JP2014004912A - Controller of hybrid vehicle - Google Patents

Controller of hybrid vehicle Download PDF

Info

Publication number
JP2014004912A
JP2014004912A JP2012141715A JP2012141715A JP2014004912A JP 2014004912 A JP2014004912 A JP 2014004912A JP 2012141715 A JP2012141715 A JP 2012141715A JP 2012141715 A JP2012141715 A JP 2012141715A JP 2014004912 A JP2014004912 A JP 2014004912A
Authority
JP
Japan
Prior art keywords
output
generator
power generation
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012141715A
Other languages
Japanese (ja)
Inventor
Teruo Wakashiro
輝男 若城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012141715A priority Critical patent/JP2014004912A/en
Publication of JP2014004912A publication Critical patent/JP2014004912A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controller of a hybrid vehicle capable of satisfying requested driving power of an electric motor while maintaining the remaining capacity of a storage battery.SOLUTION: A controller 29 sets output of an electric motor 14 of a power generator 13 according to requested output, a vehicle state, and a running state, and corrects the output of the electric motor 14 according to an electric motor output correction coefficient PSLVFUEL. Therefore, for example, when the fuel remaining amount of a fuel tank 34 is small, the controller 29 predicts that the subsequent distance after shift to series running becomes small, and the total mileage is extended by restricting the output of the electric motor 14 in EV running. In addition, output of the power generator 13 is restricted to reduce fuel consumption of an internal combustion engine 12 and to expand the total mileage by restricting the output of the electric motor 14 even after the shift to the series running.

Description

本発明は、内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、前記発電機により発電した電力あるいは前記蓄電池に蓄えた電力で駆動される電動機と、前記内燃機関に燃料を供給する燃料タンクと、前記内燃機関および前記発電機を制御する制御装置とを備えるハイブリッド自動車の制御装置に関する。   The present invention includes a generator driven by an internal combustion engine, a storage battery that stores electric power generated by the generator, an electric motor driven by electric power generated by the generator or electric power stored in the storage battery, and the internal combustion engine The present invention relates to a control device for a hybrid vehicle including a fuel tank that supplies fuel to the vehicle and a control device that controls the internal combustion engine and the generator.

蓄電池に蓄えた電力のみによって電動機を駆動して走行するEV走行モードと、内燃機関で駆動される発電機によって発電された電力によって電動機を駆動して走行するシリーズ走行モードとを行うハイブリッド自動車において、蓄電池を外部電源に接続して充電することが可能な、いわゆるプラグイン型のハイブリッド自動車が知られている。   In a hybrid vehicle that performs an EV traveling mode in which an electric motor is driven only by electric power stored in a storage battery and a series traveling mode in which the electric motor is driven by electric power generated by a generator driven by an internal combustion engine, A so-called plug-in hybrid vehicle that can be charged by connecting a storage battery to an external power source is known.

かかるプラグイン型のハイブリッド自動車において、外部電源からの充電を行った後の燃料使用状態を示すパラメータが所定値以上になったときに、電動機の出力または発電機の出力を制限して運転者に外部電源による充電を促すことで、内燃機関を駆動するシリーズ走行を最小限に抑えて環境性能の悪化を防止するものが、下記特許文献1により公知である。   In such a plug-in type hybrid vehicle, when the parameter indicating the fuel usage state after charging from an external power source exceeds a predetermined value, the motor output or generator output is limited to the driver. Japanese Patent Application Laid-Open No. 2004-151867 discloses a technique for minimizing a series running that drives an internal combustion engine to prevent deterioration of environmental performance by encouraging charging by an external power source.

またプラグイン型のハイブリッド自動車において、外部電源からの充電を行った後のEV走行時間を示すパラメータが所定値以上になったときに、電動機の出力を制限して運転者に外部電源による充電を促すことで、内燃機関を駆動するシリーズ走行を最小限に抑えて環境性能の悪化を防止するものが、下記特許文献2により公知である。   In a plug-in hybrid vehicle, when the parameter indicating the EV travel time after charging from an external power source exceeds a predetermined value, the motor output is limited and the driver is charged by the external power source. Patent Document 2 below discloses a technique that prevents the deterioration of the environmental performance by minimizing the series running that drives the internal combustion engine.

特開平08−019114号公報Japanese Patent Laid-Open No. 08-019114 特開平08−154307号公報Japanese Patent Laid-Open No. 08-154307

ところで、プラグイン型のハイブリッド自動車では、蓄電池に蓄えた電力で走行するEV走行が基本となり、蓄電池の残容量が低下した場合に限って内燃機関で発電機を作動させて電動機を駆動するため、プラグイン型以外のハイブリッド自動車に比べて発電機が作動する頻度が必然的に小さくなる。従って、プラグイン型のハイブリッド自動車では、発電機を駆動する内燃機関に小型で排気量が小さいものが使用され、燃料タンクの容量も小さくなる。   By the way, in a plug-in type hybrid vehicle, EV traveling that travels with the electric power stored in the storage battery is fundamental, and only when the remaining capacity of the storage battery decreases, the generator is operated by the internal combustion engine to drive the electric motor. The frequency with which the generator operates is inevitably smaller than that of a hybrid vehicle other than the plug-in type. Therefore, in a plug-in type hybrid vehicle, a small internal combustion engine that drives a generator is used and the displacement of the fuel tank is reduced.

上記特許文献1に記載されたものは燃料使用状態を示すパラメータが所定値以上になったときに電動機の出力または発電機の出力を制限するものである。また上記特許文献2に記載されたものはEV走行時間を示すパラメータが所定値以上になったときに電動機の出力または発電機の出力を制限するものである。しかしながら、上記特許文献1および上記特許文献2に記載されたものは、燃料タンクの燃料残量を直接監視していない。従って、燃料タンクの容量が小さいプラグイン型のハイブリッド自動車では、蓄電池の残容量が低下してシリーズ走行が開始されたときに燃料が早期に底をついて充分な距離を走行できなくなる可能性があった。   The one described in Patent Document 1 limits the output of the electric motor or the output of the generator when the parameter indicating the fuel usage state exceeds a predetermined value. Further, what is described in Patent Document 2 is to limit the output of the electric motor or the output of the generator when the parameter indicating the EV traveling time becomes a predetermined value or more. However, those described in Patent Document 1 and Patent Document 2 do not directly monitor the remaining amount of fuel in the fuel tank. Therefore, in a plug-in hybrid vehicle with a small fuel tank capacity, the remaining capacity of the storage battery decreases, and when series running is started, there is a possibility that the fuel bottoms out early and cannot travel a sufficient distance. It was.

本発明は前述の事情に鑑みてなされたもので、シリーズ走行を行うハイブリッド自動車の燃料残量の不足による航続距離の減少を未然に防止することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to prevent a reduction in cruising distance due to a shortage of fuel remaining in a hybrid vehicle performing series travel.

上記目的を達成するために、請求項1に記載された発明によれば、内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、前記発電機により発電した電力あるいは前記蓄電池に蓄えた電力で駆動される電動機と、前記内燃機関に燃料を供給する燃料タンクと、前記内燃機関および前記発電機を制御する制御装置とを備え、前記制御装置は、要求出力、車両状態および走行状態に応じて前記電動機の出力を設定するとともに、前記電力および/または前記燃料の状態に基づく出力補正係数に応じて前記電動機の出力を補正することを特徴とするハイブリッド自動車の制御装置が提案される。   In order to achieve the above object, according to the invention described in claim 1, a generator driven by an internal combustion engine, a storage battery storing electric power generated by the generator, and electric power generated by the generator or An electric motor driven by electric power stored in the storage battery; a fuel tank that supplies fuel to the internal combustion engine; and a control device that controls the internal combustion engine and the generator. A control apparatus for a hybrid vehicle, wherein an output of the electric motor is set according to a state and a running state, and an output of the electric motor is corrected according to an output correction coefficient based on the state of the electric power and / or the fuel. Is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記制御装置は、前記燃料タンクの燃料残量および/または前記蓄電池の残容量から出力補正係数を設定することを特徴とするハイブリッド自動車の制御装置が提案される。   According to the second aspect of the present invention, in addition to the configuration of the first aspect, the control device sets the output correction coefficient from the remaining amount of fuel in the fuel tank and / or the remaining capacity of the storage battery. A control device for a hybrid vehicle is proposed.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記制御装置は、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する前記発電量に基づいて前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の制御装置が提案される。   According to a third aspect of the invention, in addition to the configuration of the first or second aspect, the control device corrects the output of the electric motor according to the output correction coefficient. A control device for a hybrid vehicle is proposed in which the internal combustion engine and the generator are controlled based on the power generation amount corresponding to the output of the electric motor.

また請求項4に記載された発明によれば、請求項1〜請求項3の何れか1項の構成に加えて、前記制御装置は、車両状態および走行状態により必要となる電力量に応じて上乗せ発電量を設定するとともに、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する前記上乗せ発電量に基づいて前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の制御装置が提案される。   According to the invention described in claim 4, in addition to the configuration of any one of claims 1 to 3, the control device responds to the amount of electric power required depending on the vehicle state and the running state. When setting the additional power generation amount and correcting the output of the motor according to the output correction coefficient, the internal combustion engine and the generator are controlled based on the additional power generation amount corresponding to the corrected output of the motor. A control apparatus for a hybrid vehicle is proposed.

また請求項5に記載された発明によれば、請求項1または請求項2の構成に加えて、前記制御装置は、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する前記内燃機関回転数に基づいて前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の制御装置が提案される。   According to the invention described in claim 5, in addition to the configuration of claim 1 or claim 2, the control device corrects the output when correcting the output of the electric motor according to the output correction coefficient. A control device for a hybrid vehicle is proposed in which the internal combustion engine and the generator are controlled based on the internal combustion engine speed corresponding to the output of the electric motor.

また請求項6に記載された発明によれば、請求項1、請求項2または請求項5の構成に加えて、前記制御装置は、車両状態および走行状態により必要となる電力量に応じた前記発電機による発電ができる上乗せ内燃機関回転数を設定するとともに、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する上乗せ内燃機関回転数に基づいて前記内燃機関および前記発電機を制御することを特徴とするハイブリッド自動車の制御装置が提案される。   According to the invention described in claim 6, in addition to the configuration of claim 1, claim 2, or claim 5, the control device performs the control according to the amount of electric power required depending on the vehicle state and the running state. When setting the additional internal combustion engine speed that can generate power by the generator and correcting the output of the electric motor according to the output correction coefficient, based on the additional internal combustion engine speed corresponding to the corrected output of the electric motor A control apparatus for a hybrid vehicle is proposed, which controls an internal combustion engine and the generator.

また請求項7に記載された発明によれば、請求項1〜請求項6の何れか1項の構成に加えて、前記制御装置は、前記出力補正係数に基づいて前記発電機の発電の可否を判定することを特徴とするハイブリッド自動車の制御装置が提案される。   According to the invention described in claim 7, in addition to the configuration of any one of claims 1 to 6, the control device determines whether the generator can generate power based on the output correction coefficient. A control apparatus for a hybrid vehicle characterized by determining

また請求項8に記載された発明によれば、請求項1〜請求項7の何れか1項の構成に加えて、前記制御装置は、前記出力補正係数が所定値未満になったときに警告手段を作動させることを特徴とするハイブリッド自動車の制御装置が提案される。   According to the invention described in claim 8, in addition to the configuration of any one of claims 1 to 7, the control device warns when the output correction coefficient becomes less than a predetermined value. A control device for a hybrid vehicle is proposed, characterized by operating the means.

なお、実施の形態の電動コンプレッサ22および電動ヒータ23は本発明の空調装置に対応し、実施の形態の各車速における巡行出力PGENRLは本発明の発電量に対応し、実施の形態の各車速における発電上乗せ基本量PGENBASEは本発明の上乗せ発電量に対応し、実施の形態の蓄電池11の残容量SOCおよび燃料タンク34の燃料残量LVFUELに基づく電動機出力補正係数PSLVFUELは本発明の出力補正係数に対応する。   The electric compressor 22 and the electric heater 23 of the embodiment correspond to the air conditioner of the present invention, and the cruise output PGENRL at each vehicle speed of the embodiment corresponds to the power generation amount of the present invention, and at each vehicle speed of the embodiment. The power generation additional basic amount PGENBASE corresponds to the additional power generation amount of the present invention, and the motor output correction coefficient PSLVFUEL based on the remaining capacity SOC of the storage battery 11 and the fuel remaining amount LVFUEL of the fuel tank 34 of the embodiment is the output correction coefficient of the present invention. Correspond.

請求項1および請求項2の構成によれば、ハイブリッド自動車の制御装置は、内燃機関で駆動される発電機と、発電機により発電した電力を蓄える蓄電池と、発電機により発電した電力あるいは蓄電池に蓄えた電力で駆動される電動機と、内燃機関に燃料を供給する燃料タンクと、内燃機関および発電機を制御する制御装置とを備える。制御装置は、要求出力、車両状態および走行状態に応じて電動機の出力を設定するとともに、前記電力および/または前記燃料の状態に基づく出力補正係数に応じて電動機の出力を補正するので、例えば、燃料タンクの燃料残量が少ないときに、シリーズ走行に移行した後の後続距離が小さくなるのを予測し、EV走行における電動機の出力制限を行うことで全走行距離の拡大を図ることができる。またシリーズ走行に移行した後も電動機の出力制限を行うことで、発電機の出力を制限して内燃機関の燃料消費量を削減し、全走行距離の拡大を図ることができる。これらの制御は燃料タンクの実際の燃料残量および/または蓄電池の実際の電力の残容量の大小に応じて行われるため、燃料残量を最大限に確保するとともに燃料残量の消費を最小限に抑えて全走行距離を最大限に拡大することができる。   According to the configuration of claim 1 and claim 2, the control device for a hybrid vehicle includes a generator driven by an internal combustion engine, a storage battery for storing power generated by the generator, and power generated by the generator or storage battery. An electric motor driven by the stored electric power, a fuel tank that supplies fuel to the internal combustion engine, and a control device that controls the internal combustion engine and the generator are provided. The control device sets the output of the electric motor according to the required output, the vehicle state and the traveling state, and corrects the output of the electric motor according to the output correction coefficient based on the power and / or the fuel state. When the remaining amount of fuel in the fuel tank is small, it is predicted that the subsequent distance after the shift to the series travel is reduced, and the total travel distance can be increased by limiting the output of the electric motor in the EV travel. Further, by limiting the output of the electric motor even after shifting to the series travel, it is possible to limit the output of the generator to reduce the fuel consumption of the internal combustion engine and to increase the total travel distance. These controls are performed according to the actual fuel level in the fuel tank and / or the actual remaining power capacity of the battery, ensuring maximum fuel level and minimizing fuel consumption. The total mileage can be expanded to the maximum while keeping it at a minimum.

また請求項3の構成によれば、制御装置は、走行状態に応じて巡行に必要な出力相当の発電量を設定するとともに、出力補正係数に応じて電動機の出力を補正するとき、補正した電動機の出力に対応する発電量に基づいて内燃機関および前記発電機を制御するので、下り坂や減速時に発電機の余剰出力で蓄電池を充電することが可能となり、内燃機関の効率を低下させるような大出力の発電を行うことなく、発電機の発電頻度が拡大されることで蓄電池の残容量を確保することができる。   According to the configuration of claim 3, the control device sets the power generation amount corresponding to the output necessary for the cruise according to the traveling state, and corrects the output of the motor according to the output correction coefficient. Since the internal combustion engine and the generator are controlled on the basis of the power generation amount corresponding to the output of the engine, it becomes possible to charge the storage battery with the surplus output of the generator during downhill or deceleration, which reduces the efficiency of the internal combustion engine. The remaining capacity of the storage battery can be secured by increasing the power generation frequency of the generator without generating a large output.

また請求項4の構成によれば、制御装置は、車両状態および走行状態により必要となる電力量に応じて上乗せ発電量を設定するとともに、出力補正係数に応じて電動機の出力を補正するとき、補正した電動機の出力に対応する上乗せ発電量に基づいて内燃機関および発電機を制御するので、車両が巡行するのに必要な出力を賄うことができる電力を発電機による発電量で賄い、さらに所定の余裕分を上乗せ発電量で補いながら、車両の一時的な加速やEV走行を行う際に必要な電力を蓄電池の電力で賄うことで、内燃機関を小型化しながら燃費最良点の近傍で運転することを可能にし、燃費の低減、CO2 排出量の低減、内燃機関の騒音の低減を達成するとともに、蓄電池が放電傾向になるのを防止して必要な残容量を確保することができる。 According to the configuration of claim 4, the control device sets the additional power generation amount according to the amount of power required depending on the vehicle state and the traveling state, and corrects the output of the motor according to the output correction coefficient. Since the internal combustion engine and the generator are controlled based on the added power generation amount corresponding to the corrected motor output, the power generation amount by the generator is used to supply the power necessary for the vehicle to travel, Driving the vehicle near the fuel efficiency best point while reducing the size of the internal combustion engine by supplying the power necessary for temporary acceleration of the vehicle or EV running with the power of the storage battery while supplementing the amount of power added with it enables the reduction of fuel consumption, reduction of CO 2 emissions, as well as achieving a reduction in noise of the internal combustion engine, it is possible to secure the remaining capacity necessary to prevent the battery from becoming discharged tends

また請求項5の構成によれば、制御装置は、走行状態に応じて巡行に必要な出力相当の発電機による発電ができる内燃機関回転数を設定するとともに、出力補正係数に応じて電動機の出力を補正するとき、補正した電動機の出力に対応する内燃機関回転数に基づいて内燃機関および発電機を制御するので、下り坂や減速時に発電機の余剰出力で蓄電池を充電することが可能となり、内燃機関の効率を低下させるような大出力の発電を行うことなく、発電機の発電頻度が拡大されることで蓄電池の残容量を確保することができる。しかも車速の増加に応じて発電機の発電量、つまり内燃機関回転数が増加することで、アクセルペダルを操作したときの運転者の違和感を解消することができる。また車速や走行状態に応じた内燃機関の回転数を設定しているので、アクセルペダルを操作したときの違和感を解消することができる。   According to the fifth aspect of the present invention, the control device sets the engine speed at which the generator can generate electric power corresponding to the output required for the cruise according to the traveling state, and outputs the motor according to the output correction coefficient. Since the internal combustion engine and the generator are controlled based on the rotational speed of the internal combustion engine corresponding to the corrected output of the electric motor, it becomes possible to charge the storage battery with the surplus output of the generator when going downhill or decelerating, The remaining capacity of the storage battery can be ensured by increasing the power generation frequency of the generator without generating a large output that reduces the efficiency of the internal combustion engine. In addition, since the amount of power generated by the generator, that is, the internal combustion engine speed, increases as the vehicle speed increases, the driver's uncomfortable feeling when operating the accelerator pedal can be eliminated. Further, since the number of revolutions of the internal combustion engine is set according to the vehicle speed and the running state, it is possible to eliminate the uncomfortable feeling when the accelerator pedal is operated.

また請求項6の構成によれば、制御装置は、出力補正係数に応じて電動機の出力を補正するとき、補正した電動機の出力に対応する上乗せ内燃機関回転数に基づいて内燃機関および発電機を制御するので、車両が巡行するのに必要な出力を賄うことができる電力を発電機による発電量で賄い、さらに所定の余裕分を上乗せ内燃機関回転数による発電量で補いながら、車両の一時的な加速やEV走行を行う際に必要な電力を蓄電池の電力で賄うことで、内燃機関を小型化しながら燃費最良点の近傍で運転することを可能にし、燃費の低減、CO2 排出量の低減、内燃機関の騒音の低減を達成するとともに、蓄電池が放電傾向になるのを防止して必要な残容量を確保することができる。 According to the configuration of claim 6, when the control device corrects the output of the electric motor according to the output correction coefficient, the control device sets the internal combustion engine and the generator based on the added internal combustion engine speed corresponding to the corrected output of the electric motor. Because it controls, the power that can provide the output necessary for the vehicle to travel is covered by the amount of power generated by the generator, and a predetermined margin is added to compensate for the amount of power generated by the internal combustion engine speed. By using the power of the storage battery to cover the power required for smooth acceleration and EV driving, the internal combustion engine can be operated in the vicinity of the best fuel efficiency while reducing the size, reducing fuel consumption and reducing CO 2 emissions. In addition to achieving a reduction in noise of the internal combustion engine, it is possible to prevent the storage battery from becoming a discharge tendency and to secure a necessary remaining capacity.

また請求項7の構成によれば、制御装置は、蓄電池の残容量に基づいて発電機の発電の可否を判定するので、燃料残量が少ないときに発電を規制して全走行距離を最大限に拡大することができる。   Further, according to the configuration of the seventh aspect, the control device determines whether or not the generator can generate power based on the remaining capacity of the storage battery. Can be expanded.

また請求項8の構成によれば、制御装置は、出力補正係数が所定値未満になったときに警告手段を作動させるので、例えば、運転者に給油あるいは充電を促して燃料切れあるいは電力切れにより走行不能になる事態を未然に防止することができる。   Further, according to the configuration of the eighth aspect, the control device operates the warning means when the output correction coefficient becomes less than the predetermined value. For example, when the driver is fueled or charged, It is possible to prevent a situation where the vehicle cannot run.

ハイブリッド自動車のパワーユニットの全体構成を示すブロック図。(第1の実施の形態)The block diagram which shows the whole structure of the power unit of a hybrid vehicle. (First embodiment) オペレーション決定ルーチンのフローチャート。(第1の実施の形態)The flowchart of an operation determination routine. (First embodiment) 放電深度算出ルーチンのフローチャート。(第1の実施の形態)The flowchart of a discharge depth calculation routine. (First embodiment) 発電実施判断ルーチンのフローチャート。(第1の実施の形態)7 is a flowchart of a power generation execution determination routine. (First embodiment) 発電量算出ルーチンのフローチャート。(第1の実施の形態)The flowchart of an electric power generation amount calculation routine. (First embodiment) 要求駆動用出力制限ルーチンのフローチャート。(第1の実施の形態)6 is a flowchart of a request driving output restriction routine. (First embodiment) 放電深度の算出手法の説明図。(第1の実施の形態)Explanatory drawing of the calculation method of the depth of discharge. (First embodiment) オペレーション決定ルーチンのフローチャート。(第2の実施の形態)The flowchart of an operation determination routine. (Second Embodiment) 発電機回転数算出ルーチンのフローチャート。(第2の実施の形態)The flowchart of a generator rotation speed calculation routine. (Second Embodiment) 発電量算出ルーチンのフローチャート。(第2の実施の形態)The flowchart of an electric power generation amount calculation routine. (Second Embodiment)

第1の実施の形態First embodiment

以下、図1〜図7に基づいて本発明の第1の実施の形態を説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

リチウムイオン(Li−ion)型などの蓄電池11を搭載したハイブリッド車両は、内燃機関12のクランクシャフトに発電機13が連結され、走行用の電動機14が駆動輪に連結されたシリーズ型のハイブリッド車両である。蓄電池11は、例えば外部の充電装置(図示略)などに接続可能な外部充電プラグ15を備え、この外部充電プラグ15を介して外部の充電装置16により充電可能とされている。   A hybrid vehicle equipped with a storage battery 11 such as a lithium ion (Li-ion) type is a series hybrid vehicle in which a generator 13 is connected to a crankshaft of an internal combustion engine 12 and a motor 14 for traveling is connected to drive wheels. It is. The storage battery 11 includes an external charging plug 15 that can be connected to an external charging device (not shown), for example, and can be charged by the external charging device 16 through the external charging plug 15.

発電機13および電動機14は、例えば3相のDCブラシレス型のものであって、発電機13は第1パワードライブユニット17に接続され、電動機14は第2パワードライブユニット18に接続される。第1、第2パワードライブユニット17,18は、例えばトランジスタなどのスイッチング素子を複数用いてブリッジ接続してなるブリッジ回路を具備するパルス幅変調(PWM)によるPWMインバータを備えて構成され、第1コンバータ19を介して蓄電池11に接続される。   The generator 13 and the electric motor 14 are of, for example, a three-phase DC brushless type, and the electric generator 13 is connected to the first power drive unit 17 and the electric motor 14 is connected to the second power drive unit 18. The first and second power drive units 17 and 18 include a PWM inverter by pulse width modulation (PWM) having a bridge circuit formed by bridge connection using a plurality of switching elements such as transistors, for example, and the first converter It is connected to the storage battery 11 via 19.

例えば内燃機関12の動力により発電機13が発電する場合には、発電機13から出力される交流の発電電力を第1パワードライブユニット17で直流電力に変換した後、更に第1コンバータ19で電圧変換して蓄電池11を充電したり、第2パワードライブユニット18で再び交流電力に変換して電動機14に電力供給したりする。また、例えば電動機14の駆動時には、蓄電池11から出力される直流電力あるいは発電機13から出力されて第2パワードライブユニット17で変換された直流電力を、第2パワードライブユニット18で交流電力に変換して電動機14に供給する。   For example, when the generator 13 generates power using the power of the internal combustion engine 12, the AC power generated from the generator 13 is converted into DC power by the first power drive unit 17 and then converted by the first converter 19. Then, the storage battery 11 is charged, or the second power drive unit 18 converts it into AC power again to supply power to the motor 14. For example, when the electric motor 14 is driven, the DC power output from the storage battery 11 or the DC power output from the generator 13 and converted by the second power drive unit 17 is converted to AC power by the second power drive unit 18. The electric motor 14 is supplied.

一方、例えばハイブリッド車両の減速時などにおいて駆動輪側から電動機14側に駆動力が伝達されると、電動機14は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギーとして回収する。この電動機14の発電時には、第2パワードライブユニット18は電動機14から出力される交流の発電(回生)電力を直流電力に変換し、更に第1コンバータ19で電圧変換して蓄電池11を充電する。   On the other hand, for example, when the driving force is transmitted from the driving wheel side to the motor 14 side during deceleration of the hybrid vehicle, the motor 14 functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is converted into electric energy. As recovered. During power generation by the electric motor 14, the second power drive unit 18 converts AC generated (regenerative) power output from the electric motor 14 into DC power, and further converts the voltage by the first converter 19 to charge the storage battery 11.

また、各種補機類からなる電気負荷を駆動するための低圧の12V蓄電池20は第2コンバータ21を介して蓄電池11に接続されており、第2コンバータ21は蓄電池11のの端子間電圧あるいは更に第1コンバータ19の端子間電圧を所定の電圧値まで降圧して12V蓄電池20を充電可能である。   Further, a low-voltage 12V storage battery 20 for driving an electric load composed of various auxiliary machines is connected to the storage battery 11 via a second converter 21, and the second converter 21 is connected to a voltage between terminals of the storage battery 11 or further. The 12V storage battery 20 can be charged by stepping down the voltage across the terminals of the first converter 19 to a predetermined voltage value.

なお、例えば蓄電池11の残容量(SOC:State Of Charge )が低下している場合などにおいては、12V蓄電池20の端子間電圧を第2コンバータ21で昇圧して蓄電池11を充電可能にしてもよい。   For example, when the remaining capacity (SOC: State Of Charge) of the storage battery 11 is reduced, the inter-terminal voltage of the 12V storage battery 20 may be boosted by the second converter 21 so that the storage battery 11 can be charged. .

また、車室を空調する電動コンプレッサ22および電動ヒータ23が蓄電池11に接続されている。   In addition, an electric compressor 22 and an electric heater 23 that air-condition the passenger compartment are connected to the storage battery 11.

ハイブリッド車両の動力系統を制御する制御装置24は、例えばCPU(Central Processing Unit )などの電子回路により構成される各種のECU(Electronic Control Unit :電子制御ユニット)として、蓄電池ECU25、内燃機関ECU26、コンバータECU27、電動機ECU28、発電機ECU29および空調用ECU30に接続されて制御される
発電機ECU29は、第1パワードライブユニット17の電力変換動作を制御することで内燃機関12の動力による発電機13の発電を制御する。
The control device 24 for controlling the power system of the hybrid vehicle includes, for example, a storage battery ECU 25, an internal combustion engine ECU 26, a converter as various ECUs (Electronic Control Units) configured by an electronic circuit such as a CPU (Central Processing Unit). The generator ECU 29 is connected to and controlled by the ECU 27, the motor ECU 28, the generator ECU 29, and the air conditioning ECU 30. The generator ECU 29 controls the power conversion operation of the first power drive unit 17, thereby generating power from the generator 13 by the power of the internal combustion engine 12. Control.

電動機ECU28は、第2パワードライブユニット18の電力変換動作を制御することで電動機14の駆動および発電を制御する。   The electric motor ECU 28 controls the driving and power generation of the electric motor 14 by controlling the power conversion operation of the second power drive unit 18.

第1、第2パワードライブユニット17,18の電力変換動作は、例えばパルス幅変調(PWM)などにより第1、第2パワードライブユニット17,18のトランジスタをオン/オフ駆動させるためのパルスに応じて制御され、このパルスのデューティ、つまりオン/オフの比率によって、発電機13および電動機14の作動量が制御される。   The power conversion operation of the first and second power drive units 17 and 18 is controlled according to a pulse for driving on / off the transistors of the first and second power drive units 17 and 18 by, for example, pulse width modulation (PWM). The operation amounts of the generator 13 and the electric motor 14 are controlled by the duty of this pulse, that is, the on / off ratio.

蓄電池ECU25は、例えば蓄電池11を含む高圧電装系の監視および保護などの制御と、第2コンバータ21の電力変換動作の制御とを行なう。例えば、蓄電池ECU25は、蓄電池11の端子間電圧と電流と温度との各検出信号に基づき、残容量(SOC:State Of Charge )などの各種の状態量を算出する。なお、蓄電池ECU25は、蓄電池11の電圧を検出する電圧センサ、蓄電池11の電流を検出する電流センサ、蓄電池11の温度を検出する温度センサ、内燃機関12に燃料を供給する燃料タンク34の残容量を検出する燃料残容量センサと接続され、これらセンサから出力される検出信号が入力される。また蓄電池ECU25は、運転者にランプ、チャイム、音声等で警告を発する警告手段35と接続される。   The storage battery ECU 25 controls, for example, monitoring and protection of the high-voltage equipment system including the storage battery 11 and controls the power conversion operation of the second converter 21. For example, the storage battery ECU 25 calculates various state quantities such as a remaining capacity (SOC: State Of Charge) based on the detection signals of the inter-terminal voltage, current, and temperature of the storage battery 11. The storage battery ECU 25 is a voltage sensor that detects the voltage of the storage battery 11, a current sensor that detects the current of the storage battery 11, a temperature sensor that detects the temperature of the storage battery 11, and the remaining capacity of the fuel tank 34 that supplies fuel to the internal combustion engine 12. Is connected to a remaining fuel capacity sensor for detecting fuel, and a detection signal output from these sensors is input. The storage battery ECU 25 is connected to a warning means 35 that issues a warning to the driver with a lamp, chime, voice, or the like.

内燃機関ECU26は、例えば内燃機関12への燃料供給や点火タイミングなどを制御する。例えば、内燃機関ECU26は、スロットルバルブを駆動する電磁アクチュエータに制御電流を通電して、蓄電池ECU25の指示に応じたバルブ開度となるようにスロットルバルブを電子制御する。また、運転者からの要求出力に対して追従して制御する場合、内燃機関ECU26は、アクセルペダル開度に応じて、スロットルバルブを駆動する電磁アクチュエータに制御電流を通電して電子制御する。さらに、内燃機関ECU26は、他の全てのECUの管理および制御を行なう。このため、内燃機関ECU26には、ハイブリッド車両の状態量を検出する各種のセンサから出力される検出信号が入力されている。   The internal combustion engine ECU 26 controls, for example, fuel supply to the internal combustion engine 12 and ignition timing. For example, the internal combustion engine ECU 26 applies a control current to an electromagnetic actuator that drives the throttle valve, and electronically controls the throttle valve so that the valve opening degree according to an instruction from the storage battery ECU 25 is obtained. Further, when the control is performed following the request output from the driver, the internal combustion engine ECU 26 performs electronic control by supplying a control current to the electromagnetic actuator that drives the throttle valve in accordance with the accelerator pedal opening. Further, the internal combustion engine ECU 26 manages and controls all other ECUs. For this reason, detection signals output from various sensors that detect the state quantity of the hybrid vehicle are input to the internal combustion engine ECU 26.

各種のセンサは、例えば、車速を検出する車速センサ、内燃機関12の冷却水温度を検出する冷却水温度センサ、アクセルペダル開度を検出するアクセルペダル開度センサ等である。   The various sensors are, for example, a vehicle speed sensor that detects the vehicle speed, a coolant temperature sensor that detects the coolant temperature of the internal combustion engine 12, an accelerator pedal opening sensor that detects the accelerator pedal opening, and the like.

なお、各ECUは、ハイブリッド車両の各種の状態を検出するセンサ類と共に、車両のCAN(Controller Area Network )通信第1ライン31に接続されている。   Each ECU is connected to a CAN (Controller Area Network) communication first line 31 of the vehicle together with sensors for detecting various states of the hybrid vehicle.

また、電動コンプレッサ22および電動ヒータ23は、ハイブリッド車両の各種の状態を表示する計器類からなるメータと共に、CAN(Controller Area Network )通信第1ライン31よりも通信速度の遅いCAN(Controller Area Network )通信第2ライン32に接続されている。   The electric compressor 22 and the electric heater 23, together with a meter made up of instruments that display various states of the hybrid vehicle, are connected to a CAN (Controller Area Network) having a communication speed slower than the CAN (Controller Area Network) communication first line 31. It is connected to the communication second line 32.

内燃機関12、発電機13および第1パワードライブユニット17は、内燃機関12の駆動力で電力を発生する補助動力部33を構成する。   The internal combustion engine 12, the generator 13, and the first power drive unit 17 constitute an auxiliary power unit 33 that generates electric power with the driving force of the internal combustion engine 12.

次に、上記構成を備えたハイブリッド自動車の発電制御について説明する。   Next, power generation control of the hybrid vehicle having the above configuration will be described.

図2のフローチャートはオペレーション決定ルーチンを示すもので、本ルーチンにより、ハイブリッド自動車の6種類の運転モードが決定される。   The flowchart of FIG. 2 shows an operation determination routine, and six types of operation modes of the hybrid vehicle are determined by this routine.

先ずステップS1で運転者により選択されたセレクトレンジが「P」レンジ(パーキングレンジ)あるいは「N」レンジ(ニュートラルレンジ)であれば、ステップS2で発電機13の発電量である発電機発電出力PREQGENをアイドル時の発電機出力PREQGENIDLに設定し、ステップS3で内燃機関12の回転数である発電機用内燃機関回転数NGENをアイドル時の発電機用内燃機関回転数NGENIDLに設定する。続くステップS4で蓄電池11の残容量SOC(State of Charge )がアイドル発電実施上限残容量SOCIDLE以下であれば、ステップS5で運転モードを第1モード(REVアイドルモード)に設定し、オペレーション決定ルーチンを終了する。前記ステップS4で蓄電池11の残容量SOCがアイドル発電実施上限残容量SOCIDLEを超えていれば、ステップS6で運転モードを第2モード(アイドルストップモード)に設定し、オペレーション決定ルーチンを終了する。   First, if the select range selected by the driver in step S1 is the “P” range (parking range) or the “N” range (neutral range), the generator power generation output PREQGEN which is the power generation amount of the generator 13 in step S2. Is set to the generator output PREQGENIDL during idling, and the generator internal combustion engine speed NGEN, which is the rotational speed of the internal combustion engine 12, is set to the generator internal combustion engine speed NGENIDL during idling in step S3. In step S4, if the remaining capacity SOC (State of Charge) of the storage battery 11 is equal to or lower than the idle power generation execution upper limit remaining capacity SOCIDLE, the operation mode is set to the first mode (REV idle mode) in step S5, and the operation determination routine is executed. finish. If the remaining capacity SOC of the storage battery 11 exceeds the idle power generation execution upper limit remaining capacity SOCIDLE in step S4, the operation mode is set to the second mode (idle stop mode) in step S6, and the operation determination routine is terminated.

蓄電池11の残容量SOCは、電流センサで検出した充放電電流を積算して積算充電量および積算放電量を算出し、積算充電量および積算放電量を初期状態あるいは充放電開始直前の残容量SOCに加算または減算することで算出可能である。また蓄電池11の開放電圧OCV(Open Circuit Voltage)は残容量SOCと相関関係にあるため、開放電圧OCVから残容量SOCを算出することも可能である。   The remaining capacity SOC of the storage battery 11 is calculated by integrating the charging / discharging current detected by the current sensor to calculate the accumulated charge amount and the accumulated discharge amount. The accumulated charge amount and the accumulated discharge amount are determined in the initial state or the remaining capacity SOC immediately before the start of charge / discharge. It can be calculated by adding or subtracting to. Further, since the open circuit voltage (OCV) of the storage battery 11 is correlated with the remaining capacity SOC, it is also possible to calculate the remaining capacity SOC from the open voltage OCV.

第1モード(REVアイドルモード)は、蓄電池11の残容量SOCを増加させるべく、「P」レンジ(駐車レンジ)あるいは「N」レンジ(ニュートラルレンジ)で電動機14を停止させた状態で、内燃機関12をアイドリング運転して発電機13に発電を行わせ、発電機13の発電電力で蓄電池11を充電するモードである。   In the first mode (REV idle mode), in order to increase the remaining capacity SOC of the storage battery 11, the motor 14 is stopped in the “P” range (parking range) or the “N” range (neutral range). In this mode, idling operation of 12 is performed to cause the generator 13 to generate power, and the storage battery 11 is charged with the generated power of the generator 13.

第2モード(アイドルストップモード)は、蓄電池11の残容量SOCが充分であるため、「P」レンジあるいは「N」レンジで電動機14を停止させた状態で、内燃機関12をアイドリングストップ制御して発電機13を停止させるモードである。   In the second mode (idle stop mode), since the remaining capacity SOC of the storage battery 11 is sufficient, the idling stop control of the internal combustion engine 12 is performed with the motor 14 stopped in the “P” range or the “N” range. In this mode, the generator 13 is stopped.

前記ステップS1で運転者により選択されたセレクトレンジが「P」レンジでも「N」レンジでもない場合、例えば、「D」レンジ(前進走行レンジ)あるいは「R」レンジ(後進走行レンジ)である場合、ステップS7で運転者がブレーキペダルを踏んでおり、かつステップS8で車速センサにより検出した車速VPがゼロのとき、つまり、車両が停止しているとき、前記ステップS2〜ステップS4に移行してステップS5の第1モードあるいはステップS6の第2モードを選択する。   When the selection range selected by the driver in step S1 is neither the “P” range nor the “N” range, for example, the “D” range (forward travel range) or the “R” range (reverse travel range). When the driver depresses the brake pedal in step S7 and the vehicle speed VP detected by the vehicle speed sensor in step S8 is zero, that is, when the vehicle is stopped, the process proceeds to steps S2 to S4. The first mode in step S5 or the second mode in step S6 is selected.

前記ステップS7で運転者がブレーキペダルを踏んでいないとき、あるいはブレーキペダルを踏んでいても前記ステップS8で車速VPがゼロでないとき、例えば、車両が前進あるいは後進の減速走行の減速走行を行っているとき、ステップS9Aで車速VPおよびアクセルペダル開度センサで検出したアクセルペダル開度APをパラメータとして、運転者が電動機14に出力させることを要求している要求駆動力FREQFをマップ検索する。続くステップS9Bで車速VPおよび要求駆動力FREQFから発電機13に出力させるべき要求駆動用出力PREQを算出する。その詳細は図6のフローチャートに基づいて後から詳述する。 続くステップS10で車速VPと、車速VPを時間微分して算出した加速度αと、要求駆動力FREQFの前回値FREQFBとから、車両が現在走行している路面の勾配推定値θを算出する。勾配推定値θは(1)式で算出される。   If the driver does not step on the brake pedal in step S7 or if the vehicle speed VP is not zero in step S8 even if the driver steps on the brake pedal, for example, the vehicle decelerates for forward or reverse deceleration. If the vehicle speed VP and the accelerator pedal opening AP detected by the accelerator pedal opening sensor are parameters in step S9A, a map search is performed for the required driving force FREQF requested by the driver to be output to the motor 14. In the subsequent step S9B, a required driving output PREQ to be output to the generator 13 is calculated from the vehicle speed VP and the required driving force FREQF. Details thereof will be described later based on the flowchart of FIG. In the following step S10, the estimated gradient θ of the road surface on which the vehicle is currently traveling is calculated from the vehicle speed VP, the acceleration α calculated by time differentiation of the vehicle speed VP, and the previous value FREQFB of the required driving force FREQF. The estimated gradient value θ is calculated by equation (1).

θ=[FREQFB−(Ra+Rr+Rc)]/(W*g) …(1)
ここで、(1)式中のRaは空気抵抗、Rrは転がり抵抗、Rcは加速抵抗、Wは車両重量、gは重力加速度である。Rrは(2)式、Rcは(3)式、Rcは(4)式で算出される。
θ = [FREQFB− (Ra + Rr + Rc)] / (W * g) (1)
Here, in equation (1), Ra is air resistance, Rr is rolling resistance, Rc is acceleration resistance, W is vehicle weight, and g is gravitational acceleration. Rr is calculated by equation (2), Rc is calculated by equation (3), and Rc is calculated by equation (4).

Ra=λ*S*VP2 …(2)
Rr=W*μ …(3)
Rc=α*W …(4)
ここで、(2)〜(4)式中のλは空気抵抗係数、Sは前面投影面積、VPは車速、μは転がり抵抗係数、αは加速度である。
Ra = λ * S * VP 2 (2)
Rr = W * μ (3)
Rc = α * W (4)
In the equations (2) to (4), λ is an air resistance coefficient, S is a front projection area, VP is a vehicle speed, μ is a rolling resistance coefficient, and α is an acceleration.

続くステップS11で蓄電池11の放電深度DODを算出する。その詳細は図3のフローチャートに基づいて後から詳述する。続くステップS12で内燃機関12を駆動して発電機13による発電を実施するか否か、つまり補助動力部33による発電を実施するか否かを判断する。その詳細は図4のフローチャートに基づいて後から詳述する。続くステップS14で発電機13による発電量である発電機発電出力PREQGENを算出する。その詳細は図5のフローチャートに基づいて後から詳述する。   In subsequent step S11, the discharge depth DOD of the storage battery 11 is calculated. Details thereof will be described later based on the flowchart of FIG. In subsequent step S12, it is determined whether or not the internal combustion engine 12 is driven to generate power by the generator 13, that is, whether or not power generation by the auxiliary power unit 33 is performed. Details thereof will be described later based on the flowchart of FIG. In subsequent step S14, a generator power generation output PREQGEN, which is a power generation amount by the power generator 13, is calculated. Details thereof will be described later based on the flowchart of FIG.

続くステップS15で、前記ステップS14で算出した発電機発電出力PREQGENをパラメータとして発電機13を駆動する内燃機関12の回転数である発電機用内燃機関回転数NGENをテーブル検索する。発電機13は内燃機関12に接続されて駆動されるため、発電機発電出力PREQGENの増加に伴い、発電機用内燃機関回転数NGENは増加する。   In subsequent step S15, the generator internal combustion engine speed NGEN, which is the speed of the internal combustion engine 12 driving the generator 13, is retrieved from the table using the generator power generation output PREQGEN calculated in step S14 as a parameter. Since the generator 13 is connected to and driven by the internal combustion engine 12, the generator internal combustion engine speed NGEN increases as the generator power generation output PREQGEN increases.

続くステップS16Aで、前記ステップS9Aで算出した要求駆動力FREQFがゼロ未満のとき、つまり電動機14が回生しているとき、ステップS17で発電実施フラグF_GEN=「0」(発電非実施)であれば、ステップS18で運転モードを第3モード(EV回生モード)に設定し、オペレーション決定ルーチンを終了する。前記ステップS17で発電実施フラグF_GEN=「1」(発電実施)であれば、ステップS19で運転モードを第4モード(REV回生モード)に設定し、オペレーション決定ルーチンを終了する。   In subsequent step S16A, when the required driving force FREQF calculated in step S9A is less than zero, that is, when the motor 14 is regenerating, if the power generation execution flag F_GEN = “0” (power generation not performed) in step S17. In step S18, the operation mode is set to the third mode (EV regeneration mode), and the operation determination routine is terminated. If the power generation execution flag F_GEN = “1” (power generation execution) in step S17, the operation mode is set to the fourth mode (REV regeneration mode) in step S19, and the operation determination routine is ended.

第3モード(EV回生モード)は、車両の減速時に駆動輪から逆伝達される駆動力で電動機14を発電機として機能させて蓄電池11を充電し、内燃機関12および発電機13は停止するモードである。   The third mode (EV regeneration mode) is a mode in which the storage battery 11 is charged by causing the electric motor 14 to function as a generator with the driving force reversely transmitted from the driving wheels during deceleration of the vehicle, and the internal combustion engine 12 and the generator 13 are stopped. It is.

第4モード(REV回生モード)は、車両の減速時に駆動輪から逆伝達される駆動力で電動機14を発電機として機能させて蓄電池11を充電するとともに、内燃機関12で発電機13を駆動し、発電機13が発電した電力で蓄電池11を充電するモードである。このように、車両の減速時に電動機14の回生発電による蓄電池11の充電だけでなく、補助動力部33の駆動による蓄電池11の充電を並行して行うことで、回生発電による充電では不充分である場合でも、蓄電池11の効率的に充電することができる。   In the fourth mode (REV regeneration mode), the storage battery 11 is charged by causing the motor 14 to function as a generator with the driving force reversely transmitted from the driving wheels when the vehicle is decelerated, and the generator 13 is driven by the internal combustion engine 12. In this mode, the storage battery 11 is charged with the power generated by the generator 13. Thus, not only charging of the storage battery 11 by regenerative power generation of the electric motor 14 but also charging of the storage battery 11 by driving of the auxiliary power unit 33 in parallel when the vehicle is decelerated, charging by regenerative power generation is insufficient. Even in this case, the storage battery 11 can be efficiently charged.

前記ステップS16Aで要求駆動力FREQFがゼロ以上のとき、つまり電動機14が駆動されるとき、ステップS16Bで、前記ステップS9Bで算出した電動機14の要求駆動用出力PREQを制限処理する。その詳細は図6のフローチャートに基づいて後から詳述する。続くステップS20で発電実施フラグF_GEN=「1」(発電実施)であれば、ステップS21で運転モードを第5モード(REV走行モード)に設定し、オペレーション決定ルーチンを終了する。前記ステップS20で発電実施フラグF_GEN=「0」(発電非実施)であれば、ステップS22で運転モードを第6モード(EV走行モード)に設定し、オペレーション決定ルーチンを終了する。   When the required driving force FREQF is equal to or greater than zero in step S16A, that is, when the motor 14 is driven, in step S16B, the required driving output PREQ calculated in step S9B is limited. Details thereof will be described later based on the flowchart of FIG. If the power generation execution flag F_GEN = “1” (power generation execution) in subsequent step S20, the operation mode is set to the fifth mode (REV travel mode) in step S21, and the operation determination routine is terminated. If the power generation execution flag F_GEN = “0” (power generation not performed) in step S20, the operation mode is set to the sixth mode (EV travel mode) in step S22, and the operation determination routine is terminated.

第5モード(REV走行モード)は、補助動力部33が発電した電力および/または蓄電池11に蓄えた電力で電動機14を駆動して走行するモードであり、内燃機関12、発電機13および電動機14は全て駆動される。   The fifth mode (REV traveling mode) is a mode in which the electric motor 14 is driven by electric power generated by the auxiliary power unit 33 and / or electric power stored in the storage battery 11, and the internal combustion engine 12, the generator 13, and the electric motor 14 are driven. Are all driven.

第6モード(EV走行モード)は、補助動力部33を停止し、蓄電池11に蓄えた電力で電動機14を駆動して走行するモードであり、内燃機関12および発電機13は停止して電動機14は駆動される。   The sixth mode (EV traveling mode) is a mode in which the auxiliary power unit 33 is stopped and the electric motor 14 is driven by the electric power stored in the storage battery 11, and the internal combustion engine 12 and the generator 13 are stopped and the electric motor 14 is stopped. Is driven.

第5モードおよび第6モードでは電動機14が要求駆動用出力PREQで駆動されるが、その際に要求駆動用出力PREQが制限処理されていれば、それに応じて電動機14の出力が制限される。   In the fifth mode and the sixth mode, the electric motor 14 is driven with the required driving output PREQ. If the required driving output PREQ is restricted at that time, the output of the electric motor 14 is limited accordingly.

次に、前記ステップS11のサブルーチンである放電深度算出ルーチンを、図3のフローチャートおよび図7の説明図に基づいて説明する。   Next, the discharge depth calculation routine, which is a subroutine of step S11, will be described based on the flowchart of FIG. 3 and the explanatory diagram of FIG.

先ずステップS101でスタータスイッチがオンされたとき、ステップS102でそのときの残容量SOCを放電深度算出基準残容量SOCINTに設定する。続くステップS103で放電深度算出基準残容量SOCINTが放電深度算出基準残容量下限値SOCINTL未満か否かを判断し、放電深度算出基準残容量SOCINTが放電深度算出基準残容量下限値SOCINTL未満と判定したとき、ステップS104で放電深度算出基準残容量下限値SOCINTLを放電深度算出基準残容量SOCINTに設定する。なお、放電深度算出基準残容量SOCINTが放電深度算出基準残容量下限値SOCINTL以上と判定したとき、放電深度算出基準残容量下限値SOCINTLをステップS102で設定した値で維持する。   First, when the starter switch is turned on in step S101, the remaining capacity SOC at that time is set to the discharge depth calculation reference remaining capacity SOCINT in step S102. In subsequent step S103, it is determined whether or not the discharge depth calculation reference remaining capacity SOCINT is less than the discharge depth calculation reference remaining capacity lower limit SOCINTL, and the discharge depth calculation reference remaining capacity SOCINT is determined to be less than the discharge depth calculation reference remaining capacity lower limit SOCINTL. In step S104, the discharge depth calculation reference remaining capacity lower limit SOCINTL is set to the discharge depth calculation reference remaining capacity SOCINT. When it is determined that the discharge depth calculation reference remaining capacity SOCINT is equal to or greater than the discharge depth calculation reference remaining capacity lower limit SOCINTL, the discharge depth calculation reference remaining capacity lower limit SOCINTL is maintained at the value set in step S102.

続くステップS105で放電深度算出基準残容量SOCINTから放電深度算出実施判断放電量DODLMTを減算した値を放電深度算出実施下限閾値SOCLMTLに設定する。続くステップS106で放電深度算出基準残容量SOCINTに放電深度算出実施判断充電量SOCUPを加算した値を放電深度算出実施上限閾値SOCLMTHに設定する。そしてステップS107で放電深度算出実施フラグF_DODLMTを「0」(不実施)に設定するとともに、ステップS108で放電深度DODを初期値である「0」に設定し、放電震度算出ルーチンを終了する。   In subsequent step S105, a value obtained by subtracting the discharge depth calculation execution determination discharge amount DODLMT from the discharge depth calculation reference remaining capacity SOCINT is set as the discharge depth calculation execution lower limit threshold SOCLMTL. In subsequent step S106, a value obtained by adding the discharge depth calculation execution determination charge amount SOCUP to the discharge depth calculation reference remaining capacity SOCINT is set as the discharge depth calculation execution upper limit threshold SOCLMTH. In step S107, the discharge depth calculation execution flag F_DODLMT is set to “0” (not executed), and in step S108, the discharge depth DOD is set to the initial value “0”, and the discharge seismic intensity calculation routine ends.

前記ステップS101でスタータスイッチがオフされたとき、あるいはオンされなかったとき、ステップS109で残容量SOCが放電深度算出実施上限残容量SOCUPHを超えているか否かを判断し、残容量SOCが放電深度算出実施上限残容量SOCUPHを超えていると判定したとき、前記ステップS107および前記ステップS108に移行して放電深度算出を実行しない。前記ステップS109で残容量SOCが放電深度算出実施上限残容量SOCUPH以下と判定したとき、ステップS110に進む。   When the starter switch is turned off or not turned on in step S101, it is determined in step S109 whether the remaining capacity SOC exceeds the discharge depth calculation execution upper limit remaining capacity SOCUPH, and the remaining capacity SOC is determined as the discharge depth. When it is determined that the calculation execution upper limit remaining capacity SOCUPH is exceeded, the process proceeds to step S107 and step S108, and the discharge depth calculation is not executed. When it is determined in step S109 that the remaining capacity SOC is equal to or less than the discharge depth calculation execution upper limit remaining capacity SOCUPH, the process proceeds to step S110.

続くステップS110で残容量SOCが前記放電深度算出実施下限閾値SOCLMTL以下か否かを判断し、残容量SOCが前記放電深度算出実施下限閾値SOCLMTL以下になれば(図7のA点参照)、ステップS111で放電深度算出実施フラグF_DODLMTを「1」(実施)に設定するとともに、ステップS112で放電深度算出基準残容量SOCINTから残容量SOCを減算した値を電深度DODに設定し、放電深度算出ルーチンを終了する。前記ステップS110で残容量SOCが前記放電深度算出実施下限閾値SOCLMTLを超えていると判定したとき、ステップS113に進む。   In subsequent step S110, it is determined whether or not the remaining capacity SOC is equal to or less than the discharge depth calculation execution lower limit threshold SOCLMTL, and if the remaining capacity SOC is equal to or less than the discharge depth calculation execution lower limit threshold SOCLMTL (see point A in FIG. 7). In S111, the discharge depth calculation execution flag F_DODLMT is set to “1” (execution), and in step S112, a value obtained by subtracting the remaining capacity SOC from the discharge depth calculation reference remaining capacity SOCINT is set in the electric depth DOD, and the discharge depth calculation routine is performed. Exit. When it is determined in step S110 that the remaining capacity SOC exceeds the discharge depth calculation execution lower limit threshold SOCLMTL, the process proceeds to step S113.

そして、ステップS113で放電深度算出実施フラグF_DODLMTが「1」(実施)に設定されているとき、即ち放電深度DODの算出が実施されているとき、ステップS114で残容量SOCが放電深度算出実施上限閾値SOCLMTHを超えているか否かを判定し、残容量SOCが放電深度算出実施上限閾値SOCLMTHを超えていれば(図7のB点参照)、前記ステップS102〜ステップS108に移行して処理を実行し、放電深度算出ルーチンを終了する。なお、ステップS102では、ステップ114から移行したときの残容量SOCで藻放電深度算出基準残容量SOCINTを更新して処理を実行する。   When the discharge depth calculation execution flag F_DODLMT is set to “1” (execution) in step S113, that is, when the discharge depth DOD is being calculated, the remaining capacity SOC is set to the discharge depth calculation execution upper limit in step S114. It is determined whether or not the threshold SOCLMTH is exceeded, and if the remaining capacity SOC exceeds the discharge depth calculation execution upper limit threshold SOCLMTH (see point B in FIG. 7), the process proceeds to step S102 to step S108 to execute the process. Then, the discharge depth calculation routine ends. In step S102, the alga discharge depth calculation reference remaining capacity SOCINT is updated with the remaining capacity SOC transferred from step 114, and the process is executed.

前記ステップS113で放電深度算出実施フラグF_DODLMTが「0」(不実施)に設定されているとき、ステップS114で残容量SOCが放電深度算出実施上限残容量SOCUPH以下と判定したとき、放電深度算出ルーチンを終了する。   When the discharge depth calculation execution flag F_DODLMT is set to “0” (not executed) in step S113, the discharge depth calculation routine is executed when it is determined in step S114 that the remaining capacity SOC is equal to or less than the discharge depth calculation execution upper limit remaining capacity SOCUPH. Exit.

次に、前記ステップS12のサブルーチンである発電実施判断ルーチンを、図4のフローチャートに基づいて説明する。   Next, the power generation execution determination routine, which is a subroutine of step S12, will be described based on the flowchart of FIG.

先ずステップS201で蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV未満であるか否かを判定し、蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV以上と判定したときには、ステップS202で発電実施フラグF_GEN=「0」にして補助動力部33による発電を停止し、発電実施判断ルーチンを終了する。前記ステップS201で蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV未満と判定したときであっても、続くステップS203で、冷却水温度センサで検出した内燃機関12の冷却水温度TWがEVモード実施上限水温TWEV以下と判定されたときは、内燃機関12の暖機が完了していないため、ステップS202で発電実施フラグF_GEN=「0」にして補助動力部33による発電を停止し、発電実施判断ルーチンを終了する。   First, in step S201, it is determined whether or not the remaining capacity SOC of the storage battery 11 is less than the REV mode power generation execution upper limit remaining capacity SOCREV, and when it is determined that the remaining capacity SOC of the storage battery 11 is greater than or equal to the REV mode power generation execution upper limit remaining capacity SOCREV, In step S202, the power generation execution flag F_GEN = “0” is set, power generation by the auxiliary power unit 33 is stopped, and the power generation execution determination routine is ended. Even when the remaining capacity SOC of the storage battery 11 is determined to be less than the REV mode power generation execution upper limit remaining capacity SOCREV in step S201, the cooling water temperature TW of the internal combustion engine 12 detected by the cooling water temperature sensor is determined in the subsequent step S203. When it is determined that the EV mode execution upper limit water temperature TWEV or less, since the warm-up of the internal combustion engine 12 is not completed, the power generation execution flag F_GEN is set to “0” in step S202, and the power generation by the auxiliary power unit 33 is stopped. The power generation execution determination routine is terminated.

前記ステップS201で蓄電池11の残容量SOCがREVモード発電実施上限残容量SOCREV未満と判定し、前記ステップS203で冷却水温度センサで検出した内燃機関11の冷却水温度TWがEVモード実施上限水温TWEVを超えていると判定したとき、ステップS204で放電深度DODをパラメータとして放電深度による発電実施下限車速VPGENDODをテーブル検索する。なお、放電深度による発電実施下限車速VPGENDODは、放電深度DODの増加に伴って減少する。即ち、蓄電池11の容量が減少すると、補助動力部33を低車速で作動させることで、EV走行の頻度が減少して蓄電池11の過放電が抑制される。   In step S201, it is determined that the remaining capacity SOC of the storage battery 11 is less than the REV mode power generation execution upper limit remaining capacity SOCREV, and the cooling water temperature TW of the internal combustion engine 11 detected by the cooling water temperature sensor in step S203 is the EV mode execution upper limit water temperature TWEV. When it is determined that the value exceeds the value, the power generation execution lower limit vehicle speed VPENDOD according to the discharge depth is searched in the table in step S204 using the discharge depth DOD as a parameter. Note that the power generation execution lower limit vehicle speed VPENDOD according to the depth of discharge decreases as the depth of discharge DOD increases. That is, when the capacity of the storage battery 11 is reduced, the auxiliary power unit 33 is operated at a low vehicle speed, whereby the frequency of EV traveling is reduced and overdischarge of the storage battery 11 is suppressed.

続くステップS205で残容量SOCをパラメータとして残容量による発電実施下限車速VPGENSOCをテーブル検索する。なお、残容量による発電実施下限車速VPGENSOCは、残容量SOCの減少に伴って減少する。即ち、蓄電池11の容量が減少すると、補助動力部33を低車速で作動させることで、EV走行の頻度が減少して蓄電池11の過放電が抑制される。   In subsequent step S205, a table search is performed for a power generation execution lower limit vehicle speed VPGENSOC based on the remaining capacity using the remaining capacity SOC as a parameter. Note that the power generation lower limit vehicle speed VPGENSOC based on the remaining capacity decreases as the remaining capacity SOC decreases. That is, when the capacity of the storage battery 11 is reduced, the auxiliary power unit 33 is operated at a low vehicle speed, whereby the frequency of EV traveling is reduced and overdischarge of the storage battery 11 is suppressed.

続くステップS206で車速VPが放電深度による発電実施下限車速VPGENDODを上回るか否かを判定し、車速VPが放電深度による発電実施下限車速VPGENDOD以下のとき、ステップS207で車速VPが残容量による発電実施下限車速VPGENSOCを上回るか否かを判定する。車速VPが残容量による発電実施下限車速VPGENSOC以下のとき、ステップS202で発電実施フラグF_GEN=「0」にして補助動力部33による発電を停止し、発電実施判断ルーチンを終了する。   In subsequent step S206, it is determined whether or not the vehicle speed VP exceeds the power generation execution lower limit vehicle speed VPENDOD by the depth of discharge. When the vehicle speed VP is equal to or lower than the power generation execution lower limit vehicle speed VPENDOD by the discharge depth, the vehicle speed VP is generated by the remaining capacity in step S207. It is determined whether or not the lower limit vehicle speed VPGENSOC is exceeded. When the vehicle speed VP is equal to or lower than the power generation execution lower limit vehicle speed VPGENSOC based on the remaining capacity, the power generation execution flag F_GEN = “0” is set in step S202 to stop the power generation by the auxiliary power unit 33, and the power generation execution determination routine ends.

ステップS206で車速VPが放電深度による発電実施下限車速VPGENDODを上回ると判定したとき、ステップS207で車速VPが残容量による発電実施下限車速VPGENSOCを上回ると判定したとき、ステップS208で発電実施フラグF_GEN=「1」にして補助動力部33による発電を開始し、発電実施判断ルーチンを終了する。   When it is determined in step S206 that the vehicle speed VP exceeds the power generation execution lower limit vehicle speed VPENDOD according to the depth of discharge, in step S207, when it is determined that the vehicle speed VP exceeds the power generation execution lower limit vehicle speed VPGENSOC due to the remaining capacity, the power generation execution flag F_GEN = "1" is set to start power generation by the auxiliary power unit 33, and the power generation execution determination routine is ended.

その結果、蓄電池11の放電深度DODが増加したとき、あるいは蓄電池11の残容量SOCが減少したとき、つまり蓄電池11が過放電になる可能性があるとき、補助動力部33が作動して発電を開始する車速VPを低下させることで、蓄電池11の過放電を未然に防止することができる。   As a result, when the discharge depth DOD of the storage battery 11 increases or when the remaining capacity SOC of the storage battery 11 decreases, that is, when the storage battery 11 may be overdischarged, the auxiliary power unit 33 operates to generate power. By reducing the starting vehicle speed VP, overdischarge of the storage battery 11 can be prevented in advance.

次に、前記ステップS14のサブルーチンである発電量算出ルーチンを、図5のフローチャートに基づいて説明する。   Next, the power generation amount calculation routine, which is a subroutine of step S14, will be described based on the flowchart of FIG.

先ずステップS401で車速VPをパラメータとして各車速における巡航に必要な出力相当の発電量PGENRLをテーブル検索する。各車速における巡航に必要な出力相当の発電量PGENRLは、電動機14が車両の転がり抵抗および空気抵抗に打ち勝つだけの駆動力を発生するために、補助動力部33が発電すべき発電量であり、車速VPの増加に応じて増加する。   First, in step S401, a table search is performed for a power generation amount PGENRL corresponding to an output necessary for cruising at each vehicle speed using the vehicle speed VP as a parameter. The power generation amount PGENRL corresponding to the output required for cruising at each vehicle speed is the power generation amount that the auxiliary power unit 33 should generate in order for the electric motor 14 to generate a driving force that overcomes the rolling resistance and air resistance of the vehicle. It increases as the vehicle speed VP increases.

続くステップS402で車速VPと前記ステップS10で算出した路面の勾配推定値θとをパラメータとして各車速と勾配の発電補正量PGENSLPをマップ検索する。   In the next step S402, the vehicle speed VP and the road surface gradient estimated value θ calculated in step S10 are used as parameters to search the map for each vehicle speed and the power generation correction amount PGENLSLP of the gradient.

続くステップS403で車速VPをパラメータとして各車速における発電上乗せ発電量PGENBASEをテーブル検索する。各車速における発電上乗せ発電量PGENBASEは、車速VPの増加に伴って減少する。   In subsequent step S403, a table search is performed for the power generation amount PGENBASE added to power generation at each vehicle speed using the vehicle speed VP as a parameter. The additional power generation amount PGENBASE at each vehicle speed decreases as the vehicle speed VP increases.

続くステップS404で車速VPおよび放電深度DODをパラメータとして各車速と放電深度の発電上乗せ量PGENDODをマップ検索し、ステップS405で車速VPおよび残容量SOCをパラメータとして各車速と残容量の発電上乗せ量PGENSOCをマップ検索する。放電深度DODが大きくなると、あるいは残容量SOCが小さくなると各車速における発電上乗せ発電量PGENBASEが不足する可能性があるため、各車速と放電深度の発電上乗せ量PGENDODおよび各車速と残容量の発電上乗せ量PGENSOCによって各車速における発電上乗せ発電量PGENBASEが補正される。   In the subsequent step S404, a map search is made for the power generation additional amount PENDOD for each vehicle speed and discharge depth using the vehicle speed VP and the discharge depth DOD as parameters, and in step S405, the power generation additional amount PGENSOC for each vehicle speed and remaining capacity is used for the vehicle speed VP and remaining capacity SOC as parameters. Search for a map. If the depth of discharge DOD increases or the remaining capacity SOC decreases, the additional power generation amount PGENBASE at each vehicle speed may be insufficient. Therefore, the additional power generation amount PENDOD at each vehicle speed and discharge depth and the additional power generation amount at each vehicle speed and remaining capacity. The power generation additional power generation amount PGENBASE at each vehicle speed is corrected by the amount PGENSOC.

続くステップS406で車速VPをパラメータとして各車速の空調使用時の発電上乗せ量PGENACをテーブル検索する。   In the subsequent step S406, a table search is performed for the power generation additional amount PGENAC when using the air conditioning at each vehicle speed using the vehicle speed VP as a parameter.

そして、ステップS407で空調使用フラグF_AC=「1」(空調使用)であるか否かを判定する。空調使用フラグF_AC=「0」(空調使用なし)であって電動コンプレッサ22も電動ヒータ23も使用されていなければ、ステップS408で各車速における巡航に必要な出力相当の発電量PGENRL、各車速と勾配の発電補正量PGENSLP、各車速における発電上乗せ発電量PGENBASE、各車速と放電深度の発電上乗せ量PGENDODおよび各車速と残容量の発電上乗せ量PGENSOCを加算して発電機発電出力PREQGENを算出し、発電量算出ルーチンを終了する。   In step S407, it is determined whether or not the air conditioning use flag F_AC = “1” (air conditioning used). If the air conditioning use flag F_AC = “0” (no air conditioning is used) and neither the electric compressor 22 nor the electric heater 23 is used, in step S408, the power generation amount PGENRL corresponding to the output required for cruising at each vehicle speed, The generator power generation output PREQGEN is calculated by adding the power generation correction amount PGENLSLP of the gradient, the power generation additional power generation amount PGENBASE at each vehicle speed, the power generation additional amount PENDOD of each vehicle speed and discharge depth, and the power generation additional amount PGENSOC of each vehicle speed and remaining capacity, The power generation amount calculation routine is terminated.

また、ステップS407で空調使用フラグF_AC=「1」であって電動コンプレッサ22か電動ヒータ23が使用されていれば、ステップS409で各車速における巡航に必要な出力相当の発電量PGENRL、各車速と勾配の発電補正量PGENSLP、各車速における発電上乗せ発電量PGENBASE、各車速と放電深度の発電上乗せ量PGENDOD、各車速と残容量の発電上乗せ量PGENSOCおよび各車速の空調使用時の発電上乗せ量PGENACを加算して発電機発電出力PREQGENを算出し、発電量算出ルーチンを終了する。   In step S407, if the air conditioning use flag F_AC = “1” and the electric compressor 22 or the electric heater 23 is used, in step S409, the power generation amount PGENRL corresponding to the output required for cruising at each vehicle speed, each vehicle speed, and The power generation correction amount PGENLSLP of the gradient, the power generation additional power generation amount PGENBASE at each vehicle speed, the power generation additional power amount PENDOD at each vehicle speed and discharge depth, the power generation additional power amount PGENSOC at each vehicle speed and the remaining capacity, and the power generation additional amount PGENAC at the time of air conditioning use at each vehicle speed The generator power generation output PREQGEN is calculated by addition, and the power generation amount calculation routine is terminated.

次に、前記ステップS16Bのサブルーチンである要求駆動用出力制限ルーチンを、図6のフローチャートに基づいて説明する。   Next, the request drive output limiting routine, which is a subroutine of step S16B, will be described with reference to the flowchart of FIG.

先ずステップS601で燃料残量センサで燃料タンク34の燃料残量LVFUELを検出した後、ステップS602で蓄電池11の残容量SOCおよび燃料残量LVFUELをパラメータとして電動機出力補正係数PSLVFUELをマップ検索し、ステップS603で電動機14の要求駆動用出力PREQに電動機出力補正係数PSLVFUELを乗算することで、要求駆動用出力PREQを補正する。続くステップS604で電動機出力補正係数PSLVFUELが給油警告閾値PSWARN以上であれば、要求駆動用出力制限ルーチンを終了し、前記ステップS604で電動機出力補正係数PSLVFUELが給油警告閾値PSWARN未満であれば、ステップS605で運転者に給油を促すべく警告手段35が作動し、要求駆動用出力制限ルーチンを終了する。   First, in step S601, the remaining fuel level LVFUEL in the fuel tank 34 is detected by the remaining fuel level sensor, and in step S602, the motor output correction coefficient PSLVFUEL is searched for a map using the remaining capacity SOC of the storage battery 11 and the remaining fuel level LVFUEL as parameters. In S603, the required drive output PREQ is corrected by multiplying the required drive output PREQ of the motor 14 by the motor output correction coefficient PSLVFUEL. If the motor output correction coefficient PSLVFUEL is equal to or greater than the fuel supply warning threshold value PSWARN in the subsequent step S604, the request drive output restriction routine is terminated. If the motor output correction coefficient PSLVFUEL is less than the fuel supply warning threshold value PSWARN in step S604, step S605 is performed. Thus, the warning means 35 is activated to prompt the driver to refuel, and the requested drive output limiting routine is terminated.

本実施の形態では、車両が走行するときに必ず発生する転がり抵抗および空気抵抗に相当する出力である「各車速における巡航に必要な出力相当の発電量PGENRL」と、所定の余裕量として設定した「各車速における発電上乗せ発電量PGENBASE」とを加算した出力を補助動力部33に発生させ、それ以外に加速等により一時的に必要となる出力と、低車速時のEV走行に必要となる出力とは、蓄電池11に蓄えた電力で賄われる。つまり本実施の形態による補助動力部33の制御は、「巡航出力追従型発電」であると言える。   In the present embodiment, the power generation amount PGENRL corresponding to the output required for cruising at each vehicle speed, which is an output corresponding to rolling resistance and air resistance that is always generated when the vehicle travels, is set as a predetermined margin amount. The auxiliary power unit 33 generates an output obtained by adding “power generation added power generation amount PGENBASE at each vehicle speed”, and other outputs that are temporarily required for acceleration and the like, and outputs that are required for EV traveling at low vehicle speeds. Is covered by the electric power stored in the storage battery 11. That is, it can be said that the control of the auxiliary power unit 33 according to the present embodiment is “cruising output follow-up power generation”.

この「巡航出力追従型制御」により、従来の「要求出力追従型発電制御」の課題である、電動機が必要とする要求発電量が大きい場合に内燃機関の回転数が大きくなるために燃費最良点から大きく外れてしまい、補助動力部の出力により走行する際に燃費が大幅に悪化するという問題や、要求発電量が大きい場合に内燃機関の回転数増加によって振動や騒音が増加するという問題が解消される。また従来の「定点運転型発電制御」の課題である、燃費やCO2 排出量を低減すべく内燃機関を小型化して燃費最良点で運転すると、発電機の発電量が電動機の要求駆動力を満たすことができず、蓄電池が放電傾向となってエネルギーの維持が困難になるという問題が解消される。 This “cruise output follow-up control” provides the best fuel efficiency because the engine speed increases when the required power generation required by the motor is large. The problem that the fuel efficiency is greatly deteriorated when driving with the output of the auxiliary power unit and the vibration and noise increase due to the increase in the number of revolutions of the internal combustion engine when the required power generation amount is large is solved. Is done. In addition, if the internal combustion engine is downsized to reduce fuel consumption and CO 2 emissions, which is a problem of conventional “fixed-point operation type power generation control”, and the engine is operated at the best point of fuel consumption, the amount of power generated by the generator will reduce the required driving force of the motor. The problem that the battery cannot be satisfied and the storage battery tends to discharge and it becomes difficult to maintain energy is solved.

しかも「各車速における巡航に必要な出力相当の発電量PGENRL」は車速VPに応じて設定されるので、下り坂や減速時に発電機13の余剰出力で蓄電池11を充電することが可能となる。よって内燃機関12の効率を低下させるような大出力発電を行うことなく、下り坂や減速時に発電機13の発電頻度が拡大されることで、蓄電池11のエネルギーの維持が一層容易になる。   In addition, since “the power generation amount PGENRL corresponding to the output necessary for cruising at each vehicle speed” is set according to the vehicle speed VP, the storage battery 11 can be charged with the surplus output of the generator 13 during downhill or deceleration. Therefore, the power generation frequency of the generator 13 is increased during downhill or deceleration without performing high-output power generation that lowers the efficiency of the internal combustion engine 12, thereby making it easier to maintain the energy of the storage battery 11.

また、本実施の形態では、EV走行からREV走行(即ち、補助動力部33で発電した電力による走行)に切り換わる車速である「放電深度による発電実施下限車速VPGENDOD」および「残容量による発電実施下限車速VPGENSOC」を、蓄電池11の残容量SOCや放電深度DODに応じて変化させるので、低車速・低出力時におけるエネルギー制御を的確に行うことが可能になる。   Further, in the present embodiment, “the power generation implementation lower limit vehicle speed VPENDOD by the depth of discharge” and “the power generation implementation by the remaining capacity” which are vehicle speeds switched from EV running to REV running (that is, running by the electric power generated by the auxiliary power unit 33). Since the “lower limit vehicle speed VPGENSOC” is changed in accordance with the remaining capacity SOC of the storage battery 11 and the discharge depth DOD, it is possible to accurately perform energy control at low vehicle speed and low output.

更に、REV走行時における「各車速における巡航に必要な出力相当の発電量PGENRL」を「各車速と勾配の発電補正量PGENSLP」によって補正するので、路面の勾配による影響を補償して補助動力部33の発電量を適切に制御することができるだけでなく、「各車速における発電上乗せ発電量PGENBASE」を「各車速と放電深度の発電上乗せ量PGENDOD」、「各車速と残容量の発電上乗せ量PGENSOC」および「各車速の空調使用時の発電上乗せ量PGENAC」で補正するので、残容量SOC、放電深度DODおよび空調の負荷による影響を補償して補助動力部33の発電量を適切に制御することができ、中高車速・中高出力時におけるエネルギー制御を的確に行うことが可能になる。   Further, since the “power generation amount PGENRL corresponding to the output necessary for cruising at each vehicle speed” during REV traveling is corrected by “the power generation correction amount PGENSLP of each vehicle speed and gradient”, the auxiliary power unit is compensated for the influence of the road surface gradient. In addition to appropriately controlling the power generation amount of 33, the “power generation additional power generation amount PGENBASE” at each vehicle speed is changed to “the power generation additional power generation amount PENDOD at each vehicle speed and discharge depth” and “the power generation additional power generation amount PGENSOC of each vehicle speed and remaining capacity”. ”And“ Additional power generation amount PGENAC when using air-conditioning at each vehicle speed ”, the power generation amount of the auxiliary power unit 33 is appropriately controlled by compensating for the effects of remaining capacity SOC, discharge depth DOD, and air-conditioning load. Therefore, it becomes possible to accurately perform energy control at medium and high vehicle speeds and medium and high power outputs.

また燃料タンク34の燃料残量や蓄電池11の残容量SOCにかかる「電動機出力補正係数PSLVFUEL」に応じてシリーズ走行に移行した後の後続距離が小さくなるのを予測し、EV走行時における電動機14の要求駆動用出力PREQを制限することで全走行距離の拡大を図ることができるだけでなく、シリーズ走行に移行した後も電動機14の出力制限を行うことで、発電機13の出力を制限して内燃機関12の燃料消費量を削減し、全走行距離の拡大を図ることができる。これらの制御は燃料タンク34の実際の燃料残量の大小に応じて行われるため、燃料残量を最大限に確保するとともに燃料残量の消費を最小限に抑えて全走行距離を最大限に拡大し、燃料切れにより走行不能になる事態を未然に回避することができる。例えば、燃料タンク34の燃料残量が小さいほど電動機14の要求駆動用出力PREQを小さく設定するので、燃料残量の減少に応じて発電機13の発電量を減少させて燃料を更に節約することができる。   Further, it is predicted that the subsequent distance after the shift to the series travel is reduced according to the “motor output correction coefficient PSLVFUEL” applied to the remaining amount of fuel in the fuel tank 34 and the remaining capacity SOC of the storage battery 11. By limiting the required drive output PREQ, it is possible not only to increase the total travel distance, but also to limit the output of the generator 13 by limiting the output of the motor 14 even after shifting to the series travel. The fuel consumption of the internal combustion engine 12 can be reduced and the total travel distance can be increased. Since these controls are performed in accordance with the actual amount of remaining fuel in the fuel tank 34, the maximum remaining amount of fuel is ensured and consumption of the remaining amount of fuel is minimized to maximize the total travel distance. Enlarging and avoiding the situation where the vehicle becomes unable to run due to running out of fuel can be avoided. For example, since the required drive output PREQ of the electric motor 14 is set to be smaller as the remaining amount of fuel in the fuel tank 34 is smaller, the amount of power generated by the generator 13 is reduced according to the decrease in the remaining amount of fuel, thereby further saving fuel. Can do.

しかも「電動機出力補正係数PSLVFUEL」が所定値以下になると警告手段35を作動させて運転者に給油を促すので、燃料切れにより走行不能になる事態を一層確実に回避することができる。   In addition, when the “motor output correction coefficient PSLVFUEL” is equal to or less than a predetermined value, the warning means 35 is activated to prompt the driver to refuel, so that the situation where the vehicle cannot run due to running out of fuel can be avoided more reliably.

なお、実施の形態では燃料タンク34の燃料残量や蓄電池11の残容量SOCの減少に応じて電動機出力補正係数PSLVFUELで電動機14の要求駆動用出力PREQを規制するようになっているが、燃料タンク34の燃料残量や蓄電池11の残容量SOCの減少に応じて発電機13の上限発電量を規制しても同様の作用効果を達成することができる。   In the embodiment, the required drive output PREQ of the motor 14 is regulated by the motor output correction coefficient PSLVFUEL according to the decrease in the remaining fuel amount in the fuel tank 34 and the remaining capacity SOC of the storage battery 11. Similar effects can be achieved even if the upper limit power generation amount of the generator 13 is regulated in accordance with a decrease in the remaining amount of fuel in the tank 34 or the remaining capacity SOC of the storage battery 11.

第2の実施の形態Second embodiment

次に、図8〜図10に基づいて本発明の第2の実施の形態を説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS.

第1の実施の形態は、図2のフローチャートのステップS12で発電実施の可否を判断した後、ステップS14で車速VPをパラメータとして各車速における巡行出力PGENRLを求め、この各車速における巡行出力PGENRLから発電機発電出力PREQGENを算出しているが、第2の実施の形態は、図8のフローチャートのステップS12で発電実施の可否を判断した後、ステップS13で車速VPをパラメータとして各車速における発電機用内燃機関基本回転数NGENRLを求め、この各車速における発電機用内燃機関基本回転数NGENRLから発電機用内燃機関回転数NGENを算出し、更にステップS14で発電機用内燃機関回転数NGENから発電機発電出力PREQGENを算出する点で異なっており、その他の点は第1の実施の形態と同じである。以下、第1の実施の形態との相違点を中心として第2の実施の形態を説明する。   In the first embodiment, after determining whether or not power generation can be performed in step S12 of the flowchart of FIG. 2, the cruise output PGENRL at each vehicle speed is obtained using the vehicle speed VP as a parameter in step S14, and the cruise output PGENRL at each vehicle speed is obtained. The generator power generation output PREQGEN is calculated. In the second embodiment, after determining whether or not the power generation can be performed in step S12 of the flowchart of FIG. 8, the generator at each vehicle speed is set using the vehicle speed VP as a parameter in step S13. The internal combustion engine basic engine speed NGENRL is obtained, the generator internal combustion engine engine speed NGENRL is calculated from the generator internal engine speed NGENRL at each vehicle speed, and the generator internal combustion engine engine speed NGEN is generated in step S14. It differs in the point which calculates machine power generation output PREQGEN, and other points Is the same as the first embodiment. Hereinafter, the second embodiment will be described with a focus on differences from the first embodiment.

先ず、図8のフローチャートのステップS13のサブルーチンである発電機回転数算出ルーチンを、図9のフローチャートに基づいて説明する。   First, the generator rotational speed calculation routine, which is a subroutine of step S13 in the flowchart of FIG. 8, will be described based on the flowchart of FIG.

先ずステップS301で車速VPをパラメータとして各車速における発電機用内燃機関基本回転数NGENRLをテーブル検索する。各車速における発電機用内燃機関基本回転数NGENRLは、電動機14が車両の転がり抵抗および空気抵抗に打ち勝つだけの駆動力を発生し得る発電量が得られる内燃機関11の回転数であり、車速VPの増加に応じて増加する。   First, in step S301, a table search is performed for the generator internal combustion engine basic rotational speed NGENRL at each vehicle speed using the vehicle speed VP as a parameter. The generator internal combustion engine basic rotational speed NGENRL at each vehicle speed is the rotational speed of the internal combustion engine 11 at which a power generation amount capable of generating a driving force sufficient to overcome the rolling resistance and air resistance of the vehicle 14 is obtained. It increases with the increase of.

続くステップS302で車速VPと前記ステップS10で算出した路面の勾配推定値θとをパラメータとして各車速と勾配の発電回転数補正量DNGENSLPをマップ検索する。路面が登り勾配のときは車両の巡行に必要な発電量が増加し、路面が下り勾配のときは車両の巡行に必要な発電量が減少するため、各車速と勾配の発電回転数補正量DNGENSLPによって各車速における発電機用内燃機関基本回転数NGENRLが補正される。   In subsequent step S302, the vehicle speed VP and the road surface gradient estimated value θ calculated in step S10 are used as parameters to perform a map search for each vehicle speed and the power generation rotational speed correction amount DNGENLSLP of the gradient. When the road surface is uphill, the amount of power generation required for the vehicle's cruising increases, and when the road surface is downhill, the amount of power generation required for the vehicle's cruising decreases, so the power generation speed correction amount DNGENSLP for each vehicle speed and gradient Thus, the generator internal combustion engine basic rotational speed NGENRL at each vehicle speed is corrected.

続くステップS303で車速VPをパラメータとして各車速における発電回転数上乗せ基本回転数DNGENBASEをテーブル検索する。各車速における発電回転数上乗せ基本回転数DNGENBASEは、車速VPの増加に伴って減少する。   In the next step S303, the table is searched for the basic rotational speed DNGENBASE added to the power generation rotational speed at each vehicle speed using the vehicle speed VP as a parameter. The basic rotation speed DNGENBASE added to the power generation speed at each vehicle speed decreases as the vehicle speed VP increases.

続くステップS304で車速VPおよび放電深度DODをパラメータとして各車速と放電深度の発電回転数上乗せ量DNGENDODをマップ検索し、ステップS305で車速VPおよび残容量SOCをパラメータとして各車速と残容量の発電回転数上乗せ量DNGENSOCをマップ検索する。放電深度DODが大きくなると、あるいは残容量SOCが小さくなると各車速における発電回転数上乗せ基本回転数DNGENBASEが不足する可能性があるため、各車速と放電深度の発電回転数上乗せ量DNGENDODおよび各車速と残容量の発電回転数上乗せ量DNGENSOCによって各車速における発電回転数上乗せ基本回転数DNGENBASEが補正される。   In subsequent step S304, a map search is performed for the power generation speed addition amount DNGENDOD for each vehicle speed and discharge depth using the vehicle speed VP and the discharge depth DOD as parameters, and in step S305, the power generation rotation for each vehicle speed and remaining capacity using the vehicle speed VP and the remaining capacity SOC as parameters. A map search is made for the additional amount DNGENSOC. If the discharge depth DOD increases or the remaining capacity SOC decreases, the power generation rotation speed additional DNGENBASE at each vehicle speed may be insufficient. Therefore, the power generation rotation speed additional amount DNGENDOD and each vehicle speed at each vehicle speed and discharge depth The power generation rotation speed addition basic speed DNGENBASE at each vehicle speed is corrected by the remaining capacity power generation rotation speed addition amount DNGENSOC.

続くステップS306で車速VPをパラメータとして各車速の空調使用時の発電上乗せ量PGENACをテーブル検索する。   In subsequent step S306, a table search is performed for the power generation additional amount PGENAC when using air conditioning at each vehicle speed, using the vehicle speed VP as a parameter.

そして、ステップS307で空調使用フラグF_AC=「1」(空調使用)であるか否かを判定する。空調使用フラグF_AC=「0」(空調使用なし)であって電動コンプレッサ22も電動ヒータ23も使用されていなければ、ステップS308で各車速における発電機用内燃機関基本回転数NGENRL、各車速と勾配の発電回転数補正量DNGENSLP、各車速における発電回転数上乗せ基本回転数DNGENBASE、各車速と放電深度の発電回転数上乗せ量DNGENDODおよび各車速と残容量の発電回転数上乗せ量DNGENSOCを加算して発電機用内燃機関回転数NGENを算出し、発電機回転数算出ルーチンを終了する。   In step S307, it is determined whether or not the air conditioning use flag F_AC = “1” (air conditioning used). If the air-conditioning use flag F_AC = “0” (no air-conditioning used) and neither the electric compressor 22 nor the electric heater 23 is used, the generator internal combustion engine basic rotational speed NGENRL at each vehicle speed, the vehicle speed and the gradient at each vehicle speed in step S308. Power generation rotation speed correction amount DNGENSLP, power generation rotation speed addition basic rotation speed DNGENBASE, each vehicle speed and discharge depth power generation rotation speed addition amount DNGENDOD, and each vehicle speed and remaining capacity power generation rotation speed addition amount DNGENSOC are added to generate power The engine internal combustion engine speed NGEN is calculated, and the generator speed calculation routine is terminated.

また、ステップS307で空調使用フラグF_AC=「1」であって電動コンプレッサ22か電動ヒータ23が使用されていれば、ステップS309で各車速における発電機用内燃機関基本回転数NGENRL、各車速と勾配の発電回転数補正量DNGENSLP、各車速における発電回転数上乗せ基本回転数DNGENBASE、各車速と放電深度の発電回転数上乗せ量DNGENDOD、各車速と残容量の発電回転数上乗せ量DNGENSOCおよび各車速の空調使用時の発電回転数上乗せ量DNGENACを加算して発電機用内燃機関回転数NGENを算出し、発電機回転数算出ルーチンを終了する。   If the air conditioning use flag F_AC = “1” and the electric compressor 22 or the electric heater 23 is used in step S307, the generator internal combustion engine basic rotational speed NGENRL at each vehicle speed, the vehicle speed and the gradient in step S309. Power generation rotational speed correction amount DNGENSLP, power generation rotational speed additional basic speed DNGENBASE at each vehicle speed, power generation rotational speed additional amount DNGENDOD at each vehicle speed and discharge depth, power generation rotational speed additional amount DNGENSOC of each vehicle speed and remaining capacity, and air conditioning of each vehicle speed The generator rotational speed addition amount DNGENAC is added to calculate the generator internal combustion engine rotational speed NGEN, and the generator rotational speed calculation routine is terminated.

次に、前記ステップS14のサブルーチンである発電量算出ルーチンを、図10のフローチャートに基づいて説明する。   Next, the power generation amount calculation routine, which is a subroutine of step S14, will be described based on the flowchart of FIG.

ステップS451で発電機用内燃機関回転数NGENをパラメータとして発電機発電出力PREQGENをテーブル検索し、発電量算出ルーチンを終了する。発電機13を所定の回転数で駆動するとき、その発電量は負荷トルクを変化させることで調整可能である。発電機発電出力PREQGENは、発電機用内燃機関回転数NGENで内燃機関12を運転したときに、内燃機関12の運転効率が最良となる負荷トルクが発生するように設定される。図10のテーブルから明らかなように、発電機発電出力PREQGENは発電機用内燃機関回転数NGENに概ね比例する。   In step S451, a table is searched for the generator power generation output PREQGEN using the generator internal combustion engine speed NGEN as a parameter, and the power generation amount calculation routine is terminated. When the generator 13 is driven at a predetermined rotational speed, the amount of power generation can be adjusted by changing the load torque. The generator power generation output PREQGEN is set such that a load torque that provides the best operating efficiency of the internal combustion engine 12 is generated when the internal combustion engine 12 is operated at the generator internal combustion engine speed NGEN. As is apparent from the table of FIG. 10, the generator power generation output PREQGEN is approximately proportional to the generator internal combustion engine speed NGEN.

なお、図8に示すように、第2の実施の形態においても、前述した第1の実施の形態と同様に、ステップS16Aで要求駆動力FREQFがゼロ以上のとき、つまり電動機14が駆動されるとき、ステップS16Bで、ステップS9Bで算出した電動機14の要求駆動用出力PREQを制限処理する。要求駆動用出力PREQの制限処理の詳細は、第1の実施の形態で既に説明した内容と同じである(図6のフローチャート参照)。   As shown in FIG. 8, also in the second embodiment, as in the first embodiment described above, when the required driving force FREQF is zero or more in step S16A, that is, the motor 14 is driven. At step S16B, the required drive output PREQ of the electric motor 14 calculated at step S9B is limited. The details of the restriction process for the request drive output PREQ are the same as those already described in the first embodiment (see the flowchart in FIG. 6).

本実施の形態では、車両が走行するときに必ず発生する転がり抵抗および空気抵抗に相当する発電量を得るための「各車速における発電機用内燃機関基本回転数NGENRL」と、所定の余裕量として設定した「各車速における発電回転数上乗せ基本回転数DNGENBASE」とを加算した回転数で内燃機関12を運転して発電し、それ以外に加速等により一時的に必要となる出力と、低車速時のEV走行に必要となる出力とは、蓄電池11に蓄えた電力で賄われる。「各車速における発電機用内燃機関基本回転数NGENRL」と、「各車速における発電回転数上乗せ基本回転数DNGENBASE」とを加算した回転数で内燃機関12を運転したときの発電量は、車両の巡行出力に厳密に一致しているわけではないが、概ね一致しているため、本実施の形態による補助動力部33の制御は、「巡航出力追従型発電」に準ずる制御であると言える。 この「巡航出力追従型制御」に準ずる制御より、従来の「要求出力追従型発電制御」の課題である、電動機が必要とする要求発電量が大きい場合に内燃機関の回転数が大きくなるために燃費最良点から大きく外れてしまい、補助動力部の出力により走行する際に燃費が大幅に悪化するという問題や、要求発電量が大きい場合に内燃機関の回転数増加によって振動や騒音が増加するという問題が解消される。また従来の「定点運転型発電制御」の課題である、燃費やCO2 排出量を低減すべく内燃機関を小型化して燃費最良点で運転すると、発電機の発電量が電動機の要求駆動力を満たすことができず、蓄電池が放電傾向となってエネルギーの維持が困難になるという問題が解消される。 In the present embodiment, “generator internal combustion engine basic rotational speed NGENRL at each vehicle speed” for obtaining a power generation amount corresponding to rolling resistance and air resistance that are always generated when the vehicle travels, and a predetermined margin amount The internal combustion engine 12 is operated at a rotational speed obtained by adding the set “power generation rotational speed added at each vehicle speed and the basic rotational speed DNGENBASE” to generate power, and in addition to the temporarily required output due to acceleration, etc. The output required for the EV traveling is covered by the electric power stored in the storage battery 11. The amount of power generated when the internal combustion engine 12 is operated at a rotational speed obtained by adding “the internal combustion engine basic rotational speed NGENRL at each vehicle speed” and “the basic rotational speed DNGENBASE added to the generated rotational speed at each vehicle speed” Although it is not exactly coincident with the cruise output, it is almost coincident, and therefore it can be said that the control of the auxiliary power unit 33 according to the present embodiment is a control according to “cruising output follow-up power generation”. Because the number of revolutions of the internal combustion engine increases when the required power generation amount required by the motor is large, which is a problem of the conventional “required output follow-up type power generation control”, as compared with the control based on this “cruise output follow-up type control” There is a problem that the fuel efficiency is greatly deteriorated when driving by the output of the auxiliary power unit because it is far from the best point of fuel efficiency, and when the required power generation amount is large, the vibration and noise increase due to the increase in the rotational speed of the internal combustion engine The problem is solved. In addition, if the internal combustion engine is downsized to reduce fuel consumption and CO 2 emissions, which is a problem of conventional “fixed-point operation type power generation control”, and the engine is operated at the best point of fuel consumption, the amount of power generated by the generator will reduce the required driving force of the motor. The problem that the battery cannot be satisfied and the storage battery tends to discharge and it becomes difficult to maintain energy is solved.

しかも「各車速における発電機用内燃機関基本回転数NGENRL」は車速VPに応じて設定されるので、下り坂や減速時に発電機13の余剰出力で蓄電池11を充電することが可能となる。よって内燃機関12の効率を低下させるような大出力発電を行うことなく、下り坂や減速時に発電機13の発電頻度が拡大されることで、蓄電池11のエネルギーの維持が一層容易になる。   Moreover, since “generator internal combustion engine basic rotational speed NGENRL at each vehicle speed” is set according to the vehicle speed VP, the storage battery 11 can be charged with the surplus output of the generator 13 during downhill or deceleration. Therefore, the power generation frequency of the generator 13 is increased during downhill or deceleration without performing high-output power generation that lowers the efficiency of the internal combustion engine 12, thereby making it easier to maintain the energy of the storage battery 11.

また発電機用内燃機関回転数NGENをパラメータとして発電機発電出力PREQGENを検索するテーブル(図10参照)は、内燃機関12の運転効率が最良となる負荷トルクを発電機13が発生するように設定されるので、車両の巡行に必要な発電量を確保しながら内燃機関12を高効率で運転して燃料消費量を節減することができる。   Further, the table (see FIG. 10) for searching the generator power generation output PREQGEN using the generator internal combustion engine speed NGEN as a parameter is set so that the generator 13 generates a load torque at which the operating efficiency of the internal combustion engine 12 is optimal. Therefore, it is possible to reduce the fuel consumption by operating the internal combustion engine 12 with high efficiency while securing the power generation amount necessary for the vehicle cruise.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態ではプラグイン型のハイブリッド自動車について説明したが、本発明はシリーズ型のハイブリッド自動車、あるいはシリーズ走行が可能なパラレル型のハイブリッド自動車に対しても適用することができる。   For example, in the embodiment, a plug-in type hybrid vehicle has been described, but the present invention can also be applied to a series type hybrid vehicle or a parallel type hybrid vehicle capable of running in series.

また放電深度DODの算出手法は実施の形態に限定されず、任意の手法を採用することができる。   The method for calculating the discharge depth DOD is not limited to the embodiment, and any method can be adopted.

11 蓄電池
12 内燃機関
13 発電機
14 電動機
29 制御装置
34 燃料タンク
35 警告手段
DNGENBASE 各車速における発電回転数上乗せ基本量
LVFUEL 燃料残量
NGENRL 各車速における発電機用内燃機関基本回転数
PGENRL 各車速における巡行出力(発電量)
PGENBASE 各車速における発電上乗せ基本量(上乗せ発電量)
PREQ 要求駆動用出力
PSLVFUEL 燃料残量とSOCから決定される電動機出力補正係数(補正係数)
DESCRIPTION OF SYMBOLS 11 Storage battery 12 Internal combustion engine 13 Generator 14 Electric motor 29 Control apparatus 34 Fuel tank 35 Warning means DNGENBASE Basic amount LVFUEL with remaining power generation speed at each vehicle speed Fuel remaining amount NGENRL Internal combustion engine basic speed PGENRL at each vehicle speed Cruise at each vehicle speed Output (power generation)
PGENBASE Power generation additional basic amount at each vehicle speed (additional power generation amount)
PREQ Request drive output PSLVFUEL Electric motor output correction coefficient (correction coefficient) determined from fuel remaining amount and SOC

Claims (8)

内燃機関で駆動される発電機と、前記発電機により発電した電力を蓄える蓄電池と、前記発電機により発電した電力あるいは前記蓄電池に蓄えた電力で駆動される電動機と、前記内燃機関に燃料を供給する燃料タンクと、前記内燃機関および前記発電機を制御する制御装置とを備え、
前記制御装置は、前記蓄電池の状態に応じて前記発電機の発電の可否を判定し、発電を許可したときに、要求出力、車両状態および走行状態に応じて前記電動機の出力を設定するとともに、前記電力および/または前記燃料の状態に基づく出力補正係数に応じて前記電動機の出力を補正することを特徴とするハイブリッド自動車の制御装置。
A generator driven by an internal combustion engine, a storage battery for storing the power generated by the generator, an electric motor driven by the power generated by the generator or the power stored in the storage battery, and supplying fuel to the internal combustion engine A fuel tank that controls the internal combustion engine and the generator,
The control device determines whether or not the generator can generate power according to the state of the storage battery, and when power generation is permitted, sets the output of the electric motor according to the requested output, the vehicle state and the running state, A control apparatus for a hybrid vehicle, wherein the output of the electric motor is corrected according to an output correction coefficient based on the state of the electric power and / or the fuel.
前記制御装置は、前記燃料タンクの燃料残量および/または前記蓄電池の残容量から出力補正係数を設定することを特徴とする、請求項1に記載のハイブリッド自動車の制御装置。   2. The hybrid vehicle control device according to claim 1, wherein the control device sets an output correction coefficient from a fuel remaining amount of the fuel tank and / or a remaining capacity of the storage battery. 3. 前記制御装置は、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する前記発電量に基づいて前記内燃機関および前記発電機を制御することを特徴とする、請求項1または請求項2に記載のハイブリッド自動車の制御装置。   The control device controls the internal combustion engine and the generator based on the power generation amount corresponding to the corrected output of the electric motor when correcting the output of the electric motor according to the output correction coefficient. The control apparatus for a hybrid vehicle according to claim 1 or 2. 前記制御装置は、車両状態および走行状態により必要となる電力量に応じて上乗せ発電量を設定するとともに、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する前記上乗せ発電量に基づいて前記内燃機関および前記発電機を制御することを特徴とする、請求項1〜請求項3の何れか1項に記載のハイブリッド自動車の制御装置。   The control device sets an additional power generation amount according to the amount of electric power required depending on the vehicle state and the traveling state, and corrects the output of the electric motor according to the output correction coefficient. The control apparatus for a hybrid vehicle according to any one of claims 1 to 3, wherein the internal combustion engine and the generator are controlled based on the corresponding additional power generation amount. 前記制御装置は、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する前記内燃機関回転数に基づいて前記内燃機関および前記発電機を制御することを特徴とする、請求項1または請求項2に記載のハイブリッド自動車の制御装置。   When the control device corrects the output of the electric motor in accordance with the output correction coefficient, the control device controls the internal combustion engine and the generator based on the internal combustion engine speed corresponding to the corrected output of the electric motor. The control apparatus for a hybrid vehicle according to claim 1, wherein the control apparatus is a hybrid vehicle. 前記制御装置は、車両状態および走行状態により必要となる電力量に応じた前記発電機による発電ができる上乗せ内燃機関回転数を設定するとともに、前記出力補正係数に応じて前記電動機の出力を補正するとき、前記補正した電動機の出力に対応する上乗せ内燃機関回転数に基づいて前記内燃機関および前記発電機を制御することを特徴とする、請求項1、請求項2または請求項5に記載のハイブリッド自動車の制御装置。   The control device sets an additional internal combustion engine speed capable of generating power by the generator according to the amount of electric power required depending on the vehicle state and the traveling state, and corrects the output of the electric motor according to the output correction coefficient. 6. The hybrid according to claim 1, wherein the internal combustion engine and the generator are controlled based on an additional internal combustion engine speed corresponding to the corrected output of the electric motor. Automotive control device. 前記制御装置は、前記出力補正係数に基づいて前記発電機の発電の可否を判定することを特徴とする、請求項1〜請求項6の何れか1項に記載のハイブリッド自動車の制御装
置。
The said control apparatus determines the propriety of the electric power generation of the said generator based on the said output correction coefficient, The control apparatus of the hybrid vehicle of any one of Claims 1-6 characterized by the above-mentioned.
前記制御装置は、前記出力補正係数が所定値未満になったときに警告手段を作動させることを特徴とする、請求項1〜請求項7の何れか1項に記載のハイブリッド自動車の制御装置。   The control device for a hybrid vehicle according to any one of claims 1 to 7, wherein the control device activates a warning means when the output correction coefficient becomes less than a predetermined value.
JP2012141715A 2012-06-25 2012-06-25 Controller of hybrid vehicle Pending JP2014004912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012141715A JP2014004912A (en) 2012-06-25 2012-06-25 Controller of hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012141715A JP2014004912A (en) 2012-06-25 2012-06-25 Controller of hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2014004912A true JP2014004912A (en) 2014-01-16

Family

ID=50103064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012141715A Pending JP2014004912A (en) 2012-06-25 2012-06-25 Controller of hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2014004912A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161433A (en) * 2014-02-26 2015-09-07 シャープ株式会社 Air conditioner and power device
JP2016097740A (en) * 2014-11-19 2016-05-30 トヨタ自動車株式会社 Vehicle control apparatus
CN106364337A (en) * 2016-08-26 2017-02-01 北京新能源汽车股份有限公司 Control method and device for generating power of range extender and automobile
JP2021161992A (en) * 2020-04-02 2021-10-11 マツダ株式会社 Vehicle mounted with electric parking lock device
CN118182179A (en) * 2024-05-16 2024-06-14 武汉海亿新能源科技有限公司 High-power hydrogen fuel cell mining card power system and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161433A (en) * 2014-02-26 2015-09-07 シャープ株式会社 Air conditioner and power device
JP2016097740A (en) * 2014-11-19 2016-05-30 トヨタ自動車株式会社 Vehicle control apparatus
CN106364337A (en) * 2016-08-26 2017-02-01 北京新能源汽车股份有限公司 Control method and device for generating power of range extender and automobile
JP2021161992A (en) * 2020-04-02 2021-10-11 マツダ株式会社 Vehicle mounted with electric parking lock device
JP7435180B2 (en) 2020-04-02 2024-02-21 マツダ株式会社 Vehicles equipped with electric parking lock devices
CN118182179A (en) * 2024-05-16 2024-06-14 武汉海亿新能源科技有限公司 High-power hydrogen fuel cell mining card power system and control method thereof

Similar Documents

Publication Publication Date Title
US10381695B2 (en) Cooling system for secondary battery
JP5799127B2 (en) Control device for hybrid vehicle
US20150046010A1 (en) Electric power generation control system for hybrid automobile
JP5547699B2 (en) Vehicle drive device
JP5958868B2 (en) Power generation control device
US9199590B2 (en) Vehicle control device, vehicle, and vehicle control method
WO2013051104A1 (en) Electrical charging control apparatus and electrical charging method
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2010202119A (en) Hybrid vehicle and method for controlling the same
JP2004328906A (en) Charging controller of hybrid vehicle
KR101558359B1 (en) Method for monitoring torque in hybrid elecric vehicle
JP2014004912A (en) Controller of hybrid vehicle
JP2013241129A (en) Electric power generation control device for hybrid vehicle
JP6582928B2 (en) Shift control device for hybrid vehicle
JP2017100473A (en) Motor assist control device of hybrid vehicle
JP2013216264A (en) Power generation control apparatus for hybrid vehicle
JP6447473B2 (en) Hybrid vehicle
JP5035125B2 (en) Hybrid vehicle and control method thereof
JP2023119119A (en) Control system of electric vehicle