JP2014005237A - Manufacturing method of lignin, lignin and manufacturing method of oil and fat - Google Patents

Manufacturing method of lignin, lignin and manufacturing method of oil and fat Download PDF

Info

Publication number
JP2014005237A
JP2014005237A JP2012141900A JP2012141900A JP2014005237A JP 2014005237 A JP2014005237 A JP 2014005237A JP 2012141900 A JP2012141900 A JP 2012141900A JP 2012141900 A JP2012141900 A JP 2012141900A JP 2014005237 A JP2014005237 A JP 2014005237A
Authority
JP
Japan
Prior art keywords
lignin
palm
manufacturing
fruit
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141900A
Other languages
Japanese (ja)
Inventor
Akihito Goto
昭人 後藤
Naoyuki Koyama
直之 小山
Mika Kofune
美香 小舩
Ikuko Kikuchi
郁子 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012141900A priority Critical patent/JP2014005237A/en
Publication of JP2014005237A publication Critical patent/JP2014005237A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can obtain feed stock steadily through the year as well as an effective utilization of a by-product in palm oil manufacture and can obtain lignin at a high yield, lignin whose compatibility with organic solvents and resins is good and can be used as a solid plastic material, and a manufacturing method which can obtain oils and fats which is equal to palm oil as a by-product.SOLUTION: A lignin manufacturing method using palm fruit fiber (Palm Fiber), PKS (Palm Kernel Shell) which is seed of the fruit, EFB(Empty Fruit Bunch) which is a bunch after having separated the fruit and feed stocks consisting of one or more than two kinds chosen from a palm trunk.

Description

本発明は、パーム油製造時に発生する副産物を用いたリグニン製造方法、この製造方法により得られるリグニン、及び油脂の製造方法に関する。   The present invention relates to a lignin production method using a by-product generated during palm oil production, a lignin obtained by this production method, and a method for producing fats and oils.

リグニンは木本類、草本類から得られる。木本類、草本類は親水性の線状高分子の多糖類(セルロースとヘミセルロース)と疎水性の架橋構造リグニンの相互侵入網目(IPN)構造を形成している。このうち、リグニンは20〜35質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。リグニンの基本骨格はヒドロキシフェニルプロパン単位を基本単位とする構造である。   Lignin is obtained from woody plants and herbs. Trees and herbs form an interpenetrating network (IPN) structure of hydrophilic linear polymer polysaccharides (cellulose and hemicellulose) and hydrophobic cross-linked lignin. Among these, lignin occupies 20 to 35% by mass, and has an irregular and extremely complicated polyphenol chemical structure. The basic skeleton of lignin has a structure having a hydroxyphenylpropane unit as a basic unit.

木本類、草本類からリグニンを抽出する方法として、例えば、特許文献1では、リグノセルロース系物質、フェノール誘導体および酸を含む混合物と不活性低沸点疎水性有機溶媒とを混合し、得られた混合物を遠心分離により3層に分離し、3層のうちの中間層を回収する工程を含む、リグノフェノール誘導体の調製方法が公開されている。また、特許文献2では、リグノセルロース材料と少なくとも一種のフェノール化合物を主成分として含む溶剤とを、加熱下に溶解反応させ、リグノセルロース−フェノール化合物複合物を製造する方法が公開されている。さらに、非特許文献1では、可溶化リグニン分離法として、パルプ蒸解排液中に溶出したリグニンを、排液の酸性化による沈降、分子量分別によってクラフトリグニンを分離する方法が紹介されている。   As a method for extracting lignin from trees and herbs, for example, in Patent Document 1, a mixture containing a lignocellulosic material, a phenol derivative and an acid and an inert low-boiling hydrophobic organic solvent were obtained. A method for preparing a lignophenol derivative is disclosed which includes a step of separating the mixture into three layers by centrifugation and recovering an intermediate layer of the three layers. Patent Document 2 discloses a method for producing a lignocellulose-phenol compound composite by dissolving and reacting a lignocellulose material and a solvent containing at least one phenol compound as a main component under heating. Furthermore, Non-Patent Document 1 introduces a method for separating kraft lignin by solubilization and molecular weight fractionation of lignin eluted in pulp cooking effluent as a solubilized lignin separation method.

木本類、草本類から抽出されたリグニンは、フェノール性水酸基、アルコール性水酸基を有しており、これらの水酸基をエポキシ基、イソシアネート基等と反応させることで硬化物を作製できる。そのため、リグニンを用いた成形体の作製が可能であり、化石資源を用いた製品の代替品として期待できる。   Lignin extracted from woods and herbs has phenolic hydroxyl groups and alcoholic hydroxyl groups, and a cured product can be prepared by reacting these hydroxyl groups with epoxy groups, isocyanate groups, and the like. Therefore, it is possible to produce a molded body using lignin, which can be expected as an alternative to a product using fossil resources.

リグニンのようなバイオマス由来の材料は、廃棄時に燃焼すると、化石資源を使用した材料と同様に二酸化炭素(CO)を発生する。しかし、植物は、成長過程で光合成によりCOを吸収しており、ライフサイクル全体でみると大気中のCOを増加させず、収支はゼロであると考えられる。そのため、CO排出量削減効果が見込まれる材料である。 When a biomass-derived material such as lignin burns at the time of disposal, carbon dioxide (CO 2 ) is generated in the same manner as a material using fossil resources. However, plants absorb CO 2 by photosynthesis during the growth process, and in the entire life cycle, the CO 2 in the atmosphere is not increased and the balance is considered to be zero. Therefore, it is a material that is expected to reduce CO 2 emissions.

リグニンを使用した材料の例として成形体があり、例えば、特許文献3ではリグニンをエポキシ化し、モータやプリント基板、成形材料の絶縁層、また、塗料の主剤等に用いることができるバイオマス由来エポキシ樹脂組成物が公開されている。さらに特許文献4では、爆砕法で得たリグニンとエポキシ樹脂、ウレタン樹脂等と硬化物を作製することで難燃性、抗菌性を付与した成形体が公開されている。   An example of a material using lignin is a molded body. For example, in Patent Document 3, lignin is epoxidized and used as a motor, a printed circuit board, an insulating layer of a molding material, a main component of a paint, or the like. The composition has been published. Furthermore, Patent Document 4 discloses a molded body imparted with flame retardancy and antibacterial properties by producing a cured product with lignin obtained by an explosion method, an epoxy resin, a urethane resin and the like.

特許第4593706号公報Japanese Patent No. 4593706 特許第2991466号公報Japanese Patent No. 29914666 特開2010−150298号公報JP 2010-150298 A 特開2011−219722号公報JP 2011-219722 A

「ウッドケミカルの新展開」シーエムシー出版 2007 pp.5−6“New development of wood chemical” CMC Publishing 2007 pp. 5-6

リグニンの原料としては、これまで、杉、檜、松等の針葉樹、稲わら等種々検討されている。しかし、針葉樹では原料中のリグニン含有率は高いもののリグニン収率が低く、稲わらではリグニン含有率が低いため収率も低い。さらに、稲わらでは原料調達が収穫時期に限られるといった課題もある。   As raw materials for lignin, various studies such as conifers such as cedar, straw and pine, and rice straw have been studied. However, although the lignin content in the raw material is high in conifers, the lignin yield is low. In rice straw, the lignin content is low, so the yield is low. In addition, rice straw has a problem that raw material procurement is limited to the harvest time.

また、リグニンを成形体として利用するためには、リグニンが樹脂と相溶することが均一な成形体を作製するために必要である。しかし、リグニンはその製造方法によって溶媒への溶解性が異なる。例えば、パルプ蒸解の廃液から得られるクラフトリグニン、酢酸リグニンは有機溶媒に不溶又は一部可溶である。また、これらのリグニンは製造過程で著しく変性しているため、樹脂との硬化反応が起こり難い。このため、リグニン成形体として利用するには、樹脂と良好な相溶性、硬化反応を示す製造法を選択しなくてはいけない。   Further, in order to use lignin as a molded body, it is necessary for lignin to be compatible with the resin in order to produce a uniform molded body. However, lignin has different solubility in solvents depending on its production method. For example, kraft lignin and acetic acid lignin obtained from pulp liquor waste liquor are insoluble or partially soluble in organic solvents. Further, since these lignins are remarkably modified during the production process, a curing reaction with the resin hardly occurs. For this reason, in order to utilize as a lignin molded object, you have to select the manufacturing method which shows favorable compatibility and hardening reaction with resin.

本発明者らは上記課題を解決するために、パーム油を製造する際に発生する副産物であるパームヤシ果実の繊維(Palm Fiber)、果実の種子であるPKS(Palm Kernel Shell)、果実を分離した後の房であるEFB(Empty Fruit Bunch)、およびパームヤシの幹のうち一種又は二種以上を原料とし、水のみを用いた短時間の加熱処理をした後、有機溶媒で抽出することで、リグニンを高収率かつ安定的に供給でき、樹脂と良好な相溶性、硬化反応を示すリグニンの製造方法を見出した。   In order to solve the above problems, the present inventors separated palm fiber (Palm Fiber), which is a by-product generated when producing palm oil, PKS (Palm kernel shell), which is a fruit seed, and fruit. By using one or more of EFB (Empty Fruit Bunch) and palm coconut trunk as raw materials, heat treatment using only water for a short time, and then extracting with organic solvent, lignin Has been found to be a method for producing lignin that can be stably supplied in a high yield and exhibits good compatibility with the resin and a curing reaction.

すなわち、本発明は以下の通りである。
(1)パームヤシ果実の繊維(Palm Fiber)、果実の種子であるPKS(Palm Kernel Shell)、果実を分離した後の房であるEFB(Empty Fruit Bunch)、およびパームヤシの幹から選ばれる一種又は二種以上からなる原料を用いたリグニン製造方法。
(2)原料が、粉状、繊維状、又はチップ状である上記(1)に記載のリグニン製造方法。
(3)原料を、水蒸気の存在下で加熱処理し、加熱処理物を水洗、乾燥した後、有機溶媒で抽出し、有機溶媒を除去して固形物を得る上記(1)又は(2)に記載のリグニン製造方法。
(4)水蒸気の存在下で加熱処理するときの圧力が0.5〜4.0MPaである上記(3)に記載のリグニン製造方法。
(5)水蒸気の存在下で加熱処理するときの時間が1〜60分間である上記(3)又は(4)に記載のリグニン製造方法。
(6)上記(1)〜(5)に記載の製造方法で得られるリグニンであって、重量平均分子量が100〜7000であるリグニン。
(7)リグニン中の硫黄原子含有率が2質量%以下である上記(6)に記載のリグニン。
(8)上記(1)〜(5)に記載の製造方法で得られる加熱処理物又は抽出液、抽出液から有機溶媒を除去した固形物のいずれかから分離して得られる油脂の製造方法。
That is, the present invention is as follows.
(1) Palm palm fiber, Palm seed shell (PKS), EFB (Empty Fruit Bunch) as a bunch after separating the fruit, and one or two selected from palm palm trunk A method for producing lignin using a raw material comprising more than seeds.
(2) The lignin manufacturing method as described in said (1) whose raw material is a powder form, a fiber form, or a chip form.
(3) In the above (1) or (2), the raw material is heat-treated in the presence of water vapor, the heat-treated product is washed with water and dried, and then extracted with an organic solvent to remove the organic solvent and obtain a solid. The lignin manufacturing method as described.
(4) The method for producing lignin according to the above (3), wherein the pressure when the heat treatment is performed in the presence of water vapor is 0.5 to 4.0 MPa.
(5) The lignin manufacturing method as described in said (3) or (4) whose time when heat-processing in presence of water vapor | steam is 1 to 60 minutes.
(6) A lignin obtained by the production method according to the above (1) to (5), wherein the weight average molecular weight is 100 to 7000.
(7) The lignin as described in (6) above, wherein the sulfur atom content in the lignin is 2% by mass or less.
(8) The manufacturing method of the fats and oils obtained by isolate | separating from either the heat processing thing or the extract obtained by the manufacturing method as described in said (1)-(5), or the solid substance which removed the organic solvent from the extract.

本発明によれば、パーム油製造時の副産物をリグニンの原料とすることで、副産物の有効活用のみならず、年間を通して安定的に入手可能かつ高収率でリグニンを得ることのできる製造方法が提供できる。また、本発明の製造方法で得られたリグニンは有機溶媒や樹脂との相溶性が良好で成形体材料として利用でき、さらにパーム油製造時の副産物を原料とすることで、パーム油と同等の油脂を副産物として利用することができる。   According to the present invention, by using a by-product at the time of palm oil production as a raw material of lignin, not only the effective use of the by-product, but also a production method that can be stably obtained throughout the year and can obtain lignin in a high yield. Can be provided. In addition, the lignin obtained by the production method of the present invention has good compatibility with organic solvents and resins and can be used as a molded body material. Further, by using a by-product at the time of palm oil production as a raw material, it is equivalent to palm oil. Oils and fats can be used as by-products.

以下、上記本発明をさらに詳細に説明する。
本発明は、パーム油製造工程の副産物を原料とし、セルロース、ヘミセルロースからリグニンを分離し、有機溶媒に可溶なリグニンを製造することを特徴とする。パーム油製造工程の副産物としては、具体的にはパームヤシ果実の繊維(Palm Fiber)、果実の種子であるPKS(Palm Kernel Shell)、果実を分離した後の房であるEFB(Empty Fruit Bunch)、およびパームヤシの幹であり、これらを一種又は二種以上混合して使用することができる。
Hereinafter, the present invention will be described in more detail.
The present invention is characterized by separating lignin from cellulose and hemicellulose using a by-product of the palm oil production process as a raw material to produce lignin soluble in an organic solvent. As a by-product of the palm oil production process, specifically, palm palm fruit fibers (Palm Fiber), PKS which is a fruit seed (Palm Kernel Shell), EFB (Empty Fruit Bunch) which is a bunch after separating the fruit, And palm trunks, which can be used alone or in combination.

また、これらの原料は、必要に応じてチッパー、ハンマーミル、グラインダー等で切断、粗粉砕、微粉砕した後に使用できる。   These raw materials can be used after being cut, coarsely pulverized, or finely pulverized with a chipper, a hammer mill, a grinder or the like, if necessary.

セルロース、ヘミセルロースからリグニンを分離する方法として、水蒸気を用いた分離方法が好ましい。使用する原料を水蒸気のみを用いた処理方法により、リグニンをセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させる製造方法であることが好ましい。また、リグニン製造方法としては、水蒸気爆砕法がより好ましい。水蒸気爆砕法は高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、短時間で破砕するものである。   As a method for separating lignin from cellulose and hemicellulose, a separation method using water vapor is preferable. The raw material used is preferably a production method in which lignin is separated from the cellulose component and hemicellulose component by a treatment method using only water vapor and dissolved in an organic solvent. Moreover, as a lignin manufacturing method, the steam explosion method is more preferable. The steam explosion method crushes in a short time by hydrolysis with high-temperature and high-pressure steam and a physical crushing effect by instantaneously releasing the pressure.

水蒸気爆砕の条件としては、原料を水蒸気爆砕装置用の耐圧容器に入れ、0.5〜4.0MPaの水蒸気を圧入し、1〜60分間加熱処理した後、瞬時に圧力を開放することが好ましい。さらに、2.1〜4.0MPaの条件では1〜30分間加熱処理することがより好ましく、1〜10分間であればさらに好ましい。また、0.5〜2.0MPaの条件では、5〜40分間加熱処理することが好ましく、10〜30分間であればより好ましい。加熱処理時間が短いとセルロース成分、ヘミセルロース成分からリグニンが十分に分離せず、リグニンの収率が低下する。また、加熱処理時間が長いと1度分離したリグニンが縮合し、分子量が大きくなるため有機溶媒に溶け難く、リグニンの収率が低下する恐れがある。   As conditions for steam explosion, it is preferable to put the raw material in a pressure vessel for a steam explosion apparatus, press-fit 0.5 to 4.0 MPa of steam, heat-treat for 1 to 60 minutes, and then release the pressure instantly. . Furthermore, it is more preferable to heat-process for 1 to 30 minutes on the conditions of 2.1-4.0 MPa, and it is still more preferable if it is 1 to 10 minutes. Moreover, on the conditions of 0.5-2.0 MPa, it is preferable to heat-process for 5 to 40 minutes, and it is more preferable if it is 10 to 30 minutes. When the heat treatment time is short, lignin is not sufficiently separated from the cellulose component and hemicellulose component, and the yield of lignin is lowered. Further, if the heat treatment time is long, the lignin separated once is condensed and the molecular weight is increased, so that it is difficult to dissolve in an organic solvent, and the yield of lignin may be lowered.

本発明のリグニン製造方法は、硫酸法、クラフト法等の他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水蒸気のみを使用するので、クリーンな分離方法である。この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。硫黄原子の含有量が増大すると親水性のスルホン酸基が増加するため、有機溶媒への溶解性が低下する。本発明者らは、さらに、爆砕物から有機溶媒でリグニンを抽出することにより、リグニンの分子量を制御し得ることを見出した。   The lignin production method of the present invention is a clean separation method because it uses only water vapor without using sulfuric acid, sulfite or the like, as compared with other separation methods such as sulfuric acid method and kraft method. In this method, lignin containing no sulfur atom in the lignin or lignin having a low content of sulfur atoms can be obtained. Usually, the content of sulfur atoms in lignin is preferably 2% by mass or less, more preferably 1% by mass or less, and further preferably 0.5% by mass or less. When the sulfur atom content is increased, hydrophilic sulfonic acid groups are increased, so that the solubility in an organic solvent is lowered. Furthermore, the present inventors have found that the molecular weight of lignin can be controlled by extracting lignin from an explosion with an organic solvent.

本発明で用いるリグニンの抽出に用いる有機溶媒は、一種又は二種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、その他の有機溶媒又は、水と混合した含水有機溶媒を使用することができる。水としては、イオン交換水を使用することが好ましい。水との混合溶媒の含水率は0〜70質量%が好ましい。リグニンは水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。   As the organic solvent used for the extraction of lignin used in the present invention, one kind or a mixture of two or more kinds of alcohol solvents, a hydrous alcohol solvent mixed with alcohol and water, another organic solvent, or a hydrous organic solvent mixed with water is used. can do. As water, it is preferable to use ion-exchanged water. The water content of the mixed solvent with water is preferably 0 to 70% by mass. Since lignin has low solubility in water, it is difficult to extract lignin using only water as a solvent. Moreover, it is possible to control the weight average molecular weight of the lignin obtained by selecting the solvent to be used.

アルコールとしては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、n−ヘキサノール、ベンジルアルコール、シクロヘキサノール等のモノオール系とエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、グリセリン、トリエタノールアミン等のポリオール系が挙げられる。また、天然物質から得られるアルコールであることが、環境負荷低減化の観点で好ましい。具体的には、天然物質から得たメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、エチレングリコール、グリセリン、ヒドロキシメチルフルフラール等が挙げられる。   Examples of alcohols include monools such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-hexanol, benzyl alcohol, cyclohexanol, ethylene glycol, diethylene glycol, 1,4-butanediol, , 6-hexanediol, trimethylolpropane, glycerin, triethanolamine and other polyols. In addition, an alcohol obtained from a natural substance is preferable from the viewpoint of reducing the environmental load. Specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, ethylene obtained from natural substances Examples include glycol, glycerin, and hydroxymethylfurfural.

リグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000であることが好ましく、200〜5000であることがより好ましく、500〜4000であることがさらに好ましい。リグニンの重量平均分子量が7000を超えると有機溶媒への溶解性が低下する恐れがある。重量平均分子量が100未満であるとリグニンの構造を活かした成形体に応用できない恐れがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。
The weight average molecular weight of lignin is preferably 100 to 7000, more preferably 200 to 5000, and still more preferably 500 to 4000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 7000, the solubility in an organic solvent may be reduced. If the weight average molecular weight is less than 100, it may not be applicable to a molded body utilizing the structure of lignin.
The weight average molecular weight was measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene was used.

本発明のリグニンは、エポキシ基、イソシアネート基、アルデヒド又はホルムアルデヒドを生成する化合物、多価カルボン酸又は多価カルボン酸無水物、不飽和多価カルボン酸又は不飽和多価カルボン酸無水物等、リグニンの水酸基と反応する置換基を有する材料と相溶し、硬化反応することによって成形体を作製することが可能である。リグニンが上記材料と相溶しないと、均一な成形体が作製できない恐れがある。   The lignin of the present invention includes lignin such as an epoxy group, an isocyanate group, a compound that generates an aldehyde or formaldehyde, a polyvalent carboxylic acid or a polyvalent carboxylic acid anhydride, an unsaturated polyvalent carboxylic acid, or an unsaturated polyvalent carboxylic acid anhydride. It is possible to produce a molded article by being compatible with a material having a substituent that reacts with the hydroxyl group and by undergoing a curing reaction. If lignin is not compatible with the above materials, there is a possibility that a uniform molded body cannot be produced.

パーム油製造時の副産物には油脂が含まれている。この油脂は本発明の製造工程において、分離可能であり、有効活用することができる。具体的には、加熱処理物、抽出液、抽出液から有機溶媒を除去した固形物から油脂を分離できる。油脂を分離する手法としては、非極性溶媒によって分離する手法が好ましく、非極性溶媒としては、n−ヘキサン、n−ヘプタン、n−オクタン、iso−オクタン、n−デカン等の飽和脂肪族炭化水素、シクロヘキサン、デカリン等の環状脂肪族炭化水素、トルエン、p−キシレン等の芳香族炭化水素等が挙げられる。   Oils and fats are contained in the by-products at the time of palm oil production. This fat is separable and can be used effectively in the production process of the present invention. Specifically, fats and oils can be separated from the heat-treated product, the extract, and the solid material from which the organic solvent has been removed from the extract. As a method for separating oils and fats, a method using a nonpolar solvent is preferable, and as the nonpolar solvent, saturated aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane, iso-octane, and n-decane are used. , Cycloaliphatic hydrocarbons such as cyclohexane and decalin, and aromatic hydrocarbons such as toluene and p-xylene.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.

(実施例1)
(EFBのリグニン含有率測定)
ペレット状に加工されたEFBをミキサーにて粉砕し、メッシュ幅150μmの篩にかけ、得られた木粉を105℃で質量が一定となるまで乾燥させた。乾燥させた木粉0.2gに72質量%硫酸3mLを加え、4時間撹拌した後、113mLの純水に滴下し硫酸の濃度を3質量%とした。これをオートクレーブにて121℃、30分間加熱した後、吸引濾過によって固液分離した。得られた固形物を105℃で質量一定となるまで乾燥させ、得られた固形物をリグニンとし、リグニン含有率を求めた。その結果、リグニン含有率は26.3質量%であった。
Example 1
(Measurement of lignin content of EFB)
The EFB processed into pellets was pulverized with a mixer, passed through a sieve having a mesh width of 150 μm, and the obtained wood flour was dried at 105 ° C. until the mass became constant. After adding 3 mL of 72 mass% sulfuric acid to 0.2 g of the dried wood flour, the mixture was stirred for 4 hours and then dropped into 113 mL of pure water to adjust the concentration of sulfuric acid to 3 mass%. This was heated in an autoclave at 121 ° C. for 30 minutes, and then solid-liquid separated by suction filtration. The obtained solid was dried at 105 ° C. until the mass was constant, and the obtained solid was used as lignin, and the lignin content was determined. As a result, the lignin content was 26.3% by mass.

(実施例2)
(EFBを原料としたリグニン抽出および油脂の分離)
ペレット状に加工されたEFB894g(乾燥質量)を水蒸気爆砕装置の2Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、3分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、105℃で残存水分を除去した。得られた乾燥体に対して質量で3倍量のヘキサンを加え、10分間撹拌した後、濾過によってヘキサン抽出物と固形物に分離した。分離したヘキサン抽出物を減圧乾燥することで赤褐色の油脂成分を17g得た。分離した固形物を常温で乾燥させた後、 固形物に対して質量で3倍量の乾燥抽出溶媒(アセトン)を加え、10分間攪拌した。その後、ろ過により繊維物質を取り除いた。得られた濾液から抽出溶媒(アセトン)を除去し、リグニンを150g得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
(Example 2)
(Extraction of lignin and separation of fats and oils from EFB)
894 g (dry mass) of EFB processed into pellets was placed in a 2 L pressure vessel of a steam explosion device, and 3.5 MPa of water vapor was injected and held for 3 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed at 105 ° C. Three times the amount of hexane was added to the obtained dried product, and the mixture was stirred for 10 minutes, and then separated into a hexane extract and a solid by filtration. The separated hexane extract was dried under reduced pressure to obtain 17 g of a reddish brown oil component. After the separated solid was dried at room temperature, 3 times the amount of dry extraction solvent (acetone) was added to the solid and stirred for 10 minutes. Thereafter, the fiber material was removed by filtration. The extraction solvent (acetone) was removed from the obtained filtrate to obtain 150 g of lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの重量平均分子量)
リグニン中の硫黄原子の含有率は燃焼分解−イオンクロマトグラフ法により定量した。装置は株式会社三菱化学アナリテック製自動試料燃焼装置(商品名:AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(商品名:ICS−1600)を用いた。上記リグニン中の硫黄原子の含有率は0.2質量%であった。さらに示差屈折計を備えたゲルパーミエーションクロマトグラフィー(GPC)にてリグニンの分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ製、商品名:ゲルパックGL−A120SとGL−A170S(「ゲルパック」は登録商標)とを直列に接続して分子量測定を行った。その重量平均分子量は2000であった。
(Weight average molecular weight of lignin)
The content of sulfur atoms in lignin was quantified by combustion decomposition-ion chromatography. As the apparatus, an automatic sample combustion apparatus (trade name: AQF-100) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an ion chromatograph (trade name: ICS-1600) manufactured by Nippon Dionex Co., Ltd. were used. The content rate of the sulfur atom in the said lignin was 0.2 mass%. Furthermore, the molecular weight of lignin was measured by gel permeation chromatography (GPC) equipped with a differential refractometer. Polystyrene having a low polydispersity is used as a standard sample, the mobile phase is used as tetrahydrofuran, and Hitachi High-Technologies Corporation as a column, trade names: Gel Pack GL-A120S and GL-A170S (“Gel Pack” is a registered trademark) The molecular weight was measured by connecting in series. Its weight average molecular weight was 2000.

(油脂成分とパーム油の比較分析)
油脂成分とパーム油を H‐NMR(プロトン核磁気共鳴)、TMAH誘導化PyGC‐MS(誘導化試薬として水酸化テトラメチルアンモニウム(TMAH)を用いた、熱分解によるガスクロマトグラフ質量分析)によって比較分析した。H‐NMRはBRUKER社製核磁気共鳴装置(商品名:AMX400)を使用し、溶媒:重クロロホルム(CDCl)、周波数:400MHzで測定した。TMAH誘導化PyGC‐MSはアジレント・テクノロジー株式会社製ガスクロマトグラフ装置(商品名:6890N/5973MSD)アジレント・テクノロジー株式会社製カラム(商品名:HP−5ms、内径0.25mm×長さ30m)を使用し、熱分解:650℃、0.2分間、カラム温度:70〜300℃、10℃/分、注入口温度:320℃、キャリアガス:He、1mL/分で測定した。油脂成分とパーム油の H‐NMRスペクトルパターンから、油脂成分はパーム油と近い組成であった。また、TMAH誘導化PyGC−MSでは主な油脂の誘導化物は、パルミチン酸、ステアリン酸、ミリスチン酸、ラウリン酸であり、そのピーク面積比はそれぞれ1:0.9:0.05:0.06であった。また、主なパーム油の誘導体化物は、パルミチン酸、ステアリン酸、ミリスチン酸であり、そのピーク面積比は1:0.9:0.03であった。
(Comparative analysis of oil components and palm oil)
Comparison of fat components and palm oil by 1 H-NMR (proton nuclear magnetic resonance) and TMAH-derivatized PyGC-MS (gas chromatographic mass spectrometry by pyrolysis using tetramethylammonium hydroxide (TMAH) as a derivatizing reagent) analyzed. 1 H-NMR was measured using a BRUKER nuclear magnetic resonance apparatus (trade name: AMX400), solvent: deuterated chloroform (CDCl 3 ), frequency: 400 MHz. TMAH derivatized PyGC-MS uses a gas chromatograph manufactured by Agilent Technologies (trade name: 6890N / 5973MSD) and a column (trade name: HP-5 ms, inner diameter 0.25 mm × length 30 m) manufactured by Agilent Technologies, Inc. Thermal decomposition: 650 ° C., 0.2 minutes, column temperature: 70 to 300 ° C., 10 ° C./min, inlet temperature: 320 ° C., carrier gas: He, 1 mL / min. From the 1 H-NMR spectrum pattern of the fat and oil component and palm oil, the fat and oil component had a composition close to that of palm oil. Further, in TMAH-derivatized PyGC-MS, the main derivatized oils are palmitic acid, stearic acid, myristic acid, and lauric acid, and the peak area ratios are 1: 0.9: 0.05: 0.06, respectively. Met. The main derivatized products of palm oil were palmitic acid, stearic acid, and myristic acid, and the peak area ratio was 1: 0.9: 0.03.

(実施例3)
(PKSのリグニン含有率測定)
実施例1と同様にPKSのリグニン含有率を求めた。その結果、リグニン含有率は41.4質量%であった。
(Example 3)
(Measurement of lignin content of PKS)
The lignin content of PKS was determined in the same manner as in Example 1. As a result, the lignin content was 41.4% by mass.

(実施例4)
(PKSを原料としたリグニン抽出および油脂の分離)
PKS872g(乾燥質量)を用いて実施例2と同様にリグニンを抽出し、赤褐色の油脂成分15g、リグニン130gを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
Example 4
(Lignin extraction and oil separation using PKS as raw material)
Lignin was extracted in the same manner as in Example 2 using 872 g (dry mass) of PKS to obtain 15 g of a reddish brown oil component and 130 g of lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの分析)
実施例2と同様にリグニンの分子量を測定した。その結果、重量平均分子量は1800であった。
(Lignin analysis)
The molecular weight of lignin was measured in the same manner as in Example 2. As a result, the weight average molecular weight was 1800.

(油脂成分とパーム油の比較分析)
実施例2と同様に油脂成分とパーム油を比較分析した。その結果、H‐NMRにおける油脂成分とパーム油のスペクトルパターンから、油脂成分はパーム油と近い組成であった。また、TMAH誘導化PyGC−MSでは主な油脂の誘導化物は、パルミチン酸、ステアリン酸、ミリスチン酸、ラウリン酸であり、そのピーク面積比はそれぞれ1:0.9:0.05:0.05であった。また、主なパーム油の誘導体化物は、パルミチン酸、ステアリン酸、ミリスチン酸であり、そのピーク面積比は1:0.9:0.03であった。
(Comparative analysis of oil components and palm oil)
In the same manner as in Example 2, the oil and fat component and palm oil were comparatively analyzed. As a result, the fat and oil component had a composition close to that of palm oil from the spectrum pattern of the fat and oil component and palm oil in 1 H-NMR. In TMAH-derivatized PyGC-MS, the main derivatized oils and fats are palmitic acid, stearic acid, myristic acid, and lauric acid, and the peak area ratio is 1: 0.9: 0.05: 0.05, respectively. Met. The main derivatized products of palm oil were palmitic acid, stearic acid, and myristic acid, and the peak area ratio was 1: 0.9: 0.03.

(比較例1)
(杉のリグニン含有率)
実施例1と同様に杉のリグニン含有率を求めた。その結果、リグニン含有率は35.5質量%であった。
(Comparative Example 1)
(Lignin content of cedar)
The lignin content of cedar was determined in the same manner as in Example 1. As a result, the lignin content was 35.5% by mass.

(比較例2)
(杉を原料としたリグニン抽出)
適当な大きさにカットした杉材180g(乾燥質量)を水蒸気爆砕装置の2Lの耐圧容器に入れ、3.8MPaの水蒸気を圧入し、2分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、105℃で残存水分を除去した。得られた乾燥体に対して質量で3倍量の抽出溶媒(アセトン)を加え、3時間攪拌した後、ろ過により繊維物質を取り除いた。固形物を常温で乾燥させた後、乾燥抽出溶媒(アセトン)1800gを加え、10分間攪拌した。その後、ろ過により繊維物質を取り除いた。得られた濾液から抽出溶媒(アセトン)を除去し、リグニンを13.9g得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
(リグニンの分析)
実施例2と同様にリグニンの分子量を測定した。その結果、重量平均分子量は1500であった。
(Comparative Example 2)
(Extract lignin from cedar)
180 g (dry mass) of cedar cut to an appropriate size was placed in a 2 L pressure vessel of a steam explosion device and 3.8 MPa of steam was injected and held for 2 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed at 105 ° C. Three times the amount of extraction solvent (acetone) was added to the obtained dried product and stirred for 3 hours, and then the fiber material was removed by filtration. After the solid was dried at room temperature, 1800 g of a dry extraction solvent (acetone) was added and stirred for 10 minutes. Thereafter, the fiber material was removed by filtration. The extraction solvent (acetone) was removed from the obtained filtrate to obtain 13.9 g of lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).
(Lignin analysis)
The molecular weight of lignin was measured in the same manner as in Example 2. As a result, the weight average molecular weight was 1500.

(比較例3)
(稲わらのリグニン含有率)
適当な大きさにカットした稲わらをミキサーにて粉砕し、メッシュ幅150μmの篩にかけ、得られた粉体を105℃で質量が一定となるまで乾燥させた。乾燥させた粉体0.2gに72質量%硫酸3mLを加え、4時間撹拌した後、113mLの純水に滴下し硫酸の濃度を3質量%とした。これをオートクレーブにて121℃、30分間加熱した後、吸引濾過によって固液分離した。得られた固形物を105℃で質量一定となるまで乾燥させた。さらに、粉体0.2gを600℃、4時間加熱したのち灰分を得た。この灰分と乾燥させた固形物の質量の差からリグニン含有率を求めた。
(Comparative Example 3)
(Rignin content of rice straw)
Rice straw cut to an appropriate size was pulverized with a mixer, passed through a sieve having a mesh width of 150 μm, and the obtained powder was dried at 105 ° C. until the mass became constant. To 0.2 g of the dried powder, 3 mL of 72 mass% sulfuric acid was added and stirred for 4 hours, and then dropped into 113 mL of pure water to adjust the concentration of sulfuric acid to 3 mass%. This was heated in an autoclave at 121 ° C. for 30 minutes, and then solid-liquid separated by suction filtration. The obtained solid was dried at 105 ° C. until the mass became constant. Further, 0.2 g of powder was heated at 600 ° C. for 4 hours, and then ash was obtained. The lignin content was determined from the difference in mass between this ash and the dried solid.

(比較例4)
(稲わらのリグニン抽出)
適当な大きさにカットした稲わら86g(乾燥質量)を用いて比較例2と同様にリグニンを抽出し、リグニン5.3gを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
(リグニンの分析)
実施例2と同様にリグニンの分子量を測定した。その結果、重量平均分子量は1600であった。
(Comparative Example 4)
(Rice straw lignin extraction)
Using 86 g (dry mass) of rice straw cut to an appropriate size, lignin was extracted in the same manner as in Comparative Example 2 to obtain 5.3 g of lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).
(Lignin analysis)
The molecular weight of lignin was measured in the same manner as in Example 2. As a result, the weight average molecular weight was 1600.

以上の実施例1〜4の結果からリグニン含有率と爆砕で得たリグニンおよび油脂収率、比較例1〜4の結果からリグニン含有率と爆砕で得たリグニン収率の結果を表1に示す。なお、本明細書において、収率は、原料質量に対する収量の率(質量%)を指す。   Table 1 shows the lignin content and yield of fats and oils obtained by explosion from the results of Examples 1 to 4 above, and the results of lignin content and yield of lignin obtained by explosion from the results of Comparative Examples 1 to 4. . In addition, in this specification, a yield refers to the rate (mass%) of the yield with respect to raw material mass.

Figure 2014005237
Figure 2014005237

(実施例5)
(成形体の作製)
実施例2に記載のリグニン6g、クレゾールノボラック型エポキシ樹脂(YDCN−700−10、新日化エポキシ製造株式会社製、商品名)6g、硬化促進剤(2PZ−CN、四国化成工業株式会社製、商品名)0.06gをアセトン10gに溶解させ、常温(25℃)で2時間攪拌した。その後、常温でアセトンを乾燥させた後、さらに真空乾燥機を用いて40℃で2時間乾燥させ、乳鉢で粉砕し、成形材料を得た。この成形材料4gを50mm×50mm×1mmの金型に入れ、油圧真空加熱プレス機で面圧0.2MPa、180℃/10分間プレスした後、オーブンで200℃/4時間硬化し、厚み1mmの均一な成形体を得た。
(Example 5)
(Production of molded body)
6 g of lignin described in Example 2, 6 g of cresol novolac type epoxy resin (YDCN-700-10, manufactured by Nippon Kasei Epoxy Manufacturing Co., Ltd., trade name), curing accelerator (2PZ-CN, manufactured by Shikoku Kasei Kogyo Co., Ltd.) (Product name) 0.06 g was dissolved in 10 g of acetone and stirred at room temperature (25 ° C.) for 2 hours. Then, after drying acetone at normal temperature, it was further dried at 40 ° C. for 2 hours using a vacuum dryer, and pulverized in a mortar to obtain a molding material. 4 g of this molding material is put into a 50 mm × 50 mm × 1 mm mold, pressed with a hydraulic vacuum heating press at a surface pressure of 0.2 MPa, 180 ° C./10 minutes, cured in an oven at 200 ° C. for 4 hours, and 1 mm thick. A uniform molded body was obtained.

(実施例6)
実施例4に記載のリグニンを用いて実施例5と同様に成形体を作製し、厚み1mmの均一な成形体を得た。
(Example 6)
Using the lignin described in Example 4, a molded product was produced in the same manner as in Example 5 to obtain a uniform molded product having a thickness of 1 mm.

(比較例5)
酢酸リグニン6g、クレゾールノボラック型エポキシ樹脂(YDCN−700−10、新日化エポキシ製造株式会社製、商品名)6g、硬化促進剤(2PZ−CN、四国化成工業株式会社製、商品名)0.06gをアセトン10gに加え常温(25℃)で24時間攪拌した。酢酸リグニンは全量溶解しなかったが、実施例5と同様に成形体を作製した。しかし、得られた成形体は脆く、不均一なものであった。
(Comparative Example 5)
6 g of lignin acetate, 6 g of cresol novolac type epoxy resin (YDCN-700-10, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd., trade name) 06 g was added to 10 g of acetone and stirred at room temperature (25 ° C.) for 24 hours. Although the total amount of lignin acetate was not dissolved, a molded product was produced in the same manner as in Example 5. However, the obtained molded body was brittle and non-uniform.

(比較例6)
クラフトリグニン6g、クレゾールノボラック型エポキシ樹脂(YDCN−700−10、新日化エポキシ製造株式会社製、商品名)6g、硬化促進剤(2PZ−CN、四国化成工業株式会社製、商品名)0.06gをアセトン10gに加え常温(25℃)で24時間攪拌した。クラフトリグニンは全量溶解しなかったが、実施例5と同様に成形体を作製した。しかし、クラフトリグニンとエポキシ樹脂が相溶せず、均一な成形体を作製することができなかった。
(Comparative Example 6)
Kraft lignin 6g, cresol novolac type epoxy resin (YDCN-700-10, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd., trade name) 6g, curing accelerator (2PZ-CN, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name) 06 g was added to 10 g of acetone and stirred at room temperature (25 ° C.) for 24 hours. Kraft lignin was not completely dissolved, but a molded product was produced in the same manner as in Example 5. However, kraft lignin and the epoxy resin were not compatible with each other, and a uniform molded product could not be produced.

水蒸気爆砕法の原料としてパーム油製造時に発生する副産物を用いた本発明では、リグニン含有率はEFBでリグニン含有率26.3質量%、PKSで41.4質量%であり、リグニン収率はそれぞれ16.8質量%、14.9質量%であった。また、EFB、PKSからリグニンを抽出する際にパーム油と同等の油脂成分を分離することが可能であった。比較した杉のリグニン含有率は35.5質量%、稲わらでは12.1質量%であり、リグニン収率はそれぞれ7.7質量%、6.1質量%であった。杉は、リグニン含有率は高いもののリグニン収率が低く、稲わらでは原料のリグニン含有率が他の原料と比べ低かった。また、本発明で製造したリグニンは樹脂と均一に相溶し、エポキシ樹脂との均一な成形体を作製できた。一方、クラフトリグニン、酢酸リグニンを用いると、溶媒およびエポキシ樹脂と相溶せず、均一な成形体を作製できなかった。さらに、酢酸リグニンでは硬化反応が起こり難く、脆い成形体となった。したがって、水蒸気爆砕法の原料としてパーム油製造時に発生する副産物を用いる本発明では、工業的製造法として高効率でリグニンが得られ、かつ成形体の原料として利用可能であり、さらには、副産物としてパーム油同等の油脂成分を得ることができる製造方法であることが確認できた。   In the present invention using by-products generated during palm oil production as a raw material for the steam explosion method, the lignin content is 26.3% by mass in EFB, 41.4% by mass in PKS, and the lignin yield is respectively They were 16.8% by mass and 14.9% by mass. Moreover, when extracting lignin from EFB and PKS, it was possible to isolate | separate the fat component equivalent to palm oil. The compared cedar lignin content was 35.5% by mass, rice straw was 12.1% by mass, and lignin yields were 7.7% by mass and 6.1% by mass, respectively. Cedar has a high lignin content but a low lignin yield, and rice straw has a low lignin content compared to other raw materials. In addition, the lignin produced in the present invention was uniformly compatible with the resin, and a uniform molded body with the epoxy resin could be produced. On the other hand, when kraft lignin or lignin acetate was used, it was not compatible with the solvent and the epoxy resin, and a uniform molded product could not be produced. Furthermore, with lignin acetate, the curing reaction hardly occurred and a brittle molded product was obtained. Therefore, in the present invention using a by-product generated during palm oil production as a raw material for the steam explosion method, lignin can be obtained with high efficiency as an industrial production method, and can be used as a raw material for a molded product. It was confirmed that this was a production method capable of obtaining an oil and fat component equivalent to palm oil.

Claims (8)

パームヤシ果実の繊維(Palm Fiber)、果実の種子であるPKS(Palm Kernel Shell)、果実を分離した後の房であるEFB(Empty Fruit Bunch)、およびパームヤシの幹から選ばれる一種又は二種以上からなる原料を用いたリグニン製造方法。   Palm Palm Fiber, PKS (Palm Shell Shell) as seed of fruit, EFB (Empty Fruit Bunch) as bunch after separating fruit, and one or more kinds selected from palm palm trunk The lignin manufacturing method using the raw material which becomes. 原料が、粉状、繊維状、又はチップ状である請求項1に記載のリグニン製造方法。   The lignin production method according to claim 1, wherein the raw material is in the form of powder, fiber, or chip. 原料を、水蒸気の存在下で加熱処理し、加熱処理物を水洗、乾燥した後、有機溶媒で抽出し、有機溶媒を除去して固形物を得る請求項1又は2に記載のリグニン製造方法。   The method for producing lignin according to claim 1 or 2, wherein the raw material is heat-treated in the presence of water vapor, the heat-treated product is washed with water and dried, and then extracted with an organic solvent to remove the organic solvent and obtain a solid. 水蒸気の存在下で加熱処理するときの圧力が0.5〜4.0MPaである請求項3に記載のリグニン製造方法。   The method for producing lignin according to claim 3, wherein the pressure when the heat treatment is performed in the presence of water vapor is 0.5 to 4.0 MPa. 水蒸気の存在下で加熱処理するときの時間が1〜60分間である請求項3又は4に記載のリグニン製造方法。   The method for producing lignin according to claim 3 or 4, wherein the time for heat treatment in the presence of water vapor is 1 to 60 minutes. 請求項1〜5に記載の製造方法で得られるリグニンであって、重量平均分子量が100〜7000であるリグニン。   A lignin obtained by the production method according to claim 1, wherein the weight average molecular weight is 100 to 7000. リグニン中の硫黄原子含有率が2質量%以下である請求項6に記載のリグニン。   The lignin according to claim 6, wherein the sulfur atom content in the lignin is 2% by mass or less. 請求項1〜5に記載の製造方法で得られる加熱処理物又は抽出液、抽出液から有機溶媒を除去した固形物のいずれかから分離して得られる油脂の製造方法。   The manufacturing method of the fats and oils obtained by isolate | separating from either the heat processing thing obtained by the manufacturing method of Claims 1-5, or an extract, and the solid substance which removed the organic solvent from the extract.
JP2012141900A 2012-06-25 2012-06-25 Manufacturing method of lignin, lignin and manufacturing method of oil and fat Pending JP2014005237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141900A JP2014005237A (en) 2012-06-25 2012-06-25 Manufacturing method of lignin, lignin and manufacturing method of oil and fat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141900A JP2014005237A (en) 2012-06-25 2012-06-25 Manufacturing method of lignin, lignin and manufacturing method of oil and fat

Publications (1)

Publication Number Publication Date
JP2014005237A true JP2014005237A (en) 2014-01-16

Family

ID=50103321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141900A Pending JP2014005237A (en) 2012-06-25 2012-06-25 Manufacturing method of lignin, lignin and manufacturing method of oil and fat

Country Status (1)

Country Link
JP (1) JP2014005237A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157792A (en) * 2014-02-25 2015-09-03 国立研究開発法人産業技術総合研究所 Method of producing lignin decomposition product
WO2021024026A1 (en) * 2019-08-08 2021-02-11 Thai Eastern Pulp And Paper Co., Ltd. A method for preparing empty fruit bunch fiber in a paper and/or pulp production process
CN115315464A (en) * 2020-03-20 2022-11-08 灯塔纸业有限公司 System and method for drying and deodorizing lignin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157792A (en) * 2014-02-25 2015-09-03 国立研究開発法人産業技術総合研究所 Method of producing lignin decomposition product
WO2021024026A1 (en) * 2019-08-08 2021-02-11 Thai Eastern Pulp And Paper Co., Ltd. A method for preparing empty fruit bunch fiber in a paper and/or pulp production process
CN115315464A (en) * 2020-03-20 2022-11-08 灯塔纸业有限公司 System and method for drying and deodorizing lignin

Similar Documents

Publication Publication Date Title
Rashid et al. Enhanced lignin extraction from different species of oil palm biomass: Kinetics and optimization of extraction conditions
JP5618136B2 (en) Resin composition and molded body
Ping et al. Wood adhesives from agricultural by-products: Lignins and tannins for the elaboration of particleboards
Okuda et al. Chemical changes of kenaf core binderless boards during hot pressing (I): influence of the pressing temperature condition
JP5256679B2 (en) Lignin derivatives and their secondary derivatives
Alharbi et al. Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera fibers and leaves
Guo et al. New lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: toward structural elucidation and antioxidant performance
JP5043575B2 (en) Plant-derived composition and cured product thereof
CA2701854A1 (en) Production methods for solubilized lignin, saccharide raw material and monosaccharide raw material, and solubilized lignin
Marques et al. Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers and sugarcane bagasse
Marques et al. Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber
US20160215143A1 (en) Resin composition, molded body, and production method
Morales et al. Hydrothermal treatments of walnut shells: a potential pretreatment for subsequent product obtaining
Asada et al. Total biorefinery process of lignocellulosic waste using steam explosion followed by water and acetone extractions
JP2015140403A (en) Cellulose nanofiber and manufacturing method thereof
JP2014005237A (en) Manufacturing method of lignin, lignin and manufacturing method of oil and fat
US20040219234A1 (en) Method for the production of tannin and its use
JP2011032492A (en) Method of manufacturing lignin derivative, and method of manufacturing lignin secondary derivative
WO2016027537A1 (en) Resin composition and molded object
JP6527411B2 (en) Method of producing carbide
Thébault et al. Naturally Occurring Phenolic Sources for Industrial Applications
JP2010121096A (en) Vegetable originated composition and cured product of the same
JP2016069513A (en) Rubber composition and molded body
Ping et al. Extraction of polyphenolics from lignocellulosic materials and agricultural byproducts for the formulation of resin for wood adhesives
JP2010031092A (en) Plant-derived resin molded article