JP2014004875A - 回転体の騒音低減方法および騒音低減装置 - Google Patents

回転体の騒音低減方法および騒音低減装置 Download PDF

Info

Publication number
JP2014004875A
JP2014004875A JP2012140566A JP2012140566A JP2014004875A JP 2014004875 A JP2014004875 A JP 2014004875A JP 2012140566 A JP2012140566 A JP 2012140566A JP 2012140566 A JP2012140566 A JP 2012140566A JP 2014004875 A JP2014004875 A JP 2014004875A
Authority
JP
Japan
Prior art keywords
rotating body
blade
noise
rotating shaft
pressure distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012140566A
Other languages
English (en)
Inventor
Chu Kobayashi
宙 小林
Hiroshi Nishizawa
啓 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2012140566A priority Critical patent/JP2014004875A/ja
Publication of JP2014004875A publication Critical patent/JP2014004875A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

【課題】ブレードの表面に特殊な設計を施すことなく、また、効率を低下させることなく、回転体の周囲の音圧の分布を変化させることによって、実質的に観測される騒音を低減することが可能な回転体の騒音低減方法および騒音低減装置を提供すること。
【解決手段】回転軸に放射状に取り付けられたブレードを有する回転体において、回転軸が回転した際のブレードの表面の圧力分布を、回転軸の回転位相に対応して能動的に変化させること。
【選択図】図7

Description

本発明は、回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体、特に航空機の推進用プロペラ、ファン、風力発電の風車等の、回転により気体を移動させ、あるいは、気体の移動により回転力を得るブレードを有する回転体の騒音低減方法および騒音低減装置に関する。
回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体、例えば航空機の推進用プロペラにおいては、図1に示すように、回転軸110と垂直な方向にブレード120から航空機の進行方向やや斜め後方を中心として大きな音圧を持つ領域Nが広がり、図2に示すように、回転軸110を中心に全方向に均等に大きな音圧を持つ領域Nが広がる。
音圧の大きな領域がこのような広がりを持つため、航空機が離着陸する空港においては、滑走路と垂直な方向、すなわち、空港の敷地外との距離が比較的近い方向に大きな騒音が到達することとなる。
このため、空港を住宅地の多い市街地から離れた場所に設置せざるを得ず、航空輸送の利便性を大きく損なう原因となっている。
また、クリーンエネルギとして今後の展開が期待される大型風車についても、音圧の大きな領域の方向の近隣に住宅地等が存在しない場所を選択する必要があり、市街地等に設置することが困難となっている。
このような、回転体の騒音を低減するため、ブレードの表面に特殊な設計を施したり、回転数を制御したり、様々な工夫がなされている。
例えば、ブレードの表面に柔毛材を密に取付けて覆うことにより、フローノイズを低減させるものが公知である(特許文献1等参照。)。
また、航空機用の可変ピッチ機構を有するプロペラにおいて、巡航時にピッチ角を変更してプロペラの回転数を低くすることで騒音レベルを下げるものが公知である(特許文献2等参照。)。
特開2001−301696号公報 特開平5−39091号公報
しかしながら、前記の特許文献1で公知の技術は、フローノイズを軽減するのみであり、他の要因、例えば、ブレード面によって空気を押しのけること(排除効果)や、圧力分布を持ったブレード面が運動すること(表面圧効果)に起因する騒音に対しての低減効果はなく、これらが騒音の大きな要因を占める航空機の推進用プロペラや風力発電の風車等では、顕著な効果を得ることができないという問題があった。
また、高速で回転するブレードの表面を加工する必要があるため、コストが増大するとともに、ブレードの空力特性が変化してしまうという問題があった。
前記の特許文献2で公知の技術は、騒音を低減するために、空力的に最適なピッチ角、回転数から外れた点を利用することとなり、効率が落ちるとともに、航空機の推進用プロペラにおいて最も推進力を必要とする離陸時には騒音を低減することができず、空港周辺への騒音の防止ができないという問題があった。
また、この技術は、航空機の推進用プロペラ以外の用途では採用できないという問題もあった。
そこで、本発明者は、騒音全体を低減するのではなく、回転体の周囲の音圧の分布を変化させることによって、実質的に特定の方向で観測される騒音を低減させることで上記課題を解決するという、従来にない全く新規な発想に至った。
すなわち、本発明は、ブレードの表面に特殊な設計を施すことなく、また、効率を低下させることなく、回転体の周囲の音圧の分布を変化させることによって、実質的に観測される騒音を低減することが可能な回転体の騒音低減方法および騒音低減装置を提供することを目的とする。
まず、本発明の原理について説明する。
図3に示すような、回転軸と垂直な方向の観測点における騒音レベルは、下記式1の、観測点での回転体のブレードが発した音波の振幅pの大きさで表される。
Figure 2014004875
(太字のR):観測点からの音源の位置ベクトル
R(細字のR):音源と観測点の距離
M:音源の速度(マッハ数)ベクトル
T:乱流応力テンソル
f:圧力
a:音源の加速度
V(大文字):音源の速度
ρ:空気密度
上記式1は、第1項が空気流の乱れに起因するもの、第2項がブレード面の圧力に起因するもの(表面圧効果)、第3項がブレード面の加速度に起因するもの、第4項がブレード面の空気を押しのける効果に起因するもの(排除効果)である。
航空機の推進用プロペラやファン、風力発電の風車等の回転体においては、上記各項のうち、第2項の表面圧効果および第4項の排除効果により発生する音波が支配的であることが知られており、観測点での回転体のブレードが発した音波の振幅pは下記式2のように簡略化可能である。
Figure 2014004875
この簡略化した上記式2における第1項の表面圧効果および第2項の排除効果は、図4に示すように、それぞれブレードの回転位相と同期して変動するものであり、ある地点で観測される回転体のブレードが発した音波の振幅pはこれらの重ね合わされた大きさとなる。
本発明者は、ブレードの表面の圧力分布を能動的に変化させることで上記式2の第1項のfを周期的に変動させて第1項の表面圧効果の変動を制御し、例えば、図5に示すように、上記式2における第1項の表面圧効果と第2項の排除効果のピーク位置をずらすことで、それらの重ね合わせの大きさとなる、ある地点で観測される回転体のブレードが発した音波の振幅pを小さくすることが可能であり、これを応用して、例えば、図6に示すように回転体の周囲の音圧の分布を変化させることによって、特定の方向の騒音レベルを低減することが可能であることを見いだした。
すなわち、本請求項1に係る発明は、回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体の騒音低減方法であって、前記回転軸が回転した際の前記ブレードの表面の圧力分布を、前記回転軸の回転位相に対応して能動的に変化させることにより、前記課題を解決するものである。
本請求項2に係る発明は、請求項1に係る回転体の騒音低減方法の構成に加え、前記回転体が、前記ブレードのピッチ角を能動的に変更可能な可変ピッチ機構を有し、前記ブレードのピッチ角を能動的に変化させることにより、前記ブレードの表面の圧力分布を前記回転軸の回転位相に対応して能動的に変化させることにより、前記課題を解決するものである。
本請求項3に係る発明は、請求項1または請求項2に係る回転体の騒音低減方法の構成に加え、前記回転体が複数のブレードを有し、該複数のブレードの各ブレードの表面の圧力分布を前記回転軸の回転位相に対応して個別に能動的に変化させることにより、前記課題を解決するものである。
本請求項4に係る発明は、請求項3に係る回転体の騒音低減方法の構成に加え、前記複数のブレードの各ブレードの表面の圧力分布を前記回転軸の回転数とブレードの枚数に比例した周期で変化させることにより、前記課題を解決するものである。
本請求項5に係る発明は、請求項2乃至請求項4のいずれかに係る回転体の騒音低減方法の構成に加え、前記ブレードの表面の圧力分布の変化が、複数の異なる周期の変化を重畳させたものであることにより、前記課題を解決するものである。
本請求項6に係る発明は、請求項5に係る回転体の騒音低減方法の構成に加え、前記重畳される複数の異なる周期の変化が、変化量も異なるものであることにより、前記課題を解決するものである。
本請求項7に係る発明は、請求項1乃至請求項6のいずれかに係る回転体の騒音低減方法の構成に加え、前記回転体が、航空機の推進用プロペラであり、少なくとも離着陸時は地面に対して水平方向の騒音を低減することにより、前記課題を解決するものである。
本請求項8に係る発明は、請求項1乃至請求項6のいずれかに係る回転体の騒音低減方法の構成に加え、前記回転体が、風車であり、地面に対して水平方向の騒音を低減することにより、前記課題を解決するものである。
本請求項9に係る発明は、回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体の騒音低減装置であって、前記回転軸が回転した際の前記ブレードの表面の圧力分布を能動的に変更可能な面圧可変機構を備え、該面圧可変機構が、前記回転軸の回転位相を検出する位相検出手段と、回転軸に対して垂直な平面上の特定方向を設定する方向設定手段と、該設定された方向に応じて回転位相に対応した各ブレードの変更すべき表面の圧力分布を演算する演算手段とを有することにより、前記課題を解決するものである。
本請求項10に係る発明は、請求項9に係る回転体の騒音低減装置の構成に加え、前記回転体の面圧可変機構が、前記ブレードのピッチ角を能動的に変更可能な可変ピッチ機構であることにより、前記課題を解決するものである。
本請求項11に係る発明は、請求項9または請求項10に係る回転体の騒音低減装置の構成に加え、前記回転体が複数のブレードを有し、前記面圧可変機構が、該複数のブレードの各ブレードの表面の圧力分布を前記回転軸の回転位相に対応して個別に能動的に変化させることにより、前記課題を解決するものである。
本請求項1に係る回転体の騒音低減方法および本請求項9に係る回転体の騒音低減装置によれば、ブレードの表面の圧力分布を回転軸の回転位相に対応して能動的に変化させることにより、回転体の回転軸に対して垂直な平面上の騒音の音圧の分布を変化させ、ブレードの表面に特殊な設計を施すことなく、また、効率を低下させることなく、実質的に観測される騒音を低減することが可能となる。
本請求項2および本請求項10に記載の構成によれば、ブレードを有する回転体に慣用されている可変ピッチ機構によって回転位相に対応したピッチ制御を行うことでブレードの表面の圧力分布を変更できるため、他の特別な機構を追加することなく、回転体の回転軸に対して垂直な平面上の騒音の音圧の分布を変化させ、実質的に観測される騒音を低減することが可能となる。
本請求項3および請求項11に記載の構成によれば、ブレード毎に回転軸の回転位相に対応して個別に表面の圧力分布を変化させることで、ブレード毎に発生する回転体の周囲の騒音の音圧の分布を等しくすることができるため、さらに騒音を低減することが可能となる。
本請求項4に記載の構成によれば、ブレード枚数に応じて回転体の周囲の騒音の音圧の分布を効率良く変化させることが可能となり、実質的に観測される騒音をさらに低減することが可能となる。
本請求項5に記載の構成によれば、回転体の周囲の音圧の分布を多様に変化させることが可能となり、多様な騒音の低減効果が得られる。
本請求項6に記載の構成によれば、回転体の周囲の騒音の音圧の分布をさらに多様に変化させることが可能となり、騒音をさらに低減することが可能となる。
本請求項7に記載の構成によれば、航空機が離着陸する空港周辺の騒音を低減することが可能となり、空港を住宅地の多い市街地の近郊に設置できることで航空輸送の利便性向上することができる。
本請求項8に記載の構成によれば、風力発電の風車等の騒音を低減することが可能となり、住宅地の多い市街地の近郊に設置できることで立地条件の制約が少なくより有効な風力利用が可能となる。
航空機の推進用プロペラの回転軸に垂直な方向から見た音圧の広がりを示す説明図。 航空機の推進用プロペラの回転軸の軸方向から見た音圧の広がりを示す説明図。 回転軸と観測点の位置関係を示す説明図。 一般的な表面圧効果および排除効果に起因する振幅と回転位相の説明図。 本発明により表面圧効果の位相をずらした表面圧効果および排除効果に起因する振幅と回転位相の説明図。 本発明により音圧の分布を変化させた場合の回転軸の軸方向から見た音圧の広がりを示す説明図。 本発明の第1実施形態における回転軸周囲の騒音レベルの説明図。 本発明の第1実施形態における特定方向の音波の説明図。 異なるピッチ角変化周期の回転軸周囲の騒音レベルの説明図。 本発明の第2実施形態における回転軸周囲の騒音レベルの説明図。 本発明の第1実施形態に係る回転体の騒音低減装置の概略図。 面圧可変機構の第3実施形態の説明図。 面圧可変機構の第4実施形態の説明図。 面圧可変機構の第5実施形態の説明図。
本発明の回転体の騒音低減方法は、回転軸と、該回転軸に放射状に取り付けられたブレードを有する回転体の騒音低減方法であって、回転軸が回転した際のブレードの表面の圧力分布を、回転軸の回転位相に対応して能動的に変化させるものであり、ブレードの表面に特殊な設計を施すことなく、また、効率を低下させることなく、回転体の周囲の音圧の分布を変化させることによって、実質的に観測される騒音を低減することが可能であれば、その具体的な実施態様はいかなるものであっても良い。
また、本発明の回転体の騒音低減装置は、回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体の騒音低減装置であって、回転軸が回転した際のブレードの表面の圧力分布を能動的に変更可能な面圧可変機構を備え、該面圧可変機構が、回転軸の回転位相を検出する位相検出手段と、回転軸に対して垂直な平面上の特定方向を設定する方向設定手段と、該設定された方向に応じて回転位相に対応したブレードの変更すべき表面の圧力分布を演算する演算手段とを有するものであり、ブレードの表面に特殊な設計を施すことなく、また、効率を低下させることなく、回転体の周囲の音圧の分布を変化させることによって、実質的に観測される騒音を低減することが可能であれば、その具体的な実施態様はいかなるものであっても良い。
ブレードの表面の圧力分布を回転軸の回転位相に対応して能動的に変化させる手段(面圧可変機構)としては、ブレードのピッチ角を変更可能な可変ピッチ機構を用いるのが好ましいが、ブレード自体の表面積や形状等を能動的に変化させる機構や表面気体に直接作用を及ぼす機構を備えたものを用いてもよい。
また、回転体は、一般的に回転バランスを考慮すると、複数枚の同一形状のブレードが等角度間隔で回転軸に取り付けられているものであるのが好ましいが、1枚のブレードのみが取り付けられていてもよく、複数枚のブレードが異なる形状であってもよく、複数枚のブレードが任意の角度間隔で回転軸に取り付けられていてもよい。
次に、本発明に係る回転体の騒音低減方法および騒音低減装置について、さらに詳しく説明する。
図7に、小型航空機用プロペラにおける本発明の第1実施形態であるピッチ角を制御した場合の実験例を示す。
ブレード枚数B=2枚、プロペラの回転数N=40Hz、ピッチ角の変化周期F=80Hz、ピッチ角の変化量が1.4degであり、プロペラの回転軸の周囲をΠ/12毎に距離R=100mの地点で騒音レベルを測定した。
図7に示すように、ピッチ角の制御を行わない状態では、全周に亘って一様に約110dBであったのに対し、ピッチ角の制御を行うことで、Π/6と−5Π/6の方向(180°対称の方向)を中心に約60°の騒音低減領域が形成され、最も低い方向では約9.6dB程度の騒音低減がなされた。
この時のΠ/6の方向の音波の時間波形は、図8に示すように、本実施形態によるピッチ角の制御を行った場合、制御を行わない場合比較してピーク変動の少ない波形となっており、このことが、騒音の低減に寄与している。
ピッチ角の変化周期Fが異なると、回転軸の周囲の騒音レベルの分布状態も異なる。
図9に、ピッチ角の変化量が1.4degであり、ピッチ角の変化周期Fが異なる場合の、プロペラの回転軸の周囲をΠ/12毎に距離R=100mの地点で騒音レベルを示す。
F=0(すなわち制御なし)では、図7にも示したように全周に亘って一様である。
F=NB/2(B=2、N=40Hzの場合、F=40HZ)では、全周のうち1方向を中心に約120°のF=0の場合よりも低くなる騒音低減領域が形成される。
F=NB(B=2、N=40Hzの場合、F=80HZ)では、図7にも示したように180°対称の2つの方向で騒音レベルがF=0の場合よりも低くなる。
F=3NB/2(B=2、N=40Hzの場合、F=120HZ)では、全周のうち3方向で騒音レベルがF=0の場合よりも低くなる。
F=2NB(B=2、N=40Hzの場合、F=160HZ)では、全周に亘ってF=0の場合よりも騒音レベルは増加するが、4方向に騒音レベルが低い谷ができる。
F=3NB(B=2、N=40Hzの場合、F=240HZ)では、全周に亘ってF=0の場合よりも騒音レベルは増加するが、6方向に騒音レベルが低い谷ができる。
それぞれの騒音レベルの増加、減少の量は、ピッチ角の変化量を増減することで変化することから、変化量と変化周期の異なる複数のピッチ角変化を重畳させた制御を行うことで、様々な特性を与えることができ、さらに特定方向に最適な騒音低減効果を得ることも可能となる。
図10に、小型航空機用プロペラにおける本発明の第2実施形態である、変化量と変化周期の異なる複数のピッチ角変化を重畳させて制御した場合の実験例を示す。
ブレード枚数B=2枚、プロペラの回転数N=40Hz、ピッチ角の制御は、
変化周期F=80Hzで変化量が1.4deg、変化周期F=160Hzで変化量が0.1deg、および、変化周期F=240Hzで変化量が0.02degの3つを重畳させたものとした。
図10に示すように、ピッチ角の制御を行わない状態では、全周に亘って一様に約110dBであり、第1実施形態のピッチ角の制御を行うことで、騒音の最も低い方向では約9.6dB程度の低減がなされているのに対し、本第2実施形態では、騒音の最も低い方向では約13dB程度の低減がなされている。
さらに、必要とする騒音の低減領域の広がり(角度)や、必要とする低減レベルに応じて、様々なパラメータで重畳を行うことが可能である。
また、前述したように、ブレードの表面の圧力分布を能動的に変化させる具体的な構成は、ピッチ角の制御以外にもブレード自体の表面積や形状等を能動的に変化させる機構や表面気体に直接作用を及ぼす機構を制御して行うことも可能であり、上記変化量と変化周期の異なる複数のピッチ角変化を重畳させた制御に代えて、あるいは、これらに追加してブレード自体の表面積や形状等の制御や表面気体に直接作用を及ぼす機構の制御を重畳的に行ってもよい。
図11には、本発明の回転体の騒音低減装置の概略図を示す。
本発明の一実施形態に係る回転体の騒音低減装置は、回転軸110の回転位相を検出する位相検出手段132と、回転軸110に対して垂直な平面上の特定方向を設定する方向設定手段131と、該設定された方向に応じて回転位相に対応したブレード120の変更すべき表面の圧力分布を演算する演算手段133とを有する面圧可変機構130を備えている。
本実施形態においては、回転軸110の先端に設けられたスピナ111内に、ブレード120のピッチ角を個別に能動的に変更可能なアクチュエータが内蔵されており、演算手段133は変更すべき表面の圧力分布に基づいて、回転位相に応じた各ブレードの採るべきピッチ角を演算してアクチュエータに駆動指令を出力する。
なお、変更すべき表面の圧力分布と回転位相に応じた各ブレードの採るべきピッチ角の関係が予め規定できる場合は、演算手段133は検出された回転位相と設定された方向から、直接各ブレードの採るべきピッチ角を演算して出力しても良い。
また、風車等の固定的な設備では、稼働中に特定方向の設定を変更する必要がない場合があり、航空機の推進用プロペラでは、離着陸時と巡航時の切り替えのみで良い場合もあるため、演算手段133内に固定値として与えて方向設定手段131の機能を包含させても良い。
さらに、制御すべきピッチ角の周期や角度が固定的でもよい場合は、アクチュエータ等による制御によらず、回転軸の回転と同期して上記制御と同様の動きを機械的に実現する機構を採用しても良い。
ブレード自体の表面積や形状等を能動的に変化させる機構や表面気体に直接作用を及ぼす機構を制御する場合も、演算手段133がそれらのアクチュエータに対して駆動指令を出力する。
例えば、図12に示すように、ブレード120の前端縁の近傍の両面にそれぞれにピエゾアクチュエータ121を備えることで、ブレード120の表面積や形状を能動的に変化させることが可能となる。
この機構においては、両面のピエゾアクチュエータ121に加える電圧をそれぞれ制御することで、ブレード120の表面積や形状を制御してブレード120の表面の圧力分布を制御することが可能となる。
また、図13に示すように、ブレード120の後端縁に可動のフラップ122を備えることで、ブレード120の形状を能動的に変化させることが可能となる。
この機構においては、フラップ122の角度を制御することで、ブレード120の表面の形状を制御してブレード120の表面の圧力分布を制御することが可能となる。
また、図14に示すように、ブレード120の表面にプラズマアクチュエータ123を設けることで、表面気体に直接作用を及ぼしてブレード120の表面の圧力分布を能動的に変化させることが可能となる。
この機構においては、プラズマアクチュエータ123の作動を制御することで、ブレード120の表面気体にプラズマアクチュエータ123で発生したプラズマが直接作用してブレード120の表面の圧力分布を制御することが可能となる。
本発明の回転体の騒音低減方法および騒音低減装置は、ブレードの表面に特殊な設計を施すことなく、また、効率を低下させることなく、回転体の周囲の音圧の分布を変化させることによって、実質的に観測される騒音を低減することが可能であり、例えば航空機の推進用プロペラ、ファン、風力発電の風車等として好適であるが、回転により気体を移動させ、あるいは、気体の移動により回転力を得るブレードを有する回転体であれば、いかなる用途においても優れた性能を発揮するものである。
100 ・・・騒音低減装置
110 ・・・回転軸
111 ・・・スピナ
120 ・・・ブレード
121 ・・・ピエゾアクチュエータ
122 ・・・フラップ
123 ・・・プラズマアクチュエータ
130 ・・・面圧可変機構
131 ・・・方向設定手段
132 ・・・位相検出手段
133 ・・・演算手段
N ・・・大きな音圧を持つ領域

Claims (11)

  1. 回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体の騒音低減方法であって、
    前記回転軸が回転した際の前記ブレードの表面の圧力分布を、前記回転軸の回転位相に対応して能動的に変化させることを特徴とする回転体の騒音低減方法。
  2. 前記回転体が、前記ブレードのピッチ角を能動的に変更可能な可変ピッチ機構を有し、
    前記ブレードのピッチ角を能動的に変化させることにより、前記ブレードの表面の圧力分布を前記回転軸の回転位相に対応して能動的に変化させることを特徴とする請求項1に記載の回転体の騒音低減方法。
  3. 前記回転体が複数のブレードを有し、
    該複数のブレードの各ブレードの表面の圧力分布を前記回転軸の回転位相に対応して個別に能動的に変化させることを特徴とする請求項1または請求項2に記載の回転体の騒音低減方法。
  4. 前記複数のブレードの各ブレードの表面の圧力分布を前記回転軸の回転数とブレードの枚数に比例した周期で変化させることを特徴とする請求項3に記載の回転体の騒音低減方法。
  5. 前記ブレードの表面の圧力分布の変化が、複数の異なる周期の変化を重畳させたものであることを特徴とする請求項2乃至請求項4のいずれかに記載の回転体の騒音低減方法。
  6. 前記重畳される複数の異なる周期の変化が、変化量も異なるものであることを特徴とする請求項5に記載の回転体の騒音低減方法。
  7. 前記回転体が、航空機の推進用プロペラであり、
    少なくとも離着陸時は地面に対して水平方向の騒音を低減することを特徴とする請求項1乃至請求項6のいずれかに記載の回転体の騒音低減方法。
  8. 前記回転体が、風車であり、
    地面に対して水平方向の騒音を低減することを特徴とする請求項1乃至請求項6のいずれかに記載の回転体の騒音低減方法。
  9. 回転軸と、該回転軸に放射状に取り付けられたブレードとを有する回転体の騒音低減装置であって、
    前記回転軸が回転した際の前記ブレードの表面の圧力分布を能動的に変更可能な面圧可変機構を備え、
    該面圧可変機構が、前記回転軸の回転位相を検出する位相検出手段と、回転軸に対して垂直な平面上の特定方向を設定する方向設定手段と、該設定された方向に応じて回転位相に対応したブレードの変更すべき表面の圧力分布を演算する演算手段とを有することを特徴とする回転体の騒音低減装置。
  10. 前記回転体の面圧可変機構が、前記ブレードのピッチ角を能動的に変更可能な可変ピッチ機構であることを特徴とする請求項9に記載の回転体の騒音低減装置。
  11. 前記回転体が複数のブレードを有し、
    前記面圧可変機構が、該複数のブレードの各ブレードの表面の圧力分布を前記回転軸の回転位相に対応して個別に能動的に変化させることを特徴とする請求項9または請求項10に記載の回転体の騒音低減装置。
JP2012140566A 2012-06-22 2012-06-22 回転体の騒音低減方法および騒音低減装置 Pending JP2014004875A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140566A JP2014004875A (ja) 2012-06-22 2012-06-22 回転体の騒音低減方法および騒音低減装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140566A JP2014004875A (ja) 2012-06-22 2012-06-22 回転体の騒音低減方法および騒音低減装置

Publications (1)

Publication Number Publication Date
JP2014004875A true JP2014004875A (ja) 2014-01-16

Family

ID=50103034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140566A Pending JP2014004875A (ja) 2012-06-22 2012-06-22 回転体の騒音低減方法および騒音低減装置

Country Status (1)

Country Link
JP (1) JP2014004875A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111966A (ja) * 2017-12-25 2019-07-11 株式会社Subaru 整流装置
CN113513446A (zh) * 2021-07-30 2021-10-19 浙江大学 一种驰振式压电风能气流能量收集装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111966A (ja) * 2017-12-25 2019-07-11 株式会社Subaru 整流装置
JP7037933B2 (ja) 2017-12-25 2022-03-17 株式会社Subaru 整流装置
CN113513446A (zh) * 2021-07-30 2021-10-19 浙江大学 一种驰振式压电风能气流能量收集装置
CN113513446B (zh) * 2021-07-30 2022-08-05 浙江大学 一种驰振式压电风能气流能量收集装置

Similar Documents

Publication Publication Date Title
US10907495B2 (en) Unducted thrust producing system
Pechlivanoglou Passive and active flow control solutions for wind turbine blades
US8096756B2 (en) Apparatus and method for controlling a compressor
EP2536945B1 (en) Flow control on a vertical axis wind turbine (vawt)
JP5323133B2 (ja) 風力発電システムの制御方法
US20120257967A1 (en) Method and controller for generating a blade pitch angle control signal and wind turbine comprising the controller
KR20150004268A (ko) 로터 구동 시스템
Wang et al. Analysis of influence of duct geometrical parameters on pump jet propulsor hydrodynamic performance
Jukes Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators
Cooney et al. The development and demonstration of a plasma flow control system on a 20 kW wind turbine
JP2013060930A (ja) 風力発電装置
JP2019064541A (ja) ダクテッドファン、マルチコプタ、垂直離着陸機、cpu冷却用ファン及びラジエータ冷却用ファン
Zamani et al. Numerical study of porous media effect on the blade surface of vertical axis wind turbine for enhancement of aerodynamic performance
JP2014004875A (ja) 回転体の騒音低減方法および騒音低減装置
Stuermer et al. Aerodynamic and aeroacoustic installation effects for pusher-configuration CROR propulsion systems
Hanson et al. Experimental investigation of propeller noise in ground effect
Tsai et al. Coriolis effect on dynamic stall in a vertical axis wind turbine at moderate Reynolds number
JP2015161269A (ja) 流体制御システム
KR20150069066A (ko) 양항력 블레이드 및 그 양항력 블레이드를 갖는 수직축 풍력 발전용 로터 장치
Walther et al. Symmetric versus asymmetric pitching of a cycloidal rotor blade at ultra-low Reynolds numbers
WO2022233840A1 (en) Operating a wind turbine for wake control
Runze et al. Numerical study of the rotor thickness noise reduction based on the concept of sound field cancellation
US11639667B2 (en) Rotor support device, rotor, gas turbine engine, and aircraft
Greenblatt et al. Dielectric barrier discharge plasma flow control on a vertical axis wind turbine
Nagai et al. Experimental study on flow interaction between fore-and hindwings of dragonfly in hovering and forward flight