JP2014006019A - Continuous sintering furnace and operating method of continuous sintering furnace - Google Patents

Continuous sintering furnace and operating method of continuous sintering furnace Download PDF

Info

Publication number
JP2014006019A
JP2014006019A JP2012142799A JP2012142799A JP2014006019A JP 2014006019 A JP2014006019 A JP 2014006019A JP 2012142799 A JP2012142799 A JP 2012142799A JP 2012142799 A JP2012142799 A JP 2012142799A JP 2014006019 A JP2014006019 A JP 2014006019A
Authority
JP
Japan
Prior art keywords
dewaxing
furnace
sintering
gas
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012142799A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kohida
智之 小比田
Yukitoshi Owada
幸利 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2012142799A priority Critical patent/JP2014006019A/en
Publication of JP2014006019A publication Critical patent/JP2014006019A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce gas consumption and power consumption rather than the prior arts, in a continuous sintering furnace, and to suppress a sintering defect by completing dewaxing in a dewaxing section.SOLUTION: In the continuous sintering furnace, a dewaxing section 20, a sintering section 30 and a cooling section 40 are provided continuously from a conveyance upstream side to a downstream side in a furnace body 10 penetrated with a furnace inside conveyance path 11 for a work W. The continuous sintering furnace comprises conveyance means 50 for conveying the work W along the furnace inside conveyance path 11. Within a connection passage 14 provided in a boundary portion between the dewaxing section 20 and the sintering section 30, shield air stream jetting means 60 is provided which includes a nozzle 61 for jetting out a shield air stream shielding and partitioning a space within the furnace into the dewaxing section 20 and the sintering section 30. A jetting direction and a flow velocity of the shield air stream are set appropriately to prevent harmful gas generated in the dewaxing section 20 from being infiltrated into the sintering section 30, and while reducing a sintering defect, the quantity of atmospheric gas to be supplied to the sintering section 30 and power consumption for heating the atmospheric gas are reduced.

Description

本発明は、所定形状に成形された圧粉体を焼結する粉末冶金技術における連続焼結炉および連続焼結炉の運転方法に関する。   The present invention relates to a continuous sintering furnace and a method of operating the continuous sintering furnace in powder metallurgy technology for sintering a green compact formed into a predetermined shape.

原料粉末を所定形状に圧縮成形した圧粉体を焼結して得る粉末冶金製品の焼結工程は、圧粉体に含まれる潤滑剤の除去を行う予備工程としての脱ろう工程、所定の温度で加熱する本工程である焼結工程、焼結体を冷却する予後工程である冷却工程を必要としている。これらの工程を実施する炉として、ワークをメッシュベルトで搬送しながら各工程を行う脱ろう部、焼結部、冷却部が連続して設けられた連続焼結炉が用いられている(特許文献1等)。   The sintering process of the powder metallurgy product obtained by sintering the green compact obtained by compression molding the raw material powder into a predetermined shape is a dewaxing process as a preliminary process for removing the lubricant contained in the green compact, a predetermined temperature This requires a sintering process, which is the main process of heating in step 1, and a cooling process, which is a prognostic process for cooling the sintered body. As a furnace for carrying out these processes, a continuous sintering furnace in which a dewaxing section, a sintering section, and a cooling section for performing each process while conveying a work with a mesh belt are continuously used is used (Patent Literature). 1).

この種の連続焼結炉においては、ワークに所望の特性を与えるために、雰囲気および温度といった炉内環境の適正化が求められる。一般に、脱ろう部では、熱源としてプロパンやブタンなどの炭化水素ガスを不完全燃焼させ、ワークの酸化を防ぎつつ、発生する排気ガス中の潤滑剤から二次的に発生するすすなどを排出している。このすすは、脱ろう部の温度が低いと脱ろうが不十分となることにより発生しやすいため、温度を上げてカーボンポテンシャルを下げ、脱炭を促進させることで抑制される。しかしながら、昇温燃焼ガスの分解に伴う余剰の水分や圧縮成形時に使用される潤滑剤(例えば、ステアリン酸亜鉛)の熱分解成分である酸化亜鉛を含む有害ガスが焼結部に侵入すると、ワークの脱炭反応が過剰となって所望の強度や寸法が得られないばかりか、外観に変質を来たし不良の要因となる。   In this type of continuous sintering furnace, it is required to optimize the furnace environment such as atmosphere and temperature in order to give the workpiece desired characteristics. In general, in the dewaxing section, hydrocarbon gas such as propane or butane is incompletely burned as a heat source to prevent oxidation of the work, and discharge secondary soot generated from the lubricant in the generated exhaust gas. ing. This soot is likely to occur when the temperature of the dewaxing portion is low, and the dewaxing is insufficient. Therefore, the soot is suppressed by increasing the temperature to lower the carbon potential and promoting decarburization. However, if harmful gas containing zinc oxide, which is a thermal decomposition component of the lubricant (for example, zinc stearate) used in compression molding due to decomposition of the heated combustion gas, enters the sintered part, In addition to excessive decarburization reaction, the desired strength and dimensions cannot be obtained, and the appearance is deteriorated to cause defects.

そこで従来では、潤滑剤の熱分解で発生する排気ガス量を上回る量の還元性ガスや窒素などの非酸化性ガスからなる雰囲気ガスを、焼結部の下流端部付近において炉内に供給して内圧を高めることで、脱ろう部から焼結部への有害ガスの侵入を抑えている。この他には、脱ろう部と焼結部との境界部分に上下可動式の天井を設け、ワークの通過には支障のない高さまで仕切り扉を下げて脱ろう部と焼結部との間の自由なガスの流動を規制するといった対策も実施されている。   Therefore, conventionally, an atmospheric gas composed of a reducing gas and a non-oxidizing gas such as nitrogen exceeding the amount of exhaust gas generated by the thermal decomposition of the lubricant is supplied into the furnace near the downstream end of the sintered part. By increasing the internal pressure, the invasion of harmful gases from the dewaxed part to the sintered part is suppressed. In addition, a ceiling that can be moved up and down is provided at the boundary between the dewaxed part and the sintered part, and the partition door is lowered to a height that does not hinder the passage of the work, and the space between the dewaxed part and the sintered part is lowered. Measures such as restricting the flow of free gas are also being implemented.

特開2001−303105号公報JP 2001-303105 A

上記従来の連続焼結炉では、炉内へのワークの投入量が変化した際に燃焼ガスの発生量が変動したり、脱ろう部での適切な温度を保持するために燃焼量を増減させたりしており、これに応じて、焼結部の下流端部からの炉内への雰囲気ガスの供給量を、常に脱ろう部内のガス量を上回るようにすることが求められる。また、所定の炉内雰囲気に維持するためには、冷却部から焼結部へのガスの侵入も防ぐために、供給する雰囲気ガスの消費量や、雰囲気ガスを加熱するための電力消費量が多くなり、経済的に不利な点がある。   In the conventional continuous sintering furnace described above, the amount of combustion gas generated fluctuates when the amount of work input into the furnace changes, or the combustion amount is increased or decreased to maintain an appropriate temperature at the dewaxing section. Accordingly, it is required that the supply amount of the atmospheric gas from the downstream end portion of the sintering portion into the furnace is always higher than the gas amount in the dewaxing portion. Moreover, in order to maintain the predetermined furnace atmosphere, in order to prevent gas from entering from the cooling part to the sintering part, the consumption of the supplied atmosphere gas and the power consumption for heating the atmosphere gas are large. There is an economic disadvantage.

本発明は上記事情に鑑みてなされたものであり、その主たる目的は、消費するガス量および電力量を低減することができる連続焼結炉および連続焼結炉の運転方法を提供することにある。   This invention is made | formed in view of the said situation, The main objective is to provide the operating method of the continuous sintering furnace and continuous sintering furnace which can reduce the gas amount and electric energy which are consumed. .

本発明の連続焼結炉は、ワークの炉内搬送路が貫通する炉体の搬送上流側から下流に向けて、脱ろう部、焼結部、冷却部が連続して設けられ、ワークを炉内搬送路に沿って搬送する搬送手段を有する連続焼結炉において、前記脱ろう部と前記焼結部との境界部分の炉内空間を遮蔽して脱ろう部と焼結部とを仕切る遮蔽気流を噴出する遮蔽気流噴出手段を有することを特徴とする(請求項1)。   The continuous sintering furnace of the present invention is provided with a dewaxing part, a sintering part, and a cooling part continuously from the upstream side to the downstream side of the furnace body through which the workpiece conveyance path passes, and In a continuous sintering furnace having a conveying means for conveying along an inner conveying path, shielding for separating the dewaxed part and the sintered part by shielding the furnace space at the boundary part between the dewaxed part and the sintered part It has the shielding airflow ejection means which ejects an airflow (Claim 1).

本発明の連続焼結炉によれば、脱ろう部で発生した有害ガスの焼結部への侵入を、脱ろう部と焼結部との境界部分に噴出させた遮蔽気流によって防ぐことができる。これにより、焼結部へ供給した雰囲気ガスの圧力によって脱ろう部から焼結部への有害ガスの侵入を防ぐといった作用が必要なくなる。脱ろう部から焼結部に至る炉内空間を遮蔽して脱ろう部と焼結部とを仕切る遮蔽気流の温度は、脱ろう部の加熱温度程度でよく焼結部の温度よりも低い。例えば、脱ろう部の温度は600〜750℃程度、焼結部の温度は1100〜1200℃程度である。したがって、焼結部への雰囲気ガスの供給量や、該雰囲気ガスを加熱する電力を低減することができる。また、脱ろうが脱ろう部において完遂しやすくなり、焼結不良が抑制される。   According to the continuous sintering furnace of the present invention, harmful gas generated in the dewaxing portion can be prevented from entering the sintered portion by the shielded air current ejected to the boundary portion between the dewaxing portion and the sintered portion. . Thereby, the effect | action of preventing the penetration | invasion of harmful gas from a dewaxing part to a sintering part by the pressure of the atmospheric gas supplied to the sintering part becomes unnecessary. The temperature of the shielding airflow that shields the space in the furnace from the dewaxing part to the sintering part and partitions the dewaxing part and the sintering part may be about the heating temperature of the dewaxing part, and is lower than the temperature of the sintering part. For example, the temperature of the dewaxing part is about 600 to 750 ° C., and the temperature of the sintered part is about 1100 to 1200 ° C. Therefore, the supply amount of the atmospheric gas to the sintered part and the electric power for heating the atmospheric gas can be reduced. Further, dewaxing is easily completed at the dewaxed portion, and poor sintering is suppressed.

本発明の連続焼結炉では、前記遮蔽気流噴出手段は、前記炉内空間に遮蔽気流を噴出するノズルを有し、該ノズルからの遮蔽気流の噴出方向は、上方から下方であって前記脱ろう部の方向に向かって水平方向に対し40〜60°の角度で傾斜しており、かつ、該遮蔽気流の流速が5〜30m/sである形態が好ましい(請求項2)。   In the continuous sintering furnace of the present invention, the shielded airflow ejecting means has a nozzle for ejecting a shielded airflow into the furnace space, and the direction of ejection of the shielded airflow from the nozzle is from above to below, A configuration in which it is inclined at an angle of 40 to 60 ° with respect to the horizontal direction toward the direction of the brazing part, and the flow velocity of the shielding airflow is preferably 5 to 30 m / s (Claim 2).

遮蔽気流の噴出方向に関しては、上方から下方であって脱ろう部の方向に向かって噴出することにより、脱ろう部から焼結部に向かうガス流に遮蔽気流が対向し、焼結部に有害ガスがより侵入しにくくなる。また、40°を下回る噴出角度ではワークに遮蔽気流が到達しにくくなり、また、炉内搬送路の全断面を遮蔽しにくくなる。一方、60°を超える噴出角度ではワークの周囲で循環流が生じ、脱ろう部内のガスが乱流状態となって焼結部に侵入しやすくなる。以上のことから、上方から下方、かつ、脱ろう部の方向に向かって噴出する遮蔽気流の噴出角度は、40〜60°で傾斜している形態がよい。なお、この角度の範囲では、45〜60°がより好ましい。このように遮蔽気流が指向性を有することにより、遮蔽性がより向上するといった利点を得る。   Regarding the direction of jetting of the shielded airflow, it is harmful to the sintered part because the shielded airflow is opposed to the gas flow from the dewaxed part to the sintered part by ejecting from above to the direction of the dewaxed part. Gas becomes more difficult to enter. Further, when the jet angle is less than 40 °, the shield airflow hardly reaches the work, and the entire cross section of the in-furnace transport path becomes difficult to shield. On the other hand, when the ejection angle exceeds 60 °, a circulating flow is generated around the workpiece, and the gas in the dewaxing portion becomes a turbulent state and easily enters the sintered portion. From the above, it is preferable that the spray angle of the shield airflow jetted from the upper side to the lower side and toward the dewaxing portion is inclined at 40 to 60 °. In this angle range, 45 to 60 ° is more preferable. Thus, since the shielding airflow has directivity, an advantage that the shielding property is further improved is obtained.

遮蔽気流の流速に関しては、5m/sを下回ると、炉内下方に入り込んだ脱ろう用ガスとの置換が円滑に進まず、一方、30m/sを超えるとワークが軽量の場合にワークが炉内で移動してしまう。よって遮蔽気流の流速は5〜30m/sである形態がよく、この範囲では、15〜30m/sがより好ましい。   When the flow rate of the shield airflow is less than 5 m / s, the replacement with the dewaxing gas that has entered the lower part of the furnace does not proceed smoothly. On the other hand, when the flow rate exceeds 30 m / s, Will move within. Therefore, the flow rate of the shielding airflow is preferably 5 to 30 m / s, and in this range, 15 to 30 m / s is more preferable.

次に、本発明の連続焼結炉の運転方法は、上記請求項1または2に記載の連続焼結炉を用いてワークを焼結するにあたり、前記焼結部に供給する雰囲気ガスを前記遮蔽気流噴出手段に分配して該遮蔽気流噴出手段から該雰囲気ガスを前記境界部分に前記遮蔽気流として噴出することを特徴とする。   Next, according to the operation method of the continuous sintering furnace of the present invention, when the workpiece is sintered using the continuous sintering furnace according to claim 1 or 2, the atmospheric gas supplied to the sintered part is shielded. The atmospheric gas is distributed to the airflow ejecting means and ejected from the shielded airflow ejecting means to the boundary portion as the shielded airflow.

本発明の連続焼結炉の運転方法によれば、焼結部に供給する雰囲気ガスの一部を、脱ろう部と焼結部との境界部分に噴出する遮蔽気流に流用するものであり、これによると、上記のように焼結部への雰囲気ガスの供給量や、該雰囲気ガスを加熱する電力を低減することができる。   According to the operation method of the continuous sintering furnace of the present invention, a part of the atmospheric gas supplied to the sintered part is diverted to a shielded air current that is jetted to the boundary part between the dewaxed part and the sintered part, According to this, the supply amount of the atmospheric gas to the sintered part and the electric power for heating the atmospheric gas can be reduced as described above.

また、本発明の連続焼結炉の運転方法は、請求項1または2に記載の連続焼結炉を用いてワークを焼結するにあたり、前記脱ろう部に供給する脱ろう用ガスと同じガスを前記遮蔽気流噴出手段に導入して、該遮蔽気流噴出手段から該脱ろう用ガスを前記境界部分に前記遮蔽気流として噴出することを特徴とする。この方法によれば、脱ろう用ガスは脱ろうに好適な水分を含有するガスであり、また、予め脱ろう部の温度に加熱されていることにより、脱ろう部の方向へ斜めに噴出されても脱ろう部内の雰囲気を乱すことがなく、また、別途ガスを加熱する必要もないことから、経済的である。   The operation method of the continuous sintering furnace according to the present invention is the same gas as the dewaxing gas supplied to the dewaxing part when the workpiece is sintered using the continuous sintering furnace according to claim 1 or 2. Is introduced into the shielding airflow ejection means, and the dewaxing gas is ejected from the shielding airflow ejection means to the boundary portion as the shielding airflow. According to this method, the dewaxing gas is a gas containing moisture suitable for dewaxing, and is preliminarily jetted in the direction of the dewaxing part by being heated to the temperature of the dewaxing part in advance. However, the atmosphere in the dewaxing portion is not disturbed, and it is not necessary to heat the gas separately, which is economical.

本発明によれば、消費するガス量および電力量を低減することができる連続焼結炉および連続焼結炉の運転方法が提供されるといった効果を奏する。   According to the present invention, there is an effect that a continuous sintering furnace and an operation method of the continuous sintering furnace that can reduce the amount of gas and electric power consumed are provided.

本発明の一実施形態に係る連続焼結炉を模式的に示す側断面図である。It is a sectional side view showing typically a continuous sintering furnace concerning one embodiment of the present invention. 図1のII−II断面を示す図である。It is a figure which shows the II-II cross section of FIG. 一実施形態の遮蔽気流噴出手段を示す側断面図であるIt is a sectional side view which shows the shielding airflow ejection means of one Embodiment. 本発明の他の実施形態に係る連続焼結炉を模式的に示す側断面図である。It is a sectional side view which shows typically the continuous sintering furnace which concerns on other embodiment of this invention.

以下、図面を参照して本発明の一実施形態を説明する。
(1)連続焼結炉の基本構成
図1は一実施形態の連続焼結炉を示している。この連続焼結炉は、ワークWを水平方向に搬送するためのトンネル状の炉内搬送路11が内部に直線的に貫通形成された炉体10と、ワークWを炉内搬送路11の上流側から下流側(図1で左側から右側)に沿って搬送する搬送手段50を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(1) Basic Configuration of Continuous Sintering Furnace FIG. 1 shows a continuous sintering furnace according to an embodiment. This continuous sintering furnace includes a furnace body 10 in which a tunnel-shaped in-furnace conveyance path 11 for conveying a workpiece W in a horizontal direction is linearly formed inside, and an upstream of the in-furnace conveyance path 11. Conveying means 50 for conveying along the downstream side (from the left side to the right side in FIG. 1) is provided.

炉体10の上流端には装入口12が設けられ、下流端には排出口13が設けられている。搬送手段50は、この場合、エンドレスのメッシュベルトで構成されている。メッシュベルトは、装入口12から排出口13にわたる炉内搬送路11に沿って水平に架設された搬送部51と、排出口13から炉体10の下側を通って装入口12に戻る戻り部52とを有し、搬送部51が装入口1から排出口13に向かって所定速度で移動し、全体として回転するよう駆動される。   An inlet 12 is provided at the upstream end of the furnace body 10, and a discharge port 13 is provided at the downstream end. In this case, the conveying means 50 is composed of an endless mesh belt. The mesh belt includes a transport unit 51 horizontally installed along the in-furnace transport path 11 extending from the charging port 12 to the discharge port 13, and a return unit that returns from the discharge port 13 to the charging port 12 through the lower side of the furnace body 10. 52, and the transport unit 51 is driven to move from the loading port 1 toward the discharge port 13 at a predetermined speed and rotate as a whole.

なお、本実施形態の連続焼結炉はメッシュベルトを搬送手段として用いているが、本発明の搬送手段はメッシュベルトに限られず、ローラハース炉、プッシャ炉、ウォーキングビーム炉等の連続式の搬送手段を有する焼結炉であれば、適用可能である。   Although the continuous sintering furnace of the present embodiment uses a mesh belt as the conveying means, the conveying means of the present invention is not limited to the mesh belt, and continuous conveying means such as a roller hearth furnace, a pusher furnace, a walking beam furnace, etc. If it is a sintering furnace which has this, it is applicable.

炉体10は、ワークWの搬送上流側から下流に向けて、脱ろう部20、焼結部30、冷却部40が連続して一体的に設けられた構成を有しており、ワークWは、搬送手段50によって脱ろう部20、焼結部30、冷却部40の順に通過させられて焼結される。   The furnace body 10 has a configuration in which a dewaxing portion 20, a sintering portion 30, and a cooling portion 40 are continuously and integrally provided from the upstream side to the downstream side of the workpiece W. The dewaxing part 20, the sintering part 30, and the cooling part 40 are passed through the conveying means 50 in this order and sintered.

ワークWは、炉体10の装入口12から搬送手段50に載置されて、まず脱ろう部20に導入される。装入口12から搬送手段50に載置されるワークWは、原料粉末を所定形状に圧縮成形した圧粉体であり、ワークWは脱ろう部20において所定温度(例えば600〜750℃程度)に加熱される。ワークWは、脱ろう部20に配設された脱ろう温度に応じた図示せぬ加熱手段によって加熱される。脱ろう部20の加熱手段としては、カップバーナー、直火のガスバーナー、電気式ヒーター、ラジアントチューブバーナー等が挙げられる。   The workpiece W is placed on the conveying means 50 from the loading port 12 of the furnace body 10 and is first introduced into the dewaxing section 20. The workpiece W placed on the conveying means 50 from the loading port 12 is a green compact obtained by compression-molding raw material powder into a predetermined shape, and the workpiece W is brought to a predetermined temperature (for example, about 600 to 750 ° C.) in the dewaxing portion 20. Heated. The workpiece W is heated by a heating means (not shown) corresponding to the dewaxing temperature disposed in the dewaxing section 20. Examples of the heating means for the dewaxing section 20 include a cup burner, an open flame gas burner, an electric heater, a radiant tube burner, and the like.

脱ろう部20内には、脱ろう用ガス生成部21から脱ろう用ガスが導入される。脱ろう用ガスは、熱源として例えばプロパンやブタンなどの炭化水素ガスを不完全燃焼させたもので、脱ろう用ガス生成部21で生成される。脱ろう用ガス生成部21で生成された脱ろう用ガスは、脱ろう部20と焼結部30との間の境界部分に設けられた接続通路14に連通する配管22を通して、脱ろう部20内に供給される。   A dewaxing gas is introduced into the dewaxing unit 20 from a dewaxing gas generation unit 21. The dewaxing gas is obtained by incomplete combustion of a hydrocarbon gas such as propane or butane as a heat source, and is generated by the dewaxing gas generation unit 21. The dewaxing gas generated in the dewaxing gas generation unit 21 passes through a pipe 22 communicating with a connection passage 14 provided at a boundary portion between the dewaxing unit 20 and the sintering unit 30, and the dewaxing unit 20. Supplied in.

ワークWは脱ろう部20を通過する間に、圧粉体の圧縮成形時に用いられたステアリン酸亜鉛や金属石けん等のろう状の潤滑剤成分が、熱分解されて除去、すなわち脱ろうされる。脱ろうによってワークWから生じる排気ガスは、脱ろう部20に設けられた排気筒23から外部に排出される。この排気ガスは、ワークWの昇温に伴う余剰の水分や潤滑剤の熱分解成分である酸化亜鉛の他に、すすを含むもので、焼結部30に侵入すると、ワークWの脱炭反応が過剰となって所望の強度が得られなかったり、外観に変質を来たしたりする有害ガスである。   While the workpiece W passes through the dewaxing portion 20, the wax-like lubricant components such as zinc stearate and metal soap used during compression molding of the green compact are thermally decomposed and removed, that is, dewaxed. . Exhaust gas generated from the workpiece W by dewaxing is discharged to the outside from an exhaust tube 23 provided in the dewaxing portion 20. This exhaust gas contains soot in addition to surplus moisture accompanying the temperature rise of the workpiece W and zinc oxide which is a thermal decomposition component of the lubricant. When the exhaust gas enters the sintered portion 30, the decarburization reaction of the workpiece W is performed. Is a harmful gas that cannot obtain the desired strength due to its excessive amount or changes its appearance.

搬送手段50の移動により脱ろう部20の炉内搬送路11を通過したワークWは、接続通路14を経て焼結部30に導入され、焼結部30で所定の焼結温度(例えば1100〜1200℃程度)に加熱される。焼結部30での加熱手段は図示していないが、加熱温度に応じた発熱体(例えば、ニクロム、カンタル、炭化珪素等)が選択されて焼結部30の炉体10内に適宜な密度で配設される。   The workpiece W that has passed through the in-furnace conveyance path 11 of the dewaxing section 20 by the movement of the conveyance means 50 is introduced into the sintering section 30 through the connection path 14, and a predetermined sintering temperature (for example, 1100 to 1100) in the sintering section 30. About 1200 ° C.). Although heating means in the sintered part 30 is not shown, a heating element (for example, nichrome, cantal, silicon carbide, etc.) corresponding to the heating temperature is selected and an appropriate density is set in the furnace body 10 of the sintered part 30. Arranged.

また、焼結部30内には、焼結用ガス源31から、焼結部30の下流端に接続された焼結用ガス導入管32を介して雰囲気ガスが導入され、この雰囲気ガスによって焼結部30内は所定圧力に保持される。   An atmosphere gas is introduced into the sintering portion 30 from a sintering gas source 31 through a sintering gas introduction pipe 32 connected to the downstream end of the sintering portion 30, and the atmosphere gas is used for sintering. The inside of the connection part 30 is maintained at a predetermined pressure.

焼結部30に導入する雰囲気ガスは、窒素ガス、水素ガス、アンモニア分解ガス、エキソサーミックガス(プロパン、ブタン、メタン等の炭化水素ガスと空気を発熱反応させた炭化水素変成ガス)、エンドサーミックガス(エキソサーミックガスと同じ原ガスで、空気/ガス比を低くして加熱分解したガス)等の還元性ガスあるいは非酸化性ガスが選択され、室温の状態で、なおかつ脱水して水分を低減した状態で、焼結用ガス導入管32から焼結部30内に導入される。焼結部30内に導入された雰囲気ガスは、焼結部30内の加熱手段33によって焼結温度程度まで加熱される。このため、焼結部30内の温度低下は生じないようになされている。   The atmosphere gas to be introduced into the sintered part 30 is nitrogen gas, hydrogen gas, ammonia decomposition gas, exothermic gas (hydrocarbon modified gas obtained by exothermic reaction of hydrocarbon gas such as propane, butane, methane, etc.) and endothermic. Reducing gas or non-oxidizing gas such as gas (same raw gas as exothermic gas, gas decomposed by reducing the air / gas ratio) or non-oxidizing gas is selected and dehydrated at room temperature to reduce moisture In this state, the gas is introduced from the sintering gas introduction tube 32 into the sintered portion 30. The atmospheric gas introduced into the sintering part 30 is heated to the sintering temperature by the heating means 33 in the sintering part 30. For this reason, the temperature drop in the sintered part 30 does not occur.

ワークWが焼結部30内の炉内搬送路11を搬送されながら雰囲気ガス中で加熱され、焼結部30の終盤で焼結に必要な加熱処理が完了し、次いでワークWは冷却部40に導入される。冷却部40には図示せぬ冷却手段(例えば、炉体10に設けたウォータジャケット)が設けられ、ワークWは冷却部40を通過することで、非酸化、非脱炭の状態が確保される温度以下(例えば200℃以下)まで冷却される。   The workpiece W is heated in the atmospheric gas while being conveyed through the in-furnace conveyance path 11 in the sintering unit 30, and the heat treatment necessary for sintering is completed at the final stage of the sintering unit 30, and then the workpiece W is cooled by the cooling unit 40. To be introduced. The cooling unit 40 is provided with a cooling means (not shown) (for example, a water jacket provided in the furnace body 10), and the workpiece W passes through the cooling unit 40, thereby ensuring a non-oxidized and non-decarburized state. It is cooled to a temperature or lower (eg, 200 ° C. or lower).

冷却部40を通過して焼結処理が最終的に完了したワークWは排出口13から炉体10の外部に排出される。排出されたワークWは回収され、次の工程に移される。   The workpiece W that has passed through the cooling unit 40 and has been finally subjected to the sintering process is discharged from the discharge port 13 to the outside of the furnace body 10. The discharged work W is collected and moved to the next step.

以上が一実施形態の連続焼結炉の基本的な構成および作用である。次いで、本発明に係る脱ろう部20と焼結部30との間の境界部分に設けられた遮蔽気流噴出手段について説明する。   The above is the basic configuration and operation of the continuous sintering furnace of one embodiment. Next, the shielding airflow ejecting means provided at the boundary portion between the dewaxing portion 20 and the sintered portion 30 according to the present invention will be described.

(2)遮蔽気流噴出手段
図1に示すように、脱ろう部20と焼結部30との境界部分には、この境界部分の炉内空間を遮蔽して脱ろう部20と焼結部30とを仕切る遮蔽気流を噴出する遮蔽気流噴出手段60が設けられている。
(2) Shielding Airflow Ejecting Means As shown in FIG. 1, the dewaxing portion 20 and the sintered portion 30 are shielded at the boundary portion between the dewaxing portion 20 and the sintered portion 30 by shielding the space in the furnace at the boundary portion. Shielding airflow ejecting means 60 for ejecting a shielding airflow that divides the airflow is provided.

遮蔽気流噴出手段60は、図1および図2に示すように、脱ろう部20と焼結部30の境界部分の接続通路14の天井部141に設置されたノズル61と、このノズル61を上記脱ろう用ガス生成部21に連通するノズル管62を有している。この場合、遮蔽気流として脱ろう用ガスの一部を流用しており、脱ろう用ガスがノズル61から遮蔽気流として噴出するようになされている。   As shown in FIGS. 1 and 2, the shield airflow ejection means 60 includes a nozzle 61 installed in the ceiling portion 141 of the connection passage 14 at the boundary portion between the dewaxing portion 20 and the sintered portion 30, and the nozzle 61 as described above. A nozzle pipe 62 communicating with the dewaxing gas generation unit 21 is provided. In this case, a part of the dewaxing gas is used as the shielding airflow, and the dewaxing gas is ejected from the nozzle 61 as the shielding airflow.

上記のようにワークWを焼結するために連続焼結炉を運転している最中においては、ノズル61から遮蔽気流を噴出させて、接続通路14の炉内空間を、その遮蔽気流によって遮蔽し、接続通路14において脱ろう部20と焼結部30とを仕切った状態を維持する。遮蔽気流用のガスは、図3に示すように、接続通路14の天井部141に固定されたノズル61から下方に向けて噴出される。   During the operation of the continuous sintering furnace to sinter the workpiece W as described above, a shielding airflow is ejected from the nozzle 61 to shield the furnace space of the connection passage 14 with the shielding airflow. And the state which partitioned off the dewaxing part 20 and the sintered part 30 in the connection channel | path 14 is maintained. As shown in FIG. 3, the shielding airflow gas is ejected downward from a nozzle 61 fixed to the ceiling portion 141 of the connection passage 14.

ノズル61は、図2および図3に示すように炉内搬送路11の幅方向に延びる角筒状の外形を有するもので、長手方向、すなわち炉内搬送路11の幅方向に沿ったスリット状の噴出口611が形成され、この噴出口611から遮蔽気流(図2および図3で符号A)が膜状に噴出する形態のものである。ノズル61としてはこのような形態に限定されるものではなく、下方に向けて遮蔽気流を膜状に噴出し、炉内空間を遮蔽することが可能であれば、いかなる形態のものでも採用することができる。   2 and 3, the nozzle 61 has a rectangular tube-like outer shape extending in the width direction of the in-furnace transport path 11, and is slit-shaped along the longitudinal direction, that is, the width direction of the in-furnace transport path 11. , And a shield airflow (reference A in FIGS. 2 and 3) is ejected in the form of a film from the outlet 611. The nozzle 61 is not limited to such a form, and any form may be adopted as long as it is possible to spray a shielding airflow in a film shape downward and shield the furnace space. Can do.

ノズル61からの膜状の遮蔽気流の噴出方向は、図3に示すように、上方から下方であってワークWの搬送上流側、すなわち脱ろう部20の方向に向かって水平方向に対し40〜60°の角度θで傾斜する形態となっている。また、ノズル61から噴出される遮蔽気流の流速は、5〜30m/s程度に設定される。   As shown in FIG. 3, the ejection direction of the film-like shielding air current from the nozzle 61 is 40 to the horizontal direction from the upper side to the lower side and toward the upstream side of the work W conveyance, that is, toward the dewaxing portion 20. It is configured to be inclined at an angle θ of 60 °. Moreover, the flow velocity of the shield airflow ejected from the nozzle 61 is set to about 5 to 30 m / s.

(3)遮蔽気流噴出手段の作用効果
上記一実施形態の連続焼結炉によれば、上記遮蔽気流噴出手段60を備えることにより、脱ろう部20で加熱されたワークWから発生する上記有害ガスが焼結部30へ侵入することを、ノズル61から噴出する遮蔽気流によって効果的に防止することができる。従来では、焼結部30へ供給した雰囲気ガスの圧力によって脱ろう部20から焼結部30への有害ガスの侵入を防いでいたが、本実施形態ではその必要がなくなる。遮蔽気流は指向性を有しているので遮蔽性が高く、このため、焼結部30への雰囲気ガスの供給量を低減することができるとともに、雰囲気ガスを加熱する焼結部30の加熱手段33で消費する電力も低減させることができる。また、脱ろうが脱ろう部20において完遂しやすくなるため、ワークWの焼結不良が抑制される。
(3) Operational effect of shielded airflow ejecting means According to the continuous sintering furnace of the one embodiment, the harmful gas generated from the workpiece W heated in the dewaxing section 20 by including the shielded airflow ejecting means 60. Can be effectively prevented from entering the sintered portion 30 by the shield airflow ejected from the nozzle 61. Conventionally, intrusion of harmful gas from the dewaxing portion 20 to the sintered portion 30 is prevented by the pressure of the atmospheric gas supplied to the sintered portion 30, but this need is eliminated in this embodiment. Since the shielding airflow has directivity, the shielding property is high. For this reason, the supply amount of the atmospheric gas to the sintering part 30 can be reduced, and the heating means of the sintering part 30 for heating the atmospheric gas. The power consumed in 33 can also be reduced. Moreover, since it becomes easy to complete dewaxing in the dewaxing part 20, the sintering defect of the workpiece | work W is suppressed.

また、本実施形態では、脱ろう用ガス生成部21で生成して脱ろう部20に供給する脱ろう用ガスを、遮蔽気流噴出手段60に導入して遮蔽気流として噴出させている。脱ろう用ガスは脱ろうに好適な水分を含有するガスであり、また、予め脱ろう部20の温度に加熱されていることにより、脱ろう部20の方向へ斜めに噴出される遮蔽気流によって脱ろう部20内の雰囲気が乱れることがなく、また、別途遮蔽気流用のガスを用意してそのガスを加熱する必要もないことから、経済的に操業することができる。   Moreover, in this embodiment, the dewaxing gas produced | generated by the dewaxing gas production | generation part 21 and supplied to the dewaxing part 20 is introduce | transduced into the shielding airflow ejection means 60, and is ejected as shielding airflow. The dewaxing gas is a gas containing moisture suitable for dewaxing, and is preliminarily heated to the temperature of the dewaxing part 20, so that the dewaxing gas is jetted obliquely toward the dewaxing part 20. Since the atmosphere in the dewaxing portion 20 is not disturbed, and it is not necessary to prepare a gas for shielding airflow and heat the gas separately, it is possible to operate economically.

また、遮蔽気流の噴出方向が、上方から下方であってワークWの搬送上流側の脱ろう部20の方向に向かっていることにより、脱ろう部20から焼結部30に向かうガス流に遮蔽気流が対向し、焼結部30に有害ガスがより侵入しにくくなる。また、遮蔽気流の噴出方向の角度θに関しては、40°を下回る噴出角度ではワークWに遮蔽気流が到達しにくくなり、また、炉内搬送路11の全断面を遮蔽しにくくなる。一方、60°を超える噴出角度ではワークWの周囲で循環流が生じ、脱ろう部20内のガスが乱流状態となって焼結部30に侵入しやすくなる。よって、遮蔽気流の噴出角度θは40〜60°で傾斜している形態がよく、この角度の範囲では、45〜60°がより好ましい。   Further, since the jet direction of the shield airflow is from above to below and toward the dewaxing portion 20 on the upstream side of the work W conveyance, the gas flow from the dewaxing portion 20 toward the sintering portion 30 is shielded. The airflow faces each other, and the harmful gas is less likely to enter the sintered portion 30. Further, regarding the angle θ in the jet direction of the shield airflow, the shield airflow hardly reaches the workpiece W at the jet angle less than 40 °, and the entire cross section of the in-furnace transport path 11 becomes difficult to shield. On the other hand, when the ejection angle exceeds 60 °, a circulating flow is generated around the workpiece W, and the gas in the dewaxing portion 20 becomes turbulent and easily enters the sintered portion 30. Therefore, the jetting angle θ of the shielding airflow is preferably inclined at 40 to 60 °, and in the range of this angle, 45 to 60 ° is more preferable.

さらに、遮蔽気流の流速に関しては、5m/sを下回ると、炉内下方に入り込んだ脱ろう用ガスとの置換が円滑に進まず、一方、30m/sを超えるとワークWが軽量の場合にワークWが炉内で移動してしまう。よって遮蔽気流の流速は5〜30m/sが好ましく、この範囲では、15〜30m/sがより好ましい。   Furthermore, if the flow velocity of the shield airflow is less than 5 m / s, the replacement with the dewaxing gas that has entered the lower part of the furnace does not proceed smoothly, whereas if it exceeds 30 m / s, the workpiece W is light. The workpiece W moves in the furnace. Therefore, the flow rate of the shielding airflow is preferably 5 to 30 m / s, and more preferably 15 to 30 m / s in this range.

(4)他の実施形態
上記実施形態では、脱ろう用ガスを脱ろう部20と焼結部30とを仕切る遮蔽気流に流用しているが、遮蔽気流に用いるガスとしては、窒素等の非酸化性ガスを用いてもよい。しかしながら例えば窒素は加熱することができないため好ましいとは言えない。そこで、図4に示すように、遮蔽気流噴出手段60のノズル管62を焼結用ガス源31に延長して接続し、焼結部30に供給する雰囲気ガスを遮蔽気流噴出手段60に分配してノズル61から遮蔽気流として噴出させる。
(4) Other Embodiments In the above embodiment, the dewaxing gas is diverted to the shielding airflow that partitions the dewaxing portion 20 and the sintering portion 30, but the gas used for the shielding airflow is non-nitrogen or the like. An oxidizing gas may be used. However, for example, nitrogen is not preferable because it cannot be heated. Therefore, as shown in FIG. 4, the nozzle tube 62 of the shield airflow jetting means 60 is extended and connected to the sintering gas source 31, and the atmospheric gas supplied to the sintering section 30 is distributed to the shielded airflow jetting means 60. Then, it is ejected from the nozzle 61 as a shield airflow.

このような運転形態は、焼結部30に供給する雰囲気ガスの一部を、脱ろう部20と焼結部30との境界部分に噴出する遮蔽気流として流用するものであり、上記一実施形態と同様に、焼結部30への雰囲気ガスの供給量や、雰囲気ガスを加熱する電力を低減することができるといった効果を同様に得ることができる。ただしこの場合、遮蔽気流噴出手段60に供給される雰囲気ガスは室温であるため、ノズル61から噴出させる雰囲気ガスを脱ろう部20の温度程度まで昇温させることが、脱ろう部20の操業安定のためには好ましい。   In such an operation mode, a part of the atmospheric gas supplied to the sintered part 30 is diverted as a shielded air current that is jetted to the boundary part between the dewaxing part 20 and the sintered part 30. Similarly, the effect that the supply amount of the atmospheric gas to the sintered part 30 and the electric power for heating the atmospheric gas can be reduced can be obtained similarly. However, in this case, since the ambient gas supplied to the shield airflow ejecting means 60 is room temperature, it is possible to stabilize the operation of the dewaxing portion 20 by raising the temperature of the ambient gas ejected from the nozzle 61 to about the temperature of the dewaxing portion 20. Is preferred for.

また、遮蔽気流噴出手段60に供給する雰囲気ガスは、焼結部30に供給するものと違って脱水せず、水分を含むそのままの状態で使用することができる。このため、焼結部30に供給する側の雰囲気ガスを脱水するための電力消費量を従来より低減することができるといった利点がある。   Unlike the gas supplied to the sintered part 30, the atmospheric gas supplied to the shield air current jetting means 60 is not dehydrated and can be used as it is containing moisture. For this reason, there exists an advantage that the power consumption for dehydrating the atmospheric gas of the side supplied to the sintering part 30 can be reduced conventionally.

10…炉体
11…炉内搬送路
20…脱ろう部
30…焼結部
40…冷却部
50…搬送手段
60…遮蔽気流噴出手段
61…ノズル
W…ワーク
DESCRIPTION OF SYMBOLS 10 ... Furnace body 11 ... In-furnace conveyance path 20 ... Dewaxing part 30 ... Sintering part 40 ... Cooling part 50 ... Conveyance means 60 ... Shielding airflow ejection means 61 ... Nozzle W ... Workpiece

Claims (4)

ワークの炉内搬送路が貫通する炉体の搬送上流側から下流に向けて、脱ろう部、焼結部、冷却部が連続して設けられ、ワークを炉内搬送路に沿って搬送する搬送手段を有する連続焼結炉において、
前記脱ろう部と前記焼結部との境界部分の炉内空間を遮蔽して脱ろう部と焼結部とを仕切る遮蔽気流を噴出する遮蔽気流噴出手段を有することを特徴とする連続焼結炉。
A dewaxing section, sintering section, and cooling section are continuously provided from the upstream side to the downstream side of the furnace body through which the work path in the furnace passes, and the work is transported along the furnace path. In a continuous sintering furnace having means,
Continuous sintering characterized by comprising shielded airflow jetting means for jetting a shielded airflow that shields the space in the furnace at the boundary portion between the dewaxed portion and the sintered portion and partitions the dewaxed portion and the sintered portion. Furnace.
前記遮蔽気流噴出手段は、前記炉内空間に遮蔽気流を噴出するノズルを有し、該ノズルからの遮蔽気流の噴出方向は、上方から下方であって前記脱ろう部の方向に向かって水平方向に対し40〜60°の角度で傾斜しており、かつ、該遮蔽気流の流速が5〜30m/sであることを特徴とする請求項1に記載の連続焼結炉。   The shielded airflow ejecting means has a nozzle for ejecting a shielded airflow into the furnace space, and the direction in which the shielded airflow is ejected from the nozzle is from the top to the bottom and horizontally toward the dewaxing portion. The continuous sintering furnace according to claim 1, wherein the continuous sintering furnace is inclined at an angle of 40 to 60 ° with respect to the flow rate, and the flow velocity of the shielding airflow is 5 to 30 m / s. 請求項1または2に記載の連続焼結炉を用いてワークを焼結するにあたり、
前記焼結部に供給する雰囲気ガスを前記遮蔽気流噴出手段に分配して該遮蔽気流噴出手段から該雰囲気ガスを前記境界部分に前記遮蔽気流として噴出することを特徴とする連続焼結炉の運転方法。
In sintering a workpiece using the continuous sintering furnace according to claim 1 or 2,
An operation of a continuous sintering furnace characterized in that the atmospheric gas supplied to the sintered portion is distributed to the shielded airflow ejecting means and the atmospheric gas is ejected from the shielded airflow ejecting means to the boundary portion as the shielded airflow. Method.
請求項1または2に記載の連続焼結炉を用いてワークを焼結するにあたり、
前記脱ろう部に供給する脱ろう用ガスと同じガスを前記遮蔽気流噴出手段に導入して、該遮蔽気流噴出手段から該脱ろう用ガスを前記境界部分に前記遮蔽気流として噴出することを特徴とする連続焼結炉の運転方法。
In sintering a workpiece using the continuous sintering furnace according to claim 1 or 2,
The same gas as the dewaxing gas supplied to the dewaxing part is introduced into the shielded airflow ejecting means, and the dewaxing gas is ejected from the shielded airflow ejecting means to the boundary portion as the shielded airflow. The operation method of the continuous sintering furnace.
JP2012142799A 2012-06-26 2012-06-26 Continuous sintering furnace and operating method of continuous sintering furnace Pending JP2014006019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142799A JP2014006019A (en) 2012-06-26 2012-06-26 Continuous sintering furnace and operating method of continuous sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142799A JP2014006019A (en) 2012-06-26 2012-06-26 Continuous sintering furnace and operating method of continuous sintering furnace

Publications (1)

Publication Number Publication Date
JP2014006019A true JP2014006019A (en) 2014-01-16

Family

ID=50103900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142799A Pending JP2014006019A (en) 2012-06-26 2012-06-26 Continuous sintering furnace and operating method of continuous sintering furnace

Country Status (1)

Country Link
JP (1) JP2014006019A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944843B1 (en) * 1971-03-27 1974-11-30
JPS58110617A (en) * 1981-09-19 1983-07-01 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Metal heat treatment
JPS63199135U (en) * 1987-06-09 1988-12-21
JPH01193586A (en) * 1988-01-27 1989-08-03 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment device
JPH0383800U (en) * 1989-12-18 1991-08-26
JPH053894U (en) * 1991-06-28 1993-01-22 日本板硝子株式会社 Air curtain nozzle
JPH1180808A (en) * 1997-09-08 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Method for sintering compact consisting of metal powder and continuous sintering furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944843B1 (en) * 1971-03-27 1974-11-30
JPS58110617A (en) * 1981-09-19 1983-07-01 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Metal heat treatment
JPS63199135U (en) * 1987-06-09 1988-12-21
JPH01193586A (en) * 1988-01-27 1989-08-03 Ishikawajima Harima Heavy Ind Co Ltd Heat treatment device
JPH0383800U (en) * 1989-12-18 1991-08-26
JPH053894U (en) * 1991-06-28 1993-01-22 日本板硝子株式会社 Air curtain nozzle
JPH1180808A (en) * 1997-09-08 1999-03-26 Ishikawajima Harima Heavy Ind Co Ltd Method for sintering compact consisting of metal powder and continuous sintering furnace

Similar Documents

Publication Publication Date Title
KR101665066B1 (en) Apparatus and Method for Manufacturing Sintered Ore
KR102422978B1 (en) Apparatus and method for thermal or thermochemical treatment of materials
JP6257779B2 (en) Sintered ore manufacturing equipment and sintered ore manufacturing method using the same
JP5458560B2 (en) Sintering machine
JP6415714B2 (en) Sintering apparatus and sintering method
US20160368828A1 (en) Method for sintering workpieces to be sintered, and system for this purpose
US9790570B2 (en) Apparatus and method for the thermal treatment of lump or agglomerated material
US20120124856A1 (en) Method and strand sintering equipment for continuous sintering of pelletized mineral material
JP2018505965A (en) Sinter production apparatus and method
JP2007177285A (en) Continuous sintering furnace
JP2014006019A (en) Continuous sintering furnace and operating method of continuous sintering furnace
JP2006336026A (en) Apparatus and method for sintering
JP6688396B2 (en) Sintering apparatus and sintering method
CN109844435B (en) Exhaust gas treatment device and treatment method
CN114438272B (en) Oxygen isolation method for cooling high-temperature direct reduction material of iron ore rotary kiln
KR101719518B1 (en) Apparatus and Method for Manufacturing Sintered Ore
JP2014015668A (en) Continuous sintering furnace
JP2014048020A (en) Continuous type heating furnace
KR101862152B1 (en) Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
JP2020529576A (en) Sintering equipment and sintering method using this
KR101981452B1 (en) Apparatus and Method for Manufacturing Sintered Ore
CN214502056U (en) Segmented step heat preservation device
TW201420768A (en) Oxygen gas and gas fuel supply device for sintering machine
KR101705055B1 (en) Processing method for raw material
Creutziger High Temperature Sintering and Fast Cooling–Better Parts, Better Economics

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161124