JP2014008495A - Method for reducing amount of sludge - Google Patents

Method for reducing amount of sludge Download PDF

Info

Publication number
JP2014008495A
JP2014008495A JP2012149134A JP2012149134A JP2014008495A JP 2014008495 A JP2014008495 A JP 2014008495A JP 2012149134 A JP2012149134 A JP 2012149134A JP 2012149134 A JP2012149134 A JP 2012149134A JP 2014008495 A JP2014008495 A JP 2014008495A
Authority
JP
Japan
Prior art keywords
pressure
sludge
pressure vessel
vessel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012149134A
Other languages
Japanese (ja)
Inventor
Hiroshi Tomiyasu
博 冨安
Yoshihisa Fujimoto
喜久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARAKEN GODO SAISEKI KK
Original Assignee
NARAKEN GODO SAISEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARAKEN GODO SAISEKI KK filed Critical NARAKEN GODO SAISEKI KK
Priority to JP2012149134A priority Critical patent/JP2014008495A/en
Publication of JP2014008495A publication Critical patent/JP2014008495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively reducing an amount of sludge with a simple method and without diffusing any harmful substance.SOLUTION: Sludge is contained in a pressure-resistant container 10, and an amount of sludge is reduced by heating the pressure-resistant container 10 in an oxidative atmosphere so as to bring the inside of the pressure-resistant container 10 into a pressurized state without diffusing any harmful substance in the atmosphere, and consequently the sludge is converted into powder with significantly reduced offensive odor, or into odorless powder. Furthermore, to reduce partial pressure of carbon dioxide which may be produced by heat-treating the sludge, an alkaline aqueous solution is put into the pressure-resistant container 10, and as a result the produced carbon dioxide is absorbed therein. Thus increase in carbon dioxide partial pressure in the pressure-resistant container 10 is prevented, and safe and efficient reduction of the amount of the sludge is achieved.

Description

本発明は、汚泥の減量処理方法に関し、さらに詳しくは耐圧容器内で酸化雰囲気中で加熱するとともに加圧する汚泥の減量処理方法に関する。また、汚泥を減量化することは通常減容化に繋がる。 The present invention relates to a sludge reduction treatment method, and more particularly to a sludge reduction treatment method of heating and pressurizing in an oxidizing atmosphere in a pressure vessel. Also, reducing sludge usually leads to volume reduction.

汚泥とは、環境アセスメント用語集(環境省)によれば、『下水処理場、浄水場、工場排水処理施設、土木建設現場等から発生する泥状のものおよび各種製造業の製造工程において生ずる泥状のものであって、動植物性原料を使用する各種製造業の排水処理などから生ずる有機質の多分に混入した泥(有機性汚泥)のみではなく、金属洗浄や浄水場の沈殿池等から生ずる無機性のもの(無機性汚泥)も含む。土木・建設工事現場からの汚水も含まれる。全て産業廃棄物として扱われ、その発生量は全産業廃棄物の1/3を占める。』とされており、本発明でいう汚泥もこれらのものをいう。 According to the Environmental Assessment Glossary (Ministry of the Environment), sludge is mud generated from sewage treatment plants, water purification plants, industrial wastewater treatment facilities, civil engineering construction sites, etc. and in the manufacturing process of various manufacturing industries. Inorganic, not only from mud (organic sludge) mixed with organic matter, but also from metal washing and water purification plant sedimentation basins, etc. Including natural ones (inorganic sludge). This also includes sewage from civil engineering and construction sites. All are treated as industrial waste, and the generation amount accounts for 1/3 of the total industrial waste. The sludge referred to in the present invention also refers to these.

汚泥は臭気が強く、水分を多く含む。一般的に、汚泥の廃棄処理には焼却する方法が採用される。焼却処理により、汚泥中の水分が蒸発し、減容化するとともに、汚泥中の有機物が燃焼し、分解することによって臭気も無くなる。また、土中に埋設処理を行う場合や、肥料として用いられることもある。いずれにしても、廃棄対象の汚泥が処理されずにそのまま集積されていくと、汚泥から発する臭気が環境問題を引き起こす可能性がある。さらにまた、汚泥に含まれる有害物質がさらなる環境問題の原因となる可能性もある。 Sludge has a strong odor and contains a lot of moisture. Generally, a method of incineration is used for the disposal of sludge. The incineration process evaporates the moisture in the sludge and reduces the volume, and the organic matter in the sludge burns and decomposes to eliminate odor. Moreover, it may be used as a fertilizer when embedding in the soil. In any case, if the sludge to be discarded is accumulated without being treated, the odor generated from the sludge may cause environmental problems. Furthermore, hazardous substances contained in the sludge can cause further environmental problems.

汚泥は有機物を多く含んでいるため、上述の通り、汚泥の処理は焼却処理が一般的である。汚泥を焼却処理した場合、減量効果は十分に期待できるが、汚泥中の有機物に結合した有害な金属物質、例えば水銀やヒ素などが蒸発することによって周囲に飛散し、周囲の環境に悪影響を与える可能性がある。また、焼却処理過程で生ずる有害物質を拡散させないためには、有害物質を分離回収するためのフィルターに通したり、液体に通す等の工程が必要となり、これらの工程に伴って排水や排気の問題を考慮する必要もある。さらにまた、焼却する汚泥が放射性物質で汚染されていた場合には、放射性物質が焼却ガスと一緒に空気中に放出、拡散され、放射性物質による汚染を拡散する畏れがある。従って、放射性物質で汚染された汚泥の処理に焼却処理を行うのは、二次的な環境汚染を引き起こすこととなり好ましくない。 Since sludge contains a lot of organic matter, as described above, incineration is generally used for sludge treatment. When sludge is incinerated, the effect of weight reduction can be fully expected, but harmful metal substances bound to organic matter in the sludge, such as mercury and arsenic, will be scattered around and will adversely affect the surrounding environment. there is a possibility. In addition, in order not to diffuse harmful substances generated during the incineration process, it is necessary to pass through a filter for separating and recovering harmful substances, or to pass through liquids. It is also necessary to consider. Furthermore, when the sludge to be incinerated is contaminated with radioactive substances, the radioactive substances may be released and diffused into the air together with the incineration gas to diffuse the contamination by the radioactive substances. Therefore, it is not preferable to incinerate the sludge contaminated with radioactive substances because it causes secondary environmental pollution.

また、汚泥を焼却処理する場合、汚泥中に含まれる有機物の焼却に伴い、燃焼ガス中に有害なガス、例えばダイオキシンなどが発生し、空気中に排出される畏れもある。そこで、ダイオキシン等の有害物質を確実に排出させないためには、1000℃以上の温度で焼却処理を行わなければならず、高温の焼却温度に耐える焼却炉を用いる必要があり、設備投資に伴うコスト負担も問題となる。 In addition, when sludge is incinerated, harmful gases such as dioxins are generated in the combustion gas with the incineration of organic substances contained in the sludge and may be discharged into the air. Therefore, in order to ensure that hazardous substances such as dioxins are not discharged, incineration must be performed at a temperature of 1000 ° C or higher, and it is necessary to use an incinerator that can withstand high incineration temperatures. The burden is also a problem.

本発明者らは、汚泥の処理には減量処理を施すことが、処理済み汚泥の保管、輸送などの問題を解決するには有効であるということを踏まえ、汚泥を焼却しないで減量化する方法について鋭意研究を重ねた結果、耐圧容器内で加熱することにより有害物質を発生させることなく汚泥を減量化できることを見出した。 In light of the fact that reducing the sludge treatment is effective for solving problems such as storage and transportation of the treated sludge, the present inventors reduced the amount of sludge without incineration. As a result of intensive research, we have found that sludge can be reduced without generating harmful substances by heating in a pressure vessel.

本発明は、上記課題に鑑みてなされたものであり、その目的は、汚泥の減量処理において、簡易な方法で、有害物質の発生・拡散といった二次的な環境汚染を回避しつつ、汚泥の臭気を減少させ、減量をすることができる汚泥の減量処理方法を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to reduce sludge reduction while avoiding secondary environmental pollution such as generation and diffusion of harmful substances in a simple method. An object of the present invention is to provide a sludge reduction treatment method capable of reducing odor and reducing odor.

上記課題を解決するための請求項1に記載の発明による汚泥の減量処理方法は、耐圧容器で汚泥を処理するに際し、前記耐圧容器内部を酸化雰囲気とし、前記耐圧容器外部を加熱するとともに耐圧容器内部を加圧状態にすることを特徴とする。 In the sludge reduction processing method according to the first aspect of the present invention for solving the above-mentioned problem, when processing sludge in a pressure vessel, the inside of the pressure vessel is set to an oxidizing atmosphere, the outside of the pressure vessel is heated and the pressure vessel is heated. The inside is in a pressurized state.

この発明によれば、処理によって生じうる揮発性の有害物質も全て耐圧容器内部に閉じこめることができる。また、汚泥を、密閉した耐圧容器の内部で減量処理するため、排水と排気の問題が一切生じない。なお、本発明でいう酸化雰囲気は、酸素を含有する雰囲気をいう。これは、雰囲気の酸素の濃度は問わず、酸素が主体となる酸素雰囲気だけでなく、空気等も含む。 According to the present invention, all volatile harmful substances that may be generated by the treatment can be confined inside the pressure vessel. Moreover, since sludge is reduced in volume inside a sealed pressure vessel, there is no problem of drainage and exhaust. Note that the oxidizing atmosphere referred to in the present invention refers to an atmosphere containing oxygen. This includes not only the oxygen concentration in the atmosphere, but also oxygen as well as the oxygen atmosphere mainly composed of oxygen.

本発明の構成による反応温度は100℃〜250℃以下であるところ、汚泥中の有機物が分解するため、ダイオキシンは絶対に発生せず、新たに有害物質が発生することもない。また、耐圧容器内部が、酸素濃度が高い酸化雰囲気の場合、そもそも化学薬品を使用する必要がなく、化学薬品を一切使用しないことから、化学薬品による二次的な汚染は皆無である。そして、酸素濃度が高い酸化雰囲気の場合、汚泥中の有機物が酸化され、常圧で気化するため、減量化はさらに顕著になる。 When the reaction temperature according to the constitution of the present invention is 100 ° C. to 250 ° C. or less, since organic substances in the sludge are decomposed, dioxins are never generated and no harmful substances are newly generated. Further, when the inside of the pressure vessel is an oxidizing atmosphere with a high oxygen concentration, it is not necessary to use chemicals in the first place, and since no chemicals are used at all, there is no secondary contamination by chemicals. In the case of an oxidizing atmosphere having a high oxygen concentration, the organic matter in the sludge is oxidized and vaporized at normal pressure.

加熱前の耐圧容器内部が、空気を主体とする酸化雰囲気の場合でも、耐圧容器が100℃以上の状態で排気すると、排気により処理対象である汚泥を一気に乾燥させることができる。 Even when the inside of the pressure vessel before heating is an oxidizing atmosphere mainly composed of air, if the pressure vessel is exhausted at a temperature of 100 ° C. or higher, the sludge to be treated can be dried at once by the exhaust.

請求項2に記載の発明による汚泥の減量処理方法は、請求項1に記載の汚泥の減量処理方法において、前記耐圧容器内部にアルカリ性水溶液を入れることを特徴とする。 A sludge reduction treatment method according to a second aspect of the invention is characterized in that in the sludge reduction treatment method according to the first aspect, an alkaline aqueous solution is placed inside the pressure vessel.

この発明によると、請求項1に記載の発明において、酸素濃度が高い酸化雰囲気で汚泥を加熱処理すると、二酸化炭素が発生する。そこで、この二酸化炭素の分圧を下げるため、耐圧容器内にアルカリ性水溶液、例えば、水酸化ナトリウム水溶液を入れることで、発生した二酸化炭素を吸収させ、耐圧容器内の二酸化炭素の分圧の上昇を防ぐことができる。この結果、相対的に耐圧容器内部の酸素分圧が回復し、酸化反応がすすみやすくなるし、耐圧容器内部全体の圧力を下げることもでき、汚泥の減量処理の効率低下を防止しつつ、安全に処理を行うことができる。 According to this invention, in the invention according to claim 1, when sludge is heat-treated in an oxidizing atmosphere having a high oxygen concentration, carbon dioxide is generated. Therefore, in order to reduce the partial pressure of carbon dioxide, an alkaline aqueous solution, for example, an aqueous sodium hydroxide solution, is put in the pressure vessel, so that the generated carbon dioxide is absorbed, and the partial pressure of carbon dioxide in the pressure vessel is increased. Can be prevented. As a result, the partial pressure of oxygen inside the pressure vessel is relatively recovered, the oxidation reaction is easier to proceed, the pressure inside the pressure vessel can be lowered, and the efficiency of sludge reduction treatment is prevented while reducing the efficiency. Can be processed.

本発明によれば、有害物質を大気中に拡散させることなく、しかも化学薬品を使用することなく汚泥の減量処理を行うことができるので、有害物質を発生させるという二次的な汚染を発生させることなく汚泥の処理ができ、臭気の問題についても、耐圧容器内の酸素濃度が低い酸化雰囲気下で処理した場合は、臭気を大幅に減少させて減量化することができ、耐圧容器内の酸素濃度が高い酸化雰囲気下で処理した場合は、無臭の粉末として減量化することができる。 According to the present invention, it is possible to perform sludge reduction treatment without diffusing harmful substances into the atmosphere and without using chemicals, thereby generating secondary pollution that generates harmful substances. The sludge can be treated without any problems, and the odor problem can be reduced by greatly reducing the odor when treated in an oxidizing atmosphere where the oxygen concentration in the pressure vessel is low. When treated in an oxidizing atmosphere having a high concentration, the amount can be reduced as an odorless powder.

本発明の実施の形態に係る汚泥の減量処理方法における装置の概略を模式的に示した図である。It is the figure which showed typically the outline of the apparatus in the weight reduction processing method of the sludge which concerns on embodiment of this invention.

次に、図を参照して、本発明の実施の形態について説明する。   Next, an embodiment of the present invention will be described with reference to the drawings.

まず、本実施の形態に係る汚泥の減量処理方法で使用される耐圧容器の概略を説明する。耐圧容器10は、処理対象の汚泥を内部に収容する容器部11と、容器部に装着される蓋部12を備える。耐圧容器10は、汚泥の減量処理に際し、密閉状態で加圧され外部から加熱されるため、容器部11と蓋部12が容易に分離しないようにする必要がある。そのため、容器部11と蓋部12の外部にそれぞれフランジ部を設け、容器部11と蓋部12とが重ね合わせられた状態で容器部11と蓋部12のフランジ部を連通するように容器部11と蓋部12のフランジ部に複数の孔部を形成し、留め具18で固定する。留め具18は、例えばボルトとナットを用いることができ、孔部にボルトを貫通させ、ボルトの挿入方向と反対方向からナットで締め付けて容器部11と蓋部12とを固定する。他にも、容器部11と蓋部12のフランジ部を外部から万力状の器具で締め付ける構成とすることもできる。 First, an outline of a pressure vessel used in the sludge reduction treatment method according to the present embodiment will be described. The pressure vessel 10 includes a container part 11 that houses sludge to be treated therein and a lid part 12 that is attached to the container part. Since the pressure vessel 10 is pressurized in a sealed state and heated from the outside during the sludge reduction process, it is necessary to prevent the vessel portion 11 and the lid portion 12 from being easily separated. For this reason, a flange portion is provided outside the container portion 11 and the lid portion 12, respectively, and the container portion 11 and the lid portion 12 are communicated with each other in a state where the container portion 11 and the lid portion 12 are overlapped. A plurality of holes are formed in the flange portions of the cover 11 and the lid portion 12, and are fixed with fasteners 18. For example, a bolt and a nut can be used as the fastener 18. The bolt is passed through the hole, and the container 11 and the lid 12 are fixed by tightening with a nut from a direction opposite to the bolt insertion direction. In addition, it can also be set as the structure which clamps the flange part of the container part 11 and the cover part 12 with a vise-like instrument from the outside.

耐圧容器の材質は、熱伝導性を有する金属材料が使用される。具体的には、ステンレス、鉄等を好ましく用いることができる。 As the material of the pressure vessel, a metal material having thermal conductivity is used. Specifically, stainless steel, iron and the like can be preferably used.

耐圧容器の加熱方法は、IHヒーターやガスバーナーによる加熱等、様々な方法を採用することができるが、温度制御の観点から電気加熱で行うのが好ましく、特に温度管理の面、熱効率の面からIHヒ−タ−を好ましく用いることができる。そのため、IHヒーターを熱源として用いる場合の容器の材質は、SUS430のような電磁誘導加熱に適した材質を好ましく用いることができる。ただし、オールメタル対応IHヒーターであれば、アルミや銅等の金属でもよく、少なくとも耐熱容器加熱面が導電体であればよい。 Various methods such as heating with an IH heater or a gas burner can be adopted as the method of heating the pressure vessel, but it is preferable to use electric heating from the viewpoint of temperature control, particularly from the viewpoint of temperature management and thermal efficiency. An IH heater can be preferably used. Therefore, a material suitable for electromagnetic induction heating such as SUS430 can be preferably used as the material of the container when the IH heater is used as a heat source. However, in the case of an all-metal compatible IH heater, a metal such as aluminum or copper may be used, and at least the heat-resistant container heating surface may be a conductor.

蓋部12には、耐圧容器10内の温度や圧力を測定するための温度計16や圧力計17を設けることができる。また、蓋部12には、耐圧容器10内の空気や処理により発生したガスを排気するため排気管13、酸素を供給(注入)するための供給管14を備えることができる。この供給管14は、耐圧容器10内に酸素を供給する際に、酸素ボンベ30と接続する。排気管13と供給管14は、別々に設けることもできるし、共用することもできる。 The lid 12 can be provided with a thermometer 16 and a pressure gauge 17 for measuring the temperature and pressure in the pressure vessel 10. Further, the lid 12 can be provided with an exhaust pipe 13 for exhausting air in the pressure-resistant vessel 10 and gas generated by processing, and a supply pipe 14 for supplying (injecting) oxygen. The supply pipe 14 is connected to the oxygen cylinder 30 when oxygen is supplied into the pressure vessel 10. The exhaust pipe 13 and the supply pipe 14 can be provided separately or can be shared.

排気管13には、安全弁15を設けることができる。安全弁15は、仮に、耐圧容器10内部の圧力が設定値に達したときに作動し、耐圧容器10内の圧力を下げる。安全弁15はあくまでも安全面を考慮した非常用のもので、通常は作動しない。 A safety valve 15 can be provided in the exhaust pipe 13. The safety valve 15 is activated when the pressure inside the pressure vessel 10 reaches a set value, and reduces the pressure inside the pressure vessel 10. The safety valve 15 is for emergency use in consideration of safety and does not normally operate.

汚泥を減量処理する過程で、汚泥が熱分解すると、二酸化炭素が発生し、耐圧容器10内の二酸化炭素の分圧が上昇する。 When the sludge is thermally decomposed in the process of reducing the sludge, carbon dioxide is generated, and the partial pressure of carbon dioxide in the pressure vessel 10 is increased.

そこで、二酸化炭素の分圧を減少させる目的で、耐圧容器10内にアルカリ性水溶液、例えば、水酸化ナトリウム水溶液を入れることで、発生した二酸化炭素を吸収させ、耐圧容器内の二酸化炭素の分圧の上昇を防ぐことができる。 Therefore, in order to reduce the partial pressure of carbon dioxide, an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution is placed in the pressure resistant vessel 10 to absorb the generated carbon dioxide, and the partial pressure of carbon dioxide in the pressure resistant vessel is reduced. The rise can be prevented.

次に、本実施の形態に係る汚泥の減量処理方法について説明する。 Next, the sludge reduction processing method according to the present embodiment will be described.

本実施の形態では、出発物質である汚泥が、封入工程、酸化雰囲気形成工程、加熱及び加圧工程、保温工程、減圧・冷却工程を経ることによって、無臭の粉末状の生成物になる。 In the present embodiment, the sludge as a starting material is converted into an odorless powdery product through an encapsulation process, an oxidizing atmosphere forming process, a heating and pressurizing process, a heat retaining process, and a decompression / cooling process.

処理対象の汚泥を耐圧容器10の容器部11内に配置し、耐圧容器10の容器部11に蓋部12を装着し、耐圧容器10が密閉状態になるようにボルトとナット等の留め具18によって十分に固定することで、封入工程が完了する。 The sludge to be treated is disposed in the container portion 11 of the pressure vessel 10, the lid portion 12 is attached to the container portion 11 of the pressure vessel 10, and the fasteners 18 such as bolts and nuts are provided so that the pressure vessel 10 is sealed. By fully fixing with, the sealing process is completed.

この封入工程の後、酸化雰囲気形成工程に移行する。酸化雰囲気は、酸素を含有する雰囲気であればよく、雰囲気の酸素の濃度は問わないことから、空気の雰囲気であれば、前述の封入工程を行うことで、同時に酸化雰囲気形成工程も完了したことになる。これは、余計な手順を増加する必要がない点で利点がある。 After this sealing step, the process proceeds to an oxidizing atmosphere forming step. The oxidizing atmosphere only needs to be an atmosphere containing oxygen, and the concentration of oxygen in the atmosphere is not limited. Therefore, if the atmosphere is an air atmosphere, the above-described encapsulation process is performed, and the oxidizing atmosphere forming process is completed at the same time. become. This is advantageous in that it does not require extra steps.

一方、耐圧容器10内の酸素濃度が高い程、減量効果は大きい。このため、酸素濃度を高くするために酸素を主体とする酸化雰囲気で処理を行うこともできる。この場合、耐圧容器10の蓋部12の供給管14に酸素ボンベ30を接続し、供給管14を通じて耐圧容器10内部に酸素を供給する。これは、工程の手順が増加するものの、減量効果の点で利点がある。 On the other hand, the higher the oxygen concentration in the pressure vessel 10, the greater the weight loss effect. For this reason, in order to increase the oxygen concentration, the treatment can be performed in an oxidizing atmosphere mainly composed of oxygen. In this case, an oxygen cylinder 30 is connected to the supply pipe 14 of the lid portion 12 of the pressure vessel 10, and oxygen is supplied into the pressure vessel 10 through the supply pipe 14. Although this increases the procedure of the process, there is an advantage in terms of weight loss effect.

これらによって、酸化雰囲気形成工程が完了する。 These complete the oxidizing atmosphere forming step.

ここで、酸素ボンベ30は、高圧状態であることが多いことから、高圧の酸素を耐圧容器10内部に供給すれば、耐圧容器10内部は必然的に加圧されることになる。例えば、0.5MPaの加圧では、容器内の酸素分圧は、大気中の酸素分圧の約25倍になる。 Here, since the oxygen cylinder 30 is often in a high pressure state, if the high pressure oxygen is supplied into the pressure vessel 10, the inside of the pressure vessel 10 is inevitably pressurized. For example, at a pressure of 0.5 MPa, the oxygen partial pressure in the container is about 25 times the oxygen partial pressure in the atmosphere.

この酸化雰囲気形成工程の後、加熱及び加圧工程に移行する。加熱により、水蒸気の分圧が温度関数として上昇するため、耐圧容器10内部は加圧状態となる。例えば、200℃では、水蒸気の分圧は約2MPaになる。そうすると、密閉状態である耐圧容器10内部で汚泥に含まれる水分が蒸発して水蒸気が発生したり、汚泥に含まれる有機物が分解してガスが発生することで、耐圧容器10内部は加圧されることとなる。すなわち、加熱工程によって加圧工程も同時に進行する。そこで、加熱に伴う圧力上昇を考慮し、十分な安全性を確保するため、耐圧容器10内の圧力が2.5MPa以下となるように安全弁の作動圧力を設定し、耐熱容器10の温度が250℃以下、好ましくは200℃以下となるように加熱する。これによって、加圧工程及び加熱及び加圧工程が完了する。なお、酸素濃度が高い酸化雰囲気を形成するためには、上記の酸素を用いる場合に代えて、過酸化水素やオゾンを用いてもよい。ただし、過酸化水素は汚泥と激しく反応することがあることに留意する。 After this oxidizing atmosphere forming step, the process proceeds to a heating and pressurizing step. Since the partial pressure of water vapor increases as a function of temperature due to heating, the inside of the pressure-resistant vessel 10 is in a pressurized state. For example, at 200 ° C., the partial pressure of water vapor is about 2 MPa. If it does so, the water | moisture content contained in sludge will evaporate inside the pressure-resistant container 10 which is the airtight state, and water vapor | steam will generate | occur | produce, or the organic substance contained in sludge will decompose | disassemble and gas will be generated, and the inside of the pressure-resistant container 10 will be pressurized. The Rukoto. That is, the pressurizing process proceeds simultaneously with the heating process. Therefore, in consideration of the pressure increase due to heating, in order to ensure sufficient safety, the operating pressure of the safety valve is set so that the pressure in the pressure resistant container 10 is 2.5 MPa or less, and the temperature of the heat resistant container 10 is 250. It heats so that it may become below 200 degreeC, Preferably it is below 200 degreeC. Thereby, a pressurization process and a heating and pressurization process are completed. In order to form an oxidizing atmosphere having a high oxygen concentration, hydrogen peroxide or ozone may be used instead of the above oxygen. However, keep in mind that hydrogen peroxide can react violently with sludge.

この加熱及び加圧工程の後、保温工程に移行する。この保温工程では、温度を150℃〜210℃とし、1時間前後保温する。汚泥により、保温時間を適宜調整する。 After this heating and pressurizing process, the process proceeds to a heat retaining process. In this heat retention step, the temperature is set to 150 ° C. to 210 ° C., and the temperature is kept around 1 hour. Adjust the heat retention time appropriately with sludge.

この保温工程の後、減圧・冷却工程に移行する。この工程では、耐圧容器10の蓋部12に設けられた排気管13の安全弁15を開放し、耐熱容器10内部の圧力が0.1MPaになるまで減圧する。耐圧容器10の温度が100℃以上の状態で排気することで減圧を行うと、処理対象物を乾燥することが出来る。また、加熱を停止して放置することで室温まで冷却する。 After this heat retention step, the process proceeds to a pressure reduction / cooling step. In this step, the safety valve 15 of the exhaust pipe 13 provided on the lid portion 12 of the pressure vessel 10 is opened, and the pressure inside the heat resistant vessel 10 is reduced to 0.1 MPa. When the pressure is reduced by exhausting the pressure vessel 10 at a temperature of 100 ° C. or higher, the object to be treated can be dried. Moreover, it cools to room temperature by stopping heating and leaving it to stand.

なお、耐圧容器内の圧力は、圧力条件の上限を高く設定して処理することも可能であるが、高く設定することに伴って耐圧容器の耐圧性能も高い水準のものが要求されることになるし、圧力を上昇させるための加熱条件も高くする必要があることから、コストの点についても考慮する必要がある。かかる観点に鑑みて、本発明では、空気雰囲気では0.1MPa〜2.0MPaの範囲で好ましく減量処理を行うことができる。下限値の0.1MPaについては、大気圧と同程度であることから、開放系で処理を行うのと同様になる。また、上限値は、空気雰囲気では2.0MPa未満で十分な減量化が可能である。 The pressure in the pressure vessel can be processed by setting the upper limit of the pressure condition high, but the pressure vessel is required to have a high level of pressure resistance as the pressure is set higher. However, since it is necessary to increase the heating conditions for increasing the pressure, it is necessary to consider the cost. In view of this viewpoint, in the present invention, the weight reduction treatment can be preferably performed in the range of 0.1 MPa to 2.0 MPa in an air atmosphere. The lower limit value of 0.1 MPa is the same as the atmospheric pressure, and is therefore the same as when processing in an open system. Further, the upper limit value is less than 2.0 MPa in an air atmosphere, and a sufficient amount can be reduced.

一方、耐圧容器内を空気雰囲気下の場合と比較して酸素濃度を上昇させて処理する場合、耐圧容器内の圧力は0.1MPa〜2.5MPaの範囲で好ましく減量処理を行うことができる。 On the other hand, when the inside of the pressure vessel is processed by increasing the oxygen concentration as compared with that in an air atmosphere, the pressure inside the pressure vessel can be preferably reduced in the range of 0.1 MPa to 2.5 MPa.

汚泥は、これらの減量処理を経ることによって、処理過程で発生した無害のガスとともに水分は全て蒸発し、無酸素濃度が低い酸化雰囲気下で処理した場合は、臭気を大幅に減少させて減量化することができ、酸素濃度が高い酸化雰囲気下で処理した場合は、無臭の粉末として減量化することができる。 The sludge undergoes these weight reduction treatments, and all moisture is evaporated together with the harmless gas generated in the treatment process. When treated in an oxidizing atmosphere with a low oxygen-free concentration, the odor is greatly reduced and reduced. When the treatment is performed in an oxidizing atmosphere having a high oxygen concentration, the amount can be reduced as an odorless powder.

なお、耐圧容器10に高圧酸素を供給した状態で汚泥を加熱処理すると、二酸化炭素が発生する。この二酸化炭素の分圧を下げるためには、耐圧容器10内にアルカリ性水溶液、例えば、水酸化ナトリウム水溶液を入れることで、発生した二酸化炭素を吸収させ、耐圧容器10内の二酸化炭素の分圧の上昇を防ぐことができる。この結果、相対的に耐圧容器10内部の酸素分圧が回復し、酸化反応がすすみやすくなるし、耐圧容器10内部全体の圧力を下げることもでき、汚泥の減量処理の効率低下を防止しつつ、耐圧容器10内の圧力の上限値を下げることができ、安全に処理を行うことができる。 When sludge is heated with high pressure oxygen supplied to the pressure vessel 10, carbon dioxide is generated. In order to reduce the partial pressure of carbon dioxide, an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution is placed in the pressure vessel 10 to absorb the generated carbon dioxide, and the partial pressure of carbon dioxide in the pressure vessel 10 is reduced. The rise can be prevented. As a result, the oxygen partial pressure in the pressure vessel 10 is relatively recovered, the oxidation reaction is facilitated, the pressure inside the pressure vessel 10 can be lowered, and the sludge reduction treatment efficiency is prevented from being lowered. The upper limit value of the pressure in the pressure vessel 10 can be lowered, and processing can be performed safely.

また、本発明は上記実施の形態に限定されることはなく、発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、酸化雰囲気形成工程によって、一定の酸素濃度の雰囲気が形成されたとしても、その後、酸素濃度を増加させたり、あるいは減少させてもよい。減少させた結果、低酸素状態とすることも考えられる。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention. For example, even if an atmosphere having a constant oxygen concentration is formed by the oxidizing atmosphere forming step, the oxygen concentration may be increased or decreased thereafter. As a result of the reduction, a hypoxic state may be considered.

以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
耐圧容器は、3Lの容量のSUS430製の耐圧容器を使用した。耐圧容器の蓋部を開け、50.88gの汚泥を入れたビ−カ−を容器部内に配置し、容器部に蓋部を装着してボルトとナットで締め付けて固定した。耐圧容器内は、空気のみの雰囲気とした。次いで、IHヒ−タ−の設定温度を170℃を上限として調整し、耐圧容器をIHヒ−タ−で加熱した。
Example 1
As the pressure vessel, a pressure vessel made of SUS430 having a capacity of 3 L was used. The lid portion of the pressure vessel was opened, a beaker containing 50.88 g of sludge was placed in the vessel portion, the lid portion was attached to the vessel portion, and tightened with bolts and nuts to fix. The atmosphere inside the pressure vessel was air only. Next, the set temperature of the IH heater was adjusted with 170 ° C. as the upper limit, and the pressure vessel was heated with the IH heater.

温度が160℃になったところで、耐圧容器の温度が160℃を維持するようにIHヒ−タ−を調整し、加熱開始から5時間経過するまで加熱を継続した。このときの温度と圧力の関係は、157℃の時の圧力が0.75MPaであった。5時間経過後にIHヒーターによる加熱を停止した。加熱停止後、耐圧容器内の圧力を減圧するため、安全弁を開放して耐圧容器内の空気を排出した。水分は全て蒸発した。耐圧容器を放置して耐圧容器が冷却されたことを確認した後、蓋を開け、汚泥を入れた容器を取り出したところ、汚泥は臭気が著しく減少した粉末になっていた。この粉末の重量を測定したところ、12.55gで、出発物質である汚泥と比較すると減量率は75.3%であった。すなわち、耐圧容器内部が空気の雰囲気において、2.0MPa未満の圧力で十分な減量化ができることを確認できた。 When the temperature reached 160 ° C., the IH heater was adjusted so that the temperature of the pressure vessel was maintained at 160 ° C., and the heating was continued until 5 hours passed from the start of heating. The relationship between temperature and pressure at this time was 0.75 MPa at 157 ° C. After 5 hours, heating with the IH heater was stopped. After stopping the heating, in order to reduce the pressure in the pressure vessel, the safety valve was opened and the air in the pressure vessel was discharged. All the water evaporated. After confirming that the pressure vessel was cooled by leaving the pressure vessel, the lid was opened and the vessel containing the sludge was taken out. As a result, the sludge was a powder with significantly reduced odor. When the weight of this powder was measured, it was 12.55 g, and the weight loss rate was 75.3% as compared with the starting sludge. That is, it was confirmed that the pressure can be reduced sufficiently with a pressure of less than 2.0 MPa in an atmosphere of air inside the pressure vessel.

(実施例2)
実施例1と同様の耐圧容器を使用した。耐圧容器の蓋部を開け、200gの汚泥を入れたビ−カ−を容器部内に設配置し、容器部に蓋部を装着してボルトとナットで締め付けて固定した。次いで、IHヒ−タ−の設定温度を170℃を上限として調整し、耐圧容器をIHヒ−タ−で加熱した。ここで、耐圧容器内の汚泥の量を増量することを想定すると、実施例1の状態に加えて耐圧容器内を低酸素状態とした場合と実質的に同じであるといえる。そこで、耐圧容器内を低酸素状態とするため、温度が100℃になるまで安全弁を開放した状態で加熱し、耐圧容器内の空気を排気した後、100℃で安全弁を閉鎖した。この操作によって、耐圧容器内を酸素がほとんど含まれない雰囲気とした。
(Example 2)
A pressure vessel similar to that of Example 1 was used. The lid portion of the pressure vessel was opened, and a beaker containing 200 g of sludge was placed and arranged in the vessel portion, and the lid portion was attached to the vessel portion and fixed with bolts and nuts. Next, the set temperature of the IH heater was adjusted with 170 ° C. as the upper limit, and the pressure vessel was heated with the IH heater. Here, assuming that the amount of sludge in the pressure vessel is increased, it can be said that this is substantially the same as when the pressure vessel is in a low oxygen state in addition to the state of the first embodiment. Therefore, in order to make the inside of the pressure vessel low in oxygen, the safety valve was heated until the temperature reached 100 ° C., and the air in the pressure vessel was exhausted, and then the safety valve was closed at 100 ° C. By this operation, the atmosphere inside the pressure vessel was made almost free of oxygen.

空気を排気した後も加熱を継続した。温度が170℃になったところで、耐圧容器の温度が170℃を維持するようIHヒーターを調整し、加熱開始から5時間経過するまで加熱を継続した。このときの温度と圧力の関係は168℃の時の圧力が1.02MPaであった。5時間経過後にIHヒーターによる加熱を停止した。加熱停止後、耐圧容器内の圧力を減圧するため、安全弁を開放して耐圧容器内の水蒸気を排出した。耐圧容器を放置して耐圧容器が冷却されたことを確認した後、蓋を開け、汚泥を入れた容器を取り出したところ、汚泥は臭気が著しく減少した粉末になっていた。この粉末の重量を測定したところ、69.6gで、出発物質である汚泥と比較すると減量率は65.2%であった。この結果、耐圧容器内の汚泥の量を増量することを想定した場合についても、十分な減量化ができることが確認できた。 Heating was continued after the air was evacuated. When the temperature reached 170 ° C., the IH heater was adjusted so that the temperature of the pressure vessel was maintained at 170 ° C., and the heating was continued until 5 hours passed from the start of heating. The relationship between temperature and pressure at this time was 1.02 MPa at 168 ° C. After 5 hours, heating with the IH heater was stopped. After stopping the heating, in order to reduce the pressure in the pressure vessel, the safety valve was opened and water vapor in the pressure vessel was discharged. After confirming that the pressure vessel was cooled by leaving the pressure vessel, the lid was opened and the vessel containing the sludge was taken out. As a result, the sludge was a powder with significantly reduced odor. When the weight of this powder was measured, it was 69.6 g, and the weight loss rate was 65.2% as compared with the starting sludge. As a result, it was confirmed that the amount of sludge in the pressure vessel can be sufficiently reduced even when it is assumed that the amount of sludge is increased.

(実施例3)
実施例1と同様の耐圧容器を使用した。耐圧容器の蓋部を開け、20gの汚泥を入れたビ−カ−を容器部内に配置し、容器部に蓋部を装着してボルトとナットで締め付けて固定した。次いで、真空ポンプで耐圧容器内の空気を吸引し、耐圧容器内部の圧力を下げた。続いて、高圧酸素ボンベから耐圧容器内に酸素を注入し、耐圧容器内の圧力を0.70MPaにした。耐圧容器内の圧力の上限が2.5MPa以下になるように安全弁の作動圧力を設定し、IHヒーターの設定温度を200℃と上限として調整し、耐圧容器をIHヒ−タ−で加熱したところ、汚泥に含まれていた水分が蒸発し、水蒸気により圧力は上昇した。このときの温度と圧力の関係は、156℃のときに2.01MPa、167℃のときに2.20MPa、最高温度172℃のときに2.40MPaとなった。
(Example 3)
A pressure vessel similar to that of Example 1 was used. The lid portion of the pressure vessel was opened, a beaker containing 20 g of sludge was placed in the vessel portion, the lid portion was attached to the vessel portion, and tightened with bolts and nuts to fix. Subsequently, the air in a pressure vessel was sucked with a vacuum pump, and the pressure inside the pressure vessel was lowered. Subsequently, oxygen was injected from the high-pressure oxygen cylinder into the pressure vessel, and the pressure in the pressure vessel was adjusted to 0.70 MPa. When the operating pressure of the safety valve is set so that the upper limit of the pressure in the pressure vessel is 2.5 MPa or less, the set temperature of the IH heater is adjusted to the upper limit of 200 ° C., and the pressure vessel is heated with an IH heater The water contained in the sludge evaporated and the pressure increased due to the water vapor. The relationship between temperature and pressure at this time was 2.01 MPa at 156 ° C., 2.20 MPa at 167 ° C., and 2.40 MPa at the maximum temperature of 172 ° C.

温度と圧力が上記安全弁作動圧力値を超えないように留意しつつ温度を調整しながら加熱し、2時間経過後にIHヒーターによる加熱を停止した。温度が50℃程度まで低下するとともに、圧力も低下した。さらに安全弁を開放し、耐圧容器内の圧力が十分に低下したことを確認してから容器部と蓋部とを外し、汚泥を入れたビ−カ−を取り出したところ、汚泥は完全に乾燥した状態で、無臭の粉末となっていた。この無臭の粉末の重量は3.2gであった。出発物質である汚泥と比較すると減量率は84%であった。 Heating was performed while adjusting the temperature while paying attention not to exceed the safety valve operating pressure value, and heating by the IH heater was stopped after 2 hours. The temperature decreased to about 50 ° C., and the pressure also decreased. Furthermore, the safety valve was opened, and after confirming that the pressure in the pressure vessel had dropped sufficiently, the container and lid were removed, and the beaker with sludge was taken out. The sludge was completely dried. In the state, it was an odorless powder. The odorless powder weighed 3.2 g. Compared to the starting material, sludge, the weight loss rate was 84%.

(実施例4)
実施例1と同じ耐圧容器を使用した。汚泥50.6gを入れたビ−カ−を耐圧容器内の下部容器部内に配置し、10gの水酸化ナトリウムを100mlの水に溶解させた水酸化ナトリウム水溶液を、汚泥が収容されたビ−カ−の外側に入れた。次いで、真空ポンプで耐圧容器内の空気を吸引し、耐圧容器内部の圧力を下げた。続いて、高圧酸素ボンベから耐圧容器内に酸素を注入し、容器部内の圧力を0.92MPaにした。耐圧容器内の圧力の上限が2.5MPa以下になるように安全弁の作動圧力を設定し、IHヒーターの設定温度を200℃を上限として調整し、耐圧容器をIHヒ−タ−で加熱したところ、汚泥に含まれていた水分および耐圧容器内の水が蒸発し水蒸気により圧力が上昇した。
Example 4
The same pressure resistant container as in Example 1 was used. A beaker containing 50.6 g of sludge is placed in the lower container of the pressure vessel, and a sodium hydroxide aqueous solution in which 10 g of sodium hydroxide is dissolved in 100 ml of water is stored in the beaker containing the sludge. -Put outside. Subsequently, the air in a pressure vessel was sucked with a vacuum pump, and the pressure inside the pressure vessel was lowered. Subsequently, oxygen was injected from the high-pressure oxygen cylinder into the pressure vessel, and the pressure in the vessel was adjusted to 0.92 MPa. When the operating pressure of the safety valve is set so that the upper limit of the pressure in the pressure vessel is 2.5 MPa or less, the set temperature of the IH heater is adjusted up to 200 ° C., and the pressure vessel is heated with an IH heater The water contained in the sludge and the water in the pressure vessel were evaporated and the pressure was increased by water vapor.

温度と圧力の関係は、152℃のときに圧力は2.15MPaであったが、その後、急激な温度と圧力の増加があった。急激な温度上昇を確認したため、過加圧防止のため、IHヒ−タ−の電源を切った。数分後の温度と圧力の関係は、156℃のときに1.75MPa、150℃のときに1.72MPaであった。急激な温度上昇後の圧力は、実施例2と比べると低く、これは発生した二酸化炭素が水酸化ナトリウム水溶液により吸収されたと説明できる。圧力が1.70MPaまで下がったことを確認した後、IHヒーターによる加熱を再開した。温度200℃、圧力が2.5Mpaという上記安全弁作動圧力値を超えないように留意しつつ温度を調整しながら加熱し、2時間経過後にIHヒーターによる加熱を停止した。温度が50℃程度まで低下するとともに、圧力も低下した。さらに安全弁を開放し、耐圧容器内の圧力が十分に低下したことを確認してから容器部と蓋部とを外し、汚泥を入れたビ−カ−を取り出したところ、汚泥は完全に乾燥した状態で、無臭の粉末となっていた。この無臭の粉末の重量は8.10gであった。出発物質である汚泥と比較すると減量率は84%であった。 Regarding the relationship between temperature and pressure, the pressure was 2.15 MPa at 152 ° C., but thereafter there was a rapid increase in temperature and pressure. Since the rapid temperature rise was confirmed, the IH heater was turned off to prevent overpressurization. The relationship between temperature and pressure after several minutes was 1.75 MPa at 156 ° C. and 1.72 MPa at 150 ° C. The pressure after the rapid temperature increase is lower than that in Example 2, which can be explained as that the generated carbon dioxide was absorbed by the sodium hydroxide aqueous solution. After confirming that the pressure had dropped to 1.70 MPa, heating with the IH heater was resumed. Heating was performed while adjusting the temperature while paying attention not to exceed the safety valve operating pressure value of 200 ° C. and pressure of 2.5 Mpa, and heating by the IH heater was stopped after 2 hours. The temperature decreased to about 50 ° C., and the pressure also decreased. Furthermore, the safety valve was opened, and after confirming that the pressure in the pressure vessel had dropped sufficiently, the container and lid were removed, and the beaker with sludge was taken out. The sludge was completely dried. In the state, it was an odorless powder. The weight of this odorless powder was 8.10 g. Compared to the starting material, sludge, the weight loss rate was 84%.

以上、詳細に述べたように、汚泥を焼却処理することなく減量化できる。本発明の処理方法では、化学薬品を使用しないので焼却にともなう二次的汚染、例えば有毒ガスの発生を無くすこともでき、汚泥に含まれる有害金属の空気中への拡散を防止できる。特に、東京電力福島第一原子力発電所における事故により、放射性物質が発電所外に放出され、放射性物質を含んだ汚泥の処理が深刻な問題になっているところ、本発明によれば、放射性物質の蒸発による空気中への拡散を防止しつつ汚泥を減量化することができる。 As described above in detail, the sludge can be reduced without incineration. In the treatment method of the present invention, since no chemical is used, secondary pollution caused by incineration, for example, generation of toxic gas can be eliminated, and diffusion of harmful metals contained in sludge into the air can be prevented. In particular, due to an accident at the Tokyo Electric Power Fukushima Daiichi Nuclear Power Station, radioactive materials are released outside the power plant, and the treatment of sludge containing radioactive materials has become a serious problem. Sludge can be reduced while preventing diffusion of air into the air.

10 …… 耐圧容器
11 …… 容器部
12 …… 蓋部
13 …… 排気管
14 …… 供給管
15 …… 安全弁
16 …… 温度計
17 …… 圧力計
18 …… 留め具
19 …… バルブ
20 …… IHヒーター
30 …… 酸素ボンベ
DESCRIPTION OF SYMBOLS 10 ... Pressure-resistant container 11 ... Container part 12 ... Cover part 13 ... Exhaust pipe 14 ... Supply pipe 15 ... Safety valve 16 ... Thermometer 17 ... Pressure gauge 18 ... Fastener 19 ... Valve 20 ... ... IH heater 30 ... Oxygen cylinder

Claims (2)

耐圧容器で汚泥を処理するに際し、
前記耐圧容器内部を酸化雰囲気とし、前記耐圧容器外部を加熱するとともに耐圧容器内部を加圧状態にすることを特徴とする汚泥の減量処理方法。
When treating sludge in a pressure vessel,
A sludge reduction treatment method characterized in that the inside of the pressure vessel is an oxidizing atmosphere, the outside of the pressure vessel is heated and the inside of the pressure vessel is brought into a pressurized state.
前記耐圧容器内部にアルカリ性水溶液を入れることを特徴とする請求項1に記載の汚泥の減量処理方法。 The sludge reduction treatment method according to claim 1, wherein an alkaline aqueous solution is placed inside the pressure vessel.
JP2012149134A 2012-07-03 2012-07-03 Method for reducing amount of sludge Pending JP2014008495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149134A JP2014008495A (en) 2012-07-03 2012-07-03 Method for reducing amount of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149134A JP2014008495A (en) 2012-07-03 2012-07-03 Method for reducing amount of sludge

Publications (1)

Publication Number Publication Date
JP2014008495A true JP2014008495A (en) 2014-01-20

Family

ID=50105644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149134A Pending JP2014008495A (en) 2012-07-03 2012-07-03 Method for reducing amount of sludge

Country Status (1)

Country Link
JP (1) JP2014008495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572033A (en) * 2022-09-19 2023-01-06 北京城市排水集团有限责任公司 Two-stage carbonization system and method for preparing sludge carbon
CN115572033B (en) * 2022-09-19 2024-05-31 北京城市排水集团有限责任公司 Two-stage carbonization system and method for preparing sludge carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572033A (en) * 2022-09-19 2023-01-06 北京城市排水集团有限责任公司 Two-stage carbonization system and method for preparing sludge carbon
CN115572033B (en) * 2022-09-19 2024-05-31 北京城市排水集团有限责任公司 Two-stage carbonization system and method for preparing sludge carbon

Similar Documents

Publication Publication Date Title
JP2008272534A (en) Heat treatment method and heat treatment apparatus of waste containing organic halogen compound utilizing psa type nitrogen gas generator
JP2007181784A (en) Waste treatment apparatus
CN103272464B (en) A kind of processing method of ozone tail gas and device
JP2014008495A (en) Method for reducing amount of sludge
JP4996537B2 (en) Methods for detoxifying pollutants with difficult-to-decompose substances such as PCBs and dioxins
KR100919771B1 (en) Treatment Process and Equipment of Steam Generator Chemical Cleaning Wastewater Contained Chelate Chemicals and radioactive materials
JP2004340769A (en) Disposing method and device of organic acid decontamination waste liquid
JP5918590B2 (en) Method and apparatus for decomposing dioxins in exhaust gas
JP2014048042A (en) Method for treating radioactive waste
KR20110016406A (en) Deodorization purification device of voc gas
JP3659569B2 (en) Method for decomposing persistent organic compounds
JP4403240B2 (en) Disposal of low-level radioactive ion exchange resin
JP2015004599A (en) Method and device for processing radioactive contaminated water
JP5713245B2 (en) Method for treating incinerated ash containing radioactive materials
JP3840208B2 (en) Soil treatment apparatus and treatment method
Besserer et al. Tritium confinement, retention, and releases at the Tritium Laboratory Karlsruhe
JP2007033285A (en) Equipment for removing hydrogen of nuclear power plant
JP2006035218A (en) Soil treating apparatus
Essiptchouk et al. PLASMA REACTOR FOR LIQUID ORGANICWASTE TREATMENT
JP6615119B2 (en) Configuration of outlet nozzle of submerged plasma torch dedicated to waste treatment
JP3269901B2 (en) Treatment of organic chlorine compounds
JP3416751B2 (en) Detoxification of organic chlorine compounds
JP2009201690A (en) Treating method of treatment residue including contaminant, and container used for the same
JP2003094033A (en) Treatment system for hazardous substance-containing soil
JP5980192B2 (en) PCB purification treatment equipment