JP2014008462A - Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system - Google Patents

Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system Download PDF

Info

Publication number
JP2014008462A
JP2014008462A JP2012147245A JP2012147245A JP2014008462A JP 2014008462 A JP2014008462 A JP 2014008462A JP 2012147245 A JP2012147245 A JP 2012147245A JP 2012147245 A JP2012147245 A JP 2012147245A JP 2014008462 A JP2014008462 A JP 2014008462A
Authority
JP
Japan
Prior art keywords
gas
dehumidifying
dehumidification
tower
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012147245A
Other languages
Japanese (ja)
Inventor
Yoshitaka Mori
嘉孝 森
Tsutomu Hatano
勉 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Plant Industries Co Ltd
Original Assignee
Daido Plant Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Plant Industries Co Ltd filed Critical Daido Plant Industries Co Ltd
Priority to JP2012147245A priority Critical patent/JP2014008462A/en
Publication of JP2014008462A publication Critical patent/JP2014008462A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidifier which can discharge by securely reducing a water content in processed gas to a set value or lower.SOLUTION: A dehumidifier mainly includes dehumidifying towers 1A, 1B. Each of the dehumidifying towers 1A, 1B includes a conducting path 3 in a center part of a filled layer 2 of a dehumidifying agent, and a heating cylinder 4 inserted in the conducting path 3, and further includes a processed gas introducing path 5 connected to an upper end part of the filled layer 2. The processed gas introducing path is provided with a differential pressure type flowmeter 20A as a flow rate detection means of the processed gas; a dew-point meter 20B as a water content detection means of the processed gas; an operational circuit OC of operating an accumulated water amount absorbed in the filled layer 2 from the differential pressure type flowmeter 20A and the dew-point meter 20B; and a switching means which switches introduction of the processed gas to the dehumidifying towers 1A, 1B to introduction of regeneration gas by a signal output from the operational circuit OC.

Description

本発明は、例えば工業炉の雰囲気ガスのような水分を含有する被処理ガスから水分を除去するために使用される除湿装置及びそれによって構成される除湿システム並びにそれらによる被処理ガスの除湿処理方法に関するものである。   The present invention relates to a dehumidifying device used for removing moisture from a gas to be treated such as an atmospheric gas in an industrial furnace, a dehumidifying system constituted by the dehumidifying device, and a method for dehumidifying the gas to be treated by them. It is about.

従来、この種の除湿装置としては、例えば特許文献1のように、内部に除湿剤の充填層を設けた除湿塔内に上記被処理ガスを導入し、該被処理ガスを該除湿塔充填層内に通して除湿を行なう構成のものが提案されている。
上記除湿装置では、該除湿剤充填層に吸着される水分量が飽和に達すると、除湿工程を中止して該除湿剤充填層を加熱して該除湿剤充填層に吸着されている水分を除去する再生工程を行なう。
そこで、上記除湿工程と上記再生工程とを適正な時点で切換えることが必要になる。上記従来例では除湿塔の出口側に流量計と露点計とが設定され、該除湿塔から排出される処理済みの被処理ガスの水分を測定し、該処理済み被処理ガスの水分含有量が設定値以上になった時点で、除湿工程から再生工程に切換える方式が提供されている。
Conventionally, as this type of dehumidifying apparatus, for example, as in Patent Document 1, the gas to be treated is introduced into a dehumidifying tower having a packed layer of a dehumidifying agent therein, and the gas to be treated is supplied to the dehumidifying tower packed bed. The thing of the structure which dehumidifies by passing in is proposed.
In the dehumidifying apparatus, when the amount of moisture adsorbed on the dehumidifying agent filling layer reaches saturation, the dehumidifying process is stopped and the dehumidifying agent filling layer is heated to remove the moisture adsorbed on the dehumidifying agent filling layer. A regeneration process is performed.
Therefore, it is necessary to switch the dehumidification step and the regeneration step at an appropriate time. In the above conventional example, a flow meter and a dew point meter are set on the outlet side of the dehumidification tower, the moisture of the treated gas exhausted from the dehumidifying tower is measured, and the moisture content of the treated gas is There is provided a method of switching from the dehumidification process to the regeneration process when the set value is exceeded.

特開昭59−136119号公報JP 59-136119 A

しかし上記従来方式では、再生工程に切換える前に設定値以上の水分含有量の処理済み被処理ガスが除湿塔から排出されるおそれがある。
本発明は、設定値以上に水分を含む処理済み被処理ガスが排出されないような除湿装置を提供することを課題とする。
However, in the above-described conventional method, there is a possibility that the treated gas having a moisture content equal to or higher than the set value is discharged from the dehumidifying tower before switching to the regeneration process.
It is an object of the present invention to provide a dehumidifying device that does not discharge a processed gas containing water that exceeds a set value.

上記課題を解決するための手段として、本発明は、被処理ガスに含有されている水分を除去するために使用される除湿装置であって、上記除湿装置は、除湿剤の充填層と加熱手段とを内部に具備した除湿塔を主体としており、上記除湿塔において、上記充填層の中央部には上記除湿塔の上下に連通する導通路が設けられ、上記導通路には上記除湿塔の上端よりヒーターが挿着されており更に上記除湿塔には、上記充填層の上端部に連絡する被処理ガス導入路と、上記除湿塔の上端部に連絡する処理済み被処理ガス排出路と、上記除湿塔の上端部に連絡する再生ガス導入路と、上記充填層の上端部に連絡する使用済再生ガス排出路と、上記充填層の上端部に連絡する冷却ガス導入路と、上記除湿塔の上端部に連絡する使用済冷却ガス排出路と、が具備されており、上記被処理ガス導入路には、被処理ガスの流量検出手段と、被処理ガスの水分含有量検出手段と、上記被処理ガスの流量検出手段と上記被処理ガスの水分含有量検出手段とから上記充填層に吸着された積算水分量を演算する演算回路と、上記演算回路より出力される信号によって上記除湿塔への被処理ガスの導入を再生ガスの導入へ切換える切換手段と、が具備されている除湿装置を提供するものである。
上記除湿装置にあっては、上記再生ガス排出路の中間部には上記冷却ガス導入路が合一され、上記被処理ガス導入路と上記再生ガス排出路と上記冷却ガス導入路とは合一して上記除湿塔に接続し、上記再生ガス導入路と上記使用済冷却ガス排出路とは合一して上記除湿塔に接続し、上記冷却ガス導入路と上記使用済冷却ガス排出路とはガス冷却手段を介して接続して冷却ガス循環径路を形成していることが望ましい。
更に本発明にあっては、上記除湿装置によって構成され、上記除湿塔は二基が並設され、一の除湿塔では被処理ガスを導入して除湿を行なう除湿工程が実施され、他の除湿塔では再生ガスを導入して上記充填層の加熱再生を行ない、その後冷却ガスを導入して冷却を行なう再生冷却処理が行なわれ、上記二基の除湿塔間には所定時間毎に除湿工程と再生冷却工程とを切換える切換手段が介在している除湿システムが提供される。
また更に本発明にあっては、上記除湿装置を使用し、被処理ガスの除湿処理工程にあっては、被処理ガス導入路から除湿塔内の充填層上部に被処理ガスを導入し、上記充填層上部に導入された上記被処理ガスが上記充填層内を流下して上記除湿塔底部に達し、上記除湿塔底部から導通路内を上昇して上記除湿塔上端部に接続する処理済ガス排出路から排出されるが、上記被処理ガス導入路に介在する流量検出手段によって上記充填層に導入される上記被処理ガスの導入積算量を検出し、更に水分含有量検出手段によって上記被処理ガスの水分含有量を検出し、上記被処理ガスの導入積算量および上記被処理ガスの水分量から上記充填層の水分吸着量を演算回路によって演算して、上記水分吸着量が飽和量に達した場合には、上記被処理ガスの除湿処理工程から上記充填層の再生冷却工程に切り換えるものとし、上記充填層の再生冷却工程にあっては、上記充填層の再生として、再生ガス導入路から上記除湿塔上端部に再生ガスを導入し、上記再生ガスが上記充填層の導通路を下降してその間に上記ヒーターによって所定温度に加熱され、上記除湿塔底部に達してから上記充填層内を上昇し、上記充填層上部から使用済再生ガスとして再生ガス排出路へ排出され、上記充填層の再生後に上記充填層の冷却として、冷却ガス導入路から冷却ガスを上記充填層上部に導入し、上記冷却ガスが上記充填層内を下降しつつ上記充填層を冷却して上記除湿塔底部に達し、上記除湿塔底部から上記導通路内を上昇して上記除湿塔上部から使用済み冷却ガスとして冷却ガス排出路へ排出される被処理ガスの除湿処理方法が提供される。
また更に本発明にあっては、上記除湿システムを使用し、一の除湿塔においては被処理ガスの除湿処理工程を行ない、他の除湿塔においては再生冷却工程を行ない、一の除湿塔における除湿工程が完了し、かつ他の除湿塔における再生冷却工程が完了した時、一の除湿塔においては除湿工程から再生冷却工程に切換え、他の除湿塔においては再生冷却工程から除湿工程に切換える被処理ガスの除湿処理方法が提供される。
上記除湿システムを使用した除湿処理方法にあっては、一の除湿塔における充填層の積算水分吸着量が飽和量の75〜85%の範囲で設定された所定の設定値に達した時、上記被処理ガスを上記除湿塔に導入する速度を低下して、他の除湿塔における再生冷却工程が完了する時点で、一の除湿工程における除湿工程が完了するように調節することが望ましい。
As means for solving the above-mentioned problems, the present invention provides a dehumidifying device used to remove moisture contained in a gas to be treated, the dehumidifying device comprising a packed layer of a dehumidifying agent and a heating means. In the dehumidification tower, in the dehumidification tower, a conduction path communicating with the upper and lower sides of the dehumidification tower is provided at the center of the packed bed, and the upper end of the dehumidification tower is provided in the conduction path. Further, a heater is inserted, and the dehumidifying tower further includes a treated gas introduction path communicating with the upper end of the packed bed, a treated treated gas discharge path communicating with the upper end of the dehumidifying tower, and the above A regeneration gas introduction path communicating with the upper end of the dehumidification tower, a used regeneration gas discharge path communicating with the upper end of the packed bed, a cooling gas introduction path communicating with the upper end of the packed bed, and the dehumidification tower A spent cooling gas discharge passage communicating with the upper end, The process gas introduction path is provided with a flow rate detection means for the process gas, a moisture content detection means for the process gas, a flow rate detection means for the process gas, and a moisture content of the process gas. A calculation circuit for calculating an integrated moisture amount adsorbed on the packed bed from the amount detection means, and a switching means for switching the introduction of the gas to be treated into the dehumidification tower to the introduction of the regeneration gas by a signal output from the calculation circuit And providing a dehumidifying device.
In the dehumidifying device, the cooling gas introduction path is united with an intermediate portion of the regeneration gas discharge path, and the treated gas introduction path, the regeneration gas discharge path, and the cooling gas introduction path are united. Connected to the dehumidification tower, the regeneration gas introduction path and the used cooling gas discharge path are combined and connected to the dehumidification tower, and the cooling gas introduction path and the used cooling gas discharge path are It is desirable to form a cooling gas circulation path by connecting via a gas cooling means.
Furthermore, in the present invention, the dehumidifying device is configured, and two dehumidifying towers are arranged side by side. In one dehumidifying tower, a dehumidifying process is performed in which dehumidification is performed by introducing a gas to be treated. In the tower, a regeneration gas is introduced to perform heating regeneration of the packed bed, and then a regeneration cooling process is performed in which a cooling gas is introduced and cooled, and a dehumidification step is performed between the two dehumidification towers every predetermined time. A dehumidification system is provided in which switching means for switching between regenerative cooling processes is interposed.
Furthermore, in the present invention, the dehumidifying device is used, and in the dehumidifying process of the gas to be processed, the gas to be processed is introduced from the gas to be processed introduction path to the upper part of the packed bed in the dehumidifying tower, The treated gas introduced into the upper part of the packed bed flows down through the packed bed and reaches the bottom of the dehumidifying tower and rises in the conduction path from the bottom of the dehumidified tower and connects to the upper end of the dehumidifying tower Although it is discharged from the discharge passage, the integrated amount of the gas to be treated introduced into the packed bed is detected by the flow rate detecting means interposed in the gas to be treated introduction passage, and further the water treatment detecting means by the moisture content detecting means. The moisture content of the gas is detected, the moisture adsorption amount of the packed bed is calculated from the integrated amount of the treatment gas introduced and the moisture content of the treatment gas by an arithmetic circuit, and the moisture adsorption amount reaches the saturation amount. If the gas to be treated is Switching from the wet treatment process to the regenerative cooling process of the packed bed, and in the regenerative cooling process of the packed bed, regenerative gas is introduced from the regenerative gas introduction path to the upper end of the dehumidifying tower as regeneration of the packed bed. The regeneration gas descends the conduction path of the packed bed and is heated to a predetermined temperature by the heater while reaching the bottom of the dehumidifying tower and then rises in the packed bed and is used from the top of the packed bed. As a regeneration gas, it is discharged to the regeneration gas discharge passage, and after the regeneration of the packed bed, as a cooling of the packed bed, a cooling gas is introduced into the upper portion of the packed bed from the cooling gas introduction passage, and the cooling gas descends in the packed bed However, the packed bed is cooled to reach the bottom of the dehumidifying tower, and then rises in the conduction path from the bottom of the dehumidifying tower and is discharged from the top of the dehumidifying tower to the cooling gas discharge path as used cooling gas. Dehumidification processing method of the scan is provided.
Furthermore, in the present invention, the above dehumidification system is used, the dehumidification tower performs a dehumidification process of the gas to be treated, the other dehumidification tower performs a regenerative cooling process, and the dehumidification tower performs the dehumidification process. When the process is completed and the regeneration cooling process in another dehumidification tower is completed, the dehumidification tower switches from the dehumidification process to the regeneration cooling process, and the other dehumidification tower switches from the regeneration cooling process to the dehumidification process. A method of dehumidifying gas is provided.
In the dehumidification processing method using the dehumidification system, when the accumulated moisture adsorption amount of the packed bed in one dehumidification tower reaches a predetermined set value set in a range of 75 to 85% of the saturation amount, It is desirable to adjust so that the dehumidification process in one dehumidification process is completed at the time when the regeneration cooling process in the other dehumidification tower is completed by reducing the speed of introducing the gas to be treated into the dehumidification tower.

〔作用〕
本発明にあっては、被処理ガス導入路に被処理ガスの流量検出手段と、被処理ガスの水分含有量検出手段を具備しておき、該被処理ガス導入路を介して除湿塔内に導入される被処理ガス量と該被処理ガスの水分含有量とを検出し、演算回路によってその積算量を演算することによって、処理開始からその時点までに除湿塔の除湿剤充填層に吸着された積算水分量を確認することが出来る。上記除湿剤充填層の水分飽和吸着量は、該除湿剤の水分飽和吸着量と、充填層の除湿剤重量とを掛け合わせれば求められるから、積算水分量が上記水分飽和吸着量に達した時点で、除湿工程から再生工程に切換えればよい。一般に再生工程では除湿剤充填層は加熱再生されるので、その後の冷却工程が必要であり、冷却には上記再生ガスを循環経路によって循環し、その途中で冷却手段によって加熱された再生ガスと冷却した冷却ガスを使用する。
上記除湿塔が二基並設されている除湿システムでは、除湿工程と再生および冷却工程とを二基の除湿塔について交互に行なう。上記除湿塔を二基並設し、除湿工程と、再生および冷却工程とを交互に行なうシステムでは、除湿工程時間と、再生および冷却工程時間とが同一になるようにして、各除湿塔で連続して除湿工程と再生工程とを実施するように設定することが望ましい。そのために一の除湿塔における充填層の生産水分吸着量が飽和量の75〜85%の範囲で設定された所定の設定値に達した時、被処理ガスの上記除湿塔への導入速度を調節(低下)して、他の除湿塔の再生冷却工程の完了時点で、上記一の除湿塔の除湿工程が完了するようにする。
[Action]
In the present invention, the flow rate detection means of the gas to be processed and the moisture content detection means of the gas to be processed are provided in the gas supply path to be processed, and the dehumidification tower passes through the gas supply path to be processed. By detecting the amount of gas to be treated and the moisture content of the gas to be treated, and calculating the integrated amount by a calculation circuit, the gas is adsorbed to the dehumidifying agent packed bed of the dehumidifying tower from the start of the treatment to that point. Accumulated water content can be confirmed. Since the moisture saturation adsorption amount of the dehumidifying agent-packed layer is obtained by multiplying the moisture saturation adsorption amount of the dehumidifying agent and the dehumidifying agent weight of the packing layer, when the accumulated moisture amount reaches the moisture saturation adsorption amount Thus, the dehumidification process may be switched to the regeneration process. In general, since the dehumidifying agent packed bed is regenerated by heating in the regeneration process, a subsequent cooling process is necessary. For the cooling, the regeneration gas is circulated through a circulation path, and the regeneration gas heated by the cooling means and the cooling in the middle are cooled. Use the cooled cooling gas.
In the dehumidification system in which two dehumidification towers are arranged side by side, the dehumidification process and the regeneration and cooling process are alternately performed for the two dehumidification towers. In a system in which two dehumidification towers are arranged side by side and the dehumidification process and the regeneration and cooling process are alternately performed, the dehumidification process time and the regeneration and cooling process time are the same so that each dehumidification tower is continuous. Thus, it is desirable to set so that the dehumidifying step and the regeneration step are performed. Therefore, when the production moisture adsorption amount of the packed bed in one dehumidification tower reaches a predetermined set value set in the range of 75 to 85% of the saturation amount, the introduction speed of the gas to be treated into the dehumidification tower is adjusted. (Decrease) so that the dehumidifying step of the one dehumidifying tower is completed when the regeneration cooling process of the other dehumidifying tower is completed.

〔効果〕
本発明では、被処理ガスの含有水分量を確実に設定値以下として、排出することが出来る。
〔effect〕
In the present invention, the moisture content of the gas to be treated can be reliably discharged below the set value.

実施例の除湿システムを示す系統図。The system diagram which shows the dehumidification system of an Example.

以下に本発明を具体的に説明するための実施例を記載する。
図1に示すように当該実施例は、二基の除湿塔1A,1Bを具備する除湿システムに関するものである。上記除湿塔1A,1Bの内部には合成ゼオライト(商品名:モレキュラーシーブ)、活性アルミナ等の除湿剤の充填層2がそれぞれ設置されており、上記充填層2の中央部には導通路3が設けられている。
上記導通路3には上記除湿塔1A,1Bの上端より、ヒーターHが内挿されている加熱筒4が挿着されている。上記ヒーターHには、空焚き防止用の熱電対が組込まれており、ヒーターHが設定温度以上になると該熱電対によって通電が断たれるようになっている。更に上記ヒーターHには温度表示調節計TISが付設されている。
上記除湿塔1A,1Bには、それぞれ被処理ガスを導入するための径路5が連結している。該径路5には上記被処理ガスの導入を、除湿塔1A側と除湿塔1B側とに切換えるための四方弁51が介在されている。そして上記四方弁51から分岐する分岐径路5A、5Bは、上記除湿塔1A,1B内の充填層2,2の上端部に連結している。
Examples for specifically describing the present invention will be described below.
As shown in FIG. 1, this embodiment relates to a dehumidification system including two dehumidification towers 1A and 1B. Inside the dehumidifying towers 1A and 1B, a packed bed 2 of a dehumidifying agent such as synthetic zeolite (trade name: molecular sieve) and activated alumina is installed, and a conduction path 3 is provided at the center of the packed bed 2. Is provided.
A heating cylinder 4 in which a heater H is inserted is inserted into the conduction path 3 from the upper ends of the dehumidifying towers 1A and 1B. The heater H is incorporated with a thermocouple for preventing air blown, and when the heater H reaches a set temperature or higher, the thermocouple is turned off. Further, the heater H is provided with a temperature display controller TIS.
The dehumidification towers 1A and 1B are connected to the path 5 for introducing the gas to be treated. A four-way valve 51 for switching the introduction of the gas to be treated between the dehumidifying tower 1A side and the dehumidifying tower 1B side is interposed in the path 5. The branch paths 5A and 5B branched from the four-way valve 51 are connected to the upper ends of the packed beds 2 and 2 in the dehumidification towers 1A and 1B.

更に上記除湿塔1A,1Bの充填層2,2よりも上側の位置(除湿塔1A,1Bの上端部)からは、除湿処理が済んだ被処理ガス(処理済みガス)を排出するための径路5’,5’がそれぞれ差出されている。上記径路5’,5’の排出端付近には、処理済みガスの排出を除湿塔1A側と除湿塔1B側とに切換えるための四方弁6が介在されている。
再生ガス(例えば窒素ガスN)は、再生ガス源8Aより径路7および径路5’,5’を介して上記除湿塔1A,1B上端部に導入されるが、四方弁6によって除湿塔1A側と除湿塔1B側とに切換えられる。
冷却ガス源は系内に残った再生ガスが流用され、三方弁8Bによって再生ガス源8Aの経路を遮断し、冷却ガスを循環する径路9に振り向けられる。
Further, from the position above the packed layers 2 and 2 of the dehumidification towers 1A and 1B (upper end portions of the dehumidification towers 1A and 1B), a path for discharging the gas to be treated (treated gas) that has been dehumidified. 5 ′ and 5 ′ are respectively sent out. A four-way valve 6 for switching the discharge of the treated gas between the dehumidifying tower 1A side and the dehumidifying tower 1B side is interposed in the vicinity of the discharge ends of the above-described paths 5 ′ and 5 ′.
The regeneration gas (for example, nitrogen gas N 2 ) is introduced from the regeneration gas source 8A into the dehumidifying towers 1A and 1B at the upper ends via the path 7 and the paths 5 ′ and 5 ′. And dehumidification tower 1B side.
The regeneration gas remaining in the system is diverted to the cooling gas source, the passage of the regeneration gas source 8A is blocked by the three-way valve 8B, and is directed to the path 9 through which the cooling gas is circulated.

使用済み再生ガスを排出させるための径路としては、被処理ガスを導入するための径路5A,5Bが使用されるが、更に使用済み再生ガスを排出させるための径路13が上記四方弁51から分岐し、排出端には再生ガス放出弁14が設けられている。   As the path for discharging the used regeneration gas, the paths 5A and 5B for introducing the gas to be treated are used, but the path 13 for discharging the used regeneration gas is further branched from the four-way valve 51. A regeneration gas release valve 14 is provided at the discharge end.

冷却ガスを循環させる径路9にはブロワ15が介在し、更に上記ブロワ15よりも後段側にはドレンセパレーター16と再生クーラー17とが介在している。そして上記径路9は上記再生ガス放出弁14よりも四方弁51側において、上記径路13に合流する。即ち上記径路には、径路9との合流点よりも四方弁51側において冷却ガスを循環させる径路としても機能しており、更に冷却ガスは四方弁51から分岐径路5A,5Bに振り分けられて上記除湿塔1A,1B内に導入される。   A blower 15 is interposed in the path 9 through which the cooling gas is circulated, and a drain separator 16 and a regenerative cooler 17 are interposed downstream of the blower 15. The path 9 joins the path 13 on the four-way valve 51 side of the regeneration gas release valve 14. That is, the above-mentioned path also functions as a path for circulating the cooling gas on the side of the four-way valve 51 from the junction with the path 9, and the cooling gas is further distributed from the four-way valve 51 to the branch paths 5A and 5B. It introduce | transduces in dehumidification tower 1A, 1B.

上記径路5は、上記したように主として被処理ガスを除湿塔1Aまたは1Bに導入するための径路であるが、そのためには被処理ガスを所定の流速で導入するため、上記径路5の始端部分にはインバーターによって回転数を制御される昇圧ブロワ18が介在されており、該昇圧ブロワ18の被処理ガスの吸込口には、吸込みサイレンサ19が付されている。   As described above, the path 5 is a path for mainly introducing the gas to be treated into the dehumidifying tower 1A or 1B. For this purpose, the gas to be treated is introduced at a predetermined flow rate. A booster blower 18 whose rotation speed is controlled by an inverter is interposed in the suction blower 18. A suction silencer 19 is attached to the suction port of the gas to be processed of the booster blower 18.

更に上記径路5には除湿塔1A,1Bよりも前段において、オリフィス21の上流側と下流側との差圧を測定することによって流量を測定する差圧発信器dPGIを備えた差圧式流量計20Aと、サンプル吸引のためのバルブ23と吸引ポンプ24を備え、吸引した被処理ガスサンプルの露点を測定する露点計センサDPEとサンプル温度を測定する温度センサDP1を備えた露点計20Bとが介在されている。
そして上記流量計20Aによって測定された被処理ガスの流量データFと、上記露点計20Bによって測定された被処理ガスの水分含有量データMとを、演算回路OCによって演算して、その時点までに除湿塔1Aまたは除湿塔1Bに導入された積算水分量SWを計算する。
Further, a differential pressure type flow meter 20A provided with a differential pressure transmitter dPGI that measures the flow rate by measuring the differential pressure between the upstream side and the downstream side of the orifice 21 in the path 5 before the dehumidifying towers 1A and 1B. And a dew point meter D having a valve 23 for sucking the sample and a suction pump 24, and measuring a dew point of the sucked gas sample to be processed and a dew point meter 20B having a temperature sensor DP1 for measuring the sample temperature. ing.
Then, the flow rate data F of the gas to be processed measured by the flow meter 20A and the water content data M of the gas to be processed measured by the dew point meter 20B are calculated by the arithmetic circuit OC, and up to that point. The integrated moisture amount SW introduced into the dehumidifying tower 1A or the dehumidifying tower 1B is calculated.

上記除湿システムにおいて、除湿塔1Aで被処理ガスの除湿工程を実施し、除湿塔1Bで充填層2の再生冷却を行なう場合について説明する。
上記被処理ガスとは、例えば工業炉の雰囲気ガス、主として水素ガスおよび/または窒素ガス等である。
上記除湿塔1A,1Bの充填層2の除湿剤は予め単位質量当りの吸水量SWkg/kgが決まっているので、充填層2の吸水能力は充填層2に充填されている除湿剤の総量WAkg/kgで計算出来る。
In the above dehumidification system, a case will be described in which a dehumidifying step of the gas to be treated is performed in the dehumidifying tower 1A and the regenerative cooling of the packed bed 2 is performed in the dehumidifying tower 1B.
The gas to be treated is, for example, an atmospheric gas in an industrial furnace, mainly hydrogen gas and / or nitrogen gas.
Since the dehumidifying agent for the packed bed 2 of the dehumidifying towers 1A and 1B has a predetermined water absorption SWkg / kg per unit mass, the water absorbing capacity of the packed bed 2 is the total amount of dehumidifying agent WAkg packed in the packed bed 2. / Kg can be calculated.

〔除湿塔1Aによる除湿工程〕
被処理ガスはブロワ18によって矢印Aに示すように所定の流速で径路5から除湿塔1Aに導入されるが、その前に流量計20によって流量Fを測定され、露点計21によって水分含有量を測定され、演算回路OCによって積算水分量SWが求められる。
上記被処理ガスは除湿塔1Aの充填層2上端部に導入され、上記充填層2内を流下して水分を除去され、上記除湿塔1Aの底部に達し、矢印Aに示すように導通路3を上行上記除湿塔1Aの上端部から径路5’へ排出される。
[Dehumidification step by dehumidification tower 1A]
The gas to be treated is introduced into the dehumidifying tower 1A from the path 5 at a predetermined flow rate by the blower 18 as shown by an arrow A, but before that, the flow rate F is measured by the flow meter 20 and the moisture content is measured by the dew point meter 21. Measured and the integrated water amount SW is obtained by the arithmetic circuit OC.
The gas to be treated is introduced into the upper end of the packed bed 2 of the dehumidifying tower 1A, flows down in the packed bed 2 to remove moisture, reaches the bottom of the dehumidifying tower 1A, and is connected to the conduction path 3 as indicated by an arrow A. Ascending from the upper end of the dehumidifying tower 1A to the path 5 ′.

〔除湿塔1Bによる再生冷却〕
充填層2を再生するためのガスとしては、通常窒素ガスNが使用される。
上記充填層2を再生する再生工程にあっては、上記窒素ガスNはN源8Aから三方弁8Bを介して径路7に導入され、四方弁6を介して矢印Bに示すように除湿塔1Bの上端部から塔内へ導入され、導通路3を流下してその間に加熱筒4のヒーターHによって加熱される。なお上記ヒーターHの加熱温度は温度表示調節計TISによって調節される。
上記加熱された再生ガスは上記除湿塔1Bの底部に至り、更に充填層2内を上行して上記充填層2内に吸着されている水分を加熱除去し、処理済みガスは矢印Bに示すように、上記除湿塔1Bの充填層2の上端部から分岐径路5B、四方弁51を介して径路13に至り、放出弁14を開いて外界に放出される。
上記再生工程においては、充填層2は再生ガスのみではなく、加熱筒4からの輻射熱によっても加熱されるので、高い熱効率が得られる。
[Regeneration cooling by dehumidification tower 1B]
As a gas for regenerating the packed bed 2, nitrogen gas N 2 is usually used.
In the regeneration step of regenerating the packed bed 2, the nitrogen gas N 2 is introduced from the N 2 source 8A into the path 7 through the three-way valve 8B, and dehumidified as indicated by the arrow B through the four-way valve 6. It is introduced into the tower from the upper end of the tower 1B, flows down the conduction path 3, and is heated by the heater H of the heating cylinder 4 during that time. The heating temperature of the heater H is adjusted by a temperature display controller TIS.
The heated regeneration gas reaches the bottom of the dehumidifying tower 1B, and further moves up in the packed bed 2 to heat and remove moisture adsorbed in the packed bed 2. The treated gas is as shown by an arrow B. Furthermore, the upper end of the packed bed 2 of the dehumidifying tower 1B reaches the path 13 through the branch path 5B and the four-way valve 51, and the discharge valve 14 is opened to be discharged to the outside.
In the regeneration step, since the packed bed 2 is heated not only by the regeneration gas but also by the radiant heat from the heating cylinder 4, high thermal efficiency is obtained.

上記充填層2の再生が終了したら、冷却工程に入る。再生終了の時点は、吸湿した除湿剤を加熱再生するのに必要な時間を予め測定して設定する。
冷却工程にあっては再生工程で使用した再生ガスNを冷却ガスとして使用し、矢印Cに示すように、三方弁8Bが切り替えられて、N源8Aからの経路が径路7側に変わって循環経路9につながる。循環経路9においてはブロワ15によって冷却ガスが循環されるが、その間ドレンセパレーター16によってガス内に凝縮した水分を除去され、再生クーラー17によって冷却された上で径路13に導入され、径路13から四方弁51を介して矢印Cに示すように分岐径路5Bに振り分けられ、除湿塔1Bの充填層2の上端部に導入される。即ち径路13、分岐径路5Bは冷却ガス循環経路の一部となっている。
上記充填層2に導入された冷却ガスは充填層2内を流下することによって上記充填層2を冷却し、上記充填層2の底部から導通路3を上行して上記除湿塔1Bの上端部から径路5’に排出される。そして該使用済み冷却ガスは径路5’から矢印Cに示すように四方弁6に至り、該四方弁6によって径路7に振り分けられる。
When the regeneration of the packed bed 2 is completed, the cooling process is started. At the end of regeneration, the time necessary for heating and regenerating the dehumidified moisture is measured and set in advance.
In the cooling process, the regeneration gas N 2 used in the regeneration process is used as the cooling gas, and as indicated by the arrow C, the three-way valve 8B is switched, and the path from the N 2 source 8A is changed to the path 7 side. Leads to the circulation path 9. In the circulation path 9, the cooling gas is circulated by the blower 15. During this time, moisture condensed in the gas is removed by the drain separator 16, cooled by the regenerative cooler 17, and introduced into the path 13. As shown by the arrow C through the valve 51, the water is distributed to the branch path 5B and introduced into the upper end of the packed bed 2 of the dehumidifying tower 1B. That is, the path 13 and the branch path 5B are part of the cooling gas circulation path.
The cooling gas introduced into the packed bed 2 flows down in the packed bed 2 to cool the packed bed 2, and then goes up the conduction path 3 from the bottom of the packed bed 2 and from the upper end of the dehumidifying tower 1 </ b> B. It is discharged to the path 5 ′. The used cooling gas reaches the four-way valve 6 from the path 5 ′ as indicated by an arrow C, and is distributed to the path 7 by the four-way valve 6.

〔切換え〕
前記実施例では除湿塔1Aにおいて被処理ガスの除湿工程を実施し、除湿塔1Bにおいて充填層2の再生工程および冷却工程を実施している。そして除湿塔1Aにおける除湿工程が終了し、かつ除湿塔1Bにおける再生冷却工程が終了した時点で、除湿塔1Aでは再生冷却工程を実施し、除湿塔1Bでは除湿工程を実施するように、四方弁51および四方弁6を切換える。この切換え信号は、被処理ガスの流量と水分含有量とを測定し、演算回路OCによって演算して除湿塔1Aに導入され充填層2によって吸着された積層水分量SMが、前述した充填層2の吸水能力WA(kg)×SW(kg/kg)(吸水能力限界)に達した時、上記演算回路OCによって出力される。
連続して除湿工程と再生冷却工程とを実施することを確保するためには、除湿塔1Aの除湿工程と除湿塔1Bの再生冷却工程とが同時、または除湿塔1Aの除湿工程より除湿塔1Bの再生冷却工程が早く終了するように運転されることが望ましい。
例えばモレキュラーシーブを144kg充填した充填層2を有する除湿塔1A,1Bの場合、再生に要するガス量(N量)は30Nm/h、冷却に要するガス量は40Nm/hとして再生時間は5時間、冷却時間は3時間(循環)、計8時間の再生冷却工程に設定される。そこで除湿工程も8時間で終了するように被処理ガスの送通量をブロワ18によって調節する。具体的には充填層2の吸水能力を8kgとすると、除湿工程開始後5時間までブロワ18を通常駆動し、演算回路OCによって演算された積算水分量が上記吸水能力の75〜85%の範囲で設定された量、例えば7kgに達した時、演算回路OCからの信号SMによって、上記ブロワ18の回転数を落とし、残余の1kgを3時間で吸着出来るようにする。
[Switching]
In the said Example, the dehumidification process of to-be-processed gas is implemented in the dehumidification tower 1A, and the reproduction | regeneration process and cooling process of the packed bed 2 are implemented in the dehumidification tower 1B. Then, when the dehumidification process in the dehumidification tower 1A is completed and the regeneration cooling process in the dehumidification tower 1B is completed, the regenerative cooling process is performed in the dehumidification tower 1A, and the dehumidification process is performed in the dehumidification tower 1B. 51 and the four-way valve 6 are switched. This switching signal measures the flow rate and water content of the gas to be processed, is calculated by the arithmetic circuit OC, is introduced into the dehumidifying tower 1A, and is adsorbed by the packed bed 2 to form the packed bed 2 described above. When the water absorption capacity WA (kg) × SW (kg / kg) (water absorption capacity limit) is reached, it is output by the arithmetic circuit OC.
In order to ensure that the dehumidification step and the regeneration cooling step are performed continuously, the dehumidification step of the dehumidification tower 1A and the regeneration cooling step of the dehumidification tower 1B are performed simultaneously or from the dehumidification step of the dehumidification tower 1A. It is desirable to operate so that the regenerative cooling process is completed early.
For example, in the case of dehumidification towers 1A and 1B having a packed bed 2 packed with 144 kg of molecular sieves, the amount of gas required for regeneration (N 2 amount) is 30 Nm 3 / h, the amount of gas required for cooling is 40 Nm 3 / h, and the regeneration time is 5 hours, cooling time is set to 3 hours (circulation), a total of 8 hours of regeneration cooling process. Therefore, the flow rate of the gas to be processed is adjusted by the blower 18 so that the dehumidifying process is completed in 8 hours. Specifically, if the water absorption capacity of the packed bed 2 is 8 kg, the blower 18 is normally driven for 5 hours after the start of the dehumidification process, and the integrated water amount calculated by the arithmetic circuit OC is in the range of 75 to 85% of the water absorption capacity. When the amount reaches the amount set in (7), for example, 7 kg, the rotational speed of the blower 18 is decreased by the signal SM from the arithmetic circuit OC so that the remaining 1 kg can be adsorbed in 3 hours.

本発明では、被処理ガスの水分含有量を確実に設定値以下とすることが出来るので、産業上利用可能である。   In the present invention, since the moisture content of the gas to be treated can be surely set to a set value or less, it is industrially applicable.

1A,1B 除湿塔
2 充填層
3 導通路
4 加熱筒
5 被処理ガスを導入するための径路
5’ 処理済みガスを排出するための径路
5A,5B 分岐径路
51,6, 四方弁
9 冷却ガスを循環する径路
13 使用済み再生ガスを排出させるための径路
14 再生ガス放出弁
20 流量計
21 露点計
OC 演算回路
1A, 1B Dehumidification tower 2 Packed bed 3 Conducting path 4 Heating cylinder 5 Path 5 'for introducing the gas to be treated Path 5' for discharging the treated gas 5A, 5B Branch path 51, 6, Four-way valve 9 Cooling gas Circulating path 13 Path for discharging used regeneration gas 14 Regeneration gas release valve 20 Flow meter 21 Dew point meter OC Calculation circuit

Claims (6)

被処理ガスに含有されている水分を除去するために使用される除湿装置であって、
上記除湿装置は、除湿剤の充填層と加熱手段とを内部に具備した除湿塔を主体としており、
上記除湿塔において、上記充填層の中央部には上記除湿塔の上下に連通する導通路が設けられ、上記導通路には上記除湿塔の上端よりヒーターが挿着されており
更に上記除湿塔には、上記充填層の上端部に連絡する被処理ガス導入路と、上記除湿塔の上端部に連絡する処理済み被処理ガス排出路と、
上記除湿塔の上端部に連絡する再生ガス導入路と、上記充填層の上端部に連絡する使用済再生ガス排出路と、上記充填層の上端部に連絡する冷却ガス導入路と、上記除湿塔の上端部に連絡する使用済冷却ガス排出路と、が具備されており、
上記被処理ガス導入路には、被処理ガスの流量検出手段と、被処理ガスの水分含有量検出手段と、上記被処理ガスの流量検出手段と上記被処理ガスの水分含有量検出手段とから上記充填層に吸着された積算水分量を演算する演算回路と、上記演算回路より出力される信号によって上記除湿塔への被処理ガスの導入を再生ガスの導入へ切換える切換手段と、が具備されている
ことを特徴とする除湿装置。
A dehumidifying device used to remove moisture contained in a gas to be treated,
The dehumidifying apparatus mainly comprises a dehumidifying tower having a packed bed of a dehumidifying agent and a heating means inside,
In the dehumidification tower, a conduction path communicating with the top and bottom of the dehumidification tower is provided at the center of the packed bed, and a heater is inserted into the conduction path from the upper end of the dehumidification tower. Is a treated gas introduction path that communicates with the upper end of the packed bed, a treated treated gas discharge path that communicates with the upper end of the dehumidifying tower,
A regeneration gas introduction path that communicates with the upper end of the dehumidification tower, a spent regeneration gas discharge path that communicates with the upper end of the packed bed, a cooling gas introduction path that communicates with the upper end of the packed bed, and the dehumidification tower And a spent cooling gas discharge passage communicating with the upper end of the
The process gas introduction path includes a process gas flow rate detection unit, a process gas moisture content detection unit, a process gas flow rate detection unit, and a process gas moisture content detection unit. An arithmetic circuit for calculating the integrated water amount adsorbed on the packed bed, and a switching means for switching the introduction of the gas to be treated into the dehumidification tower to the introduction of the regeneration gas by a signal output from the arithmetic circuit. A dehumidifying device.
上記再生ガス排出路の中間部には上記冷却ガス導入路が合一され、
上記被処理ガス導入路と上記再生ガス排出路と上記冷却ガス導入路とは合一して上記除湿塔に接続し、上記再生ガス導入路と上記使用済冷却ガス排出路とは合一して上記除湿塔に接続し、上記冷却ガス導入路と上記使用済冷却ガス排出路とはガス冷却手段を介して接続して冷却ガス循環径路を形成している
請求項1に記載の除湿装置。
The cooling gas introduction path is united with an intermediate portion of the regeneration gas discharge path,
The treated gas introduction path, the regeneration gas discharge path, and the cooling gas introduction path are combined and connected to the dehumidification tower, and the regeneration gas introduction path and the used cooling gas discharge path are combined. The dehumidifying device according to claim 1, wherein the dehumidifying tower is connected to the dehumidifying tower, and the cooling gas introduction path and the used cooling gas discharge path are connected via a gas cooling means to form a cooling gas circulation path.
請求項1または2に記載の除湿装置によって構成される除湿システムであり、
上記除湿塔は二基が並設され、
一の除湿塔では被処理ガスを導入して除湿を行なう除湿工程が実施され、
他の除湿塔では再生ガスを導入して上記充填層の加熱再生を行ない、その後冷却ガスを導入して冷却を行なう再生冷却処理が行なわれ、
上記二基の除湿塔間には所定時間毎に除湿工程と再生冷却工程とを切換える切換手段が介在している
ことを特徴とする除湿システム。
It is a dehumidification system comprised by the dehumidification apparatus of Claim 1 or 2.
Two dehumidification towers are juxtaposed,
In one dehumidification tower, a dehumidification process is performed in which the gas to be treated is introduced and dehumidified,
In other dehumidifying towers, regeneration gas is introduced to perform regeneration of the packed bed by heating, and then a regeneration cooling process is performed in which cooling gas is introduced for cooling.
A dehumidification system comprising a switching means for switching between the dehumidification process and the regeneration cooling process at predetermined intervals between the two dehumidification towers.
請求項1または2に記載の除湿装置を使用し、
被処理ガスの除湿処理工程にあっては、被処理ガス導入路から除湿塔内の充填層上部に被処理ガスを導入し、上記充填層上部に導入された上記被処理ガスが上記充填層内を流下して上記除湿塔底部に達し、上記除湿塔底部から導通路内を上昇して上記除湿塔上端部に接続する処理済ガス排出路から排出されるが、
上記被処理ガス導入路に介在する流量検出手段によって上記充填層に導入される上記被処理ガスの導入積算量を検出し、更に水分含有量検出手段によって上記被処理ガスの水分含有量を検出し、上記被処理ガスの導入積算量および上記被処理ガスの水分量から上記充填層の水分吸着量を演算回路によって演算して、上記水分吸着量が飽和量に達した場合には、上記被処理ガスの除湿処理工程から上記充填層の再生冷却工程に切り換えるものとし、
上記充填層の再生冷却工程にあっては、
上記充填層の再生として、再生ガス導入路から上記除湿塔上端部に再生ガスを導入し、上記再生ガスが上記充填層の導通路を下降してその間に上記ヒーターによって所定温度に加熱され、上記除湿塔底部に達してから上記充填層内を上昇し、上記充填層上部から使用済再生ガスとして再生ガス排出路へ排出され、
上記充填層の再生後に上記充填層の冷却として、冷却ガス導入路から冷却ガスを上記充填層上部に導入し、上記冷却ガスが上記充填層内を下降しつつ上記充填層を冷却して上記除湿塔底部に達し、上記除湿塔底部から上記導通路内を上昇して上記除湿塔上部から使用済み冷却ガスとして冷却ガス排出路へ排出される
ことを特徴とする被処理ガスの除湿処理方法。
Using the dehumidifying device according to claim 1 or 2,
In the dehumidifying process of the gas to be processed, the gas to be processed is introduced into the upper part of the packed bed in the dehumidifying tower from the gas inlet path, and the gas to be processed introduced into the upper part of the packed bed is introduced into the packed bed. It reaches the bottom of the dehumidification tower by flowing down and is discharged from the treated gas discharge path connected to the upper end of the dehumidification tower by rising from the bottom of the dehumidification tower through the conduction path.
The flow rate detecting means interposed in the gas to be processed introduction path detects the integrated amount of the gas to be processed introduced into the packed bed, and the water content detecting means detects the water content of the gas to be processed. When the moisture adsorption amount of the packed bed is calculated from the integrated amount of the gas to be treated and the moisture amount of the gas to be treated by an arithmetic circuit, and the moisture adsorption amount reaches the saturation amount, Switch from the dehumidification process of gas to the regeneration cooling process of the packed bed,
In the regenerative cooling process of the packed bed,
As regeneration of the packed bed, the regeneration gas is introduced from the regeneration gas introduction path to the upper end of the dehumidifying tower, and the regeneration gas descends the conduction path of the packed bed while being heated to a predetermined temperature by the heater. After reaching the bottom of the dehumidifying tower, the inside of the packed bed rises and is discharged from the upper part of the packed bed as a used regeneration gas into the regeneration gas discharge path
As the cooling of the packed bed after the regeneration of the packed bed, a cooling gas is introduced into the upper part of the packed bed from the cooling gas introduction path, and the dehumidifying is performed by cooling the packed bed while the cooling gas descends in the packed bed. A method for dehumidifying a gas to be treated, which reaches the bottom of the tower, rises from the bottom of the dehumidifying tower through the conduction path, and is discharged from the top of the dehumidifying tower as a used cooling gas to a cooling gas discharge path.
請求項3に記載の除湿システムを使用し、
一の除湿塔においては被処理ガスの除湿処理工程を行ない、他の除湿塔においては再生冷却工程を行ない、一の除湿塔における除湿工程が完了し、かつ他の除湿塔における再生冷却工程が完了した時、一の除湿塔においては除湿工程から再生冷却工程に切換え、他の除湿塔においては再生冷却工程から除湿工程に切換える
ことを特徴とする被処理ガスの除湿処理方法。
Using the dehumidification system according to claim 3,
The dehumidification tower performs the dehumidification process of the gas to be treated, the other dehumidification tower performs the regenerative cooling process, the dehumidification process in the one dehumidification tower is completed, and the regenerative cooling process in the other dehumidification tower is completed. A dehumidifying treatment method for a gas to be treated, wherein the dehumidifying tower is switched from the dehumidifying process to the regenerative cooling process, and the other dehumidifying tower is switched from the regenerative cooling process to the dehumidifying process.
一の除湿塔における充填層の積算水分吸着量が飽和量の75〜85%の範囲で設定された所定の設定値に達した時、上記被処理ガスを上記除湿塔に導入する速度を低下して、他の除湿塔における再生冷却工程が完了する時点で、一の除湿工程における除湿工程が完了するように調節する請求項5に記載の被処理ガスの除湿処理方法。

When the accumulated water adsorption amount of the packed bed in one dehumidifying tower reaches a predetermined set value set in a range of 75 to 85% of the saturation amount, the rate of introducing the gas to be treated into the dehumidifying tower is reduced. The method for dehumidifying a gas to be treated according to claim 5, wherein the dehumidifying step in one dehumidifying step is adjusted to be completed when the regeneration cooling step in the other dehumidifying tower is completed.

JP2012147245A 2012-06-29 2012-06-29 Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system Pending JP2014008462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147245A JP2014008462A (en) 2012-06-29 2012-06-29 Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147245A JP2014008462A (en) 2012-06-29 2012-06-29 Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system

Publications (1)

Publication Number Publication Date
JP2014008462A true JP2014008462A (en) 2014-01-20

Family

ID=50105617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147245A Pending JP2014008462A (en) 2012-06-29 2012-06-29 Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system

Country Status (1)

Country Link
JP (1) JP2014008462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032183A (en) * 2015-07-30 2017-02-09 パナホーム株式会社 Humidity conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032183A (en) * 2015-07-30 2017-02-09 パナホーム株式会社 Humidity conditioning system

Similar Documents

Publication Publication Date Title
TWI510280B (en) Fluid handling methods, fluid handling devices and fluids
ES2551865T3 (en) Apparatus and system for NOx reduction in wet combustion gas
JPH027688B2 (en)
JP2017164683A (en) Recovery method and recovery apparatus of carbon dioxide
KR20170120565A (en) Dryer for compressed gas, compressor installation provided with such a dryer and method for drying gas
KR101906529B1 (en) Non-purge and adsorption type air dryer using a blower
JP4546215B2 (en) Method and apparatus for controlling the flow rate of gas passing through particulate matter in a drying hopper
JP6523797B2 (en) Zero gas purifier for CO2 concentration meter and CO2 concentration measurement system
JPWO2018101255A1 (en) Organic solvent recovery system and organic solvent recovery method
KR20180016405A (en) Compressed gas drying device
US10413859B2 (en) Adsorber with rotary dryer
JP2004531377A (en) Method for regenerating moisture-loaded process air and apparatus for implementing the method
JP2012166128A (en) Dehumidifier
JP2012166128A5 (en)
JP2011149661A (en) Clean room system and method of operating the same
CN115608122A (en) Compressed air decarburization drying device and control method
CN114901379B (en) Method for drying compressed gas
KR20170065791A (en) honeycomb dehumidification dryer with batch control system of dehumidification air, recycling air and cool air
JP2009018970A (en) Oxygen concentrator
JP2014008462A (en) Dehumidifier, dehumidification system structured by the same, and dehumidification processing method of processed gas by the same dehumidifier and dehumidification system
JP2012170857A (en) Organic solvent gas treatment apparatus and method
JPH02233121A (en) Moisture absorbing method from gas and apparatus
JP2017136560A (en) Carbon dioxide recovery system and carbon dioxide separation recovery system
CA2811835A1 (en) Reverse cooling desiccant regeneration
JP2001104738A (en) Oxygen concentrator for medical treatment