠から至近までの被写体に対し、異なる画角の合焦画像を同時に取得することが可能で、焦点距離の異なる複数の光学系を有する複眼撮像装置およびレンズ装置を提供することができる。   According to the present invention, it is possible to provide a compound eye imaging device and a lens device having a plurality of optical systems having different focal lengths, capable of simultaneously acquiring in-focus images with different angles of view for subjects from infinity to the nearest. be able to.

本実施形態の複眼撮像装置のブロック図である。(実施例1、2、3、4、5)It is a block diagram of the compound eye imaging device of this embodiment. (Examples 1, 2, 3, 4, 5) 図1に示す複眼撮像装置の撮像ユニットの斜視図である。(実施例1、2、3、4、5)It is a perspective view of the imaging unit of the compound eye imaging device shown in FIG. (Examples 1, 2, 3, 4, 5) 図2に示す撮像ユニットの正面図である。(実施例1、2、3、4、5)It is a front view of the imaging unit shown in FIG. (Examples 1, 2, 3, 4, 5) 図4に示す各結像光学系による撮影画像の例である。(実施例1、2、3、4、5)It is an example of the picked-up image by each imaging optical system shown in FIG. (Examples 1, 2, 3, 4, 5) 図1に示す複眼撮像装置のフォーカス駆動機構の部分拡大斜視図である。(実施例1、2、3、4、5)FIG. 2 is a partially enlarged perspective view of a focus driving mechanism of the compound eye imaging apparatus shown in FIG. 1. (Examples 1, 2, 3, 4, 5) 本発明の複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。(実施例1)It is a lens sectional view of a wide single eye, a wide middle single eye, a telemid single eye, and a tele single eye of the compound eye optical system of the present invention. Example 1 図6に示す複眼光学系に対応する数値実施例1のワイドの収差図である。(実施例1)FIG. 7 is a wide aberration diagram of Numerical Example 1 corresponding to the compound-eye optical system shown in FIG. 6. Example 1 図6に示す複眼光学系に対応する数値実施例1のワイドミドルの収差図である。(実施例1)FIG. 7 is an aberration diagram of the wide middle of Numerical Example 1 corresponding to the compound-eye optical system shown in FIG. 6. Example 1 図6に示す複眼光学系に対応する数値実施例1のテレミドルの収差図である。(実施例1)FIG. 7 is an aberration diagram of the teleiddle of Numerical Example 1 corresponding to the compound-eye optical system shown in FIG. 6. Example 1 図6に示す複眼光学系に対応する数値実施例1のテレの収差図である。(実施例1)FIG. 7 is a tele aberration diagram of Numerical Example 1 corresponding to the compound-eye optical system shown in FIG. 6. Example 1 本発明の複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。(実施例2)It is a lens sectional view of a wide single eye, a wide middle single eye, a telemid single eye, and a tele single eye of the compound eye optical system of the present invention. (Example 2) 図8に示す複眼光学系に対応する数値実施例2のワイドの収差図である。(実施例2)FIG. 9 is a wide aberration diagram of Numerical Example 2 corresponding to the compound-eye optical system shown in FIG. 8. (Example 2) 図8に示す複眼光学系に対応する数値実施例2のワイドミドルの収差図である。(実施例2)FIG. 10 is an aberration diagram of the wide middle of Numerical Example 2 corresponding to the compound-eye optical system illustrated in FIG. 8. (Example 2) 図8に示す複眼光学系に対応する数値実施例2のテレミドルの収差図である。(実施例2)FIG. 10 is an aberration diagram of the teleiddle of Numerical Example 2 corresponding to the compound-eye optical system illustrated in FIG. 8. (Example 2) 図8に示す複眼光学系に対応する数値実施例2のテレの収差図である。(実施例2)FIG. 9 is an aberration diagram for telephoto of Numerical Example 2 corresponding to the compound-eye optical system shown in FIG. 8. (Example 2) 本発明の複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。(実施例3)It is a lens sectional view of a wide single eye, a wide middle single eye, a telemid single eye, and a tele single eye of the compound eye optical system of the present invention. (Example 3) 図10に示す複眼光学系に対応する数値実施例3のワイドの収差図である。(実施例3)FIG. 11 is a wide aberration diagram of Numerical Example 3 corresponding to the compound-eye optical system illustrated in FIG. 10. (Example 3) 図10に示す複眼光学系に対応する数値実施例3のワイドミドルの収差図である。(実施例3)FIG. 11 is an aberration diagram of the wide middle of Numerical Example 3 corresponding to the compound eye optical system illustrated in FIG. 10. (Example 3) 図10に示す複眼光学系に対応する数値実施例3のテレミドルの収差図である。(実施例3)FIG. 11 is an aberration diagram of the teleiddle of Numerical Example 3 corresponding to the compound-eye optical system illustrated in FIG. 10. (Example 3) 図10に示す複眼光学系に対応する数値実施例3のテレの収差図である。(実施例3)FIG. 11 is an aberration diagram for telephoto of Numerical Example 3 corresponding to the compound-eye optical system shown in FIG. 10. (Example 3) 本発明の複眼光学系のワイド個眼、テレ個眼のレンズ断面図である。(実施例4)It is a lens sectional view of a wide single eye of a compound eye optical system of the present invention, and a tele single eye. Example 4 図12に示す複眼光学系に対応する数値実施例4のワイド、テレの収差図である。(実施例4)FIG. 13 is an aberration diagram of wide and telephoto in Numerical Example 4 corresponding to the compound-eye optical system shown in FIG. 12. Example 4 本発明の複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。(実施例5)It is a lens sectional view of a wide single eye, a wide middle single eye, a telemid single eye, and a tele single eye of the compound eye optical system of the present invention. (Example 5) 図14に示す複眼光学系に対応する数値実施例5のワイドの収差図である。(実施例5)FIG. 15 is a wide aberration diagram of Numerical Example 5 corresponding to the compound-eye optical system shown in FIG. 14. (Example 5) 図14に示す複眼光学系に対応する数値実施例5のワイドミドルの収差図である。(実施例5)FIG. 15 is an aberration diagram of the wide middle of Numerical Example 5 corresponding to the compound eye optical system illustrated in FIG. 14. (Example 5) 図14に示す複眼光学系に対応する数値実施例5のテレミドルの収差図である。(実施例5)FIG. 15 is an aberration diagram of the teleiddle of Numerical Example 5 corresponding to the compound-eye optical system illustrated in FIG. 14. (Example 5) 図14に示す複眼光学系に対応する数値実施例5のテレの収差図である。(実施例5)FIG. 16 is a diagram of tele aberration of Numerical Example 5 corresponding to the compound-eye optical system illustrated in FIG. 14. (Example 5) 被写体距離の変動と像面移動量の関係を説明するための断面図である。(実施例1、2、3、4、5)FIG. 6 is a cross-sectional view for explaining a relationship between a change in subject distance and an image plane movement amount. (Examples 1, 2, 3, 4, 5) 焦点距離が異なる2つの光学系における被写体距離変動と像面移動量の関係を説明するための断面図である。(実施例1、2、3、4、5)It is sectional drawing for demonstrating the relationship between to-be-photographed object distance fluctuation | variation and image plane movement amount in two optical systems from which a focal distance differs. (Examples 1, 2, 3, 4, 5)

本実施形態は、撮像光学系として焦点距離の異なる単焦点光学系を複数配置し、夫々の単焦点光学系に対応した撮像領域を有する撮像素子によってズーミングを実現している。撮像素子は複数設けられていてもよいし、一つの撮像素子の撮像領域が分割されていてもよい。そして、連続的ズーム機能を実現するために、複数の異なる画角の合焦画像を同時に撮像する。その際、撮影画像の一部をトリミングし、トリミングした範囲を拡大することによって擬似的にズーミングしたのと同一の効果を得るデジタルズームにより、異なる画角間を補間する。また、デジタルズームにより得られる画像の一部に、望遠レンズに対応した撮像素子により得られる望遠画像を嵌め込むことによって、本実施形態は、一部の解像度が高く、その他の部分の解像度は低い、中間画角の画像を得る。   In the present embodiment, zooming is realized by an image pickup device having a plurality of single focus optical systems having different focal lengths as an image pickup optical system and having an image pickup region corresponding to each single focus optical system. A plurality of imaging elements may be provided, or the imaging area of one imaging element may be divided. And in order to implement | achieve a continuous zoom function, several focused images of a different angle of view are imaged simultaneously. At this time, a part of the photographed image is trimmed, and the difference between different angles of view is interpolated by a digital zoom that obtains the same effect as that of the pseudo zooming by expanding the trimmed range. In addition, by fitting a telephoto image obtained by an imaging device corresponding to a telephoto lens into a part of an image obtained by digital zoom, this embodiment has a high resolution in part and a low resolution in other parts. An image with an intermediate angle of view is obtained.

本実施形態では、複数の異なる画角の合焦画像を同時に撮像可能で小型な撮像装置を実現するため、各光学系のフォーカス群の移動量がほぼ等しくなるようにしている。   In the present embodiment, in order to realize a small imaging device capable of simultaneously capturing a plurality of in-focus images having different angles of view, the movement amounts of the focus groups of the respective optical systems are made substantially equal.

まず、図16を用いて被写体距離の変動による像面移動量の関係について説明する。図16は、最も物体側のレンズを含む群でフォーカスする様子を表した模式図である。フォーカス群(フォーカスレンズユニット)をF、フォーカス群移動量の移動量をΔA、フォーカス群より像側にあるフォーカス時に不動のレンズ群をRとし、被写体が無限遠にあるときを基準状態(フォーカス移動量ΔA=0で像面に結像する状態)とする。   First, the relationship of the image plane movement amount due to the change in the subject distance will be described with reference to FIG. FIG. 16 is a schematic diagram illustrating a state where focusing is performed with a group including the lens on the most object side. The focus group (focus lens unit) is F, the movement amount of the focus group movement amount is ΔA, the non-moving lens group on the image side of the focus group is R, and the object is at infinity (reference movement) A state where an image is formed on the image plane with an amount ΔA = 0.

図16において、破線で描かれたフォーカス群が基準状態におけるフォーカス群を表している。フォーカス群の前側主点位置をHF、後側主点位置をHF’、フォーカス群の前側主点位置をHR、後側主点位置をHR’、フォーカス群の前側焦点位置をPF、後側焦点位置をPF’、後群Rの前側焦点位置をPR、後側焦点位置をPR’とする。   In FIG. 16, a focus group drawn by a broken line represents a focus group in the reference state. The front principal point position of the focus group is HF, the rear principal point position is HF ′, the front principal point position of the focus group is HR, the rear principal point position is HR ′, the front focal point position of the focus group is PF, and the rear focal point is The position is PF ′, the front focal position of the rear group R is PR, and the rear focal position is PR ′.

図16では、光学系を簡略化したモデルであるため、主点位置HFとHF’、主点位置HRとHR’が一致しているが、実際の光学系ではこれらが一致するとは限らない。ここで、フォーカス群Fの焦点距離をffとしたとき、フォーカス群Fの前側焦点位置PFから物体までの距離xと、後側焦点位置PF’からフォーカス群Fの結像位置までの距離x’との間には以下の関係式が成り立つ。   In FIG. 16, since the optical system is a simplified model, the principal point positions HF and HF ′ and the principal point positions HR and HR ′ coincide with each other, but they do not necessarily coincide with each other in the actual optical system. Here, when the focal length of the focus group F is ff, the distance x from the front focal position PF of the focus group F to the object, and the distance x ′ from the rear focal position PF ′ to the imaging position of the focus group F The following relational expression holds between

xx’=−ff ・・・(1)
基準状態の場合、距離xが無限大となるので、数式(1)からx’=0、つまり、フォーカス群Fの後側焦点位置PF’とフォーカス群Fの結像面の位置が一致する。
xx ′ = − ff 2 (1)
In the reference state, since the distance x is infinite, x ′ = 0 from Formula (1), that is, the rear focal position PF ′ of the focus group F and the position of the imaging plane of the focus group F coincide.

図16に示すように、光学系をフォーカス群Fと後群Rに分けた場合、フォーカス群Fが形成する像を後群Rが像面に結像させているとみなすことができる。この光学系ではフォーカスする際に後群Rは固定群であるため、被写体の像を常に同じ位置に結像させるためには、フォーカス群Fの結像面の位置もつねに一定でなければならない。そのため、基準状態の像面の位置に常に被写体の像を形成するには、被写体が距離xの位置にあるときフォーカス群Fを距離x’の分だけ移動させればよく、被写体側への移動を負、像面側への移動を正としたとき、フォーカス群の移動量は次式で表される。   As shown in FIG. 16, when the optical system is divided into the focus group F and the rear group R, it can be considered that the image formed by the focus group F is formed on the image plane by the rear group R. In this optical system, since the rear group R is a fixed group when focusing, in order to always form an image of the subject at the same position, the position of the imaging surface of the focus group F must always be constant. Therefore, in order to always form an image of the subject at the position of the image plane in the reference state, it is only necessary to move the focus group F by the distance x ′ when the subject is at the distance x, and move toward the subject side. Is negative and the movement toward the image plane side is positive, the amount of movement of the focus group is expressed by the following equation.

ΔA=−x’ ・・・(2)
また、基準状態における光学系の最も被写体側の面から被写体までの距離S1、光学系の最も被写体側の面からフォーカス群の前側主点位置HFまでの距離をO1とすると、前側焦点位置PFから物体までの距離xは、次式で表される。
ΔA = −x ′ (2)
Further, assuming that the distance S1 from the most object side surface of the optical system to the object in the reference state and the distance from the most object side surface of the optical system to the front principal point position HF of the focus group is O1, the front focal position PF The distance x to the object is expressed by the following equation.

x=(S1−O1+ff+x’) ・・・(3)
数式(1)〜(3)から次式が得られる。
x = (S1-O1 + ff + x ′) (3)
The following formula is obtained from the formulas (1) to (3).

ΔA(S1−O1+ff)ΔA+ff=0 ・・・(4)
これをΔAについて解くと、次式のようになる。
ΔA 2 (S1−O1 + ff) ΔA + ff 2 = 0 (4)
When this is solved for ΔA, the following equation is obtained.

フォーカス群の移動量を数式(5)を満たすように設定することによって、光学系の被写体の結像面を常に一定に保つことができる。   By setting the movement amount of the focus group so as to satisfy Expression (5), it is possible to always keep the imaging plane of the subject of the optical system constant.

図17は、異なる焦点距離を有する2つの光学系の被写体距離の変動と像面移動量の関係を説明するための断面図である。どちらの光学系も最も被写体側のレンズを含むレンズ群Fw、Ftでフォーカスを行うものとする。2つの光学系のフォーカス群の移動量を等しくするには、広角側の光学系のフォーカス群移動量ΔAw、望遠側の光学系のフォーカス群移動量ΔAtが等しいということなので、ΔAw=ΔAtとなる条件を求めればよい。各光学系では数式(5)が成り立つため、以下の2つの式を満たすことで2つの光学系のフォーカス群の移動量を等しくすることができる。   FIG. 17 is a cross-sectional view for explaining the relationship between the subject distance variation and the image plane movement amount of two optical systems having different focal lengths. Both optical systems focus on the lens groups Fw and Ft including the lens closest to the subject. In order to make the movement amounts of the focus groups of the two optical systems equal, the focus group movement amount ΔAw of the wide-angle side optical system and the focus group movement amount ΔAt of the telephoto side optical system are equal, so ΔAw = ΔAt. Find the conditions. In each optical system, Expression (5) is satisfied, and therefore, the amount of movement of the focus group of the two optical systems can be made equal by satisfying the following two expressions.

S1−O1+ff=S1−O1+ff ・・・(6)
ff =ff ・・・(7)
ここで、フォーカス群の焦点距離をff、ff、基準状態における光学系の最も被写体側の面から被写体までの距離S1、S1、フォーカス群の前側主点位置をHF、HFとする。また、光学系の最も被写体側の面からフォーカス群の前側主点位置HF、HFまでの距離をそれぞれO1、O1、添え字のwは広角側、tは望遠側の光学系を意味する。
S1 w -O1 w + ff w = S1 t -O1 t + ff t ··· (6)
ff w 2 = ff t 2 (7)
Here, the focal length of the focus group is ff w , ff t , the distance S1 w , S1 t from the most object side surface of the optical system in the reference state to the subject, and the front principal point position of the focus group is HF w , HF t And Further, the distances from the most object side surface of the optical system to the front principal point positions HF w and HF t of the focus group are respectively O1 w and O1 t , the subscript w is the wide angle side, and t is the telephoto side optical system. means.

数式(7)はフォーカス群の焦点距離の絶対値が等しいことを意味しているため、フォーカス群の焦点距離が正の場合と負の場合に場合分けする。   Since Equation (7) means that the absolute value of the focal length of the focus group is equal, the case is divided into cases where the focal length of the focus group is positive and negative.

フォーカス群の焦点距離が同符号の場合、数式(6)は次のように変形することができる。   When the focal length of the focus group has the same sign, Equation (6) can be modified as follows.

S1−O1=S1−O1 ・・・(8)
数式(8)の左辺と右辺は、フォーカス群の前側主点位置HF、HFから被写体までの距離を表し、フォーカス群の前側主点位置HF、HFから被写体までの距離を等しくすることで、被写体距離変動による像面移動量がほぼ等しくすることができる。
S1 w -O1 w = S1 t -O1 t ··· (8)
Left and right side of Equation (8), a front principal point position of the focus group HF w, represents the distance from HF t to the subject, to equalize the distance to the object from the front principal point position of the focus group HF w, HF t As a result, the amount of image plane movement due to the subject distance variation can be made substantially equal.

一方、フォーカス群の焦点距離が異符号の場合、数式(6)は次のように変形することができる。   On the other hand, when the focal lengths of the focus groups have different signs, Equation (6) can be modified as follows.

S1−O1−(S1−O1)+2ff=0 ・・・(9)
数式(9)より、フォーカス群の焦点距離が異符号の場合については、数式(8)の同符号のときのように、前側主点位置HFw、HFtから被写体までの距離を等しくするだけでは被写体距離変動による像面移動量を等しくすることはできないことがわかる。つまり、被写体距離変動による像面移動量を等しくするには、むしろフォーカス群の前側主点位置から被写体までの距離を等しくしない方が良く、各光学系のフォーカス群の主点位置がずれている方がバランスが良いこということがわかる。また、被写体が光学系から十分に離れた位置にある場合、ff<<S1−O1となるため、影響は少なくなるが、被写体が光学系に近づけば近づくほど影響が大きくなる。このような状況で各光学系をフォーカス群の移動量一定のままフォーカスを行うと、遠方の被写体に対しては各光学系で同時にピントを合わせることができるが、至近の被写体に対しては片方の光学系ではピントが合わない等の弊害がでる恐れがある。
S1 w -O1 w - (S1 t -O1 t) + 2ff w = 0 ··· (9)
From the equation (9), when the focal length of the focus group has an opposite sign, just by making the distance from the front principal point positions HFw, HFt to the subject equal, as in the case of the same sign in the equation (8) It can be seen that the amount of image plane movement due to distance variation cannot be made equal. In other words, in order to make the image plane movement amount due to subject distance fluctuations equal, it is better not to make the distance from the front principal point position of the focus group to the subject equal, and the principal point position of the focus group of each optical system is shifted. You can see that the balance is better. In addition, when the subject is at a position sufficiently away from the optical system, ff w << S1 w −O1 w, and thus the influence is reduced. However, the closer the subject is to the optical system, the greater the influence is. In this situation, if each optical system is focused while keeping the amount of movement of the focus group constant, it is possible to focus on each subject at the same time for distant subjects, but one subject for the closest subject. There is a risk that such an optical system may cause an adverse effect such as being out of focus.

そこで、本実施形態では、フォーカス群の焦点距離が同符号の場合はフォーカス群の前側主点位置のずれ量、及びフォーカス群の焦点距離のずれ量を小さくすることによって、画角が異なる合焦画像を同時に取得できるようにしている。一方、フォーカス群の焦点距離が異符号の場合は各光学系のフォーカス群の主点位置HF、HFをあえてずらすことで至近の被写体に対しても同時にピントの合った異画角画像を取得可能な構成を実現している。 Therefore, in the present embodiment, when the focal length of the focus group has the same sign, the focus amount with different angles of view is reduced by reducing the deviation amount of the front principal point position of the focus group and the deviation amount of the focal length of the focus group. Images can be acquired at the same time. On the other hand, when the focal lengths of the focus groups have different signs, the principal point positions HF w and HF t of the focus groups of the respective optical systems are deliberately shifted so that a different angle-of-view image that is in focus at the same time for the closest subject can be obtained. An obtainable configuration is realized.

なお、フォーカス群の焦点距離や主点位置は、実際には必ずしも一致する必要はない。回折や収差の影響で多少ずれていても、錯乱円径内に収まっていれば実質的に影響がない場合があるからである。しかしながら、こうした影響を考慮したとしても、前述のように各光学系のフォーカス群の主点位置をあえてずらす方が、主点位置を合わせた場合に比べ、より至近の被写体に対しても対応可能であるといえる。   It should be noted that the focal length and principal point position of the focus group do not necessarily coincide with each other in practice. This is because even if there is a slight deviation due to the influence of diffraction or aberration, there is a case where there is substantially no influence as long as it is within the circle of confusion. However, even if these effects are taken into account, it is possible to deal with a closer subject by moving the focus point position of the focus group of each optical system as described above compared to the case where the focus point positions are matched. You can say that.

図1は、本実施形態の複眼撮像装置1のブロック図、図2は、複眼撮像装置1の撮像ユニット100の斜視図、図3は、撮像ユニット100の正面図である。   FIG. 1 is a block diagram of the compound eye imaging apparatus 1 of the present embodiment, FIG. 2 is a perspective view of the imaging unit 100 of the compound eye imaging apparatus 1, and FIG. 3 is a front view of the imaging unit 100.

複眼撮像装置1は、撮像ユニット100、A/D変換器10、画像処理部20、システムコントローラ30、撮像制御部40、情報入力部50、画像記録媒体60、表示部70を有する。複眼撮像装置1は、レンズ一体型の撮像装置でもよいし、結像光学系(撮像光学系)を有するレンズ装置と、レンズ装置が着脱可能に装着されて撮像素子を有する撮像装置本体から構成されてもよい。   The compound eye imaging apparatus 1 includes an imaging unit 100, an A / D converter 10, an image processing unit 20, a system controller 30, an imaging control unit 40, an information input unit 50, an image recording medium 60, and a display unit 70. The compound-eye imaging device 1 may be a lens-integrated imaging device, or may include a lens device having an imaging optical system (imaging optical system), and an imaging device main body having an imaging element on which the lens device is detachably mounted. May be.

図1〜3に示すように、撮像ユニット100は、それぞれが物体の光学像を形成する8つの結像光学系(撮像光学系)110a、b、120a、b、130a、b、140a、bと、複数の結像光学系の一つにそれぞれ対応する複数の撮像素子と、を有する。図1は、撮像ユニット100の結像光学系110aと140aの光軸を含む断面図である。   As shown in FIGS. 1-3, the imaging unit 100 includes eight imaging optical systems (imaging optical systems) 110a, b, 120a, b, 130a, b, 140a, b, each of which forms an optical image of an object. And a plurality of imaging elements respectively corresponding to one of the plurality of imaging optical systems. FIG. 1 is a cross-sectional view including the optical axes of the imaging optical systems 110a and 140a of the imaging unit 100.

各結像光学系は、フォーカス群ユニット(フォーカスレンズユニット、前群ユニット)105Fと、後群ユニット(固定レンズユニット)105Rと、を有する。フォーカス群ユニット105Fは、被写体位置が変化する際(フォーカシング時)に同じ量だけ移動するように、図1に示すように、保持部300によって一体に保持および駆動される。後群ユニット105Rは、保持部310によって一体に保持されてフォーカシング時に固定され、不図示の絞りなどの他の部材も結像光学系ごとに含んでいる。このように、フォーカシング時に光学系の一部を一体で移動させる手法は部分フォーカスとして知られている。フォーカス群ユニット105Fに搭載される各結像光学系のフォーカスレンズの数は一または複数である。   Each imaging optical system includes a focus group unit (focus lens unit, front group unit) 105F and a rear group unit (fixed lens unit) 105R. As shown in FIG. 1, the focus group unit 105F is integrally held and driven by the holding unit 300 so as to move by the same amount when the subject position changes (during focusing). The rear group unit 105R is integrally held by the holding unit 310 and is fixed at the time of focusing, and includes other members such as a diaphragm (not shown) for each imaging optical system. As described above, a method of moving a part of the optical system integrally during focusing is known as partial focus. The number of focus lenses of each imaging optical system mounted on the focus group unit 105F is one or more.

複数の撮像素子210a〜fは一体で保持されて撮像素子ユニット200を構成する。撮像素子210aが結像光学系110aに対応し、撮像素子210bが結像光学系120aに対応し、撮像素子210cが結像光学系110bに対応し、撮像素子210dが結像光学系120bに対応する。撮像素子210eが結像光学系140aに対応し、撮像素子210fが結像光学系130aに対応し、撮像素子210gが結像光学系140bに対応し、撮像素子210hが結像光学系130bに対応する。   The plurality of image sensors 210 a to 210 f are integrally held to constitute the image sensor unit 200. The imaging element 210a corresponds to the imaging optical system 110a, the imaging element 210b corresponds to the imaging optical system 120a, the imaging element 210c corresponds to the imaging optical system 110b, and the imaging element 210d corresponds to the imaging optical system 120b. To do. The imaging element 210e corresponds to the imaging optical system 140a, the imaging element 210f corresponds to the imaging optical system 130a, the imaging element 210g corresponds to the imaging optical system 140b, and the imaging element 210h corresponds to the imaging optical system 130b. To do.

図3に示すように、8つの結像光学系(個眼)110a、120a、130a、140a、110b、120b、130b、140bの光軸はほぼ平行になるように配置される。同一の参照番号を付された2つの結像光学系a、bは同一の焦点距離を有し、本実施形態では、異なる焦点距離を有する4組の結像光学系が設けられている。結像光学系110a、b(ワイド個眼)は、8つの結像光学系の中で最も短い焦点距離を有する広角結像光学系対である。結像光学系120a,b(ワイドミドル個眼)は結像光学系110a、bに比べて焦点距離が長い。結像光学系130a、b(テレミドル個眼)は結像光学系120a、bよりも焦点距離が長い。結像光学系140a、b(テレ個眼)は結像光学系130a、bよりも焦点距離が長い。   As shown in FIG. 3, the optical axes of the eight imaging optical systems (single eyes) 110a, 120a, 130a, 140a, 110b, 120b, 130b, and 140b are arranged to be substantially parallel. The two imaging optical systems a and b assigned the same reference numbers have the same focal length, and in this embodiment, four sets of imaging optical systems having different focal lengths are provided. The imaging optical systems 110a and 110b (wide single eye) are a wide-angle imaging optical system pair having the shortest focal length among the eight imaging optical systems. The imaging optical systems 120a and 120b (wide middle single eye) have a longer focal length than the imaging optical systems 110a and 110b. The imaging optical systems 130a and 130b (tele-middle single eyes) have a longer focal length than the imaging optical systems 120a and 120b. The imaging optical systems 140a and 140b (tele eye) have a longer focal length than the imaging optical systems 130a and 130b.

図4は、結像光学系110a、120a、130a、140aに対応する撮像イメージ1110a,1120a,1130a,1140aを示す。図4に示すように、結像光学系110aに対応する撮像イメージ1110aが最も広い被写体空間であり、120a、130a、140aに対応する撮像イメージ1120a,1130a,1140aは焦点距離に応じて撮像される被写体空間が狭くなっている。   FIG. 4 shows captured images 1110a, 1120a, 1130a, 1140a corresponding to the imaging optical systems 110a, 120a, 130a, 140a. As shown in FIG. 4, the captured image 1110a corresponding to the imaging optical system 110a is the widest subject space, and the captured images 1120a, 1130a, and 1140a corresponding to 120a, 130a, and 140a are captured according to the focal length. The subject space is narrow.

図1に戻り、結像光学系110a、140aは複眼を構成し、撮像素子210a、210eは、それぞれ結像光学系110a、140aを介して撮像素子面上に到達した光学像を電気信号(アナログ信号)に変換する。   Referring back to FIG. 1, the imaging optical systems 110a and 140a constitute a compound eye, and the imaging elements 210a and 210e convert the optical images that have reached the imaging element surface via the imaging optical systems 110a and 140a, respectively, into electrical signals (analogues). Signal).

A/D変換器10は撮像素子210a〜fから出力されるアナログ信号をデジタル信号に変換して画像処理部20に供給する。   The A / D converter 10 converts analog signals output from the image sensors 210 a to 210 f into digital signals and supplies them to the image processing unit 20.

画像処理部20は、A/D変換器10からの各画像データに対して所定の画素補間処理や色変換処理等を行い、また、撮像した各画像データを用いて所定の演算処理が行われる。画像処理部20が処理した結果はシステムコントローラ30に送信される。   The image processing unit 20 performs predetermined pixel interpolation processing, color conversion processing, and the like on each image data from the A / D converter 10, and predetermined calculation processing is performed using each captured image data. . The result processed by the image processing unit 20 is transmitted to the system controller 30.

情報入力部50は、使用者が所望の撮影条件を選択して入力する情報を情報取得部51によって取得してシステムコントローラ30にデータを供給する。システムコントローラ30は、送信されたデータに基づいて撮像制御部40を制御し、撮像制御部40はフォーカス群ユニット105Fの移動量、各結像光学系の絞り値、露出時間、夫々に対応した撮像素子を制御することで必要な画像を取得する。   The information input unit 50 acquires information input by the user by selecting a desired shooting condition by the information acquisition unit 51 and supplies data to the system controller 30. The system controller 30 controls the imaging control unit 40 based on the transmitted data. The imaging control unit 40 performs imaging corresponding to the amount of movement of the focus group unit 105F, the aperture value of each imaging optical system, and the exposure time. Necessary images are acquired by controlling the elements.

図5は、撮像ユニット100のフォーカス駆動機構の部分拡大斜視図である。フォーカス群ユニット105Fの保持部300はそれぞれの結像光学系の光軸に平行に配置された第一のガイドバー401に嵌合保持されるスリーブ部403と、第二のガイドバー402に回転規制されるU溝404を有する。撮像ユニット100は、不図示のステッピングモータ等のアクチュエータによって回転する出力軸405と、出力軸405に噛合したラック部材406を更に有する。なお、フォーカス群ユニット105Fの形状は図2と図5で異なっているが、これらの形状は単なる例であり、実際には同一の形状である。   FIG. 5 is a partially enlarged perspective view of the focus drive mechanism of the image pickup unit 100. The holding unit 300 of the focus group unit 105F is rotationally restricted by a sleeve portion 403 fitted and held by a first guide bar 401 arranged parallel to the optical axis of each imaging optical system, and a second guide bar 402. The U-groove 404 is provided. The imaging unit 100 further includes an output shaft 405 that is rotated by an actuator such as a stepping motor (not shown), and a rack member 406 that meshes with the output shaft 405. Although the shape of the focus group unit 105F is different between FIGS. 2 and 5, these shapes are merely examples, and are actually the same shape.

これにより、複数の結像光学系の一部を搭載したフォーカス群ユニット105Fを保持する保持部300は出力軸405の回転に合わせて光軸方向(図1に示す点線方向)に一体的に移動する。   Accordingly, the holding unit 300 that holds the focus group unit 105F on which a part of the plurality of imaging optical systems is mounted integrally moves in the optical axis direction (the dotted line direction shown in FIG. 1) in accordance with the rotation of the output shaft 405. To do.

各フォーカス群は、異なる焦点距離を有する複数の結像光学系においてフォーカシング移動量を同一とするために以下の条件式(10)を満足している。撮像制御部40で制御されたフォーカス群ユニット105Fの位置で撮影することによって、一度の制御により異なる被写体空間範囲(画角)と同一の画角の複数枚の合焦画像を取得する。   Each focus group satisfies the following conditional expression (10) in order to make the amount of focusing movement the same in a plurality of imaging optical systems having different focal lengths. By photographing at the position of the focus group unit 105F controlled by the imaging control unit 40, a plurality of focused images having the same field angle as different subject space ranges (field angles) are acquired by one control.

画像記録媒体60は、複数の静止画や動画を格納する他、画像ファイルを構成する場合のファイルヘッダを格納する。表示部70は、画像、状態、異常などを表示し、液晶表示素子などから構成される。   The image recording medium 60 stores a plurality of still images and moving images, and also stores a file header when an image file is configured. The display unit 70 displays an image, a state, an abnormality, and the like, and includes a liquid crystal display element.

複数の結像光学系のうち任意の結像光学系i、hが有する夫々のフォーカス群の焦点距離をffh、ffiとしたとき、以下の条件式を満足している。   The following conditional expressions are satisfied when the focal lengths of the respective focus groups of any of the plurality of imaging optical systems i and h are ffh and ffi.

0.8<|ffi/ffh|<1.2・・・(10)
条件式(10)は、異なる焦点距離を有する任意の結像光学系においてフォーカシング移動量を同一にするための条件を規定している。条件式(10)の上限を超えると、結像光学系hでピントが合うようにフォーカス群を同じ量だけ移動させた場合に、結像光学系iではピントずれ量が結像光学系iの焦点深度範囲を物体側に超えてピンボケとなる。条件式(10)の下限を超えると、結像光学系hでピントが合うようにフォーカス群を同じ量だけ移動させた場合に、結像光学系iではピントずれ量が結像光学系iの焦点深度範囲を像側に超えてピンボケとなる。
0.8 <| ffi / ffh | <1.2 (10)
Conditional expression (10) defines a condition for making the amount of focusing movement the same in any imaging optical system having different focal lengths. If the upper limit of the conditional expression (10) is exceeded, the focus deviation amount of the imaging optical system i is less than that of the imaging optical system i when the focus group is moved by the same amount so that the imaging optical system h is in focus. The image is out of focus beyond the depth of focus range. When the lower limit of the conditional expression (10) is exceeded, the focus deviation amount of the imaging optical system i is in the imaging optical system i when the focus group is moved by the same amount so that the imaging optical system h is in focus. The image is out of focus beyond the depth of focus range.

条件式(10)を満たすことによって、任意の結像光学系の焦点深度内でピントずれ量が収まり、同一のフォーカス群移動量で同時に異なる画角の合焦画像の取得が可能となる。   By satisfying conditional expression (10), the amount of defocus is within the depth of focus of an arbitrary imaging optical system, and it is possible to obtain focused images with different angles of view at the same time with the same focus group movement amount.

このように、各結像光学系が有するフォーカス群の焦点距離を適切に規定することにより、異なる焦点距離を有する結像光学系のフォーカシング移動量を同じ量とすることができる。そのため、異なる画角の合焦画像の同時取得とフォーカス駆動機構の単純化を両立することができる。   As described above, by appropriately defining the focal length of the focus group included in each imaging optical system, the focusing movement amount of the imaging optical systems having different focal lengths can be made the same amount. Therefore, simultaneous acquisition of in-focus images with different angles of view and simplification of the focus drive mechanism can be achieved.

また、結像光学系hのフォーカス群の前側主点位置から像面までの距離をOfh、結像光学系iのフォーカス群の前側主点位置から像面までの距離をOfi、最も焦点距離の長い結像光学系の焦点距離fとすると、次の条件式を満足することが好ましい。 The distance from the front principal point position of the focus group of the imaging optical system h to the image plane is Ofh, the distance from the front principal point position of the focus group of the imaging optical system i to the image plane is Ofi, and the focal length is the largest. When the focal length f t of the long imaging optical system, it is preferable to satisfy the following condition.

|(ΔOf+Δf)/ft|<2.1・・・(11)
ただし、Δf=ffi−ffh、ΔOf=Ofi−Ofhである。条件式(11)は複眼光学系において任意の距離にある被写体に対してフォーカシングを行い、異なる画角の合焦画像の同時取得を実現するために各結像光学系におけるフォーカス群の主点位置とフォーカス群の焦点距離の関係を規定する条件式である。条件式(11)で規定される条件を満足することで、近距離の被写体に対しても同一のフォーカス群移動量で同時に異なる画角の合焦画像の取得が可能となる。
| (ΔOf + Δf) / ft | <2.1 (11)
However, Δf = ffi−ffh and ΔOf = Ofi−Ofh. Conditional expression (11) performs focusing on a subject at an arbitrary distance in the compound-eye optical system, and realizes the simultaneous acquisition of focused images with different angles of view, and the principal point position of the focus group in each imaging optical system And a conditional expression that defines the relationship between the focal length of the focus group. By satisfying the condition defined by the conditional expression (11), it is possible to acquire in-focus images with different angles of view at the same time with the same focus group movement amount even for a short-distance subject.

条件式(10)を満たすことで、光学系の第1面からある程度距離の離れた被写体に対しては異なる画角の合焦画像の同時取得が実現できるが、より近距離の被写体に対しても合焦画像の同時取得を実現するには条件式(11)を満足する必要がある。   By satisfying conditional expression (10), it is possible to simultaneously obtain in-focus images with different angles of view for subjects that are some distance away from the first surface of the optical system. In order to realize simultaneous acquisition of a focused image, it is necessary to satisfy conditional expression (11).

条件式(11)の上限を超えると、至近の被写体に対してフォーカ群を同じ量だけ移動させて結像光学系hを合焦させたとき、結像光学系iではピントずれ量が焦点深度範囲を超えてしまいピンボケとなる。結像光学系hと結像光学系iを入れ変えた場合も同様で、同じ量だけフォーカス群を移動させた場合、結像光学系iでピントがあってもフォーカス群の焦点距離のずれ量あるいは前側主点位置のずれの影響で結像光学系hはピンボケとなる。条件式(11)の右辺の値は小さいほどより近距離までフォーカスが可能となる。   When the upper limit of conditional expression (11) is exceeded, when the focusing optical system h is focused by moving the focus group by the same amount with respect to the closest subject, the focal shift amount is the focal depth in the imaging optical system i. Out of range and out of focus. The same applies to the case where the imaging optical system h and the imaging optical system i are interchanged. When the focus group is moved by the same amount, even if the imaging optical system i is in focus, the shift amount of the focal length of the focus group Alternatively, the imaging optical system h becomes out of focus due to the influence of the position of the front principal point. The smaller the value on the right side of conditional expression (11), the closer the focus is possible.

また、複数の結像光学系のうちフォーカス群が負の屈折力を有する光学系のフォーカス群前側主点位置から像面までの距離をOfn、フォーカス群が正の屈折力を有する光学系のフォーカス群前側主点位置から像面までの距離をOfpとする。このとき、次の条件式を満足することが好ましい。   Further, among the plurality of imaging optical systems, the distance from the focus group front principal point position to the image plane of the optical system in which the focus group has negative refractive power is Ofn, and the focus of the optical system in which the focus group has positive refractive power The distance from the front side principal point position to the image plane is set to Ofp. At this time, it is preferable that the following conditional expression is satisfied.

1.0<Ofn/Ofp<2.4・・・(12)
条件式(12)は、各結像光学系間でフォーカス群の焦点距離の符号が異なる場合についても、無限遠から至近までのあらゆる距離の被写体に対してフォーカシングを行い、異なる画角の合焦画像の同時取得を実現するために満足すべき条件式である。ここで、説明の便宜上、フォーカス群の焦点距離が負の結像光学系をn、フォーカス群の焦点距離が正の結像光学系をpとする。フォーカス群の焦点距離の符号が異なる場合、結像光学系nより結像光学系pの前側焦点位置の位置が被写体側にくるため、そのずれ量分フォーカス群の前側主点位置をずらすことで、異なる画角の合焦画像の同時取得を実現することができる。
1.0 <Ofn / Ofp <2.4 (12)
Conditional expression (12) performs focusing on a subject at any distance from infinity to the closest position even when the signs of the focal lengths of the focus groups are different between the imaging optical systems, and focuses images with different angles of view. This is a conditional expression that should be satisfied in order to achieve simultaneous acquisition of. Here, for convenience of explanation, an imaging optical system in which the focal length of the focus group is negative is n, and an imaging optical system in which the focal length of the focus group is positive is p. When the focal length of the focus group is different, the position of the front focal point of the imaging optical system p is closer to the subject side than the imaging optical system n. Thus, simultaneous acquisition of in-focus images having different angles of view can be realized.

条件式(12)の上限を超えると、結像光学系pに対し結像光学系nのフォーカス群の前側主点位置から像面までの距離が大きくなり、実際のレンズの位置と主点位置を近づけようとすると結像光学系同士で全長が大きく異なる。この場合、結像光学系pの全長が短くなり過ぎて結像光学系pの軸上色収差が十分に補正しきれなくなる。結像光学系pの全長を長くとると、結像光学系nはさらに長くする必要があるため、複眼光学系が巨大化する。逆に、結像光学系間で実際のレンズの位置をそろえて、主点位置のみずらした場合、レンズの形状が全体的に強いメニス形状となり、高次収差の発生や敏感度の低下を招き、諸収差の抑制が困難になる。   When the upper limit of conditional expression (12) is exceeded, the distance from the front principal point position of the focus group of the imaging optical system n to the image plane becomes larger than the imaging optical system p, and the actual lens position and principal point position are increased. When trying to bring them closer together, the overall length differs greatly between the imaging optical systems. In this case, the overall length of the imaging optical system p becomes too short, and the longitudinal chromatic aberration of the imaging optical system p cannot be corrected sufficiently. If the total length of the image forming optical system p is increased, the image forming optical system n needs to be further lengthened, so that the compound eye optical system becomes enormous. Conversely, if the actual lens position is aligned between the imaging optical systems and only the principal point position is shifted, the lens shape becomes a strong menis overall, resulting in higher-order aberrations and reduced sensitivity. It becomes difficult to suppress various aberrations.

一方、条件式(12)の下限を超えると、フォーカス群の前側焦点位置のずれ量に対するフォーカス群の前側主点位置のずれ量が小さくなり過ぎて至近の被写体に対してフォーカス群の同一移動量での異なる画角の合焦画像の同時取得は実現できない。   On the other hand, if the lower limit of the conditional expression (12) is exceeded, the shift amount of the front principal point position of the focus group with respect to the shift amount of the front focus position of the focus group becomes too small, and the same movement amount of the focus group with respect to the closest subject Simultaneous acquisition of focused images with different angles of view cannot be realized.

このように、至近の被写体に対してフォーカス群の同一移動量での異なる画角の合焦画像の同時取得を実現するには条件式(12)を満足する必要がある。フォーカス群の前側主点位置の関係をこの範囲におさめることで前側焦点位置のずれ量の補正が可能となる。   As described above, it is necessary to satisfy the conditional expression (12) in order to simultaneously obtain in-focus images having different angles of view with the same movement amount of the focus group with respect to the closest subject. By keeping the relationship of the front principal point positions of the focus group within this range, it is possible to correct the deviation amount of the front focal position.

更に、複数の結像光学系のうち任意の結像光学系iが有するフォーカス群の焦点距離ffi、最も焦点距離の長い結像光学系の焦点距離ftに関して次の条件式を満足することが好ましい。   Further, it is preferable that the following conditional expression is satisfied with respect to the focal length ffi of the focus group included in any imaging optical system i among the plurality of imaging optical systems and the focal length ft of the imaging optical system having the longest focal length. .

0.5<|ffi/ft|<1.6・・・(13)
条件式(13)は、色収差や像面彎曲の発生を少なくして、異なる焦点距離を有する結像光学系のフォーカシング移動量を同じ量とするための条件を規定している。条件式(13)の上限を超えると、結像光学系の焦点距離に対してフォーカシング移動量が大きくなり過ぎて光学系の全長が長くなり、撮像装置全体が大型化する。条件式(13)の下限を超えると、結像光学系の焦点距離に対してフォーカス群の焦点距離が小さくなり過ぎて像面彎曲、色収差のフォーカス変動の補正が困難となる。
0.5 <| ffi / ft | <1.6 (13)
Conditional expression (13) defines a condition for reducing the occurrence of chromatic aberration and curvature of field and making the focusing movement amount of the imaging optical systems having different focal lengths the same amount. If the upper limit of conditional expression (13) is exceeded, the amount of focusing movement becomes too large with respect to the focal length of the imaging optical system, the overall length of the optical system becomes long, and the entire imaging apparatus becomes large. When the lower limit of conditional expression (13) is exceeded, the focal length of the focus group becomes too small with respect to the focal length of the imaging optical system, making it difficult to correct curvature of field and focus variation of chromatic aberration.

また、一体的な保持が容易となるように、各光軸と垂直方向に隣接する他方の光学系を構成するレンズとほぼ同じ位置になるように配置している。また、一体成型が可能となるように、各光軸と垂直方向に隣接する他方の光学系を構成するレンズと同じ材料によって各レンズが構成されている。但し、複数のフォーカスレンズユニットは、それぞれの光軸に垂直な方向に隣接する少なくとも一つのフォーカスレンズが同一の材料で構成されていてもよい。また、各光学系の光束が他の光学系と干渉しないように各光学系の前玉位置がほぼ同じ位置となるように構成している。また、像面(撮像領域)位置についても撮像素子の配置やその調整が簡易となるようにほぼ同じ位置となるように構成している。各光学系を構成するレンズの面形状は、各光軸と垂直な方向に隣接する他方の光学系を構成するレンズとは異なるように構成されている。異なる面形状によって同じ材料によって構成した場合にも、十分な光学結像性能を両立することができる。また、撮像装置として十分な高変倍比を実現するために、ワイド個眼とテレ個眼の焦点距離比が1.5倍以上となるように構成している。   Further, in order to facilitate the integral holding, they are arranged so as to be in substantially the same position as the lenses constituting the other optical system adjacent to each optical axis in the vertical direction. In addition, each lens is made of the same material as the lens constituting the other optical system adjacent to each optical axis in the vertical direction so that integral molding is possible. However, in the plurality of focus lens units, at least one focus lens adjacent in a direction perpendicular to each optical axis may be made of the same material. In addition, the front lens position of each optical system is configured to be substantially the same so that the light flux of each optical system does not interfere with other optical systems. Further, the image plane (imaging region) position is configured to be substantially the same position so that the arrangement and adjustment of the image sensor are simplified. The surface shape of the lens constituting each optical system is configured to be different from the lens constituting the other optical system adjacent in the direction perpendicular to each optical axis. Even when the same material is used for different surface shapes, sufficient optical imaging performance can be achieved. Further, in order to realize a sufficiently high zoom ratio as an imaging device, the focal length ratio of the wide single eye and the tele single eye is configured to be 1.5 times or more.

図6(A)、(B)、(C)、(D)は、複眼撮像装置1に適用可能な実施例1の第一複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。レンズ断面図において、左方が被写体側(物体側)(前方)で、右方が像側(後方)である。Fはフォーカス群、Rは像側群(後群)、SPは開口絞り、IPは像面である。像面IPは、CCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面に相当する。銀塩フィルムを使用する際には、フィルム面に相当する。これは他の実施例にもあてはまる。   6A, 6 </ b> B, 6 </ b> C, and 6 </ b> D are respectively a wide single eye, a wide middle single eye, a telemid single eye of the first compound eye optical system of Example 1 applicable to the compound eye imaging apparatus 1. It is a lens sectional view of a tele individual eye. In the lens cross-sectional view, the left side is the subject side (object side) (front), and the right side is the image side (rear). F is a focus group, R is an image side group (rear group), SP is an aperture stop, and IP is an image plane. The image plane IP corresponds to an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor. When using a silver salt film, it corresponds to the film surface. This also applies to other embodiments.

図7(A)、(B)、(C)、(D)は、第一複眼光学系に対応するワイド、ワイドミドル、テレミドル、テレの収差図である。収差図において、d、gは各々d線及びg線、ΔM、ΔSはメリディオナル像面、サッジタル像面である。倍率色収差はg線によって表している。ωは半画角、FnoはFナンバーである。これは他の実施例にもあてはまる。   7A, 7B, 7C, and 7D are aberration diagrams of wide, wide middle, telemiddle, and tele corresponding to the first compound eye optical system. In the aberration diagrams, d and g are the d-line and g-line, respectively, and ΔM and ΔS are the meridional image surface and the sagittal image surface. Lateral chromatic aberration is represented by the g-line. ω is a half angle of view, and Fno is an F number. This also applies to other embodiments.

第一複眼光学系は、無限遠被写体から近距離被写体へのフォーカシングに際してフォーカス群Fは物体側へ移動し、像側群Rは固定である(前玉フォーカス式)。以下、各レンズ群のレンズ構成は、物体側から像側の順とする。   In the first compound eye optical system, the focus group F moves to the object side and the image side group R is fixed (front lens focus type) during focusing from an infinitely distant subject to a short-distance subject. Hereinafter, the lens configuration of each lens group is in order from the object side to the image side.

図6(A)に示すワイド個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズ、正レンズ、負レンズで構成している。   In the wide single eye shown in FIG. 6A, the focus group F includes a meniscus negative lens having a concave surface facing the image side, a biconvex positive lens having an Abbe number of 68.3, and a negative lens. This system effectively reduces the size of the system and corrects distortion and chromatic aberration. The image side group R includes a biconvex positive lens, a positive lens, and a negative lens.

図6(B)に示すワイドミドル個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズ、負レンズ、負レンズで構成している。   6B, the focus group F includes a meniscus negative lens having a concave surface facing the image side, a biconvex positive lens having an Abbe number of 68.3, and a negative lens. The optical system is downsized and distortion and chromatic aberration are effectively corrected. The image side group R includes a biconvex positive lens, a negative lens, and a negative lens.

図6(C)に示すテレミドル個眼は、フォーカス群Fは両凹形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の負レンズ、正レンズ、像側に凹面を向けたメニスカス形状の負レンズで構成している。   In the telemiddle eye shown in FIG. 6C, the focus group F is composed of a biconcave negative lens, a biconvex positive lens having a Abbe number of 68.3, and a negative lens. Is effectively corrected. The image side group R includes a meniscus negative lens having a concave surface facing the image side, a positive lens, and a meniscus negative lens having a concave surface facing the image side.

図6(D)に示すテレ個眼は、フォーカス群Fは正レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の負レンズ、正レンズ、像側に凹面を向けたメニスカス形状の負レンズで構成している。   In the telescopic eye shown in FIG. 6D, the focus group F is composed of a positive lens, a biconvex positive lens having a Abbe number of 68.3, and a negative lens, which is effective in reducing the size of the optical system and correcting chromatic aberration. Is going. The image side group R includes a meniscus negative lens having a concave surface facing the image side, a positive lens, and a meniscus negative lens having a concave surface facing the image side.

本実施例は、異なる画角の合焦画像の同時取得とフォーカス駆動機構の簡素化を両立し、薄型かつ高変倍比さらに撮影後のズーミング処理を実現可能な複眼撮像装置を提供することができる。つまり、ビデオカメラ、デジタルカメラ等の撮像装置を、薄型、高変倍比でありながら、撮影する被写体空間についての空間情報を容易に取得することができる。   The present embodiment provides a compound-eye imaging device that can simultaneously acquire in-focus images with different angles of view and simplify the focus driving mechanism, and can achieve a thin, high zoom ratio and zooming processing after shooting. it can. That is, it is possible to easily acquire space information about a subject space to be photographed while an imaging device such as a video camera or a digital camera is thin and has a high zoom ratio.

図8(A)、(B)、(C)、(D)は、複眼撮像装置1に適用可能な実施例2の第二複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。図9(A)、(B)、(C)、(D)は、第二複眼光学系に対応するワイド、ワイドミドル、テレミドル、テレの収差図である。   8A, 8 </ b> B, 8 </ b> C, and 9 </ b> D are views of a wide single eye, a wide middle single eye, a telemiddle single eye of the second compound eye optical system of Example 2 that can be applied to the compound eye imaging apparatus 1. It is a lens sectional view of a tele individual eye. 9A, 9B, 9C, and 9D are aberration diagrams of wide, wide middle, telemiddle, and tele corresponding to the second compound eye optical system.

第二複眼光学系は、無限遠被写体から近距離被写体へのフォーカシングに際してフォーカス群Fは物体側へ移動し、像側群Rは固定である(前玉フォーカス式)。以下、各レンズ群のレンズ構成は、物体側から像側の順とする。   In the second compound eye optical system, the focus group F moves to the object side and the image side group R is fixed during focusing from an infinitely distant subject to a short-distance subject (front lens focus type). Hereinafter, the lens configuration of each lens group is in order from the object side to the image side.

図8(A)に示すワイド個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズとアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズ、正レンズ、負レンズで構成している。   In the wide single eye shown in FIG. 8A, the focus group F includes a meniscus negative lens having a concave surface facing the image side, a positive lens having an Abbe number of 68.3, and a negative lens. Thus, distortion and chromatic aberration are effectively corrected. The image side group R includes a biconvex positive lens, a positive lens, and a negative lens.

図8(B)に示すワイドミドル個眼は、フォーカス群Fは負レンズとアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズ、正レンズ、負レンズで構成している。   In the wide middle single eye shown in FIG. 8B, the focus group F includes a negative lens, a positive lens having an Abbe number of 68.3, and a negative lens. The optical system can be downsized and distortion and chromatic aberration can be corrected. It is done effectively. The image side group R includes a biconvex positive lens, a positive lens, and a negative lens.

図8(C)に示すテレミドル個眼は、フォーカス群Fは両凹形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の負レンズ、正レンズ、像側に凹面を向けたメニスカス形状の負レンズで構成している。   In the telemiddle eye shown in FIG. 8C, the focus group F is composed of a biconcave negative lens, a biconvex positive lens having a Abbe number of 68.3, and a negative lens. Is effectively corrected. The image side group R includes a meniscus negative lens having a concave surface facing the image side, a positive lens, and a meniscus negative lens having a concave surface facing the image side.

図8(D)に示すテレ個眼は、フォーカス群Fは正レンズとアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の負レンズ、正レンズ、像側に凹面を向けたメニスカス形状の正レンズで構成している。   In the telescopic eye shown in FIG. 8D, the focus group F is composed of a positive lens, a positive lens having an Abbe number of 68.3, and a negative lens, which effectively reduces the size of the optical system and corrects chromatic aberration. Yes. The image side group R includes a meniscus negative lens and a positive lens having a concave surface facing the image side, and a meniscus positive lens having a concave surface facing the image side.

本実施例は、異なる画角の合焦画像の同時取得とフォーカス駆動機構の簡素化を両立し、薄型かつ高変倍比さらに撮影後のズーミング処理を実現可能な複眼撮像装置を提供することができる。つまり、ビデオカメラ、デジタルカメラ等の撮像装置を、薄型、高変倍比でありながら、撮影する被写体空間についての空間情報を容易に取得することができる。   The present embodiment provides a compound-eye imaging device that can simultaneously acquire in-focus images with different angles of view and simplify the focus driving mechanism, and can achieve a thin, high zoom ratio and zooming processing after shooting. it can. That is, it is possible to easily acquire space information about a subject space to be photographed while an imaging device such as a video camera or a digital camera is thin and has a high zoom ratio.

図10は(A)、(B)、(C)、(D)は、複眼撮像装置1に適用可能な実施例3の第三複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。図11(A)、(B)、(C)、(D)は、第三複眼光学系に対応するワイド、ワイドミドル、テレミドル、テレの収差図である。   10A, 10B, 10C, and 10D show the wide single eye, wide middle single eye, and telemiddle single eye of the third compound eye optical system of Example 3 that can be applied to the compound eye imaging apparatus 1. FIG. It is a lens sectional view of a tele individual eye. FIGS. 11A, 11 </ b> B, 11 </ b> C, and 11 </ b> D are aberration diagrams of wide, wide middle, telemiddle, and tele corresponding to the third compound eye optical system.

第三複眼光学系は、無限遠被写体から近距離被写体へのフォーカシングに際してフォーカス群Fは物体側へ移動し、像側群Rは固定である(前玉フォーカス式)。以下、各レンズ群のレンズ構成は、物体側から像側の順とする。   In the third compound eye optical system, the focus group F moves to the object side and the image side group R is fixed (front lens focus type) during focusing from an infinitely distant subject to a close-distance subject. Hereinafter, the lens configuration of each lens group is in order from the object side to the image side.

図10(A)に示すワイド個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズが2つと像側に凸面を向けたメニスカス形状の正レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズが2つと両凹形状の負レンズで構成している。   The wide single eye shown in FIG. 10A is composed of two meniscus negative lenses having a concave surface facing the image side and a meniscus positive lens having a convex surface facing the image side. It effectively reduces the size and corrects distortion and chromatic aberration. The image side group R is composed of two biconvex positive lenses and a biconcave negative lens.

図10(B)に示すワイドミドル個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズが2つと像側に凸面を向けたメニスカス形状の正レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズ、像側に凹面を向けたメニスカス形状の負レンズ、両凹形状の負レンズで構成している。   10B, the focus group F includes two meniscus negative lenses having a concave surface facing the image side and a meniscus positive lens having a convex surface facing the image side. Is effectively reduced and distortion and chromatic aberration are corrected. The image side group R includes a biconvex positive lens, a meniscus negative lens having a concave surface facing the image side, and a biconcave negative lens.

図10(C)に示すテレミドル個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の正レンズと両凹形状の負レンズ、両凸形状の正レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは負レンズ、両凸形状の正レンズ、像側に凹面を向けたメニスカス形状の負レンズで構成している。   In the telemiddle eye shown in FIG. 10C, the focus group F includes a meniscus positive lens having a concave surface facing the image side, a biconcave negative lens, and a biconvex positive lens. And correct chromatic aberration effectively. The image side group R includes a negative lens, a biconvex positive lens, and a meniscus negative lens having a concave surface facing the image side.

図10(D)に示すテレ個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の正レンズと両凹形状の負レンズ、両凸形状の正レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凸面を向けたメニスカス形状の正レンズ、像側に凹面を向けたメニスカス形状の負レンズ、像側に凹面を向けたメニスカス形状の負レンズで構成している。   10D, the focus group F includes a meniscus positive lens having a concave surface facing the image side, a biconcave negative lens, and a biconvex positive lens. And correct chromatic aberration effectively. The image side group R includes a meniscus positive lens having a convex surface facing the image side, a meniscus negative lens having a concave surface facing the image side, and a meniscus negative lens having a concave surface facing the image side.

本実施例は、異なる画角の合焦画像の同時取得とフォーカス駆動機構の簡素化を両立し、薄型かつ高変倍比さらに撮影後のズーミング処理を実現可能な複眼撮像装置を提供することができる。つまり、ビデオカメラ、デジタルカメラ等の撮像装置を、薄型、高変倍比でありながら、撮影する被写体空間についての空間情報を容易に取得することができる。   The present embodiment provides a compound-eye imaging device that can simultaneously acquire in-focus images with different angles of view and simplify the focus driving mechanism, and can achieve a thin, high zoom ratio and zooming processing after shooting. it can. That is, it is possible to easily acquire space information about a subject space to be photographed while an imaging device such as a video camera or a digital camera is thin and has a high zoom ratio.

図12(A)、(B)は、複眼撮像装置1に適用可能な実施例4の第四複眼光学系のワイド個眼、テレ個眼のレンズ断面図である。図13(A)、(B)は、第四複眼光学系に対応するワイド、テレの収差図である。   12A and 12B are lens cross-sectional views of the wide single eye and the tele single eye of the fourth compound eye optical system of the fourth embodiment applicable to the compound eye imaging device 1. FIGS. 13A and 13B are aberration diagrams of wide and tele corresponding to the fourth compound eye optical system.

第四複眼光学系は、無限遠被写体から近距離被写体へのフォーカシング時にフォーカス群Fは物体側へ移動し、ワイド個眼では像側群Rは固定され、テレ個眼では、像側群Rは存在しない(ワイド個眼で前玉フォーカス式、テレ個眼では全体繰り出し式)。なお、全体繰り出しとは被写体距離に応じて光学系全体を光軸方向に移動させることでセンサ面上に合焦像を結像させる手法である。以下、各レンズ群のレンズ構成は、物体側から像側の順とする。   In the fourth compound eye optical system, the focus group F moves to the object side during focusing from an infinite subject to a short-distance subject, the image side group R is fixed for a wide single eye, and the image side group R for a tele single eye is fixed. Not present (front focus type with wide single eye, full extension type with tele single eye). Note that the entire extension is a method of forming a focused image on the sensor surface by moving the entire optical system in the optical axis direction according to the subject distance. Hereinafter, the lens configuration of each lens group is in order from the object side to the image side.

図12(A)に示すワイド個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは正レンズ、正レンズ、物体側に凹面を向けたメニスカス形状の負レンズで構成している。   In the wide single eye shown in FIG. 12A, the focus group F includes a meniscus negative lens having a concave surface facing the image side, a biconvex positive lens having a Abbe number of 68.3, and a negative lens. This system effectively reduces the size of the system and corrects distortion and chromatic aberration. The image side group R includes a positive lens, a positive lens, and a meniscus negative lens having a concave surface facing the object side.

図12(B)に示すテレ個眼は、両側凸面形状の正レンズと両凸形状でアッベ数が68.3の正レンズ、負レンズ、像側に凹面を向けたメニスカス形状の負レンズ、正レンズ、正レンズで構成している。   The telescopic eye shown in FIG. 12B includes a positive lens having a convex shape on both sides, a positive lens having a biconvex shape with an Abbe number of 68.3, a negative lens, a negative lens having a meniscus shape with a concave surface facing the image side, a positive lens. It consists of a lens and a positive lens.

本実施例は、異なる画角の合焦画像の同時取得とフォーカス駆動機構の簡素化を両立し、薄型かつ高変倍比さらに撮影後のズーミング処理を実現可能な複眼撮像装置を提供することができる。つまり、ビデオカメラ、デジタルカメラ等の撮像装置を、薄型、高変倍比でありながら、撮影する被写体空間についての空間情報を容易に取得することができる。   The present embodiment provides a compound-eye imaging device that can simultaneously acquire in-focus images with different angles of view and simplify the focus driving mechanism, and can achieve a thin, high zoom ratio and zooming processing after shooting. it can. That is, it is possible to easily acquire space information about a subject space to be photographed while an imaging device such as a video camera or a digital camera is thin and has a high zoom ratio.

図14(A)、(B)、(C)、(D)は、複眼撮像装置1に適用可能な実施例5の第五複眼光学系のワイド個眼、ワイドミドル個眼、テレミドル個眼、テレ個眼のレンズ断面図である。図15(A)、(B)、(C)、(D)は、第五複眼光学系に対応するワイド、ワイドミドル、テレミドル、テレの収差図である。   14A, 14 </ b> B, 14 </ b> C, and 14 </ b> D are a wide single eye, a wide middle single eye, a telemid single eye of the fifth compound eye optical system of Example 5 applicable to the compound eye imaging apparatus 1. It is a lens sectional view of a tele individual eye. 15A, 15B, 15C, and 15D are aberration diagrams of wide, wide middle, telemiddle, and tele corresponding to the fifth compound eye optical system.

第五複眼光学系は、無限遠被写体から近距離被写体へのフォーカシングに際してフォーカス群Fは物体側へ移動し、像側群Rは固定である(前玉フォーカス式)。以下、各レンズ群のレンズ構成は、物体側から像側の順とする。   In the fifth compound eye optical system, the focus group F moves to the object side and the image side group R is fixed (front-lens focus type) during focusing from an infinitely distant subject to a short-distance subject. Hereinafter, the lens configuration of each lens group is in order from the object side to the image side.

図14(A)に示すワイド個眼は、フォーカス群Fは像側に凹面を向けた負レンズと両凸形状でアッベ数が68.3の正レンズ、像側に凹面を向けた負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の正レンズ、両凸形状の正レンズと両凹形状の負レンズで構成している。   In the wide single eye shown in FIG. 14A, the focus group F includes a negative lens having a concave surface facing the image side, a positive lens having a biconvex shape and an Abbe number of 68.3, and a negative lens having a concave surface facing the image side. The optical system is effectively reduced in size and corrected for distortion and chromatic aberration. The image side group R includes a meniscus positive lens having a concave surface facing the image side, a biconvex positive lens, and a biconcave negative lens.

図14(B)に示すワイドミドル個眼は、フォーカス群Fは像側に凹面を向けた負レンズと両凸形状でアッベ数が68.3の正レンズ、両凹の負レンズで構成され、光学系の小型化と、歪曲収差、色収差の補正を効果的に行っている。像側群Rは両凸形状の正レンズ2つと像側に凸面を向けたメニスカス形状の負レンズで構成している。   14B, the focus group F includes a negative lens having a concave surface facing the image side, a biconvex positive lens having an Abbe number of 68.3, and a biconcave negative lens. The optical system is downsized and distortion and chromatic aberration are effectively corrected. The image side group R includes two biconvex positive lenses and a meniscus negative lens having a convex surface facing the image side.

図14(C)に示すテレミドル個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、像側に凸面を向けたメニスカス形状の負レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の負レンズ、正レンズ、像側に凹面を向けたメニスカス形状の負レンズで構成している。   In the telemiddle eye shown in FIG. 14C, the focus group F has a meniscus negative lens having a concave surface facing the image side, a biconvex positive lens having an Abbe number of 68.3, and a convex surface facing the image side. It is composed of a meniscus negative lens, effectively reducing the size of the optical system and correcting chromatic aberration. The image side group R includes a meniscus negative lens having a concave surface facing the image side, a positive lens, and a meniscus negative lens having a concave surface facing the image side.

図14(D)に示すテレ個眼は、フォーカス群Fは像側に凹面を向けたメニスカス形状の負レンズと両凸形状でアッベ数が68.3の正レンズ、像側に凸面を向けたメニスカス形状の負レンズで構成され、光学系の小型化と色収差の補正を効果的に行っている。像側群Rは像側に凹面を向けたメニスカス形状の正レンズが2つと像側に凹面を向けたメニスカス形状の負レンズで構成している。   In the telescopic eye shown in FIG. 14D, the focus group F has a meniscus negative lens having a concave surface facing the image side, a biconvex positive lens having an Abbe number of 68.3, and a convex surface facing the image side. It is composed of a meniscus negative lens, effectively reducing the size of the optical system and correcting chromatic aberration. The image side group R includes two meniscus positive lenses having a concave surface facing the image side and a meniscus negative lens having a concave surface facing the image side.

本実施例は、異なる画角の合焦画像の同時取得とフォーカス駆動機構の簡素化を両立し、薄型かつ高変倍比さらに撮影後のズーミング処理を実現可能な複眼撮像装置を提供することができる。つまり、ビデオカメラ、デジタルカメラ等の撮像装置を、薄型、高変倍比でありながら、撮影する被写体空間についての空間情報を容易に取得することができる。   The present embodiment provides a compound-eye imaging device that can simultaneously acquire in-focus images with different angles of view and simplify the focus driving mechanism, and can achieve a thin, high zoom ratio and zooming processing after shooting. it can. That is, it is possible to easily acquire space information about a subject space to be photographed while an imaging device such as a video camera or a digital camera is thin and has a high zoom ratio.

なお、図1から図3で示した撮像ユニットは簡易的にフォーカス群Fと像側群Rの2枚レンズで構成していたが、実施例1から5の光学系に合わせてフォーカス群保持部や駆動部を構成することは可能である。   Although the imaging unit shown in FIGS. 1 to 3 is simply configured by two lenses of the focus group F and the image side group R, the focus group holding unit is adapted to the optical systems of the first to fifth embodiments. It is possible to configure the drive unit.

以下、第一から第五複眼光学系に対応する数値実施例1〜5の具体的数値データを示す。各数値実施例において、iは物体側から数えた面の番号を示す。riは第i番目の光学面(第i面)の曲率半径である。diは第i面と第(i+1)面との軸上間隔である。ndi、νdiはそれぞれd線に対する第i番目の光学部材の材料の屈折率、アッベ数である。fは焦点距離、FnoはFナンバー、ωは半画角である。間隔dが0とは前後の面が接合されていることを示す。   Hereinafter, specific numerical data of Numerical Examples 1 to 5 corresponding to the first to fifth compound eye optical systems will be shown. In each numerical example, i indicates the number of the surface counted from the object side. ri is the radius of curvature of the i-th optical surface (i-th surface). di is the axial distance between the i-th surface and the (i + 1) -th surface. ndi and νdi are the refractive index and Abbe number of the material of the i-th optical member with respect to the d-line, respectively. f is a focal length, Fno is an F number, and ω is a half angle of view. An interval d of 0 indicates that the front and back surfaces are joined.

また、非球面形状はRを曲率半径とし、非球面係数K、A3,A4、A5,A6、A7,A8、A9、A10、A11,A12を用いて次式で与えられるものとする。   The aspherical shape is given by the following equation using R as the radius of curvature and aspherical coefficients K, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12.

X=(H/R)/[1+{1−(1+K)(H/R)2}1/2]+A3・H+A4・H+A5・H+A6・H+A7・H+A8・H+A9・H+A10・H10+A11・H11+A12・H12 ・・・(14)
各非球面係数における「E±XX」は「×10±XX」を意味している。
X = (H 2 / R) / [1+ {1− (1 + K) (H / R) 2} 1/2 ] + A3 · H 3 + A4 · H 4 + A5 · H 5 + A6 · H 6 + A7 · H 7 + A8 · H 8 + A9 · H 9 + A10 · H 10 + A11 · H 11 + A12 · H 12 ··· (14)
“E ± XX” in each aspheric coefficient means “× 10 ± XX”.

数値実施例における各フォーカス群の焦点距離の一覧を表5、条件式(10)と数値実施例との関係を表1に示す。条件式(10)は各複眼光学系の間で成立する条件式であるが、表1にはそのうちの一部のみ記載している。具体的には、条件式(10)のffhに各複眼光学系で最も大きな焦点距離を有する光学系のフォーカス群の焦点距離、ffiに対象となる結像光学系のフォーカス群の焦点距離を代入したものを表1に記載している。このような計算条件で各光学系が条件式(10)を満たすことで、最も焦点深度の浅いテレ個眼と同じフォーカス群移動量とした場合に、全ての個眼光学系でも同一被写体に合焦させることが可能となっている。   Table 5 shows a list of focal lengths of the focus groups in the numerical example, and Table 1 shows a relationship between the conditional expression (10) and the numerical example. Conditional expression (10) is a conditional expression established between the compound-eye optical systems, and Table 1 shows only a part of them. Specifically, the focal length of the focus group of the optical system having the largest focal length in each compound-eye optical system is substituted for ffh in conditional expression (10), and the focal length of the focus group of the target imaging optical system is substituted for ffi. The results are shown in Table 1. By satisfying conditional expression (10) for each optical system under such a calculation condition, when the same focus group movement amount is used for the tele-eye which has the shallowest depth of focus, all of the single-eye optical systems can match the same subject. It is possible to burn.

数値実施例における各フォーカス群の前側主点位置から像面までの距離を表6、条件式(11)と数値実施例との関係を表2に示す。条件式(11)を満たすように各結像光学系を構成することによって、より近距離の被写体に対しても合焦画像の同時取得が実現している。   Table 6 shows the distance from the front principal point position of each focus group to the image plane in the numerical example, and Table 2 shows the relationship between the conditional expression (11) and the numerical example. By configuring each imaging optical system so as to satisfy the conditional expression (11), simultaneous acquisition of a focused image is realized even for a subject at a shorter distance.

条件式(12)と数値実施例との関係を表3に示す。条件式(12)はフォーカス群の焦点距離が異なる光学系の間で成立する条件式であるが、表3にはそのうちの一部、各数値実施例で条件式(12)の値が最大と最小になるもののみ記載している。数値実施例1、数値実施例2、数値実施例3、数値実施例5では個眼Aと個眼Cで計算した場合が最大となり、個眼Bと個眼Dで計算した場合が最小となるため、表3にはそれらの値を記載している。数値実施例4については2眼の光学系となるため、最大、最小ともに個眼A、個眼Bで計算した場合を記載している。各数値実施例において、条件式(12)を満たすように各結像光学系を構成することによって、フォーカス群の焦点距離の符号が異なる場合についても、より近距離の被写体に対し合焦画像の同時取得が実現している。   Table 3 shows the relationship between the conditional expression (12) and the numerical examples. Conditional expression (12) is a conditional expression that is established between optical systems having different focal lengths of the focus group. Table 3 shows that the value of conditional expression (12) is the maximum in some numerical examples. Only those that are minimized are listed. In Numerical Example 1, Numerical Example 2, Numerical Example 3, and Numerical Example 5, the case where the calculation is performed with the single eye A and the single eye C is the maximum, and the case where the calculation is performed with the single eye B and the single eye D is the minimum. Therefore, those values are listed in Table 3. Since Numerical Example 4 is a two-lens optical system, the case where the maximum and minimum are calculated with the single eye A and single eye B is described. In each numerical example, each imaging optical system is configured so as to satisfy the conditional expression (12). Simultaneous acquisition is realized.

条件式(13)と数値実施例との関係を表4に示す。条件式(13)を満たすように各結像光学系を構成することによって、異なる焦点距離を有する結像光学系のフォーカシング移動量がほぼ同一で、尚且つ諸収差を良好に補正した異焦点光学系を実現している。   Table 4 shows the relationship between the conditional expression (13) and the numerical examples. By configuring each imaging optical system so as to satisfy the conditional expression (13), the focusing optical amounts of the imaging optical systems having different focal lengths are substantially the same, and the various focal optics in which various aberrations are corrected well The system is realized.

焦点距離、Fナンバー、画角はそれぞれ無限遠物体に焦点を合わせたときの値を表している。BFは最終レンズ面から像面までの距離を空気換算した値である。
(数値実施例1)
ワイド個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 40.382 1.30 1.62041 60.3 5.88
2* 2.411 2.67 4.00
3* 6.203 1.40 1.59240 68.3 3.87
4* -11.433 0.50 3.49
5* -62.116 0.80 1.80518 25.4 3.14
6* 15.255 0.10 3.13
7(絞り) ∞ 0.10 3.14
8* 6.018 1.20 1.64000 60.1 3.20
9* -12.756 3.48 3.11
10* 9.928 1.80 1.59240 68.3 4.65
11* -11.658 0.50 4.57
12* -28.136 1.00 1.84666 23.8 4.44
13* 8.934 5.01
像面 ∞

非球面データ
第1面
K =-8.61567e+001 A 4=-9.22230e-004 A 6= 4.19663e-005
第2面
K =-9.30223e-001 A 4= 7.19408e-003 A 6= 6.36185e-004
第3面
K = 3.54414e+000 A 4= 2.81499e-003 A 6= 2.34019e-004
第4面
K =-3.53906e+000 A 4= 1.43935e-003 A 6= 1.07092e-004
第5面
K = 3.15676e+000 A 4= 1.79932e-003 A 6=-9.65503e-004
第6面
K = 4.96423e+001 A 4= 1.09416e-003 A 6=-7.97966e-004
第8面
K =-3.06847e+000 A 4=-1.51330e-004 A 6= 3.84651e-004
第9面
K = 9.75797e+000 A 4=-3.28928e-004 A 6= 5.50566e-004
第10面
K =-1.10481e+001 A 4= 2.90917e-004 A 6= 5.26599e-004
第11面
K = 1.72650e+001 A 4=-4.08824e-003 A 6= 9.11055e-004
第12面
K =-7.35482e+001 A 4=-1.54275e-002 A 6= 3.85072e-004
第13面
K = 7.43385e+000 A 4=-1.07701e-002 A 6= 4.92519e-004

各種データ
焦点距離 5.20
Fナンバー 2.88
画角 36.69
像高 3.88
レンズ全長 17.91
BF 3.06
入射瞳位置 3.15
射出瞳位置 -4.86
前側主点位置 4.94
後側主点位置 -2.14

単レンズデータ
レンズ 始面 焦点距離
1 1 -4.19
2 3 6.99
3 5 -15.14
4 8 6.55
5 10 9.34
6 12 -7.91

ワイドミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 6.194 1.30 1.62041 60.3 5.61
2* 2.200 2.67 4.05
3* 6.346 1.40 1.59240 68.3 3.96
4* -26.449 0.50 3.86
5* -41.518 0.80 1.80518 25.4 3.76
6* 14.348 0.10 3.77
7(絞り) ∞ 0.10 3.75
8* 4.979 1.20 1.64000 60.1 3.89
9* -7.878 3.48 3.82
10* -7.653 1.80 1.59240 68.3 4.02
11* -7.611 0.50 4.64
12* -12.407 1.00 1.84666 23.8 4.60
13* 52.342 5.45
像面 ∞

非球面データ
第1面
K =-5.86699e+000 A 4=-8.96118e-004 A 6= 1.23087e-006
第2面
K =-1.11462e+000 A 4= 5.18382e-003 A 6= 7.47793e-004
第3面
K = 2.23083e+000 A 4= 2.29189e-003 A 6= 9.11689e-005
第4面
K = 3.98608e+001 A 4=-1.07969e-003 A 6=-1.03444e-004
第5面
K =-2.66134e+001 A 4= 2.91291e-004 A 6=-5.80559e-004
第6面
K = 3.25993e+001 A 4= 1.05064e-003 A 6=-3.89850e-004
第8面
K =-3.31035e+000 A 4= 9.36039e-004 A 6= 4.48060e-005
第9面
K = 1.62170e+000 A 4=-1.30807e-004 A 6= 1.97962e-004
第10面
K =-1.84308e+001 A 4=-9.71624e-003 A 6= 5.68105e-004
第11面
K =-2.88780e+001 A 4=-1.01570e-002 A 6= 1.38466e-004
第12面
K =-9.00000e+001 A 4=-1.47730e-002 A 6=-1.20913e-005
第13面
K =-5.42659e+001 A 4=-8.67083e-003 A 6= 3.90008e-004

各種データ
焦点距離 7.50
Fナンバー 2.88
画角 27.32
像高 3.88
レンズ全長 17.91
BF 3.06

入射瞳位置 4.05
射出瞳位置 -4.94
前側主点位置 4.52
後側主点位置 -4.44

単レンズデータ
レンズ 始面 焦点距離
1 1 -6.28
2 3 8.78
3 5 -13.16
4 8 4.95
5 10 138.07
6 12 -11.76

テレミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* -14.915 1.30 1.62041 60.3 6.70
2* 69.090 2.67 6.19
3* 5.672 1.40 1.59240 68.3 5.30
4* -7.487 0.50 5.08
5* -9.447 0.80 1.80518 25.4 4.14
6* -22.100 0.10 3.74
7(絞り) ∞ 0.10 3.67
8* 3.929 1.20 1.64000 60.1 3.60
9* 2.484 3.48 3.41
10* 6.037 1.80 1.59240 68.3 6.30
11* 21.097 0.50 6.25
12* 13.374 1.00 1.84666 23.8 6.25
13* 6.940 5.99
像面 ∞

非球面データ
第1面
K = 3.23218e+000 A 4=-3.05400e-004 A 6= 4.53521e-005
第2面
K =-9.00000e+001 A 4= 1.59130e-004 A 6= 5.15981e-005
第3面
K =-1.64767e+000 A 4= 2.27739e-003 A 6=-6.09668e-006
第4面
K =-7.51140e+000 A 4= 2.83658e-004 A 6= 7.41960e-005
第5面
K = 8.77500e+000 A 4= 1.90647e-004 A 6= 7.09546e-004
第6面
K = 7.06211e+000 A 4=-1.29880e-003 A 6= 6.54962e-004
第8面
K =-7.69118e-001 A 4=-1.53255e-003 A 6=-1.23634e-004
第9面
K =-9.82229e-001 A 4= 2.51720e-004 A 6=-1.95089e-004
第10面
K =-4.39310e+000 A 4= 2.05043e-003 A 6=-1.72957e-005
第11面
K = 3.04604e+001 A 4= 9.28199e-004 A 6=-1.81115e-004
第12面
K = 5.49088e+000 A 4=-1.18023e-003 A 6= 3.43330e-005
第13面
K = 2.34608e+000 A 4=-3.33103e-003 A 6= 1.61864e-004

各種データ
焦点距離 10.50
Fナンバー 2.88
画角 20.26
像高 3.88
レンズ全長 17.91
BF 3.06

入射瞳位置 4.64
射出瞳位置 -5.12
前側主点位置 1.66
後側主点位置 -7.44

単レンズデータ
レンズ 始面 焦点距離
1 1 -19.66
2 3 5.67
3 5 -21.09
4 8 -15.62
5 10 13.67
6 12 -18.35

テレ個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 36.807 1.30 1.62041 60.3 7.62
2* -41.677 2.67 7.15
3* 8.270 1.40 1.59240 68.3 5.38
4* -7.910 0.50 4.98
5* -9.885 0.80 1.80518 25.4 4.08
6* -54.358 0.10 3.71
7(絞り) ∞ 0.10 3.66
8* 5.124 1.20 1.64000 60.1 3.45
9* 2.412 3.48 3.17
10* 10.272 1.80 1.59240 68.3 6.40
11* 16.743 0.50 6.42
12* 9.281 1.00 1.84666 23.8 6.58
13* 10.176 6.54
像面 ∞

非球面データ
第1面
K =-9.00000e+001 A 4= 3.25623e-005 A 6= 1.37046e-005
第2面
K = 6.54916e+001 A 4= 9.61894e-004 A 6= 1.97095e-005
第3面
K =-5.20341e-001 A 4= 2.82359e-003 A 6= 1.62204e-005
第4面
K =-1.07451e+001 A 4= 1.35610e-003 A 6=-1.75272e-005
第5面
K = 9.36306e+000 A 4= 3.65867e-003 A 6= 3.57432e-004
第6面
K =-1.69149e+001 A 4= 1.12483e-003 A 6= 6.25155e-004
第8面
K =-6.38373e-001 A 4=-3.54965e-003 A 6= 1.25622e-006
第9面
K =-9.28207e-001 A 4=-1.83232e-003 A 6=-1.58220e-004
第10面
K = 6.03894e-001 A 4= 1.13103e-003 A 6= 4.35985e-005
第11面
K =-8.36796e+000 A 4= 9.48431e-004 A 6=-5.05453e-005
第12面
K =-2.24043e+000 A 4=-9.07528e-004 A 6= 9.61281e-007
第13面
K = 6.10242e+000 A 4=-2.60010e-003 A 6= 1.92825e-005

各種データ
焦点距離 15.00
Fナンバー 2.88
画角 14.48
像高 3.88
レンズ全長 17.91
BF 3.06

入射瞳位置 6.90
射出瞳位置 -6.27
前側主点位置 -2.20
後側主点位置 -11.94

単レンズデータ
レンズ 始面 焦点距離
1 1 31.71
2 3 7.05
3 5 -15.13
4 8 -8.61
5 10 40.66
6 12 82.43

(数値実施例2)
ワイド個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* -15.549 1.70 1.62041 60.3 9.32
2* 5.297 6.00 5.94
3* -21.574 1.80 1.49700 81.5 4.31
4* -6.160 0.50 4.30
5* -60.682 0.80 1.84666 23.8 3.65
6* -247.402 1.26 3.51
7(絞り) ∞ 2.16 3.60
8* 7.864 1.20 1.59240 68.3 5.23
9* -65.198 3.81 5.42
10* 7.418 2.20 1.49700 81.5 6.38
11* -4.540 0.50 6.37
12* -2.561 1.00 1.84666 23.8 5.89
13* -5.241 5.68
像面 ∞

非球面データ
第1面
K =-9.00000e+001 A 4= 2.40773e-003 A 6=-1.00607e-004 A 8= 2.29263e-006
A10=-2.45268e-008
第2面
K =-2.33052e+000 A 4= 8.76770e-003 A 6=-1.12324e-004 A 8= 1.59787e-005
A10=-3.95043e-007
第3面
K =-7.34310e+001 A 4=-4.21675e-003 A 6=-5.01453e-005 A 8= 2.53959e-005
A10=-1.23794e-005
第4面
K =-3.31004e-001 A 4=-4.70929e-003 A 6= 9.40943e-004 A 8=-2.39785e-004
A10= 1.39342e-005
第5面
K =-9.00000e+001 A 4= 1.91427e-003 A 6= 9.94935e-004 A 8=-2.72938e-004
A10= 1.79532e-005
第6面
K =-9.00000e+001 A 4= 3.13282e-003 A 6= 4.08003e-004 A 8=-1.04956e-004
A10= 3.69894e-006
第8面
K =-3.92356e+000 A 4= 6.68721e-005 A 6=-1.81875e-004 A 8= 1.27528e-005
A10=-7.29409e-007
第9面
K =-1.52035e+001 A 4=-8.29437e-004 A 6=-1.82468e-004 A 8= 1.31931e-005
A10=-5.81891e-007
第10面
K = 4.69580e-001 A 4= 8.49677e-005 A 6=-1.91505e-004 A 8=-1.85306e-007
A10= 3.24269e-007
第11面
K =-1.29407e+001 A 4=-2.00018e-003 A 6=-1.00026e-004 A 8= 4.40120e-006
A10= 8.21368e-008
第12面
K =-5.27817e+000 A 4= 6.66070e-003 A 6=-4.16248e-004 A 8=-4.05938e-006
A10= 7.85917e-007
第13面
K =-1.56342e+001 A 4= 9.46117e-003 A 6= 1.14746e-004 A 8=-5.53169e-005
A10= 2.24424e-006

焦点距離 4.40
Fナンバー 2.88
画角 41.37
像高 3.88
レンズ全長 27.87
BF 4.93

入射瞳位置 4.54
射出瞳位置 -11.77
前側主点位置 7.78
後側主点位置 0.53

単レンズデータ
レンズ 始面 焦点距離
1 1 -6.18
2 3 16.70
3 5 -95.15
4 8 11.92
5 10 6.04
6 12 -7.13

ワイドミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* -6.311 1.70 1.62041 60.3 8.53
2* -15.124 6.00 6.79
3* -16.852 1.80 1.49700 81.5 4.62
4* -8.778 0.50 4.41
5* -23.424 0.80 1.84666 23.8 4.40
6* -85.378 1.26 4.43
7(絞り) ∞ 2.16 4.61
8* 5.516 1.20 1.59240 68.3 5.22
9* -26.626 3.81 5.23
10* -24.787 2.20 1.49700 81.5 4.87
11* -4.618 0.50 4.96
12* -2.450 1.00 1.84666 23.8 4.85
13* -4.979 5.39
像面 ∞

非球面データ
第1面
K =-6.14800e+000 A 4= 3.70943e-003 A 6=-1.19809e-004 A 8= 2.73722e-006
A10=-2.86757e-008
第2面
K =-4.61616e+001 A 4= 4.57808e-003 A 6= 4.81717e-005 A 8=-4.17683e-006
A10= 2.31980e-007
第3面
K =-6.71054e+001 A 4=-1.25502e-003 A 6= 9.36993e-005 A 8=-1.48143e-005
A10=-5.60547e-007
第4面
K = 4.63442e-001 A 4=-3.77281e-003 A 6= 9.89592e-004 A 8=-1.41886e-004
A10= 6.01938e-006
第5面
K = 6.34661e+001 A 4=-2.18170e-003 A 6= 1.43846e-003 A 8=-1.94467e-004
A10= 1.04358e-005
第6面
K = 9.00000e+001 A 4=-5.67998e-004 A 6= 6.86542e-004 A 8=-8.66547e-005
A10= 4.00686e-006
第8面
K =-1.87501e+000 A 4= 1.01603e-003 A 6=-7.41257e-005 A 8= 1.05915e-005
A10=-8.59893e-007
第9面
K =-7.57858e+001 A 4=-2.99491e-004 A 6=-4.45123e-005 A 8= 7.88147e-006
A10=-7.18324e-007
第10面
K = 6.06182e+001 A 4=-5.70802e-004 A 6= 6.31739e-005 A 8=-3.12933e-005
A10= 3.63305e-006
第11面
K =-8.53567e-001 A 4= 2.29916e-003 A 6=-4.31596e-005 A 8=-4.69019e-005
A10= 2.10631e-006
第12面
K =-1.63511e+000 A 4= 5.28029e-003 A 6=-2.97920e-004 A 8= 2.96250e-006
A10=-2.68364e-006
第13面
K =-3.21078e+000 A 4= 4.29280e-003 A 6=-5.56892e-005 A 8= 1.00908e-005
A10=-1.04948e-006

焦点距離 8.10
Fナンバー 2.88
画角 25.57
像高 3.88
レンズ全長 27.87
BF 4.93

入射瞳位置 6.21
射出瞳位置 -7.59
前側主点位置 9.07
後側主点位置 -3.17

単レンズデータ
レンズ 始面 焦点距離
1 1 -18.85
2 3 34.32
3 5 -38.35
4 8 7.82
5 10 11.02
6 12 -6.96

テレミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 4154.388 1.70 1.62041 60.3 9.82
2* 30.158 6.00 9.27
3* 7.145 1.80 1.49700 81.5 7.31
4* -37.728 0.50 6.89
5* -19.914 0.80 1.84666 23.8 6.39
6* -37.975 1.26 5.88
7(絞り) ∞ 2.16 4.95
8* 4.833 1.20 1.59240 68.3 4.25
9* 3.773 3.81 4.11
10* 7.364 2.20 1.49700 81.5 6.12
11* 74.404 0.50 5.89
12* 4.514 1.00 1.84666 23.8 5.98
13* 3.251 5.89
像面 ∞

非球面データ
第1面
K = 9.00000e+001 A 4=-1.24610e-004 A 6=-4.39173e-006 A 8= 1.38407e-007
A10=-1.64963e-010
第2面
K =-1.04824e+001 A 4=-1.76004e-005 A 6=-8.98575e-006 A 8= 2.94871e-007
A10=-1.37615e-009
第3面
K =-4.46949e+000 A 4= 1.98279e-003 A 6=-5.84120e-005 A 8= 1.69123e-006
A10= 3.04561e-009
第4面
K = 5.46418e+001 A 4= 1.83346e-003 A 6=-1.23043e-004 A 8= 4.22163e-006
A10=-7.99090e-009
第5面
K = 6.34841e+000 A 4= 2.99260e-003 A 6=-8.63827e-005 A 8= 5.35571e-007
A10= 1.25070e-007
第6面
K = 9.00000e+001 A 4= 2.60155e-003 A 6= 6.19116e-006 A 8=-3.70773e-006
A10= 3.38238e-007
第8面
K = 1.72200e-001 A 4=-1.75958e-003 A 6=-2.06213e-004 A 8= 2.14482e-006
A10= 6.85163e-007
第9面
K =-3.10596e-001 A 4=-2.00205e-003 A 6=-4.63580e-004 A 8= 1.96481e-005
A10= 6.90382e-007
第10面
K = 9.19367e-001 A 4= 4.32065e-003 A 6=-3.08400e-004 A 8= 1.26359e-005
A10=-5.30893e-007
第11面
K = 2.29759e+001 A 4= 7.50550e-003 A 6=-2.91010e-004 A 8=-8.96536e-006
A10= 3.41671e-007
第12面
K =-1.58103e-002 A 4=-8.58579e-003 A 6= 1.48904e-004 A 8=-6.94785e-006
A10= 5.72281e-007
第13面
K =-2.83628e+000 A 4=-6.33802e-003 A 6= 3.87565e-004 A 8=-1.64786e-005
A10= 8.57651e-007

焦点距離 15.00
Fナンバー 2.88
画角 14.48
像高 3.88
レンズ全長 27.87
BF 4.93

入射瞳位置 9.64
射出瞳位置 -6.52
前側主点位置 5.00
後側主点位置 -10.07

単レンズデータ
レンズ 始面 焦点距離
1 1 -48.97
2 3 12.25
3 5 -50.48
4 8 -50.18
5 10 16.27
6 12 -21.56

テレ個眼

単位 mm

面データ
面番号 r d nd vd 有効径
1* 16.751 1.70 1.62041 60.3 12.59
2* 210.161 6.00 12.38
3* 8.298 1.80 1.49700 81.5 7.39
4* -81.483 0.50 6.66
5* -16.474 0.80 1.84666 23.8 6.35
6* 1466.568 1.26 5.76
7(絞り) ∞ 2.16 5.23
8* 6.911 1.20 1.59240 68.3 4.20
9* 3.263 3.81 4.09
10* 12.252 2.20 1.49700 81.5 6.72
11* 16.214 0.50 6.66
12* 8.301 1.00 1.84666 23.8 6.99
13* 12.536 6.93
像面 ∞

非球面データ
第1面
K =-1.55876e+000 A 4= 2.92366e-005 A 6=-1.09631e-006 A 8=-2.08632e-008
A10=-3.05929e-010
第2面
K =-8.25615e+001 A 4= 8.52712e-005 A 6=-3.92623e-006 A 8= 1.40034e-008
A10=-2.69295e-010
第3面
K =-3.67293e+000 A 4= 2.26440e-003 A 6=-4.59917e-005 A 8= 1.04881e-006
A10=-6.76070e-008
第4面
K =-8.25640e+001 A 4= 2.95461e-003 A 6=-1.69702e-004 A 8= 2.78863e-006
A10=-9.81982e-009
第5面
K =-8.54818e+000 A 4= 3.23331e-003 A 6=-6.52295e-005 A 8= 2.60563e-007
A10= 2.06459e-008
第6面
K = 9.00000e+001 A 4= 2.84444e-003 A 6= 5.54409e-005 A 8=-2.01728e-006
A10= 1.47975e-008
第8面
K = 9.01024e-001 A 4=-3.18032e-003 A 6= 1.87699e-005 A 8= 1.35237e-006
A10= 4.20761e-007
第9面
K =-5.97311e-001 A 4=-3.35059e-003 A 6=-8.80939e-005 A 8= 3.70614e-005
A10=-1.59924e-006
第10面
K = 4.33191e+000 A 4= 2.20495e-003 A 6=-1.96480e-004 A 8= 1.40411e-005
A10=-1.95281e-007
第11面
K = 1.80446e+001 A 4= 1.78097e-003 A 6=-1.22296e-004 A 8=-3.36184e-006
A10= 4.67220e-007
第12面
K = 2.52838e+000 A 4=-2.56453e-003 A 6= 1.27725e-004 A 8=-3.82035e-006
A10=-8.84563e-008
第13面
K = 2.03545e+000 A 4=-2.86765e-003 A 6= 1.81150e-004 A 8=-1.65134e-006
A10=-1.51589e-007

焦点距離 27.80
Fナンバー 2.88
画角 7.94
像高 3.88
レンズ全長 27.87
BF 4.93

入射瞳位置 18.15
射出瞳位置 -10.54
前側主点位置 -4.00
後側主点位置 -22.87

単レンズデータ
レンズ 始面 焦点距離
1 1 29.24
2 3 15.25
3 5 -19.24
4 8 -11.89
5 10 85.17
6 12 26.19

(数値実施例3)
ワイド個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 17.545 1.30 1.72916 54.7 6.84
2* 4.492 1.60 4.62
3* 7.232 0.42 1.84666 23.8 3.94
4* 5.551 1.75 3.84
5* -9.747 0.80 1.77250 49.6 3.23
6* -6.483 0.87 3.05
7(絞り) ∞ 1.46 2.95
8* 4.952 1.20 1.59240 68.3 4.29
9* -13.956 0.89 4.52
10* 11.888 1.80 1.72916 54.7 4.80
11* -6.936 0.50 4.68
12* -4.690 0.60 1.84666 23.8 4.26
13* 19.395 4.07
像面 ∞

非球面データ
第1面
K = 1.93798e+001 A 4= 3.44220e-003 A 6=-1.43219e-004 A 8= 4.91643e-006
第2面
K = 1.93564e+000 A 4= 3.78641e-003 A 6= 1.63212e-004 A 8=-2.68609e-005
第3面
K =-2.58063e+001 A 4=-1.22252e-002 A 6=-5.60380e-004
第4面
K =-1.40874e+001 A 4=-8.95519e-003 A 6=-1.13109e-005
第5面
K = 1.47405e+001 A 4= 1.16143e-002 A 6= 9.07581e-004
第6面
K =-9.69339e+000 A 4= 8.06017e-004 A 6= 1.09323e-003
第8面
K =-5.09301e+000 A 4= 1.50977e-005 A 6=-5.31157e-004
第9面
K = 1.50804e+001 A 4=-4.97400e-003 A 6= 4.96866e-005
第10面
K =-5.05811e+001 A 4= 3.58405e-003 A 6=-6.14664e-004 A 8= 8.77333e-005
A10=-3.44814e-006
第11面
K = 4.11902e+000 A 4= 5.20259e-003 A 6=-1.01058e-003 A 8= 1.11372e-004
A10=-1.14390e-006
第12面
K =-8.52909e+000 A 4=-2.92426e-003 A 6= 7.46116e-004 A 8=-4.18326e-005
第13面
K = 2.43033e+001 A 4= 8.04370e-003 A 6= 7.03394e-004 A 8= 2.12490e-005

各種データ
焦点距離 5.20
Fナンバー 2.88
画角 36.62
像高 3.87
レンズ全長 17.86
BF 4.68

入射瞳位置 4.00
射出瞳位置 -3.70
前側主点位置 5.98
後側主点位置 -0.52

単レンズデータ
レンズ 始面 焦点距離
1 1 -8.64
2 3 -31.87
3 5 22.64
4 8 6.32
5 10 6.26
6 12 -4.41

ワイドミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 14.402 1.30 1.72916 54.7 7.20
2* 9.996 1.60 5.79
3* 5.871 0.42 1.84666 23.8 4.44
4* 4.615 1.75 4.28
5* -8.563 0.80 1.77250 49.6 3.55
6* -13.567 0.87 3.35
7(絞り) ∞ 1.46 3.17
8* 4.163 1.20 1.59240 68.3 4.32
9* -12.199 0.89 4.41
10* 6.787 1.80 1.72916 54.7 4.36
11* 19.484 0.50 3.99
12* -6.996 0.60 1.84666 23.8 3.92
13* 14.611 3.89
像面 ∞

非球面データ
第1面
K = 1.16168e+001 A 4= 9.89768e-004 A 6=-5.43987e-005 A 8= 3.26693e-006
第2面
K = 7.65824e+000 A 4= 1.39481e-003 A 6=-9.20355e-005 A 8= 9.48211e-007
第3面
K =-9.87273e+000 A 4=-8.94971e-003 A 6=-4.29309e-004
第4面
K =-5.07614e+000 A 4=-9.61771e-003 A 6= 1.73926e-004
第5面
K = 7.60775e+000 A 4= 7.63344e-003 A 6= 4.36551e-004
第6面
K =-4.58561e+001 A 4= 1.33685e-003 A 6= 4.26211e-004
第8面
K =-2.28716e+000 A 4= 8.67333e-004 A 6=-2.09732e-004
第9面
K = 1.17258e+001 A 4=-3.23114e-003 A 6= 1.73236e-004
第10面
K =-1.31003e+001 A 4= 2.80544e-003 A 6=-7.65671e-004 A 8= 9.93211e-005
A10=-2.31040e-006
第11面
K =-9.00000e+001 A 4= 4.49945e-003 A 6=-1.47687e-003 A 8= 5.45215e-005
A10= 8.48898e-006
第12面
K =-2.13149e+001 A 4=-4.89613e-003 A 6= 9.18275e-004 A 8=-1.52655e-005
第13面
K = 3.35463e+001 A 4= 2.33168e-003 A 6= 7.55748e-004 A 8= 6.21658e-005

各種データ
焦点距離 7.50
Fナンバー 2.88
画角 27.26
像高 3.87
レンズ全長 17.86
BF 4.68

入射瞳位置 5.43
射出瞳位置 -3.21
前側主点位置 5.80
後側主点位置 -2.82

単レンズデータ
レンズ 始面 焦点距離
1 1 -51.19
2 3 -30.09
3 5 -32.31
4 8 5.39
5 10 13.48
6 12 -5.52

テレミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 11.464 1.30 1.72916 54.7 6.73
2* 15.201 1.60 6.07
3* -8.689 0.42 1.84666 23.8 5.19
4* -44.646 1.75 5.05
5* 25.108 0.80 1.77250 49.6 4.80
6* -7.531 0.87 4.77
7(絞り) ∞ 1.46 3.61
8* 142.496 1.20 1.59240 68.3 3.83
9* 20.498 0.89 4.18
10* 8.680 1.80 1.72916 54.7 4.64
11* -40.199 0.50 4.89
12* 4.483 0.60 1.84666 23.8 5.06
13* 2.685 4.88
像面 ∞

非球面データ
第1面
K =-1.12226e+001 A 4=-1.13289e-004 A 6=-5.28008e-005 A 8= 2.94049e-006
第2面
K = 5.62752e+000 A 4=-1.25443e-003 A 6=-2.40089e-005 A 8= 3.72638e-006
第3面
K =-8.87393e+000 A 4= 1.69189e-003 A 6=-1.84476e-004
第4面
K = 6.67509e+001 A 4= 3.68820e-003 A 6=-1.00293e-004
第5面
K = 1.23997e+001 A 4=-2.08071e-003 A 6= 1.15687e-004
第6面
K =-2.71503e+000 A 4=-2.68612e-003 A 6= 8.47615e-005
第8面
K =-9.00000e+001 A 4=-5.73823e-003 A 6= 7.95727e-004
第9面
K = 2.16869e+001 A 4=-1.52643e-002 A 6= 1.68370e-003
第10面
K =-8.73655e+000 A 4=-7.58655e-003 A 6=-3.31580e-004 A 8= 2.47858e-004
A10=-1.66883e-005
第11面
K =-9.00000e+001 A 4=-1.06514e-003 A 6=-3.52469e-004 A 8= 1.03483e-004
A10=-7.19175e-006
第12面
K =-1.16155e+001 A 4= 5.95986e-004 A 6= 3.60160e-004 A 8=-4.46187e-005
第13面
K =-4.72048e+000 A 4= 3.59852e-003 A 6= 4.99895e-006 A 8=-2.00257e-005

各種データ
焦点距離 10.50
Fナンバー 2.88
画角 20.21
像高 3.87
レンズ全長 17.86
BF 4.68

入射瞳位置 5.94
射出瞳位置 -3.42
前側主点位置 2.83
後側主点位置 -5.82

単レンズデータ
レンズ 始面 焦点距離
1 1 55.77
2 3 -12.81
3 5 7.58
4 8 -40.56
5 10 9.94
6 12 -9.34

テレ個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 7.756 1.30 1.72916 54.7 7.41
2* 21.268 1.60 6.82
3* -9.930 0.42 1.84666 23.8 5.91
4* -84.565 1.75 5.58
5* 27.184 0.80 1.77250 49.6 4.97
6* -10.343 0.87 4.86
7(絞り) ∞ 1.46 4.02
8* -562.426 1.20 1.59240 68.3 4.11
9* 49.210 0.89 4.33
10* 14.199 1.80 1.72916 54.7 4.46
11* 8.599 0.50 4.77
12* 6.050 0.60 1.84666 23.8 5.13
13* 5.049 5.23
像面 ∞

非球面データ
第1面
K =-5.01788e+000 A 4= 1.07278e-003 A 6=-3.24083e-005 A 8= 3.43676e-006
第2面
K = 1.37156e+000 A 4=-1.66607e-004 A 6= 3.17988e-005 A 8= 4.12335e-006
第3面
K =-1.14417e+001 A 4= 2.81702e-003 A 6=-7.26483e-005
第4面
K =-9.00000e+001 A 4= 3.61630e-003 A 6=-2.98440e-005
第5面
K = 4.05390e+001 A 4=-2.78388e-003 A 6= 2.27441e-004
第6面
K =-3.61488e+000 A 4=-2.42356e-003 A 6= 1.62345e-004
第8面
K =-9.00000e+001 A 4=-4.22712e-003 A 6= 4.17957e-004
第9面
K = 9.00000e+001 A 4=-1.45330e-002 A 6= 1.34423e-003
第10面
K =-5.32928e+001 A 4=-9.81497e-003 A 6=-4.12565e-004 A 8= 2.99948e-004
A10=-1.98667e-005
第11面
K =-2.19201e+000 A 4=-2.78515e-003 A 6= 1.62682e-004 A 8= 1.65808e-005
A10=-1.17910e-006
第12面
K =-2.08158e+001 A 4= 2.05328e-003 A 6=-1.12732e-004 A 8=-1.62819e-005
第13面
K =-1.37690e+001 A 4= 7.58138e-005 A 6=-5.48522e-006 A 8=-1.39436e-005

各種データ
焦点距離 15.00
Fナンバー 2.88
画角 14.45
像高 3.87
レンズ全長 17.86
BF 4.68

入射瞳位置 7.81
射出瞳位置 -3.52
前側主点位置 -4.63
後側主点位置 -10.32

単レンズデータ
レンズ 始面 焦点距離
1 1 16.09
2 3 -13.32
3 5 9.79
4 8 -76.33
5 10 -34.59
6 12 -49.71

(数値実施例4)
ワイド個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 9.963 1.30 1.62041 60.3 6.14
2* 2.063 3.16 4.23
3* 5.403 1.40 1.59240 68.3 4.07
4* -11.150 0.60 3.69
5* -43.751 0.80 1.80518 25.4 3.07
6* 15.608 0.10 3.02
7(絞り) ∞ 0.10 3.03
8* 4.764 1.20 1.64000 60.1 3.07
9* -66.999 2.94 3.02
10* 14.404 1.80 1.59240 68.3 4.48
11* -9.500 0.50 4.37
12* -17.138 1.00 1.84666 23.8 4.29
13* 11.853 5.09
像面 ∞

非球面データ
第1面
K =-2.47869e+001 A 4=-2.02166e-003 A 6= 5.43003e-005
第2面
K =-1.79551e+000 A 4= 1.25374e-002 A 6=-4.89811e-005
第3面
K = 2.24981e+000 A 4= 2.67772e-003 A 6= 1.71832e-004
第4面
K =-2.15785e+001 A 4= 1.38585e-003 A 6=-4.29296e-005
第5面
K =-7.77189e+000 A 4= 2.90232e-003 A 6=-1.23226e-003
第6面
K = 5.52064e+001 A 4= 2.30902e-003 A 6=-9.38603e-004
第8面
K = 6.43691e-001 A 4= 1.22013e-003 A 6= 3.62473e-004
第9面
K =-6.95418e+001 A 4= 3.79577e-003 A 6= 8.00925e-004
第10面
K =-9.00000e+001 A 4= 5.32715e-003 A 6= 4.14940e-004
第11面
K = 1.36769e+001 A 4=-2.97992e-003 A 6= 1.43850e-003
第12面
K =-9.00000e+001 A 4=-2.16468e-002 A 6= 4.36176e-004
第13面
K = 1.40560e+001 A 4=-1.25552e-002 A 6= 5.78256e-004

各種データ

焦点距離 5.20
Fナンバー 2.88
画角 36.69
像高 3.88
レンズ全長 17.77
BF 2.87

入射瞳位置 3.58
射出瞳位置 -4.59
前側主点位置 5.15
後側主点位置 -2.33

単レンズデータ
レンズ 始面 焦点距離
1 1 -4.47
2 3 6.34
3 5 -14.20
4 8 6.99
5 10 9.94
6 12 -8.15

テレ個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 32.268 1.30 1.62041 60.3 8.47
2* -51.647 3.16 8.11
3* 5.700 1.40 1.59240 68.3 5.55
4* -12.800 0.60 5.22
5* -9.999 0.80 1.80518 25.4 3.82
6* 191.283 0.10 3.38
7(絞り) ∞ 0.10 3.35
8* 5.214 1.20 1.64000 60.1 3.27
9* 2.487 2.94 3.24
10* 18.649 1.80 1.59240 68.3 6.46
11* 26.555 0.50 6.50
12* 8.399 1.00 1.84666 23.8 6.65
13* 11.838 6.78
像面 ∞

非球面データ
第1面
K =-1.92634e+001 A 4=-2.82433e-004 A 6= 3.81416e-006
第2面
K = 9.00000e+001 A 4= 3.23423e-004 A 6= 2.68125e-006
第3面
K =-8.60800e-001 A 4= 2.63313e-003 A 6= 4.15438e-005
第4面
K =-2.86471e+001 A 4= 8.10119e-004 A 6= 2.03306e-006
第5面
K = 9.11794e+000 A 4= 5.04006e-003 A 6= 2.54023e-004
第6面
K = 7.38599e+001 A 4= 2.81749e-003 A 6= 5.63571e-004
第8面
K =-8.57667e-001 A 4=-3.65406e-003 A 6=-4.84007e-004
第9面
K =-2.26017e-001 A 4=-3.68837e-003 A 6=-1.37027e-003
第10面
K = 1.65894e+001 A 4= 2.55538e-003 A 6= 1.45887e-005
第11面
K = 9.21247e+000 A 4= 2.90663e-004 A 6=-7.09973e-006
第12面
K =-7.20764e+000 A 4=-1.10889e-003 A 6=-5.90829e-005
第13面
K = 8.94495e+000 A 4=-3.28402e-003 A 6=-4.17715e-005

焦点距離 15.00
Fナンバー 2.88
画角 14.48
像高 3.88
レンズ全長 17.77
BF 2.87

入射瞳位置 8.12
射出瞳位置 -6.28
前側主点位置 -1.49
後側主点位置 -12.13

単レンズデータ
レンズ 始面 焦点距離
1 1 32.20
2 3 6.85
3 5 -11.78
4 8 -8.97
5 10 97.49
6 12 30.14

(数値実施例5)
ワイド個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* -48.116 1.30 1.62041 60.3 7.66
2* 3.639 6.00 5.47
3* 8.750 1.40 1.59240 68.3 4.73
4* -16.903 0.50 4.40
5* -34.756 0.80 1.80518 25.4 3.96
6* 56.394 0.10 3.88
7(絞り) ∞ 0.10 3.88
8* 6.065 1.20 1.64000 60.1 3.92
9* 23.836 4.25 3.68
10* 8.690 1.80 1.59240 68.3 5.41
11* -9.012 0.50 5.31
12* -8.618 1.00 1.84666 23.8 4.93
13* 72.203 5.07
像面 ∞

非球面データ
第1面
K =-9.00000e+001 A 4= 7.01850e-004 A 6=-1.41729e-005
第2面
K =-1.02437e+000 A 4= 2.89533e-003 A 6= 1.66545e-004
第3面
K = 4.11720e+000 A 4=-6.62206e-005 A 6= 8.06378e-005
第4面
K = 1.07116e+001 A 4= 2.17403e-003 A 6=-9.54859e-005
第5面
K =-9.00000e+001 A 4= 5.80653e-003 A 6=-4.79986e-004
第6面
K = 2.07531e+001 A 4= 5.35204e-003 A 6=-2.78954e-004
第8面
K = 7.31767e-001 A 4= 4.43548e-004 A 6= 1.00025e-004
第9面
K =-1.63240e+001 A 4= 1.86430e-003 A 6= 1.94279e-004
第10面
K =-8.77468e+000 A 4= 2.85223e-003 A 6= 2.41901e-005
第11面
K = 3.81908e+000 A 4=-3.42418e-003 A 6= 3.06907e-004
第12面
K =-9.22231e+000 A 4=-8.81583e-003 A 6= 4.93062e-004
第13面
K =-3.49900e+001 A 4=-5.65878e-004 A 6= 3.46460e-004

各種データ
焦点距離 5.20
Fナンバー 2.88
画角 36.69
像高 3.88
レンズ全長 23.95
BF 5.00

入射瞳位置 4.01
射出瞳位置 -6.87
前側主点位置 6.93
後側主点位置 -0.20

単レンズデータ
レンズ 始面 焦点距離
1 1 -5.40
2 3 9.93
3 5 -26.60
4 8 12.38
5 10 7.76
6 12 -9.04

ワイドミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* -419.207 1.30 1.62041 60.3 7.36
2* 4.982 6.00 5.79
3* 8.643 1.40 1.59240 68.3 5.55
4* -30.643 0.50 5.14
5* -25.934 0.80 1.80518 25.4 4.81
6* 68.322 0.10 4.60
7(絞り) ∞ 0.10 4.60
8* 5.835 1.20 1.64000 60.1 4.81
9* -260.120 4.25 4.79
10* 46.541 1.80 1.59240 68.3 5.00
11* -9.934 0.50 4.81
12* -5.672 1.00 1.84666 23.8 4.70
13* -20.639 5.21
像面 ∞

非球面データ
第1面
K = 9.00000e+001 A 4= 1.05181e-003 A 6=-2.00916e-005
第2面
K =-9.71530e-001 A 4= 2.64711e-003 A 6= 9.78189e-005
第3面
K = 6.02071e+000 A 4=-8.54070e-005 A 6= 1.21119e-004
第4面
K = 6.94820e+001 A 4= 1.61239e-003 A 6= 1.97117e-004
第5面
K = 8.65492e+001 A 4= 4.66403e-003 A 6=-2.08149e-004
第6面
K = 4.69152e+001 A 4= 3.86845e-003 A 6=-2.07634e-004
第8面
K = 9.12544e-001 A 4=-8.06647e-004 A 6= 7.47605e-005
第9面
K = 5.13762e+001 A 4= 2.89711e-004 A 6= 1.47593e-004
第10面
K =-3.69018e+001 A 4= 9.86792e-004 A 6= 2.20769e-004
第11面
K = 3.52657e+000 A 4=-3.00617e-003 A 6= 2.55391e-004
第12面
K =-3.32502e+000 A 4=-1.04688e-002 A 6= 3.83832e-004
第13面
K = 3.90398e+001 A 4=-1.95574e-003 A 6= 3.66442e-004

各種データ
焦点距離 7.50
Fナンバー 2.88
画角 27.32
像高 3.88
レンズ全長 23.95
BF 5.00

入射瞳位置 4.83
射出瞳位置 -5.89
前側主点位置 7.17
後側主点位置 -2.50

単レンズデータ
レンズ 始面 焦点距離
1 1 -7.93
2 3 11.53
3 5 -23.26
4 8 8.93
5 10 13.99
6 12 -9.53

テレミドル個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 21.333 1.30 1.62041 60.3 7.94
2* 8.644 6.00 7.27
3* 14.523 1.40 1.59240 68.3 5.76
4* -8.547 0.50 5.55
5* -8.406 0.80 1.80518 25.4 4.92
6* -13.347 0.10 4.63
7(絞り) ∞ 0.10 4.42
8* 6.682 1.20 1.64000 60.1 4.47
9* 6.140 4.25 4.49
10* 5.936 1.80 1.59240 68.3 6.67
11* 34.617 0.50 6.26
12* 5.087 1.00 1.84666 23.8 6.25
13* 3.128 5.77
像面 ∞

非球面データ
第1面
K =-2.60863e+001 A 4=-7.80509e-004 A 6=-9.41827e-006
第2面
K =-5.52978e+000 A 4= 1.27924e-004 A 6=-2.07571e-005
第3面
K =-2.40411e+001 A 4= 1.27171e-003 A 6=-5.45047e-005
第4面
K =-2.17385e-001 A 4= 3.74011e-004 A 6= 7.90553e-006
第5面
K = 4.83965e-001 A 4= 1.35730e-003 A 6= 6.25170e-005
第6面
K = 6.10281e+000 A 4= 1.43583e-003 A 6= 4.65354e-005
第8面
K = 1.69209e+000 A 4=-1.58544e-003 A 6=-8.62746e-005
第9面
K = 1.59626e+000 A 4=-2.35778e-003 A 6=-1.33625e-004
第10面
K = 1.92595e-001 A 4= 9.83639e-004 A 6=-1.49120e-006
第11面
K = 3.11410e+001 A 4= 3.18700e-003 A 6= 2.95213e-006
第12面
K =-2.85262e+000 A 4=-1.83994e-003 A 6= 7.62849e-005
第13面
K =-2.02865e+000 A 4=-1.53383e-003 A 6= 1.15514e-004

各種データ
焦点距離 10.50
Fナンバー 2.81
画角 20.26
像高 3.88
レンズ全長 23.95
BF 5.00

入射瞳位置 7.18
射出瞳位置 -4.92
前側主点位置 6.58
後側主点位置 -5.50

単レンズデータ
レンズ 始面 焦点距離
1 1 -24.38
2 3 9.29
3 5 -30.40
4 8 -866.01
5 10 11.82
6 12 -12.52

テレ個眼
単位 mm

面データ
面番号 r d nd vd 有効径
1* 14.827 1.30 1.62041 60.3 8.55
2* 12.297 6.00 8.02
3* 21.647 1.40 1.59240 68.3 6.41
4* -8.367 0.50 6.22
5* -8.443 0.80 1.80518 25.4 5.53
6* -14.602 0.10 5.19
7(絞り) ∞ 0.10 4.98
8* 6.475 1.20 1.64000 60.1 5.15
9* 6.369 4.25 4.92
10* 6.929 1.80 1.59240 68.3 5.98
11* 6.888 0.50 5.77
12* 5.923 1.00 1.84666 23.8 5.98
13* 4.456 5.67
像面 ∞

非球面データ
第1面
K =-3.75927e+000 A 4=-1.26105e-004 A 6=-1.94984e-005
第2面
K =-2.03156e+000 A 4= 2.15308e-004 A 6=-2.04223e-005
第3面
K =-5.47758e+001 A 4= 1.32411e-003 A 6=-3.80510e-005
第4面
K =-9.95105e-001 A 4= 5.16908e-004 A 6= 2.08321e-006
第5面
K = 1.61472e+000 A 4= 1.45537e-003 A 6= 7.83081e-005
第6面
K = 5.13501e+000 A 4= 1.14621e-003 A 6= 6.02747e-005
第8面
K = 9.39192e-001 A 4=-2.76114e-004 A 6= 6.29758e-006
第9面
K = 9.66245e-001 A 4=-3.93145e-004 A 6= 2.50049e-005
第10面
K =-2.43256e+000 A 4= 4.08628e-004 A 6=-4.67073e-005
第11面
K =-9.86742e-001 A 4= 1.42657e-003 A 6=-9.76226e-005
第12面
K =-3.46390e+000 A 4= 1.08774e-003 A 6=-3.58503e-006
第13面
K =-2.33129e+000 A 4= 2.77796e-004 A 6= 3.71071e-005

各種データ
焦点距離 15.00
Fナンバー 2.88
画角 14.48
像高 3.88
レンズ全長 23.95
BF 5.00

入射瞳位置 9.02
射出瞳位置 -4.60
前側主点位置 0.58
後側主点位置 -10.00

単レンズデータ
レンズ 始面 焦点距離
1 1 -144.61
2 3 10.37
3 5 -26.39
4 8 177.57
5 10 128.12
6 12 -30.90
The focal length, F number, and angle of view represent values when focusing on an object at infinity. BF is a value obtained by converting the distance from the final lens surface to the image plane into air.
(Numerical example 1)
Wide eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 40.382 1.30 1.62041 60.3 5.88
2 * 2.411 2.67 4.00
3 * 6.203 1.40 1.59240 68.3 3.87
4 * -11.433 0.50 3.49
5 * -62.116 0.80 1.80518 25.4 3.14
6 * 15.255 0.10 3.13
7 (Aperture) ∞ 0.10 3.14
8 * 6.018 1.20 1.64000 60.1 3.20
9 * -12.756 3.48 3.11
10 * 9.928 1.80 1.59240 68.3 4.65
11 * -11.658 0.50 4.57
12 * -28.136 1.00 1.84666 23.8 4.44
13 * 8.934 5.01
Image plane ∞

Aspheric data 1st surface
K = -8.61567e + 001 A 4 = -9.22230e-004 A 6 = 4.19663e-005
Second side
K = -9.30223e-001 A 4 = 7.19408e-003 A 6 = 6.36185e-004
Third side
K = 3.54414e + 000 A 4 = 2.81499e-003 A 6 = 2.34019e-004
4th page
K = -3.53906e + 000 A 4 = 1.43935e-003 A 6 = 1.07092e-004
5th page
K = 3.15676e + 000 A 4 = 1.79932e-003 A 6 = -9.65503e-004
6th page
K = 4.96423e + 001 A 4 = 1.09416e-003 A 6 = -7.97966e-004
8th page
K = -3.06847e + 000 A 4 = -1.51330e-004 A 6 = 3.84651e-004
9th page
K = 9.75797e + 000 A 4 = -3.28928e-004 A 6 = 5.50566e-004
10th page
K = -1.10481e + 001 A 4 = 2.90917e-004 A 6 = 5.26599e-004
11th page
K = 1.72650e + 001 A 4 = -4.08824e-003 A 6 = 9.11055e-004
12th page
K = -7.35482e + 001 A 4 = -1.54275e-002 A 6 = 3.85072e-004
Side 13
K = 7.43385e + 000 A 4 = -1.07701e-002 A 6 = 4.92519e-004

Various data focal length 5.20
F number 2.88
Angle of view 36.69
Statue height 3.88
Total lens length 17.91
BF 3.06
Entrance pupil position 3.15
Exit pupil position -4.86
Front principal point position 4.94
Rear principal point position -2.14

Single lens Data lens Start surface Focal length
1 1 -4.19
2 3 6.99
3 5 -15.14
4 8 6.55
5 10 9.34
6 12 -7.91

Wide middle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 6.194 1.30 1.62041 60.3 5.61
2 * 2.200 2.67 4.05
3 * 6.346 1.40 1.59240 68.3 3.96
4 * -26.449 0.50 3.86
5 * -41.518 0.80 1.80518 25.4 3.76
6 * 14.348 0.10 3.77
7 (Aperture) ∞ 0.10 3.75
8 * 4.979 1.20 1.64000 60.1 3.89
9 * -7.878 3.48 3.82
10 * -7.653 1.80 1.59240 68.3 4.02
11 * -7.611 0.50 4.64
12 * -12.407 1.00 1.84666 23.8 4.60
13 * 52.342 5.45
Image plane ∞

Aspheric data 1st surface
K = -5.86699e + 000 A 4 = -8.96118e-004 A 6 = 1.23087e-006
Second side
K = -1.11462e + 000 A 4 = 5.18382e-003 A 6 = 7.47793e-004
Third side
K = 2.23083e + 000 A 4 = 2.29189e-003 A 6 = 9.11689e-005
4th page
K = 3.98608e + 001 A 4 = -1.07969e-003 A 6 = -1.03444e-004
5th page
K = -2.66134e + 001 A 4 = 2.91291e-004 A 6 = -5.80559e-004
6th page
K = 3.25993e + 001 A 4 = 1.05064e-003 A 6 = -3.89850e-004
8th page
K = -3.31035e + 000 A 4 = 9.36039e-004 A 6 = 4.48060e-005
9th page
K = 1.62170e + 000 A 4 = -1.30807e-004 A 6 = 1.97962e-004
10th page
K = -1.84308e + 001 A 4 = -9.71624e-003 A 6 = 5.68105e-004
11th page
K = -2.88780e + 001 A 4 = -1.01570e-002 A 6 = 1.38466e-004
12th page
K = -9.00000e + 001 A 4 = -1.47730e-002 A 6 = -1.20913e-005
Side 13
K = -5.42659e + 001 A 4 = -8.67083e-003 A 6 = 3.90008e-004

Various data focal length 7.50
F number 2.88
Angle of View 27.32
Statue height 3.88
Total lens length 17.91
BF 3.06

Entrance pupil position 4.05
Exit pupil position -4.94
Front principal point position 4.52
Rear principal point position -4.44

Single lens Data lens Start surface Focal length
1 1 -6.28
2 3 8.78
3 5 -13.16
4 8 4.95
5 10 138.07
6 12 -11.76

Telemiddle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * -14.915 1.30 1.62041 60.3 6.70
2 * 69.090 2.67 6.19
3 * 5.672 1.40 1.59240 68.3 5.30
4 * -7.487 0.50 5.08
5 * -9.447 0.80 1.80518 25.4 4.14
6 * -22.100 0.10 3.74
7 (Aperture) ∞ 0.10 3.67
8 * 3.929 1.20 1.64000 60.1 3.60
9 * 2.484 3.48 3.41
10 * 6.037 1.80 1.59240 68.3 6.30
11 * 21.097 0.50 6.25
12 * 13.374 1.00 1.84666 23.8 6.25
13 * 6.940 5.99
Image plane ∞

Aspheric data 1st surface
K = 3.23218e + 000 A 4 = -3.05400e-004 A 6 = 4.53521e-005
Second side
K = -9.00000e + 001 A 4 = 1.59130e-004 A 6 = 5.15981e-005
Third side
K = -1.64767e + 000 A 4 = 2.27739e-003 A 6 = -6.09668e-006
4th page
K = -7.51140e + 000 A 4 = 2.83658e-004 A 6 = 7.41960e-005
5th page
K = 8.77500e + 000 A 4 = 1.90647e-004 A 6 = 7.09546e-004
6th page
K = 7.06211e + 000 A 4 = -1.29880e-003 A 6 = 6.54962e-004
8th page
K = -7.69118e-001 A 4 = -1.53255e-003 A 6 = -1.23634e-004
9th page
K = -9.82229e-001 A 4 = 2.51720e-004 A 6 = -1.95089e-004
10th page
K = -4.39310e + 000 A 4 = 2.05043e-003 A 6 = -1.72957e-005
11th page
K = 3.04604e + 001 A 4 = 9.28199e-004 A 6 = -1.81115e-004
12th page
K = 5.49088e + 000 A 4 = -1.18023e-003 A 6 = 3.43330e-005
Side 13
K = 2.34608e + 000 A 4 = -3.33103e-003 A 6 = 1.61864e-004

Various data focal length 10.50
F number 2.88
Angle of view 20.26
Statue height 3.88
Total lens length 17.91
BF 3.06

Entrance pupil position 4.64
Exit pupil position -5.12
Front principal point position 1.66
Rear principal point position -7.44

Single lens Data lens Start surface Focal length
1 1 -19.66
2 3 5.67
3 5 -21.09
4 8 -15.62
5 10 13.67
6 12 -18.35

Tele eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 36.807 1.30 1.62041 60.3 7.62
2 * -41.677 2.67 7.15
3 * 8.270 1.40 1.59240 68.3 5.38
4 * -7.910 0.50 4.98
5 * -9.885 0.80 1.80518 25.4 4.08
6 * -54.358 0.10 3.71
7 (Aperture) ∞ 0.10 3.66
8 * 5.124 1.20 1.64000 60.1 3.45
9 * 2.412 3.48 3.17
10 * 10.272 1.80 1.59240 68.3 6.40
11 * 16.743 0.50 6.42
12 * 9.281 1.00 1.84666 23.8 6.58
13 * 10.176 6.54
Image plane ∞

Aspheric data 1st surface
K = -9.00000e + 001 A 4 = 3.25623e-005 A 6 = 1.37046e-005
Second side
K = 6.54916e + 001 A 4 = 9.61894e-004 A 6 = 1.97095e-005
Third side
K = -5.20341e-001 A 4 = 2.82359e-003 A 6 = 1.62204e-005
4th page
K = -1.07451e + 001 A 4 = 1.35610e-003 A 6 = -1.75272e-005
5th page
K = 9.36306e + 000 A 4 = 3.65867e-003 A 6 = 3.57432e-004
6th page
K = -1.69149e + 001 A 4 = 1.12483e-003 A 6 = 6.25155e-004
8th page
K = -6.38373e-001 A 4 = -3.54965e-003 A 6 = 1.25622e-006
9th page
K = -9.28207e-001 A 4 = -1.83232e-003 A 6 = -1.58220e-004
10th page
K = 6.03894e-001 A 4 = 1.13103e-003 A 6 = 4.35985e-005
11th page
K = -8.36796e + 000 A 4 = 9.48431e-004 A 6 = -5.05453e-005
12th page
K = -2.24043e + 000 A 4 = -9.07528e-004 A 6 = 9.61281e-007
Side 13
K = 6.10242e + 000 A 4 = -2.60010e-003 A 6 = 1.92825e-005

Various data focal length 15.00
F number 2.88
Angle of view 14.48
Statue height 3.88
Total lens length 17.91
BF 3.06

Entrance pupil position 6.90
Exit pupil position -6.27
Front principal point position -2.20
Rear principal point position -11.94

Single lens Data lens Start surface Focal length
1 1 31.71
2 3 7.05
3 5 -15.13
4 8 -8.61
5 10 40.66
6 12 82.43

(Numerical example 2)
Wide eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * -15.549 1.70 1.62041 60.3 9.32
2 * 5.297 6.00 5.94
3 * -21.574 1.80 1.49700 81.5 4.31
4 * -6.160 0.50 4.30
5 * -60.682 0.80 1.84666 23.8 3.65
6 * -247.402 1.26 3.51
7 (Aperture) ∞ 2.16 3.60
8 * 7.864 1.20 1.59240 68.3 5.23
9 * -65.198 3.81 5.42
10 * 7.418 2.20 1.49700 81.5 6.38
11 * -4.540 0.50 6.37
12 * -2.561 1.00 1.84666 23.8 5.89
13 * -5.241 5.68
Image plane ∞

Aspheric data 1st surface
K = -9.00000e + 001 A 4 = 2.40773e-003 A 6 = -1.00607e-004 A 8 = 2.29263e-006
A10 = -2.45268e-008
Second side
K = -2.33052e + 000 A 4 = 8.76770e-003 A 6 = -1.12324e-004 A 8 = 1.59787e-005
A10 = -3.95043e-007
Third side
K = -7.34310e + 001 A 4 = -4.21675e-003 A 6 = -5.01453e-005 A 8 = 2.53959e-005
A10 = -1.23794e-005
4th page
K = -3.31004e-001 A 4 = -4.70929e-003 A 6 = 9.40943e-004 A 8 = -2.39785e-004
A10 = 1.39342e-005
5th page
K = -9.00000e + 001 A 4 = 1.91427e-003 A 6 = 9.94935e-004 A 8 = -2.72938e-004
A10 = 1.79532e-005
6th page
K = -9.00000e + 001 A 4 = 3.13282e-003 A 6 = 4.08003e-004 A 8 = -1.04956e-004
A10 = 3.69894e-006
8th page
K = -3.92356e + 000 A 4 = 6.68721e-005 A 6 = -1.81875e-004 A 8 = 1.27528e-005
A10 = -7.29409e-007
9th page
K = -1.52035e + 001 A 4 = -8.29437e-004 A 6 = -1.82468e-004 A 8 = 1.31931e-005
A10 = -5.81891e-007
10th page
K = 4.69580e-001 A 4 = 8.49677e-005 A 6 = -1.91505e-004 A 8 = -1.85306e-007
A10 = 3.24269e-007
11th page
K = -1.29407e + 001 A 4 = -2.00018e-003 A 6 = -1.00026e-004 A 8 = 4.40120e-006
A10 = 8.21368e-008
12th page
K = -5.27817e + 000 A 4 = 6.66070e-003 A 6 = -4.16248e-004 A 8 = -4.05938e-006
A10 = 7.85917e-007
Side 13
K = -1.56342e + 001 A 4 = 9.46117e-003 A 6 = 1.14746e-004 A 8 = -5.53169e-005
A10 = 2.24424e-006

Focal length 4.40
F number 2.88
Angle of View 41.37
Statue height 3.88
Total lens length 27.87
BF 4.93

Entrance pupil position 4.54
Exit pupil position -11.77
Front principal point position 7.78
Rear principal point position 0.53

Single lens Data lens Start surface Focal length
1 1 -6.18
2 3 16.70
3 5 -95.15
4 8 11.92
5 10 6.04
6 12 -7.13

Wide middle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * -6.311 1.70 1.62041 60.3 8.53
2 * -15.124 6.00 6.79
3 * -16.852 1.80 1.49700 81.5 4.62
4 * -8.778 0.50 4.41
5 * -23.424 0.80 1.84666 23.8 4.40
6 * -85.378 1.26 4.43
7 (Aperture) ∞ 2.16 4.61
8 * 5.516 1.20 1.59240 68.3 5.22
9 * -26.626 3.81 5.23
10 * -24.787 2.20 1.49700 81.5 4.87
11 * -4.618 0.50 4.96
12 * -2.450 1.00 1.84666 23.8 4.85
13 * -4.979 5.39
Image plane ∞

Aspheric data 1st surface
K = -6.14800e + 000 A 4 = 3.70943e-003 A 6 = -1.19809e-004 A 8 = 2.73722e-006
A10 = -2.86757e-008
Second side
K = -4.61616e + 001 A 4 = 4.57808e-003 A 6 = 4.81717e-005 A 8 = -4.17683e-006
A10 = 2.31980e-007
Third side
K = -6.71054e + 001 A 4 = -1.25502e-003 A 6 = 9.36993e-005 A 8 = -1.48143e-005
A10 = -5.60547e-007
4th page
K = 4.63442e-001 A 4 = -3.77281e-003 A 6 = 9.89592e-004 A 8 = -1.41886e-004
A10 = 6.01938e-006
5th page
K = 6.34661e + 001 A 4 = -2.18170e-003 A 6 = 1.43846e-003 A 8 = -1.94467e-004
A10 = 1.04358e-005
6th page
K = 9.00000e + 001 A 4 = -5.67998e-004 A 6 = 6.86542e-004 A 8 = -8.66547e-005
A10 = 4.00686e-006
8th page
K = -1.87501e + 000 A 4 = 1.01603e-003 A 6 = -7.41257e-005 A 8 = 1.05915e-005
A10 = -8.59893e-007
9th page
K = -7.57858e + 001 A 4 = -2.99491e-004 A 6 = -4.45123e-005 A 8 = 7.88147e-006
A10 = -7.18324e-007
10th page
K = 6.06182e + 001 A 4 = -5.70802e-004 A 6 = 6.31739e-005 A 8 = -3.12933e-005
A10 = 3.63305e-006
11th page
K = -8.53567e-001 A 4 = 2.29916e-003 A 6 = -4.31596e-005 A 8 = -4.69019e-005
A10 = 2.10631e-006
12th page
K = -1.63511e + 000 A 4 = 5.28029e-003 A 6 = -2.97920e-004 A 8 = 2.96250e-006
A10 = -2.68364e-006
Side 13
K = -3.21078e + 000 A 4 = 4.29280e-003 A 6 = -5.56892e-005 A 8 = 1.00908e-005
A10 = -1.04948e-006

Focal length 8.10
F number 2.88
Angle of view 25.57
Statue height 3.88
Total lens length 27.87
BF 4.93

Entrance pupil position 6.21
Exit pupil position -7.59
Front principal point 9.07
Rear principal point position -3.17

Single lens Data lens Start surface Focal length
1 1 -18.85
2 3 34.32
3 5 -38.35
4 8 7.82
5 10 11.02
6 12 -6.96

Telemiddle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 4154.388 1.70 1.62041 60.3 9.82
2 * 30.158 6.00 9.27
3 * 7.145 1.80 1.49700 81.5 7.31
4 * -37.728 0.50 6.89
5 * -19.914 0.80 1.84666 23.8 6.39
6 * -37.975 1.26 5.88
7 (Aperture) ∞ 2.16 4.95
8 * 4.833 1.20 1.59240 68.3 4.25
9 * 3.773 3.81 4.11
10 * 7.364 2.20 1.49700 81.5 6.12
11 * 74.404 0.50 5.89
12 * 4.514 1.00 1.84666 23.8 5.98
13 * 3.251 5.89
Image plane ∞

Aspheric data 1st surface
K = 9.00000e + 001 A 4 = -1.24610e-004 A 6 = -4.39173e-006 A 8 = 1.38407e-007
A10 = -1.64963e-010
Second side
K = -1.04824e + 001 A 4 = -1.76004e-005 A 6 = -8.98575e-006 A 8 = 2.94871e-007
A10 = -1.37615e-009
Third side
K = -4.46949e + 000 A 4 = 1.98279e-003 A 6 = -5.84120e-005 A 8 = 1.69123e-006
A10 = 3.04561e-009
4th page
K = 5.46418e + 001 A 4 = 1.83346e-003 A 6 = -1.23043e-004 A 8 = 4.22163e-006
A10 = -7.99090e-009
5th page
K = 6.34841e + 000 A 4 = 2.99260e-003 A 6 = -8.63827e-005 A 8 = 5.35571e-007
A10 = 1.25070e-007
6th page
K = 9.00000e + 001 A 4 = 2.60155e-003 A 6 = 6.19116e-006 A 8 = -3.70773e-006
A10 = 3.38238e-007
8th page
K = 1.72200e-001 A 4 = -1.75958e-003 A 6 = -2.06213e-004 A 8 = 2.14482e-006
A10 = 6.85163e-007
9th page
K = -3.10596e-001 A 4 = -2.00205e-003 A 6 = -4.63580e-004 A 8 = 1.96481e-005
A10 = 6.90382e-007
10th page
K = 9.19367e-001 A 4 = 4.32065e-003 A 6 = -3.08400e-004 A 8 = 1.26359e-005
A10 = -5.30893e-007
11th page
K = 2.29759e + 001 A 4 = 7.50550e-003 A 6 = -2.91010e-004 A 8 = -8.96536e-006
A10 = 3.41671e-007
12th page
K = -1.58103e-002 A 4 = -8.58579e-003 A 6 = 1.48904e-004 A 8 = -6.94785e-006
A10 = 5.72281e-007
Side 13
K = -2.83628e + 000 A 4 = -6.33802e-003 A 6 = 3.87565e-004 A 8 = -1.64786e-005
A10 = 8.57651e-007

Focal length 15.00
F number 2.88
Angle of view 14.48
Statue height 3.88
Total lens length 27.87
BF 4.93

Entrance pupil position 9.64
Exit pupil position -6.52
Front principal point position 5.00
Rear principal point position -10.07

Single lens Data lens Start surface Focal length
1 1 -48.97
2 3 12.25
3 5 -50.48
4 8 -50.18
5 10 16.27
6 12 -21.56

Tele individual eye

Unit mm

Surface data surface number rd nd vd Effective diameter
1 * 16.751 1.70 1.62041 60.3 12.59
2 * 210.161 6.00 12.38
3 * 8.298 1.80 1.49700 81.5 7.39
4 * -81.483 0.50 6.66
5 * -16.474 0.80 1.84666 23.8 6.35
6 * 1466.568 1.26 5.76
7 (Aperture) ∞ 2.16 5.23
8 * 6.911 1.20 1.59240 68.3 4.20
9 * 3.263 3.81 4.09
10 * 12.252 2.20 1.49700 81.5 6.72
11 * 16.214 0.50 6.66
12 * 8.301 1.00 1.84666 23.8 6.99
13 * 12.536 6.93
Image plane ∞

Aspheric data 1st surface
K = -1.55876e + 000 A 4 = 2.92366e-005 A 6 = -1.09631e-006 A 8 = -2.08632e-008
A10 = -3.05929e-010
Second side
K = -8.25615e + 001 A 4 = 8.52712e-005 A 6 = -3.92623e-006 A 8 = 1.40034e-008
A10 = -2.69295e-010
Third side
K = -3.67293e + 000 A 4 = 2.26440e-003 A 6 = -4.59917e-005 A 8 = 1.04881e-006
A10 = -6.76070e-008
4th page
K = -8.25640e + 001 A 4 = 2.95461e-003 A 6 = -1.69702e-004 A 8 = 2.78863e-006
A10 = -9.81982e-009
5th page
K = -8.54818e + 000 A 4 = 3.23331e-003 A 6 = -6.52295e-005 A 8 = 2.60563e-007
A10 = 2.06459e-008
6th page
K = 9.00000e + 001 A 4 = 2.84444e-003 A 6 = 5.54409e-005 A 8 = -2.01728e-006
A10 = 1.47975e-008
8th page
K = 9.01024e-001 A 4 = -3.18032e-003 A 6 = 1.87699e-005 A 8 = 1.35237e-006
A10 = 4.20761e-007
9th page
K = -5.97311e-001 A 4 = -3.35059e-003 A 6 = -8.80939e-005 A 8 = 3.70614e-005
A10 = -1.59924e-006
10th page
K = 4.33191e + 000 A 4 = 2.20495e-003 A 6 = -1.96480e-004 A 8 = 1.40411e-005
A10 = -1.95281e-007
11th page
K = 1.80446e + 001 A 4 = 1.78097e-003 A 6 = -1.22296e-004 A 8 = -3.36184e-006
A10 = 4.67220e-007
12th page
K = 2.52838e + 000 A 4 = -2.56453e-003 A 6 = 1.27725e-004 A 8 = -3.82035e-006
A10 = -8.84563e-008
Side 13
K = 2.03545e + 000 A 4 = -2.86765e-003 A 6 = 1.81150e-004 A 8 = -1.65134e-006
A10 = -1.51589e-007

Focal length 27.80
F number 2.88
Angle of View 7.94
Statue height 3.88
Total lens length 27.87
BF 4.93

Entrance pupil position 18.15
Exit pupil position -10.54
Front principal point position -4.00
Rear principal point position -22.87

Single lens Data lens Start surface Focal length
1 1 29.24
2 3 15.25
3 5 -19.24
4 8 -11.89
5 10 85.17
6 12 26.19

(Numerical Example 3)
Wide eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 17.545 1.30 1.72916 54.7 6.84
2 * 4.492 1.60 4.62
3 * 7.232 0.42 1.84666 23.8 3.94
4 * 5.551 1.75 3.84
5 * -9.747 0.80 1.77250 49.6 3.23
6 * -6.483 0.87 3.05
7 (Aperture) ∞ 1.46 2.95
8 * 4.952 1.20 1.59240 68.3 4.29
9 * -13.956 0.89 4.52
10 * 11.888 1.80 1.72916 54.7 4.80
11 * -6.936 0.50 4.68
12 * -4.690 0.60 1.84666 23.8 4.26
13 * 19.395 4.07
Image plane ∞

Aspheric data 1st surface
K = 1.93798e + 001 A 4 = 3.44220e-003 A 6 = -1.43219e-004 A 8 = 4.91643e-006
Second side
K = 1.93564e + 000 A 4 = 3.78641e-003 A 6 = 1.63212e-004 A 8 = -2.68609e-005
Third side
K = -2.58063e + 001 A 4 = -1.22252e-002 A 6 = -5.60380e-004
4th page
K = -1.40874e + 001 A 4 = -8.95519e-003 A 6 = -1.13109e-005
5th page
K = 1.47405e + 001 A 4 = 1.16143e-002 A 6 = 9.07581e-004
6th page
K = -9.69339e + 000 A 4 = 8.06017e-004 A 6 = 1.09323e-003
8th page
K = -5.09301e + 000 A 4 = 1.50977e-005 A 6 = -5.31157e-004
9th page
K = 1.50804e + 001 A 4 = -4.97400e-003 A 6 = 4.96866e-005
10th page
K = -5.05811e + 001 A 4 = 3.58405e-003 A 6 = -6.14664e-004 A 8 = 8.77333e-005
A10 = -3.44814e-006
11th page
K = 4.11902e + 000 A 4 = 5.20259e-003 A 6 = -1.01058e-003 A 8 = 1.11372e-004
A10 = -1.14390e-006
12th page
K = -8.52909e + 000 A 4 = -2.92426e-003 A 6 = 7.46116e-004 A 8 = -4.18326e-005
Side 13
K = 2.43033e + 001 A 4 = 8.04370e-003 A 6 = 7.03394e-004 A 8 = 2.12490e-005

Various data focal length 5.20
F number 2.88
Angle of view 36.62
Statue height 3.87
Total lens length 17.86
BF 4.68

Entrance pupil position 4.00
Exit pupil position -3.70
Front principal point position 5.98
Rear principal point position -0.52

Single lens Data lens Start surface Focal length
1 1 -8.64
2 3 -31.87
3 5 22.64
4 8 6.32
5 10 6.26
6 12 -4.41

Wide middle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 14.402 1.30 1.72916 54.7 7.20
2 * 9.996 1.60 5.79
3 * 5.871 0.42 1.84666 23.8 4.44
4 * 4.615 1.75 4.28
5 * -8.563 0.80 1.77250 49.6 3.55
6 * -13.567 0.87 3.35
7 (Aperture) ∞ 1.46 3.17
8 * 4.163 1.20 1.59240 68.3 4.32
9 * -12.199 0.89 4.41
10 * 6.787 1.80 1.72916 54.7 4.36
11 * 19.484 0.50 3.99
12 * -6.996 0.60 1.84666 23.8 3.92
13 * 14.611 3.89
Image plane ∞

Aspheric data 1st surface
K = 1.16168e + 001 A 4 = 9.89768e-004 A 6 = -5.43987e-005 A 8 = 3.26693e-006
Second side
K = 7.65824e + 000 A 4 = 1.39481e-003 A 6 = -9.20355e-005 A 8 = 9.48211e-007
Third side
K = -9.87273e + 000 A 4 = -8.94971e-003 A 6 = -4.29309e-004
4th page
K = -5.07614e + 000 A 4 = -9.61771e-003 A 6 = 1.73926e-004
5th page
K = 7.60775e + 000 A 4 = 7.63344e-003 A 6 = 4.36551e-004
6th page
K = -4.58561e + 001 A 4 = 1.33685e-003 A 6 = 4.26211e-004
8th page
K = -2.28716e + 000 A 4 = 8.67333e-004 A 6 = -2.09732e-004
9th page
K = 1.17258e + 001 A 4 = -3.23114e-003 A 6 = 1.73236e-004
10th page
K = -1.31003e + 001 A 4 = 2.80544e-003 A 6 = -7.65671e-004 A 8 = 9.93211e-005
A10 = -2.31040e-006
11th page
K = -9.00000e + 001 A 4 = 4.49945e-003 A 6 = -1.47687e-003 A 8 = 5.45215e-005
A10 = 8.48898e-006
12th page
K = -2.13149e + 001 A 4 = -4.89613e-003 A 6 = 9.18275e-004 A 8 = -1.52655e-005
Side 13
K = 3.35463e + 001 A 4 = 2.33168e-003 A 6 = 7.55748e-004 A 8 = 6.21658e-005

Various data focal length 7.50
F number 2.88
Angle of View 27.26
Statue height 3.87
Total lens length 17.86
BF 4.68

Entrance pupil position 5.43
Exit pupil position -3.21
Front principal point position 5.80
Rear principal point position -2.82

Single lens Data lens Start surface Focal length
1 1 -51.19
2 3 -30.09
3 5 -32.31
4 8 5.39
5 10 13.48
6 12 -5.52

Telemiddle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 11.464 1.30 1.72916 54.7 6.73
2 * 15.201 1.60 6.07
3 * -8.689 0.42 1.84666 23.8 5.19
4 * -44.646 1.75 5.05
5 * 25.108 0.80 1.77250 49.6 4.80
6 * -7.531 0.87 4.77
7 (Aperture) ∞ 1.46 3.61
8 * 142.496 1.20 1.59240 68.3 3.83
9 * 20.498 0.89 4.18
10 * 8.680 1.80 1.72916 54.7 4.64
11 * -40.199 0.50 4.89
12 * 4.483 0.60 1.84666 23.8 5.06
13 * 2.685 4.88
Image plane ∞

Aspheric data 1st surface
K = -1.12226e + 001 A 4 = -1.13289e-004 A 6 = -5.28008e-005 A 8 = 2.94049e-006
Second side
K = 5.62752e + 000 A 4 = -1.25443e-003 A 6 = -2.40089e-005 A 8 = 3.72638e-006
Third side
K = -8.87393e + 000 A 4 = 1.69189e-003 A 6 = -1.84476e-004
4th page
K = 6.67509e + 001 A 4 = 3.68820e-003 A 6 = -1.00293e-004
5th page
K = 1.23997e + 001 A 4 = -2.08071e-003 A 6 = 1.15687e-004
6th page
K = -2.71503e + 000 A 4 = -2.68612e-003 A 6 = 8.47615e-005
8th page
K = -9.00000e + 001 A 4 = -5.73823e-003 A 6 = 7.95727e-004
9th page
K = 2.16869e + 001 A 4 = -1.52643e-002 A 6 = 1.68370e-003
10th page
K = -8.73655e + 000 A 4 = -7.58655e-003 A 6 = -3.31580e-004 A 8 = 2.47858e-004
A10 = -1.66883e-005
11th page
K = -9.00000e + 001 A 4 = -1.06514e-003 A 6 = -3.52469e-004 A 8 = 1.03483e-004
A10 = -7.19175e-006
12th page
K = -1.16155e + 001 A 4 = 5.95986e-004 A 6 = 3.60160e-004 A 8 = -4.46187e-005
Side 13
K = -4.72048e + 000 A 4 = 3.59852e-003 A 6 = 4.99895e-006 A 8 = -2.00257e-005

Various data focal length 10.50
F number 2.88
Angle of view 20.21
Statue height 3.87
Total lens length 17.86
BF 4.68

Entrance pupil position 5.94
Exit pupil position -3.42
Front principal point position 2.83
Rear principal point position -5.82

Single lens Data lens Start surface Focal length
1 1 55.77
2 3 -12.81
3 5 7.58
4 8 -40.56
5 10 9.94
6 12 -9.34

Tele eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 7.756 1.30 1.72916 54.7 7.41
2 * 21.268 1.60 6.82
3 * -9.930 0.42 1.84666 23.8 5.91
4 * -84.565 1.75 5.58
5 * 27.184 0.80 1.77250 49.6 4.97
6 * -10.343 0.87 4.86
7 (Aperture) ∞ 1.46 4.02
8 * -562.426 1.20 1.59240 68.3 4.11
9 * 49.210 0.89 4.33
10 * 14.199 1.80 1.72916 54.7 4.46
11 * 8.599 0.50 4.77
12 * 6.050 0.60 1.84666 23.8 5.13
13 * 5.049 5.23
Image plane ∞

Aspheric data 1st surface
K = -5.01788e + 000 A 4 = 1.07278e-003 A 6 = -3.24083e-005 A 8 = 3.43676e-006
Second side
K = 1.37156e + 000 A 4 = -1.66607e-004 A 6 = 3.17988e-005 A 8 = 4.12335e-006
Third side
K = -1.14417e + 001 A 4 = 2.81702e-003 A 6 = -7.26483e-005
4th page
K = -9.00000e + 001 A 4 = 3.61630e-003 A 6 = -2.98440e-005
5th page
K = 4.05390e + 001 A 4 = -2.78388e-003 A 6 = 2.27441e-004
6th page
K = -3.61488e + 000 A 4 = -2.42356e-003 A 6 = 1.62345e-004
8th page
K = -9.00000e + 001 A 4 = -4.22712e-003 A 6 = 4.17957e-004
9th page
K = 9.00000e + 001 A 4 = -1.45330e-002 A 6 = 1.34423e-003
10th page
K = -5.32928e + 001 A 4 = -9.81497e-003 A 6 = -4.12565e-004 A 8 = 2.99948e-004
A10 = -1.98667e-005
11th page
K = -2.19201e + 000 A 4 = -2.78515e-003 A 6 = 1.62682e-004 A 8 = 1.65808e-005
A10 = -1.17910e-006
12th page
K = -2.08158e + 001 A 4 = 2.05328e-003 A 6 = -1.12732e-004 A 8 = -1.62819e-005
Side 13
K = -1.37690e + 001 A 4 = 7.58138e-005 A 6 = -5.48522e-006 A 8 = -1.39436e-005

Various data focal length 15.00
F number 2.88
Angle of view 14.45
Statue height 3.87
Total lens length 17.86
BF 4.68

Entrance pupil position 7.81
Exit pupil position -3.52
Front principal point position -4.63
Rear principal point position -10.32

Single lens Data lens Start surface Focal length
1 1 16.09
2 3 -13.32
3 5 9.79
4 8 -76.33
5 10 -34.59
6 12 -49.71

(Numerical example 4)
Wide eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 9.963 1.30 1.62041 60.3 6.14
2 * 2.063 3.16 4.23
3 * 5.403 1.40 1.59240 68.3 4.07
4 * -11.150 0.60 3.69
5 * -43.751 0.80 1.80518 25.4 3.07
6 * 15.608 0.10 3.02
7 (Aperture) ∞ 0.10 3.03
8 * 4.764 1.20 1.64000 60.1 3.07
9 * -66.999 2.94 3.02
10 * 14.404 1.80 1.59240 68.3 4.48
11 * -9.500 0.50 4.37
12 * -17.138 1.00 1.84666 23.8 4.29
13 * 11.853 5.09
Image plane ∞

Aspheric data 1st surface
K = -2.47869e + 001 A 4 = -2.02166e-003 A 6 = 5.43003e-005
Second side
K = -1.79551e + 000 A 4 = 1.25374e-002 A 6 = -4.89811e-005
Third side
K = 2.24981e + 000 A 4 = 2.67772e-003 A 6 = 1.71832e-004
4th page
K = -2.15785e + 001 A 4 = 1.38585e-003 A 6 = -4.29296e-005
5th page
K = -7.77189e + 000 A 4 = 2.90232e-003 A 6 = -1.23226e-003
6th page
K = 5.52064e + 001 A 4 = 2.30902e-003 A 6 = -9.38603e-004
8th page
K = 6.43691e-001 A 4 = 1.22013e-003 A 6 = 3.62473e-004
9th page
K = -6.95418e + 001 A 4 = 3.79577e-003 A 6 = 8.00925e-004
10th page
K = -9.00000e + 001 A 4 = 5.32715e-003 A 6 = 4.14940e-004
11th page
K = 1.36769e + 001 A 4 = -2.97992e-003 A 6 = 1.43850e-003
12th page
K = -9.00000e + 001 A 4 = -2.16468e-002 A 6 = 4.36176e-004
Side 13
K = 1.40560e + 001 A 4 = -1.25552e-002 A 6 = 5.78256e-004

Various data

Focal length 5.20
F number 2.88
Angle of view 36.69
Statue height 3.88
Total lens length 17.77
BF 2.87

Entrance pupil position 3.58
Exit pupil position -4.59
Front principal point 5.15
Rear principal point position -2.33

Single lens Data lens Start surface Focal length
1 1 -4.47
2 3 6.34
3 5 -14.20
4 8 6.99
5 10 9.94
6 12 -8.15

Tele eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 32.268 1.30 1.62041 60.3 8.47
2 * -51.647 3.16 8.11
3 * 5.700 1.40 1.59240 68.3 5.55
4 * -12.800 0.60 5.22
5 * -9.999 0.80 1.80518 25.4 3.82
6 * 191.283 0.10 3.38
7 (Aperture) ∞ 0.10 3.35
8 * 5.214 1.20 1.64000 60.1 3.27
9 * 2.487 2.94 3.24
10 * 18.649 1.80 1.59240 68.3 6.46
11 * 26.555 0.50 6.50
12 * 8.399 1.00 1.84666 23.8 6.65
13 * 11.838 6.78
Image plane ∞

Aspheric data 1st surface
K = -1.92634e + 001 A 4 = -2.82433e-004 A 6 = 3.81416e-006
Second side
K = 9.00000e + 001 A 4 = 3.23423e-004 A 6 = 2.68125e-006
Third side
K = -8.60800e-001 A 4 = 2.63313e-003 A 6 = 4.15438e-005
4th page
K = -2.86471e + 001 A 4 = 8.10119e-004 A 6 = 2.03306e-006
5th page
K = 9.11794e + 000 A 4 = 5.04006e-003 A 6 = 2.54023e-004
6th page
K = 7.38599e + 001 A 4 = 2.81749e-003 A 6 = 5.63571e-004
8th page
K = -8.57667e-001 A 4 = -3.65406e-003 A 6 = -4.84007e-004
9th page
K = -2.26017e-001 A 4 = -3.68837e-003 A 6 = -1.37027e-003
10th page
K = 1.65894e + 001 A 4 = 2.55538e-003 A 6 = 1.45887e-005
11th page
K = 9.21247e + 000 A 4 = 2.90663e-004 A 6 = -7.09973e-006
12th page
K = -7.20764e + 000 A 4 = -1.10889e-003 A 6 = -5.90829e-005
Side 13
K = 8.94495e + 000 A 4 = -3.28402e-003 A 6 = -4.17715e-005

Focal length 15.00
F number 2.88
Angle of view 14.48
Statue height 3.88
Total lens length 17.77
BF 2.87

Entrance pupil position 8.12
Exit pupil position -6.28
Front principal point position -1.49
Rear principal point position -12.13

Single lens Data lens Start surface Focal length
1 1 32.20
2 3 6.85
3 5 -11.78
4 8 -8.97
5 10 97.49
6 12 30.14

(Numerical example 5)
Wide eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * -48.116 1.30 1.62041 60.3 7.66
2 * 3.639 6.00 5.47
3 * 8.750 1.40 1.59240 68.3 4.73
4 * -16.903 0.50 4.40
5 * -34.756 0.80 1.80518 25.4 3.96
6 * 56.394 0.10 3.88
7 (Aperture) ∞ 0.10 3.88
8 * 6.065 1.20 1.64000 60.1 3.92
9 * 23.836 4.25 3.68
10 * 8.690 1.80 1.59240 68.3 5.41
11 * -9.012 0.50 5.31
12 * -8.618 1.00 1.84666 23.8 4.93
13 * 72.203 5.07
Image plane ∞

Aspheric data 1st surface
K = -9.00000e + 001 A 4 = 7.01850e-004 A 6 = -1.41729e-005
Second side
K = -1.02437e + 000 A 4 = 2.89533e-003 A 6 = 1.66545e-004
Third side
K = 4.11720e + 000 A 4 = -6.62206e-005 A 6 = 8.06378e-005
4th page
K = 1.07116e + 001 A 4 = 2.17403e-003 A 6 = -9.54859e-005
5th page
K = -9.00000e + 001 A 4 = 5.80653e-003 A 6 = -4.79986e-004
6th page
K = 2.07531e + 001 A 4 = 5.35204e-003 A 6 = -2.78954e-004
8th page
K = 7.31767e-001 A 4 = 4.43548e-004 A 6 = 1.00025e-004
9th page
K = -1.63240e + 001 A 4 = 1.86430e-003 A 6 = 1.94279e-004
10th page
K = -8.77468e + 000 A 4 = 2.85223e-003 A 6 = 2.41901e-005
11th page
K = 3.81908e + 000 A 4 = -3.42418e-003 A 6 = 3.06907e-004
12th page
K = -9.22231e + 000 A 4 = -8.81583e-003 A 6 = 4.93062e-004
Side 13
K = -3.49900e + 001 A 4 = -5.65878e-004 A 6 = 3.46460e-004

Various data focal length 5.20
F number 2.88
Angle of view 36.69
Statue height 3.88
Total lens length 23.95
BF 5.00

Entrance pupil position 4.01
Exit pupil position -6.87
Front principal point position 6.93
Rear principal point position -0.20

Single lens Data lens Start surface Focal length
1 1 -5.40
2 3 9.93
3 5 -26.60
4 8 12.38
5 10 7.76
6 12 -9.04

Wide middle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * -419.207 1.30 1.62041 60.3 7.36
2 * 4.982 6.00 5.79
3 * 8.643 1.40 1.59240 68.3 5.55
4 * -30.643 0.50 5.14
5 * -25.934 0.80 1.80518 25.4 4.81
6 * 68.322 0.10 4.60
7 (Aperture) ∞ 0.10 4.60
8 * 5.835 1.20 1.64000 60.1 4.81
9 * -260.120 4.25 4.79
10 * 46.541 1.80 1.59240 68.3 5.00
11 * -9.934 0.50 4.81
12 * -5.672 1.00 1.84666 23.8 4.70
13 * -20.639 5.21
Image plane ∞

Aspheric data 1st surface
K = 9.00000e + 001 A 4 = 1.05181e-003 A 6 = -2.00916e-005
Second side
K = -9.71530e-001 A 4 = 2.64711e-003 A 6 = 9.78189e-005
Third side
K = 6.02071e + 000 A 4 = -8.54070e-005 A 6 = 1.21119e-004
4th page
K = 6.94820e + 001 A 4 = 1.61239e-003 A 6 = 1.97117e-004
5th page
K = 8.65492e + 001 A 4 = 4.66403e-003 A 6 = -2.08149e-004
6th page
K = 4.69152e + 001 A 4 = 3.86845e-003 A 6 = -2.07634e-004
8th page
K = 9.12544e-001 A 4 = -8.06647e-004 A 6 = 7.47605e-005
9th page
K = 5.13762e + 001 A 4 = 2.89711e-004 A 6 = 1.47593e-004
10th page
K = -3.69018e + 001 A 4 = 9.86792e-004 A 6 = 2.20769e-004
11th page
K = 3.52657e + 000 A 4 = -3.00617e-003 A 6 = 2.55391e-004
12th page
K = -3.32502e + 000 A 4 = -1.04688e-002 A 6 = 3.83832e-004
Side 13
K = 3.90398e + 001 A 4 = -1.95574e-003 A 6 = 3.66442e-004

Various data focal length 7.50
F number 2.88
Angle of View 27.32
Statue height 3.88
Total lens length 23.95
BF 5.00

Entrance pupil position 4.83
Exit pupil position -5.89
Front principal point position 7.17
Rear principal point position -2.50

Single lens Data lens Start surface Focal length
1 1 -7.93
2 3 11.53
3 5 -23.26
4 8 8.93
5 10 13.99
6 12 -9.53

Telemiddle eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 21.333 1.30 1.62041 60.3 7.94
2 * 8.644 6.00 7.27
3 * 14.523 1.40 1.59240 68.3 5.76
4 * -8.547 0.50 5.55
5 * -8.406 0.80 1.80518 25.4 4.92
6 * -13.347 0.10 4.63
7 (Aperture) ∞ 0.10 4.42
8 * 6.682 1.20 1.64000 60.1 4.47
9 * 6.140 4.25 4.49
10 * 5.936 1.80 1.59240 68.3 6.67
11 * 34.617 0.50 6.26
12 * 5.087 1.00 1.84666 23.8 6.25
13 * 3.128 5.77
Image plane ∞

Aspheric data 1st surface
K = -2.60863e + 001 A 4 = -7.80509e-004 A 6 = -9.41827e-006
Second side
K = -5.52978e + 000 A 4 = 1.27924e-004 A 6 = -2.07571e-005
Third side
K = -2.40411e + 001 A 4 = 1.27171e-003 A 6 = -5.45047e-005
4th page
K = -2.17385e-001 A 4 = 3.74011e-004 A 6 = 7.90553e-006
5th page
K = 4.83965e-001 A 4 = 1.35730e-003 A 6 = 6.25170e-005
6th page
K = 6.10281e + 000 A 4 = 1.43583e-003 A 6 = 4.65354e-005
8th page
K = 1.69209e + 000 A 4 = -1.58544e-003 A 6 = -8.62746e-005
9th page
K = 1.59626e + 000 A 4 = -2.35778e-003 A 6 = -1.33625e-004
10th page
K = 1.92595e-001 A 4 = 9.83639e-004 A 6 = -1.49120e-006
11th page
K = 3.11410e + 001 A 4 = 3.18700e-003 A 6 = 2.95213e-006
12th page
K = -2.85262e + 000 A 4 = -1.83994e-003 A 6 = 7.62849e-005
Side 13
K = -2.02865e + 000 A 4 = -1.53383e-003 A 6 = 1.15514e-004

Various data focal length 10.50
F number 2.81
Angle of view 20.26
Statue height 3.88
Total lens length 23.95
BF 5.00

Entrance pupil position 7.18
Exit pupil position -4.92
Front principal point position 6.58
Rear principal point position -5.50

Single lens Data lens Start surface Focal length
1 1 -24.38
2 3 9.29
3 5 -30.40
4 8 -866.01
5 10 11.82
6 12 -12.52

Tele eye unit mm

Surface data surface number rd nd vd Effective diameter
1 * 14.827 1.30 1.62041 60.3 8.55
2 * 12.297 6.00 8.02
3 * 21.647 1.40 1.59240 68.3 6.41
4 * -8.367 0.50 6.22
5 * -8.443 0.80 1.80518 25.4 5.53
6 * -14.602 0.10 5.19
7 (Aperture) ∞ 0.10 4.98
8 * 6.475 1.20 1.64000 60.1 5.15
9 * 6.369 4.25 4.92
10 * 6.929 1.80 1.59240 68.3 5.98
11 * 6.888 0.50 5.77
12 * 5.923 1.00 1.84666 23.8 5.98
13 * 4.456 5.67
Image plane ∞

Aspheric data 1st surface
K = -3.75927e + 000 A 4 = -1.26105e-004 A 6 = -1.94984e-005
Second side
K = -2.03156e + 000 A 4 = 2.15308e-004 A 6 = -2.04223e-005
Third side
K = -5.47758e + 001 A 4 = 1.32411e-003 A 6 = -3.80510e-005
4th page
K = -9.95105e-001 A 4 = 5.16908e-004 A 6 = 2.08321e-006
5th page
K = 1.61472e + 000 A 4 = 1.45537e-003 A 6 = 7.83081e-005
6th page
K = 5.13501e + 000 A 4 = 1.14621e-003 A 6 = 6.02747e-005
8th page
K = 9.39192e-001 A 4 = -2.76114e-004 A 6 = 6.29758e-006
9th page
K = 9.66245e-001 A 4 = -3.93145e-004 A 6 = 2.50049e-005
10th page
K = -2.43256e + 000 A 4 = 4.08628e-004 A 6 = -4.67073e-005
11th page
K = -9.86742e-001 A 4 = 1.42657e-003 A 6 = -9.76226e-005
12th page
K = -3.46390e + 000 A 4 = 1.08774e-003 A 6 = -3.58503e-006
Side 13
K = -2.33129e + 000 A 4 = 2.77796e-004 A 6 = 3.71071e-005

Various data focal length 15.00
F number 2.88
Angle of view 14.48
Statue height 3.88
Total lens length 23.95
BF 5.00

Entrance pupil position 9.02
Exit pupil position -4.60
Front principal point position 0.58
Rear principal point position -10.00

Single lens Data lens Start surface Focal length
1 1 -144.61
2 3 10.37
3 5 -26.39
4 8 177.57
5 10 128.12
6 12 -30.90

本発明は、複数の光学系を配列してなる複眼撮像装置に適用することができる。   The present invention can be applied to a compound eye imaging apparatus in which a plurality of optical systems are arranged.

1…複眼撮像装置、110a、b、120a、b、130a、b、140a、b…結像光学系、210a〜f…撮像素子、105F…フォーカス群ユニット(フォーカスレンズユニット)、105R…後群ユニット(固定レンズユニット) DESCRIPTION OF SYMBOLS 1 ... Compound eye imaging device, 110a, b, 120a, b, 130a, b, 140a, b ... Imaging optical system, 210a-f ... Imaging element, 105F ... Focus group unit (focus lens unit), 105R ... Rear group unit (Fixed lens unit)

Claims (8)

異なる焦点距離を有し、物体の光学像を形成する複数の結像光学系と、
前記複数の結像光学系にそれぞれ対応する撮像領域を有し、対応する結像光学系が形成した前記光学像を光電変換する撮像素子と、
を有し、
各結像光学系は、前記結像光学系の最も物体側に配置されて被写体位置が変化する際に移動されるフォーカスレンズユニットと固定される固定レンズユニットを有し、
前記フォーカスレンズユニットがフォーカスレンズを有する撮像装置であって、
前記フォーカスレンズは、該フォーカスレンズを有する結像光学系と該結像光学系の光軸に垂直な方向に隣接し且つ該結像光学系と異なる焦点距離を有する結像光学系のフォーカスレンズとは異なる面形状を有し、
以下の条件式を満たすことを特徴とする撮像装置。
0.8<|ffi/ffh|<1.2
|(ΔOf+Δf)/ft|<2.1
ただし、
Δf=ffi−ffh
ΔOf=Ofi−Ofh
ftは前記複数の結像光学系のうち最も長い焦点距離、ffhは前記複数の結像光学系のうち任意の結像光学系hのフォーカスレンズユニットの焦点距離、ffiは前記複数の結像光学系のうち任意の結像光学系iのフォーカスレンズユニットの焦点距離、Ofhは前記結像光学系hのフォーカスレンズユニットの前側主点位置から像面までの距離、Ofiは前記結像光学系iのフォーカスレンズユニットの前側主点位置から像面までの距離である。
A plurality of imaging optical systems having different focal lengths and forming an optical image of the object;
An imaging element having an imaging region corresponding to each of the plurality of imaging optical systems, and photoelectrically converting the optical image formed by the corresponding imaging optical system;
Have
Each imaging optical system has a fixed lens unit that is fixed to a focus lens unit that is arranged on the most object side of the imaging optical system and is moved when the subject position changes,
The focus lens unit is an imaging device having a focus lens,
The focus lens includes: an imaging optical system having the focus lens; and a focusing lens of the imaging optical system that is adjacent in a direction perpendicular to the optical axis of the imaging optical system and has a different focal length from the imaging optical system; Have different surface shapes,
An imaging device that satisfies the following conditional expression:
0.8 <| ffi / ffh | <1.2
| (ΔOf + Δf) / ft | <2.1
However,
Δf = ffi-ffh
ΔOf = Ofi-Ofh
ft is the longest focal length of the plurality of imaging optical systems, ffh is the focal length of the focus lens unit of any imaging optical system h among the plurality of imaging optical systems, and fi is the plurality of imaging optics. Of the system, the focal length of the focus lens unit of any imaging optical system i, Ofh is the distance from the front principal point position of the focus lens unit of the imaging optical system h to the image plane, Ofi is the imaging optical system i. This is the distance from the front principal point position of the focus lens unit to the image plane.
前記複数の結像光学系は同一の焦点距離を有する結像光学系を有することを特徴とする請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, wherein the plurality of imaging optical systems include imaging optical systems having the same focal length. 前記複数の結像光学系は、前記フォーカスレンズユニットが負の屈折力を有する結像光学系と前記フォーカスレンズユニットが正の屈折力を有する結像光学系を有し、
前記負の屈折力を有する前記フォーカスレンズユニットの前側主点位置から像面までの距離をOfn、前記正の屈折力を有する前記フォーカスレンズユニットの前側主点位置から像面までの距離をOfpとすると、以下の条件式を満たすことを特徴とする請求項1または2に記載の撮像装置。
1.0<Ofn/Ofp<2.4
The plurality of imaging optical systems includes an imaging optical system in which the focus lens unit has a negative refractive power and an imaging optical system in which the focus lens unit has a positive refractive power,
The distance from the front principal point position of the focus lens unit having the negative refractive power to the image plane is Ofn, and the distance from the front principal point position of the focus lens unit having the positive refractive power to the image plane is Off. Then, the imaging apparatus according to claim 1, wherein the following conditional expression is satisfied.
1.0 <Ofn / Ofp <2.4
複数のフォーカスレンズユニットを一体で保持する保持部を更に有し、
以下の条件式を満足することを特徴とする請求項1乃至3のうちいずれか1項に記載の撮像装置。
0.5<|ffi/ft|<1.6
It further has a holding part that holds a plurality of focus lens units together,
The imaging apparatus according to claim 1, wherein the following conditional expression is satisfied.
0.5 <| ffi / ft | <1.6
前記複数の結像光学系は同一の焦点距離を有する結像光学系を有することを特徴とする請求項1乃至4のうちいずれか1項に記載の撮像装置。   5. The imaging apparatus according to claim 1, wherein the plurality of imaging optical systems have imaging optical systems having the same focal length. 前記複数のフォーカスレンズユニットは、それぞれの光軸に垂直な方向に隣接する少なくとも一つのフォーカスレンズが同一の材料で構成されていることを特徴とする請求項1乃至5のうちいずれか1項に記載の撮像装置。   6. The plurality of focus lens units according to claim 1, wherein at least one focus lens adjacent in a direction perpendicular to each optical axis is made of the same material. The imaging device described. 前記複数の結像光学系のうち、最も焦点距離の短い結像光学系のフォーカスレンズユニットは負の屈折力を有し、最も焦点距離の長い結像光学系のフォーカスレンズユニットは正の屈折力を有することを特徴とする請求項1乃至6のうちいずれか1項に記載の撮像装置。   Among the plurality of imaging optical systems, the focusing lens unit of the imaging optical system with the shortest focal length has a negative refractive power, and the focusing lens unit of the imaging optical system with the longest focal length has a positive refractive power. The imaging apparatus according to any one of claims 1 to 6, wherein the imaging apparatus includes: 撮像装置本体に着脱可能に装着されるレンズ装置であって、
異なる焦点距離を有し、物体の光学像を形成する複数の結像光学系を有し、
前記複数の結像光学系にそれぞれ対応する撮像領域を有し、対応する結像光学系が形成した前記光学像を光電変換する撮像素子を有し、
各結像光学系は、前記結像光学系の最も物体側に配置されて被写体位置が変化する際に移動されるフォーカスレンズユニットと固定される固定レンズユニットを有し、
前記フォーカスレンズユニットがフォーカスレンズを有する撮像装置であって、
前記フォーカスレンズは、該フォーカスレンズを有する結像光学系と該結像光学系の光軸に垂直な方向に隣接し且つ該結像光学系と異なる焦点距離を有する結像光学系のフォーカスレンズとは異なる面形状を有し、
以下の条件式を満たすことを特徴とするレンズ装置。
0.8<|ffi/ffh|<1.2
|(ΔOf+Δf)/ft|<2.1
ただし、
Δf=ffi−ffh
ΔOf=Ofi−Ofh
ftは前記複数の結像光学系のうち最も長い焦点距離、ffhは前記複数の結像光学系のうち任意の結像光学系hのフォーカスレンズユニットの焦点距離、ffiは前記複数の結像光学系のうち任意の結像光学系iのフォーカスレンズユニットの焦点距離、Ofhは前記結像光学系hのフォーカスレンズユニットの前側主点位置から像面までの距離、Ofiは前記結像光学系iのフォーカスレンズユニットの前側主点位置から像面までの距離である。
A lens device that is detachably attached to the imaging device body,
A plurality of imaging optical systems having different focal lengths and forming an optical image of an object;
An imaging element that has an imaging region corresponding to each of the plurality of imaging optical systems, and that photoelectrically converts the optical image formed by the corresponding imaging optical system;
Each imaging optical system has a fixed lens unit that is fixed to a focus lens unit that is arranged on the most object side of the imaging optical system and is moved when the subject position changes,
The focus lens unit is an imaging device having a focus lens,
The focus lens includes: an imaging optical system having the focus lens; and a focusing lens of the imaging optical system that is adjacent in a direction perpendicular to the optical axis of the imaging optical system and has a different focal length from the imaging optical system; Have different surface shapes,
A lens apparatus satisfying the following conditional expression:
0.8 <| ffi / ffh | <1.2
| (ΔOf + Δf) / ft | <2.1
However,
Δf = ffi-ffh
ΔOf = Ofi-Ofh
ft is the longest focal length of the plurality of imaging optical systems, ffh is the focal length of the focus lens unit of any imaging optical system h among the plurality of imaging optical systems, and fi is the plurality of imaging optics. Of the system, the focal length of the focus lens unit of any imaging optical system i, Ofh is the distance from the front principal point position of the focus lens unit of the imaging optical system h to the image plane, Ofi is the imaging optical system i. This is the distance from the front principal point position of the focus lens unit to the image plane.
JP2012148731A 2012-07-02 2012-07-02 Imaging device and lens device Active JP5755187B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012148731A JP5755187B2 (en) 2012-07-02 2012-07-02 Imaging device and lens device
US13/927,197 US8988538B2 (en) 2012-07-02 2013-06-26 Image pickup apparatus and lens apparatus
CN201310263984.8A CN103533227B (en) 2012-07-02 2013-06-28 Image pickup apparatus and lens apparatus
EP13174470.8A EP2683154B1 (en) 2012-07-02 2013-07-01 Image pickup apparatus and lens apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148731A JP5755187B2 (en) 2012-07-02 2012-07-02 Imaging device and lens device

Publications (3)

Publication Number Publication Date
JP2014010399A true JP2014010399A (en) 2014-01-20
JP2014010399A5 JP2014010399A5 (en) 2015-05-07
JP5755187B2 JP5755187B2 (en) 2015-07-29

Family

ID=50107141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148731A Active JP5755187B2 (en) 2012-07-02 2012-07-02 Imaging device and lens device

Country Status (1)

Country Link
JP (1) JP5755187B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176009A (en) * 2014-03-17 2015-10-05 キヤノン株式会社 Compound eye optical apparatus
US9195030B2 (en) 2014-01-10 2015-11-24 Largan Precision Co., Ltd. Imaging lens assembly, imaging device and mobile terminal
US9201216B2 (en) 2014-01-24 2015-12-01 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and mobile terminal
US9239447B1 (en) 2014-07-04 2016-01-19 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
JP2016129289A (en) * 2015-01-09 2016-07-14 キヤノン株式会社 Image processing device, imaging device, image processing method, program, and storage medium
US9395519B2 (en) 2014-08-29 2016-07-19 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
JP2016142947A (en) * 2015-02-03 2016-08-08 キヤノン株式会社 Compound-eye imaging device
US9557532B2 (en) 2014-12-05 2017-01-31 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US9557534B1 (en) 2015-08-26 2017-01-31 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US9588318B2 (en) 2014-06-20 2017-03-07 Largan Precision Co., Ltd. Image capturing optical system, image capturing device and portable device
DE102016223427A1 (en) 2015-11-30 2017-06-01 Fujifilm Corporation Imaging lens and imaging device
DE102016223429A1 (en) 2015-11-30 2017-06-01 Fujifilm Corporation Imaging lens and imaging device
US9726858B2 (en) 2014-12-30 2017-08-08 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US9733453B2 (en) 2014-07-30 2017-08-15 Largan Precision Co., Ltd. Imaging optical system, image capturing device, and electronic device
US9823445B2 (en) 2016-04-20 2017-11-21 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
US9977222B2 (en) 2016-01-29 2018-05-22 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US10073248B2 (en) 2016-01-21 2018-09-11 Largan Precision Co., Ltd. Imaging lens system, image capturing apparatus and electronic device
US10073251B2 (en) 2016-09-12 2018-09-11 Largan Precision Co., Ltd. Imaging optical lens system, image capturing apparatus and electronic device
JP2018200484A (en) * 2018-08-08 2018-12-20 キヤノン株式会社 Compound eye optical equipment
US10175460B2 (en) 2015-10-20 2019-01-08 Largan Precision Co., Ltd. Image capturing lens system, image capturing apparatus and electronic device
JP6473251B1 (en) * 2017-12-29 2019-02-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
US10254513B2 (en) 2014-12-30 2019-04-09 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US10310223B2 (en) 2016-04-15 2019-06-04 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing device and electronic device
JP2019101395A (en) * 2017-12-04 2019-06-24 エーエーシー テクノロジーズ ピーティーイー リミテッド Image capturing optical lens
JP2019120922A (en) * 2017-12-29 2019-07-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
US10466447B2 (en) 2016-01-22 2019-11-05 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US10495850B2 (en) 2017-04-17 2019-12-03 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US10698178B2 (en) 2018-08-10 2020-06-30 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
US10795119B2 (en) 2018-02-02 2020-10-06 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US11099358B2 (en) 2018-01-24 2021-08-24 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
US11391928B2 (en) 2020-08-14 2022-07-19 Largan Precision Co., Ltd. Optical image lens assembly, image capturing unit and electronic device
US11391923B2 (en) 2014-12-30 2022-07-19 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330878A (en) * 2000-05-18 2001-11-30 Sony Corp Image pickup device
JP2005303694A (en) * 2004-04-13 2005-10-27 Konica Minolta Holdings Inc Compound eye imaging device
JP2005341301A (en) * 2004-05-27 2005-12-08 Konica Minolta Holdings Inc Double eye imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330878A (en) * 2000-05-18 2001-11-30 Sony Corp Image pickup device
JP2005303694A (en) * 2004-04-13 2005-10-27 Konica Minolta Holdings Inc Compound eye imaging device
JP2005341301A (en) * 2004-05-27 2005-12-08 Konica Minolta Holdings Inc Double eye imaging device

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195030B2 (en) 2014-01-10 2015-11-24 Largan Precision Co., Ltd. Imaging lens assembly, imaging device and mobile terminal
US9201216B2 (en) 2014-01-24 2015-12-01 Largan Precision Co., Ltd. Image capturing lens assembly, image capturing device and mobile terminal
US10225444B2 (en) 2014-03-17 2019-03-05 Canon Kabushiki Kaisha Multi-lens optical apparatus
JP2015176009A (en) * 2014-03-17 2015-10-05 キヤノン株式会社 Compound eye optical apparatus
US9588318B2 (en) 2014-06-20 2017-03-07 Largan Precision Co., Ltd. Image capturing optical system, image capturing device and portable device
US9239447B1 (en) 2014-07-04 2016-01-19 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US9733453B2 (en) 2014-07-30 2017-08-15 Largan Precision Co., Ltd. Imaging optical system, image capturing device, and electronic device
US10488620B2 (en) 2014-07-30 2019-11-26 Largan Precision Co., Ltd. Imaging optical system, image capturing device, and electronic device
US9588321B2 (en) 2014-08-29 2017-03-07 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
US9395519B2 (en) 2014-08-29 2016-07-19 Largan Precision Co., Ltd. Imaging lens system, image capturing unit and electronic device
US9557532B2 (en) 2014-12-05 2017-01-31 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US10371927B2 (en) 2014-12-30 2019-08-06 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US10598904B2 (en) 2014-12-30 2020-03-24 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US9726858B2 (en) 2014-12-30 2017-08-08 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11867884B2 (en) 2014-12-30 2024-01-09 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11231563B2 (en) 2014-12-30 2022-01-25 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US11262542B2 (en) 2014-12-30 2022-03-01 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing device and electronic device
US11656441B2 (en) 2014-12-30 2023-05-23 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US10254513B2 (en) 2014-12-30 2019-04-09 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US11675170B2 (en) 2014-12-30 2023-06-13 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
US11391923B2 (en) 2014-12-30 2022-07-19 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing device and electronic device
JP2016129289A (en) * 2015-01-09 2016-07-14 キヤノン株式会社 Image processing device, imaging device, image processing method, program, and storage medium
JP2016142947A (en) * 2015-02-03 2016-08-08 キヤノン株式会社 Compound-eye imaging device
US9557534B1 (en) 2015-08-26 2017-01-31 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US10175460B2 (en) 2015-10-20 2019-01-08 Largan Precision Co., Ltd. Image capturing lens system, image capturing apparatus and electronic device
US11747598B2 (en) 2015-10-20 2023-09-05 Largan Precision Co., Ltd. Image capturing lens system, image capturing apparatus and electronic device
US11347033B2 (en) 2015-10-20 2022-05-31 Largan Precision Co., Ltd Image capturing lens system, image capturing apparatus and electronic device
US10162173B2 (en) 2015-11-30 2018-12-25 Fujifilm Corporation Imaging lens and imaging apparatus
US10054791B2 (en) 2015-11-30 2018-08-21 Fujifilm Corporation Imaging lens and imaging apparatus
DE102016223429A1 (en) 2015-11-30 2017-06-01 Fujifilm Corporation Imaging lens and imaging device
DE102016223427A1 (en) 2015-11-30 2017-06-01 Fujifilm Corporation Imaging lens and imaging device
US10073248B2 (en) 2016-01-21 2018-09-11 Largan Precision Co., Ltd. Imaging lens system, image capturing apparatus and electronic device
US10466447B2 (en) 2016-01-22 2019-11-05 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US10884222B2 (en) 2016-01-22 2021-01-05 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US9977222B2 (en) 2016-01-29 2018-05-22 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US10310223B2 (en) 2016-04-15 2019-06-04 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing device and electronic device
US11092784B2 (en) 2016-04-15 2021-08-17 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing device and electronic device
US9823445B2 (en) 2016-04-20 2017-11-21 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
US10365459B2 (en) 2016-04-20 2019-07-30 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
US10073251B2 (en) 2016-09-12 2018-09-11 Largan Precision Co., Ltd. Imaging optical lens system, image capturing apparatus and electronic device
US10247924B2 (en) 2016-09-12 2019-04-02 Largan Precision Co., Ltd. Imaging optical lens system, image capturing apparatus and electronic device
US11953658B2 (en) 2017-04-17 2024-04-09 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US10495850B2 (en) 2017-04-17 2019-12-03 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US11681125B2 (en) 2017-04-17 2023-06-20 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
JP2019101395A (en) * 2017-12-04 2019-06-24 エーエーシー テクノロジーズ ピーティーイー リミテッド Image capturing optical lens
JP6473251B1 (en) * 2017-12-29 2019-02-20 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019120922A (en) * 2017-12-29 2019-07-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
US11099358B2 (en) 2018-01-24 2021-08-24 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
US11740439B2 (en) 2018-01-24 2023-08-29 Largan Precision Co., Ltd. Photographing lens assembly, image capturing unit and electronic device
US11237360B2 (en) 2018-02-02 2022-02-01 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
US10795119B2 (en) 2018-02-02 2020-10-06 Largan Precision Co., Ltd. Imaging optical lens assembly, imaging apparatus and electronic device
JP2018200484A (en) * 2018-08-08 2018-12-20 キヤノン株式会社 Compound eye optical equipment
US10698178B2 (en) 2018-08-10 2020-06-30 Largan Precision Co., Ltd. Imaging optical lens assembly, image capturing unit and electronic device
US11391928B2 (en) 2020-08-14 2022-07-19 Largan Precision Co., Ltd. Optical image lens assembly, image capturing unit and electronic device

Also Published As

Publication number Publication date
JP5755187B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5755187B2 (en) Imaging device and lens device
JP5755189B2 (en) Imaging device and lens device
JP6422224B2 (en) Compound eye optical equipment
JP2015197615A (en) Compound eye optical instrument
US9223119B2 (en) Zoom lens and image pickup apparatus having the same
JP2015176009A5 (en)
JP6566716B2 (en) Optical system, imaging device, and lens device
JP6129023B2 (en) Zoom lens and imaging apparatus having the same
JP6418894B2 (en) Optical system, imaging device, and optical apparatus
US9684155B2 (en) Optical system and image pickup apparatus including the same
JP5173260B2 (en) Zoom lens and imaging apparatus having the same
JP6312518B2 (en) Zoom lens and imaging apparatus having the same
CN109212731B (en) Zoom lens and image pickup apparatus
JP2009282398A (en) Zoom lens and image pickup apparatus including the same
JP2011123464A (en) Zoom lens and imaging apparatus with the same
US8854504B2 (en) Zoom lens and image pickup apparatus having the same
US9557543B2 (en) Zoom lens and image pickup apparatus including the same
CN108490593B (en) Zoom lens and image pickup apparatus including the same
JP2009265655A (en) Zoom lens system, interchangeable lens device and camera system
JP2008203643A (en) Real image type variable power finder optical system and image pickup apparatus
JP2019008088A (en) Zoom lens and imaging apparatus including the same
JP6675252B2 (en) Variable power optical system and image pickup apparatus provided with the same
JP2007065514A (en) Optical system and imaging apparatus
JP2014106390A (en) Zoom lens and optical device using the same
JP6669411B2 (en) Compound eye optical equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150320

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R151 Written notification of patent or utility model registration

Ref document number: 5755187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151