JP2014003270A - Oxide superconducting thin film - Google Patents

Oxide superconducting thin film Download PDF

Info

Publication number
JP2014003270A
JP2014003270A JP2012260224A JP2012260224A JP2014003270A JP 2014003270 A JP2014003270 A JP 2014003270A JP 2012260224 A JP2012260224 A JP 2012260224A JP 2012260224 A JP2012260224 A JP 2012260224A JP 2014003270 A JP2014003270 A JP 2014003270A
Authority
JP
Japan
Prior art keywords
layer
superconducting
cuo
thin film
based superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012260224A
Other languages
Japanese (ja)
Inventor
Kengo Nakao
健吾 中尾
Hirokazu Sasaki
宏和 佐々木
Hajime Kasahara
甫 笠原
Masakazu Matsui
正和 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012117913A external-priority patent/JP2013008958A/en
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2012260224A priority Critical patent/JP2014003270A/en
Publication of JP2014003270A publication Critical patent/JP2014003270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the critical current characteristics while suppressing increase in the types of material.SOLUTION: The oxide superconducting thin film includes a substrate, a superconductive layer including a plurality of RE-based superconductor units formed on the substrate and composed to include a rare earth element, a CuO chain and a CuOplane, a CuO chain existing among the RE-based superconductor units around the interface of the superconductive layer and a layer adjoining the substrate side of the superconductive layer, out of a plurality of CuO chains, and is 1.2-2 times longer in the lamination direction than the length of a CuO chain determined by the lattice constant of the RE-based superconductor unit, and an edge dislocation adjoining the long CuO chain in the lamination direction.

Description

本発明は、酸化物超電導薄膜に関する。   The present invention relates to an oxide superconducting thin film.

従来から、酸化物超電導材料を実用化するための技術として、基材を用意し、当該基材上に酸化物超電導体を成膜して酸化物超電導薄膜を得る方法がある。   Conventionally, as a technique for putting an oxide superconducting material into practical use, there is a method in which a base material is prepared and an oxide superconductor film is formed on the base material to obtain an oxide superconducting thin film.

成膜する酸化物超電導体としては、例えば、液体窒素温度(77K)以上で超電導現象を示すRE系超電導体(RE:希土類元素)、特にREBaCu7−δの組成式で表されるRE系超電導体(以下、単に「(RE)BCO」という)がよく用いられている。 The oxide superconductor to be formed is represented by, for example, a composition formula of an RE-based superconductor (RE: rare earth element) that exhibits a superconducting phenomenon at a liquid nitrogen temperature (77 K) or higher, particularly REBa 2 Cu 3 O 7-δ. RE-based superconductors (hereinafter simply referred to as “(RE) BCO”) are often used.

このようなRE系超電導体を用いた酸化物超電導薄膜は、超電導限流器やケーブル、SMES(超電導エネルギー貯蔵装置)への応用が期待されており、RE系超電導体及びその製法に大いに注目を集めている。   Such oxide superconducting thin films using RE-based superconductors are expected to be applied to superconducting current limiters, cables, and SMES (superconducting energy storage devices), and much attention is paid to RE-based superconductors and their manufacturing methods. Collecting.

ところが、RE系超電導体を含め、酸化物超電導薄膜を実用化するための障害となっている1つの要因として、臨界電流特性(以下、単に「Ic特性」という)の向上が容易でないことが挙げられる。
このIc特性は、臨界電流密度特性(以下、単に「Jc特性」という)と膜厚と幅との積で表されるが、Jc特性は酸化物超電導体の(結晶方位等の)状態に依存し、膜厚の限界は基材と酸化物超電導体との熱膨張係数の差に起因する熱応力により決定される。
However, one of the factors that impede the practical application of oxide superconducting thin films, including RE-based superconductors, is that it is not easy to improve critical current characteristics (hereinafter simply referred to as “Ic characteristics”). It is done.
This Ic characteristic is represented by a product of a critical current density characteristic (hereinafter simply referred to as “Jc characteristic”), a film thickness, and a width. The Jc characteristic depends on the state of the oxide superconductor (such as crystal orientation). The film thickness limit is determined by the thermal stress resulting from the difference in thermal expansion coefficient between the substrate and the oxide superconductor.

そこで、特許文献1には、(RE)BCO薄膜に適当量の空孔を導入するとともに、(RE)BCO薄膜を単一層構造ではなく、間に(RE)BCO薄膜とは異なる中間層薄膜を含む多層構造を有するように成膜することで、基材と酸化物超電導体との熱膨張係数の差に起因する熱応力を緩和して膜厚の限界を高め、もってIc特性を向上する点が開示されている。   Therefore, in Patent Document 1, an appropriate amount of vacancies is introduced into the (RE) BCO thin film, and the intermediate layer thin film different from the (RE) BCO thin film is not interposed between the (RE) BCO thin film and the single layer structure. By forming the film so as to have a multilayer structure including the point, the thermal stress caused by the difference in thermal expansion coefficient between the base material and the oxide superconductor is alleviated to increase the film thickness limit, thereby improving the Ic characteristic. Is disclosed.

特開2008−140789号公報JP 2008-140789 A

しかしながら、特許文献1の構成では、超電導層を(RE)BCO薄膜と、当該(RE)BCO薄膜とは異なるRE’を選んだ中間層薄膜とを含む構造とするので、原料の種類が増え、コスト高となる虞がある。   However, in the configuration of Patent Document 1, since the superconducting layer has a structure including a (RE) BCO thin film and an intermediate layer thin film selected from RE 'different from the (RE) BCO thin film, the types of raw materials are increased. There is a risk of high costs.

本発明は上記事実に鑑みてなされたものであり、原料の種類が増えるのを抑制しつつ良好な臨界電流特性を有する酸化物超電導薄膜を提供することを目的とする。   The present invention has been made in view of the above-described facts, and an object thereof is to provide an oxide superconducting thin film having good critical current characteristics while suppressing an increase in the types of raw materials.

本発明の上記課題は下記の手段によって解決された。
<1>基材と、前記基材上に形成され、希土類元素とCuO鎖とCuO面とを含んで構成されたRE系超電導体ユニットを複数含有する超電導層と、複数ある前記CuO鎖のうち、前記超電導層と前記超電導層の前記基材側に隣接する層との界面周囲の前記RE系超電導体ユニット中に存在し、前記RE系超電導体ユニットの格子定数により定まるCuO鎖の長さよりも1.2倍以上2倍以下積層方向に長いCuO鎖と、前記長いCuO鎖に対して積層方向に隣接して存在する刃状転位と、を備える酸化物超電導薄膜。
なお、「前記基材側に隣接する層」には、中間層だけでなく基材自体も含むものとする。
The above-described problems of the present invention have been solved by the following means.
<1> a base material, a superconducting layer that is formed on the base material and includes a plurality of RE-based superconductor units including a rare earth element, a CuO chain, and a CuO 2 surface; and a plurality of the CuO chains. Of these, the length of the CuO chain present in the RE-based superconductor unit around the interface between the superconducting layer and the layer adjacent to the base material side of the superconducting layer is determined by the lattice constant of the RE-based superconductor unit. An oxide superconducting thin film comprising a CuO chain that is 1.2 times to 2 times longer in the stacking direction and edge dislocations that are adjacent to the long CuO chain in the stacking direction.
The “layer adjacent to the base material side” includes not only the intermediate layer but also the base material itself.

<2>前記基材と前記超電導層の間に、前記希土類元素の価数を取り得る他の希土類元素を含有する中間層を有する、<1>に記載の酸化物超電導薄膜。 <2> The oxide superconducting thin film according to <1>, having an intermediate layer containing another rare earth element capable of taking the valence of the rare earth element between the base material and the superconducting layer.

<3>前記長いCuO鎖は、前記超電導層と前記超電導層の前記基材側に隣接する層の界面から1層目又は2層目の前記RE系超電導体ユニット中に存在する、<1>又は<2>に記載の酸化物超電導薄膜。 <3> The long CuO chain is present in the RE-based superconductor unit in the first layer or the second layer from the interface between the superconducting layer and the layer adjacent to the substrate side of the superconducting layer, <1> Or the oxide superconducting thin film as described in <2>.

<4>前記1層目のRE系超電導体ユニットは、前記希土類元素から積層されている、<3>に記載の酸化物超電導薄膜。 <4> The oxide superconducting thin film according to <3>, wherein the first RE superconductor unit is laminated from the rare earth element.

<5>前記長いCuO鎖を積層方向に挟む前記RE系超電導体ユニット同士が、ab面方向に前記RE系超電導体ユニットの1/8以上1/2以下ずれている、<2>〜<4>の何れか1つに記載の酸化物超電導薄膜。 <5> The RE-based superconductor units sandwiching the long CuO chain in the stacking direction are deviated from 1/8 to 1/2 of the RE-based superconductor unit in the ab plane direction, <2> to <4 > The oxide superconducting thin film according to any one of the above.

<6>前記中間層の少なくとも前記超電導層側の層は、CeO又はREMnOから構成される、<2>〜<5>の何れか1つに記載の酸化物超電導薄膜。 <6> The oxide superconducting thin film according to any one of <2> to <5>, wherein at least the superconducting layer side layer of the intermediate layer is made of CeO 2 or REMnO 3 .

本発明によれば、原料の種類が増えるのを抑制しつつ良好な臨界電流特性を有する酸化物超電導薄膜を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the oxide superconducting thin film which has a favorable critical current characteristic can be provided, suppressing the increase in the kind of raw material.

図1は、本発明の実施形態に係る酸化物超電導薄膜の積層構造を示す図である。FIG. 1 is a view showing a laminated structure of oxide superconducting thin films according to an embodiment of the present invention. 図2は、図1に示す超電導層を構成するRE系超電導体の結晶構造を示す図である。FIG. 2 is a diagram showing a crystal structure of an RE superconductor constituting the superconducting layer shown in FIG. 図3は、本発明の実施形態に係る超電導限流器の概略構成図である。FIG. 3 is a schematic configuration diagram of a superconducting fault current limiter according to an embodiment of the present invention. 図4は、本実施例に係る薄膜型超電導素子の酸化物超電導薄膜の積層方向P断面において、特に中間層(CeO層)と超電導層(YBCO層)との界面のABF像を示す図である。FIG. 4 is a diagram showing an ABF image of the interface between the intermediate layer (CeO 2 layer) and the superconducting layer (YBCO layer) in the stacking direction P cross section of the oxide superconducting thin film of the thin film type superconducting element according to this example. is there. 図5は、本実施例に係る薄膜型超電導素子の酸化物超電導薄膜の積層方向P断面において、特に中間層(CeO層)と超電導層(YBCO層)との界面の図4とは場所が異なる他のABF像を示す図である。FIG. 5 is a cross section in the stacking direction P of the oxide superconducting thin film of the thin film type superconducting element according to the present embodiment, particularly where FIG. 4 at the interface between the intermediate layer (CeO 2 layer) and the superconductive layer (YBCO layer) is different It is a figure which shows another different ABF image.

以下、添付の図面を参照しながら、本発明の実施形態に係る酸化物超電導薄膜について具体的に説明する。なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。   Hereinafter, an oxide superconducting thin film according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate.

<酸化物超電導薄膜の構成>
図1は、本発明の実施形態に係る酸化物超電導薄膜1の積層構造を示す図である。
図1に示すように、酸化物超電導薄膜1は、基材11上に中間層12、超電導層13、安定化層(保護層)14が積層方向P順に形成された積層構造を有している。
<Configuration of oxide superconducting thin film>
FIG. 1 is a diagram showing a laminated structure of an oxide superconducting thin film 1 according to an embodiment of the present invention.
As shown in FIG. 1, the oxide superconducting thin film 1 has a laminated structure in which an intermediate layer 12, a superconducting layer 13, and a stabilizing layer (protective layer) 14 are formed on a substrate 11 in order of the lamination direction P. .

基材11は、低磁性の金属基材やセラミックス基材を用いる。基材11の形状は、主面があることを前提として特に限定されることはなく、板材、線材、条体等の種々の形状のものを用いることができる。例えばテープ状の基材を用いると、酸化物超電導薄膜1を超電導線材として適用することができる。
金属基材としては、例えば、強度及び耐熱性に優れた、Cr、Cu、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Ag等の金属又はこれらの合金を用いることができる。特に好ましいのは、耐食性及び耐熱性の点で優れているステンレス、ハステロイ(登録商標)、その他のニッケル基合金である。また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基材としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア、サファイア等を用いることができる。
基材11の厚みは、特に限定されないが、例えば1mmとされている。
The substrate 11 is a low magnetic metal substrate or ceramic substrate. The shape of the base material 11 is not particularly limited on the assumption that there is a main surface, and various shapes such as a plate material, a wire material, and a strip can be used. For example, when a tape-shaped substrate is used, the oxide superconducting thin film 1 can be applied as a superconducting wire.
As the metal substrate, for example, metals such as Cr, Cu, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, and Ag, which are excellent in strength and heat resistance, or alloys thereof can be used. Particularly preferred are stainless steel, Hastelloy (registered trademark), and other nickel-based alloys which are excellent in corrosion resistance and heat resistance. Various ceramics may be arranged on these various metal materials. As the ceramic substrate, for example, MgO, SrTiO 3 , yttrium-stabilized zirconia, sapphire, or the like can be used.
Although the thickness of the base material 11 is not specifically limited, For example, it is 1 mm.

中間層12は、超電導層13において高い面内配向性を実現するために基材11の一主面上に形成され、且つ超電導層13の基材11側に隣接する層であり、単層膜で構成されていても多層膜で構成されていてもよい。この中間層12は、特に限定されないが、少なくとも最表層(超電導層13側の層)が例えばCeO及びREMnOから選ばれる物質であり、好ましくはCeOである。なお、Ceの価数は、通常4価であるが、3価も取り得る。
中間層12の膜厚は、特に限定されないが、例えば20nmとされている。
The intermediate layer 12 is a layer formed on one main surface of the base material 11 in order to realize high in-plane orientation in the superconducting layer 13 and adjacent to the base material 11 side of the superconducting layer 13. Or a multilayer film. The intermediate layer 12 is not particularly limited, but at least the outermost layer (the layer on the superconducting layer 13 side) is a material selected from, for example, CeO 2 and REMnO 3 , and is preferably CeO 2 . The valence of Ce is usually tetravalent, but can be trivalent.
The film thickness of the intermediate layer 12 is not particularly limited, but is 20 nm, for example.

超電導層13は、中間層12上に形成され、RE系超電導体を主成分として含有している。なお、「主成分」とは、超電導層13に含まれる構成成分中で含有量が最も多いことを示し、好ましくは90%超であることを示している。RE系超電導体としては、代表的なものとしてREBaCu7−δ(RE−123)や、REBaCu(RE−124)、REBaCu15−δ(RE−247)が挙げられる。いずれも層状ペロブスカイト構造をとるが、内部に存在する構造はRE,Ba,Cuが酸素とペロブスカイト構造を持つ部分とCuと酸素が鎖状に結合している部分に分けられる。ペロブスカイト構造の部分は構造内にCuO面を持ち、超電導電流を通す部分として知られている。CuO鎖の部分はCuOが単鎖しかない場合のCuO単鎖と、CuOが二重になっているCuO重鎖が存在する。そして、すべてのCuO鎖が単鎖のものはRE−123, 単鎖と重鎖が交互に存在するものをRE−247、すべて重鎖のものをRE−124と呼ばれている。 The superconducting layer 13 is formed on the intermediate layer 12 and contains an RE-based superconductor as a main component. The “main component” indicates that the content is the highest among the constituent components contained in the superconducting layer 13, and preferably indicates that it is more than 90%. Typical examples of RE superconductors include REBa 2 Cu 3 O 7-δ (RE-123), REBa 2 Cu 4 O 8 (RE-124), RE 2 Ba 4 Cu 7 O 15-δ ( RE-247). Each of them has a layered perovskite structure, but the structure existing inside is divided into a part where RE, Ba, and Cu have an oxygen and perovskite structure and a part where Cu and oxygen are bonded in a chain. The part of the perovskite structure has a CuO 2 surface in the structure and is known as a part through which a superconducting current flows. The portion of the CuO chain includes a CuO single chain when CuO has only a single chain and a CuO heavy chain in which CuO is doubled. All of the CuO chains are called RE-123, those having a single chain and a heavy chain alternately are called RE-247, and those having all the heavy chains are called RE-124.

上記REは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、YbやLuなどの単一の希土類元素又は複数の希土類元素であり、これらの中でもBaサイトと置換が起き難い等の理由でYであることが好ましい。また、δは、酸素不定比量であり、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。
超電導層13の膜厚は、特に限定されないが、例えば200nmとされている。
The RE is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, and among these, substitution with the Ba site hardly occurs. For the reasons described above, Y is preferable. Further, δ is an oxygen nonstoichiometric amount, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint of a high superconducting transition temperature. The oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.
The thickness of the superconducting layer 13 is not particularly limited, but is set to 200 nm, for example.

安定化層14は、超電導層13上に形成され、例えば銀等で構成されている。安定化層14の膜厚は、特に限定されないが、例えば200nmとされている。   The stabilization layer 14 is formed on the superconducting layer 13 and is made of, for example, silver. The film thickness of the stabilization layer 14 is not particularly limited, but is, for example, 200 nm.

図2は、図1に示す超電導層13を構成するRE系超電導体20の結晶構造を示す図である。なお、図2に示す結晶構造は、図全体でRE−123の単位格子(ユニットセル)を示しており、本実施形態のRE系超電導体20は、RE−123で構成されるだけでなく、RE−123やRE−124、RE−247が混在し、図全体の結晶構造がRE系超電導体20の単位格子の一部を構成する場合も含むものとする。   FIG. 2 is a diagram showing a crystal structure of the RE-based superconductor 20 constituting the superconducting layer 13 shown in FIG. In addition, the crystal structure shown in FIG. 2 shows a unit cell (unit cell) of RE-123 in the entire diagram, and the RE-based superconductor 20 of the present embodiment is not only composed of RE-123, The case where RE-123, RE-124, and RE-247 coexist and the crystal structure of the entire figure forms a part of the unit cell of the RE superconductor 20 is also included.

このRE系超電導体20は、図2に示すように、単位格子内に、希土類元素(RE)22を挟んでc軸方向両側に位置するCuO面24と、希土類元素22を基準としてCuO面24よりもc軸方向外側に位置するCuO単鎖26と、を有している。本実施形態では、単位格子のRE系超電導体20を、「RE系超電導体ユニット30」と呼称するものとする。なお、この「RE系超電導体ユニット30」は、図2中では、CuO面がユニットの最下層となっているが、希土類元素22を最下層としてユニットを形成してもよい。
そして、超電導層13は、このRE系超電導体ユニット30を(積層方向Pにも幅方向にも)複数含有して構成されており、超電導層13中に複数存在するCuO単鎖26のうち、超電導層13と中間層12との界面周囲のRE系超電導体ユニット30中に存在し、RE系超電導体ユニット30の格子定数により定まるCuO単鎖の長さよりも積層方向Pに1.2倍以上2倍以下に長いCuO単鎖と、この長いCuO単鎖に対して積層方向Pに隣接して存在する刃状転位と、を備えている。ここで、長いCuO単鎖の積層方向Pの長さを、RE系超電導体ユニット30の格子定数により定まるCuO単鎖の長さの1.2倍以上としている理由は、a軸・b軸方向の相互作用に比べ、c軸方向の相互作用が小さくなることを考慮した為である。また、2倍以下としている理由は、超電導層13の配向性の悪化を抑制するためである。
なお、RE−124や、RE−247の場合は、積層方向に長いCuO鎖は、単鎖ではなく、重鎖の場合もある。この場合、長い重鎖は、RE系超電導体ユニット30の格子定数により定まるCuO重鎖の長さよりも積層方向Pに1.2倍以上2倍以下に長い。
The RE-based superconductor 20, as shown in FIG. 2, in the unit cell, CuO 2 and CuO 2 plane 24 located along the c-axis both sides of the rare earth element (RE) 22, a rare-earth element 22 as a reference And a CuO single chain 26 located outside the surface 24 in the c-axis direction. In the present embodiment, the RE superconductor 20 of the unit cell is referred to as “RE superconductor unit 30”. In FIG. 2, the “RE-based superconductor unit 30” has the CuO 2 surface as the lowermost layer of the unit, but the unit may be formed with the rare earth element 22 as the lowermost layer.
The superconducting layer 13 includes a plurality of the RE-based superconductor units 30 (in the stacking direction P and the width direction), and among the CuO single chains 26 present in the superconducting layer 13, Present in the RE-based superconductor unit 30 around the interface between the superconducting layer 13 and the intermediate layer 12 and 1.2 times or more in the stacking direction P than the length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit 30 A CuO single chain that is two times or less long and edge dislocations that are adjacent to the long CuO single chain in the stacking direction P are provided. Here, the reason why the length of the long CuO single chain in the stacking direction P is 1.2 times or more the length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit 30 is the a-axis / b-axis direction. This is because the interaction in the c-axis direction becomes smaller than the interaction of. Moreover, the reason for setting it as 2 times or less is for suppressing the deterioration of the orientation of the superconducting layer 13.
In the case of RE-124 and RE-247, the CuO chain that is long in the stacking direction may be a heavy chain instead of a single chain. In this case, the long heavy chain is 1.2 to 2 times longer in the stacking direction P than the length of the CuO heavy chain determined by the lattice constant of the RE-based superconductor unit 30.

このように、超電導層13と中間層12との界面周囲に存在するRE系超電導体ユニット中に、積層方向Pに長く伸びているCuO単鎖があることで、積層方向Pにおいて長いCuO単鎖よりも中間層12の反対側に存在するRE系超電導体ユニット30が中間層12の構造に影響されることを抑制することができ、中間層12と超電導層13の格子歪を緩和することができる。これにより、熱収縮によるクラックが入りにくい構造となり、厚膜化が可能となる。また、CeOの格子定数はYBCOに比べ小さく、CeOの格子数に対してYBCOの格子数が少ない場合に歪が小さくなるため、この長いCuO単鎖に対して積層方向Pに隣接する刃状転位があれば、中間層12の例えばCeOの格子数に対して超電導層13のYBCOの格子数が少なくなり、中間層12と超電導層13の格子不整合が緩和される。これにより、熱収縮によるクラックが入りにくい構造となり、厚膜化が可能となる。
以上のように、厚膜化が可能となれば、Jc特性と膜厚と幅との積で表されるIc特性を向上することができる。また、特許文献1のように超電導層を(RE)BCO薄膜と、(RE)BCO薄膜とは異なるRE’を選んだ薄膜を構成する必要がないので、超電導層を形成するための原料の種類を増やすことなく、良好なIc特性を有する酸化物超電導薄膜1を提供することができる。
なお、上記「RE系超電導体ユニット30の格子定数により定まるCuO単鎖の長さ」は、X線回折測定により決定されるRE系超電導体ユニット30の格子定数に対して、超電導体の格子定数とCuO単鎖の長さの比を用いることで定めることができる。
また、上記「界面周囲」とは、超電導層13と中間層12との界面からRE系超電導体ユニット30の5個分以内であることを意味し、超電導層13の下層から超電導層13全体の格子不整合を緩和するという観点から超電導層13と中間層12の界面から1層目又は2層目のRE系超電導体ユニット30中に存在することが好ましい。また、「長いCuO単鎖に対して積層方向Pに隣接する刃状転位」とは、長いCuO単鎖に対して1層目以上3層目以下のRE系超電導体ユニット30中に存在する刃状転位のことを意味する。なお、刃状転位は1層目のRE系超電導体ユニット30中に存在させることが好ましいが、中間層12の凹凸により3層目までのRE系超電導体ユニット30中に存在させることも可能である。
Thus, in the RE-based superconductor unit existing around the interface between the superconducting layer 13 and the intermediate layer 12, there is a CuO single chain extending in the stacking direction P, so that a long CuO single chain in the stacking direction P is present. It is possible to prevent the RE-based superconductor unit 30 existing on the opposite side of the intermediate layer 12 from being affected by the structure of the intermediate layer 12, and to relax the lattice strain of the intermediate layer 12 and the superconducting layer 13. it can. As a result, a structure in which cracks due to heat shrinkage are difficult to occur is achieved, and a thick film can be formed. Further, the lattice constant of CeO 2 is smaller than that of YBCO, and since the strain is reduced when the number of lattices of YBCO is smaller than the number of lattices of CeO 2 , the blade adjacent to the long CuO single chain in the stacking direction P. If there is a dislocation, the number of lattices of YBCO in the superconducting layer 13 is reduced with respect to the number of lattices of, for example, CeO 2 in the intermediate layer 12, and the lattice mismatch between the intermediate layer 12 and the superconducting layer 13 is alleviated. As a result, a structure in which cracks due to heat shrinkage are difficult to occur is achieved, and a thick film can be formed.
As described above, if the film thickness can be increased, the Ic characteristic represented by the product of the Jc characteristic, the film thickness, and the width can be improved. Moreover, since it is not necessary to configure the superconducting layer as a (RE) BCO thin film and a thin film selected from RE 'different from the (RE) BCO thin film as in Patent Document 1, the kind of raw material for forming the superconducting layer is not required. The oxide superconducting thin film 1 having good Ic characteristics can be provided without increasing the value.
The above-mentioned “length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit 30” is the lattice constant of the superconductor with respect to the lattice constant of the RE-based superconductor unit 30 determined by X-ray diffraction measurement. And the CuO single chain length ratio.
Further, the “periphery of the interface” means that it is within five RE-based superconductor units 30 from the interface between the superconducting layer 13 and the intermediate layer 12, and the entire superconducting layer 13 from the lower layer of the superconducting layer 13. From the viewpoint of alleviating lattice mismatch, it is preferably present in the RE superconductor unit 30 in the first or second layer from the interface between the superconducting layer 13 and the intermediate layer 12. The “blade dislocation adjacent to the long CuO single chain in the stacking direction P” means the blade existing in the RE superconductor unit 30 in the first layer to the third layer with respect to the long CuO single chain. This means a dislocation. The edge dislocation is preferably present in the RE superconductor unit 30 in the first layer, but can also be present in the RE superconductor unit 30 up to the third layer due to the unevenness of the intermediate layer 12. is there.

さらにまた、中間層(CeO)とRE系超電導体ユニット30中のREは結合性が良く、積層した際に、超電導層13と中間層12との界面周囲のRE系超電導体ユニット30中のCuO単鎖にCeOとYBCOの格子の不整合による歪のエネルギーが集中し、CuO単鎖が伸びて歪が緩和するため、長いCuO単鎖を形成し易い。そのため、上記1層目のRE系超電導体ユニット30は、希土類元素22が最下層になるように積層されていることが好ましい。これを実現するためには、中間層中のCe原子とRE系超電導体ユニット30の希土類元素22の価数を合わせることで界面での固溶を促す必要がある。例えば、不活性雰囲気中で超電導層13及び中間層12を焼成して、中間層12の特に表面にある他の希土類元素、例えばCeOのCeの価数を4価から3価側に変えるように、価数を少なくすることで、超電導層13内の1層目のRE系超電導体ユニット30の希土類元素22(3価と仮定)が、中間層12表面の他の希土類元素のサイトに強く結合すると考えられる。
また、上記1層目のRE系超電導体ユニット30のCuO面24の酸素イオンが、RE系超電導体ユニット30のハーフユニットセル位置28(図2参照、具体的にCuO面内の最も近くに隣り合うCuとCuの中間位置)に対してab面方向32に1/8以上1/2以下偏って位置していることが好ましい。このように酸素イオンがab面方向32に偏って位置すると、良好なIc特性を有する酸化物超電導薄膜1を得ることができる。この良好なIc特性は、RE系超電導体ユニット30のCuO面24の酸素イオンの位置に偏りにある部分が、ピンニングセンターになっているため、と考えられる。
また、格子間の結合を弱め、刃状転位を入りやすくするという観点から、積層方向Pにおいて長いCuO鎖を挟むRE系超電導体ユニット30同士が、ab面方向32にRE系超電導体ユニット30の1/8以上1/2以下ずれていることが好ましい。
Furthermore, the RE in the intermediate layer (CeO 2 ) and the RE-based superconductor unit 30 has good bonding properties, and when stacked, the RE in the RE-based superconductor unit 30 around the interface between the superconducting layer 13 and the intermediate layer 12 is stacked. The strain energy due to the mismatch of the lattice of CeO 2 and YBCO is concentrated on the CuO single chain, and the CuO single chain is stretched to relax the strain. Therefore, it is easy to form a long CuO single chain. Therefore, the first RE superconductor unit 30 is preferably laminated so that the rare earth element 22 is the lowest layer. In order to realize this, it is necessary to promote solid solution at the interface by combining the Ce atoms in the intermediate layer and the valence of the rare earth element 22 of the RE-based superconductor unit 30. For example, the superconducting layer 13 and the intermediate layer 12 are fired in an inert atmosphere so that the valence of Ce of other rare earth elements, for example, CeO 2 , particularly on the surface of the intermediate layer 12 is changed from the tetravalent to the trivalent side. In addition, by reducing the valence, the rare earth element 22 (assumed to be trivalent) of the first RE superconductor unit 30 in the superconducting layer 13 is strongly against other rare earth element sites on the surface of the intermediate layer 12. It is thought to combine.
Further, the oxygen ions on the CuO 2 surface 24 of the first RE superconductor unit 30 are in the half unit cell position 28 of the RE superconductor unit 30 (see FIG. 2, specifically, closest to the CuO 2 surface). It is preferable that it is located 1/8 or more and 1/2 or less in the ab surface direction 32 with respect to the intermediate position between Cu and Cu adjacent to each other. When oxygen ions are thus biased in the ab plane direction 32, the oxide superconducting thin film 1 having good Ic characteristics can be obtained. This good Ic characteristic is considered to be because the portion that is biased to the position of the oxygen ions on the CuO 2 surface 24 of the RE-based superconductor unit 30 is a pinning center.
Further, from the viewpoint of weakening the bonding between lattices and facilitating the introduction of edge dislocations, RE-based superconductor units 30 sandwiching a long CuO chain in the stacking direction P are connected to each other in the ab plane direction 32 by the RE-based superconductor units 30. It is preferable that the deviation is 1/8 or more and 1/2 or less.

また、上述した刃状転移については、格子不整合を緩和するという観点から、超電導層13内において格子定数の比に合った数だけあると好ましい。例えば、中間層12がCeOで形成され、超電導層13がYBCOで形成されている場合、CeOのCe間隔3.83Å(格子定数は5.41Å)に対し、YBCOのb軸の格子定数は3.89Å(a軸は3.81Å)となっているので、CeO:YBCO =65:64になると良い。つまり、格子70個につき1個程度転位が見られることが好ましい。
また、上述した長いCuO単鎖については、1.2倍以上長くなっていることを説明したが、RE系超電導体ユニット30の格子定数により定まるCuO単鎖の長さよりも1.8倍以上積層方向Pに長くなっていることが好ましい。これは、原子間の相互作用は原子同士が離れると急速に減少する、すなわち、距離の2乗で相互作用の強さが決まるので約2倍まで拡大すれば相互作用は1/4近くまで小さくなると考えられる。したがって、CuO単鎖が長くなることで長いCuO単鎖とその上下のそれぞれの格子との相互作用が小さくなる。長いCuO単鎖とその上下のそれぞれの格子との相互作用が弱くなることにより、下層の格子定数の影響を受けにくくなり、刃状転移が発生しやすくなると考えられる。ただし、2倍を超えると、相互作用が減少し過ぎて超電導層13の配向性が悪化してしまう。
CuO単鎖の長さと転位の関係については、RE系超電導体20はイオン結晶なので本来ならば、刃状転位のような欠陥があれば斥力が働き、部分的には不安定になる。しかし、本実施形態のような長いCuO単鎖が存在することでその部分で格子欠陥が発生しても斥力が通常の状態に比べ小さくなり、結果として欠陥が生じやすい状態になっていると考えられる。
Further, the above-mentioned edge transition is preferably as many as the lattice constant ratio in the superconducting layer 13 from the viewpoint of relaxing the lattice mismatch. For example, when the intermediate layer 12 is made of CeO 2 and the superconducting layer 13 is made of YBCO, the Ce interval of CeO 2 is 3.83Å (lattice constant is 5.41Å), and the b-axis lattice constant of YBCO. Is 3.89 mm (a-axis is 3.81 mm), so CeO 2 : YBCO 2 = 65: 64 is preferable. That is, it is preferable that about one dislocation is seen per 70 lattices.
Further, the long CuO single chain described above has been described as being 1.2 times or longer, but it is 1.8 times longer than the length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit 30. It is preferable that the length is longer in the direction P. This is because the interaction between atoms decreases rapidly when the atoms are separated from each other. In other words, the strength of the interaction is determined by the square of the distance. It is considered to be. Accordingly, the longer the CuO single chain, the smaller the interaction between the long CuO single chain and the lattices above and below it. It is considered that the interaction between the long CuO single chain and the respective upper and lower lattices is weakened, so that it is less affected by the lattice constant of the lower layer and the edge transition is likely to occur. However, if it exceeds twice, the interaction is excessively reduced and the orientation of the superconducting layer 13 is deteriorated.
Regarding the relationship between the length of the CuO single chain and the dislocation, since the RE superconductor 20 is an ionic crystal, if there is a defect such as an edge dislocation, a repulsive force will work and it will be partially unstable. However, if a long CuO single chain as in this embodiment is present, even if a lattice defect occurs in that portion, the repulsive force is smaller than in a normal state, and as a result, the defect is likely to occur. It is done.

なお、上記のような構成を実現するためには、例えば中間層12を空気中800℃以上でアニールしたり、不活性雰囲気中で700℃以上900℃以下の温度範囲で超電導層13を形成又はアニールしたりする等、適宜製造方法を調整すればよい。また、CuO鎖の長さの調整との観点では、中間層12を形成する際の基板の温度を下げると長くなり、且つ酸素分圧を下げると長くなる傾向にある。更に、超電導層13を形成する際の本焼成の温度を下げると長くなり、且つ不活性雰囲気中での酸素分圧を下げると長くなる傾向にある。
また、酸素イオンの位置の特定に関しては、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によるABF−STEM法(角度制御環状明視野法)を用いることによって行うことができる。ABF−STEM法で得られるABF像は、小さい散乱角で散乱された電子を環状検出器で撮影することにより、酸素等の軽元素の検出が可能である。
In order to realize the above-described configuration, for example, the intermediate layer 12 is annealed in air at 800 ° C. or higher, or the superconducting layer 13 is formed in an inert atmosphere at a temperature range of 700 ° C. or higher and 900 ° C. or lower. What is necessary is just to adjust a manufacturing method suitably, such as annealing. Further, from the viewpoint of adjusting the length of the CuO chain, it tends to be longer when the temperature of the substrate in forming the intermediate layer 12 is lowered and longer when the oxygen partial pressure is lowered. Furthermore, when the temperature of the main firing at the time of forming the superconducting layer 13 is lowered, it becomes longer, and when the oxygen partial pressure in the inert atmosphere is lowered, it tends to become longer.
Further, the position of oxygen ions can be specified by using an ABF-STEM method (angle controlled annular bright field method) using a transmission electron microscope (TEM). An ABF image obtained by the ABF-STEM method can detect light elements such as oxygen by photographing electrons scattered at a small scattering angle with an annular detector.

<変形例>
なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであり、例えば上述の複数の実施形態は、適宜、組み合わせて実施可能である。また、以下の変形例同士を、適宜、組み合わせてもよい。
<Modification>
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art, and for example, the plurality of embodiments described above can be implemented in combination as appropriate. Further, the following modifications may be combined as appropriate.

例えば、中間層12や安定化層14は、適宜省略することができる。また、酸化物超電導薄膜1の超電導層13は単層である場合を説明したが、複数層であってもよい。また、RE系超電導体20として、例えばREBaCu7−δを挙げたが、このBaサイトにCaやCuサイトにCoをドープしてもよい。 For example, the intermediate layer 12 and the stabilization layer 14 can be omitted as appropriate. Moreover, although the superconducting layer 13 of the oxide superconducting thin film 1 has been described as being a single layer, it may be a plurality of layers. Further, as the RE-based superconductor 20, for example, it cited REBa 2 Cu 3 O 7-δ , may be doped with Co to Ca and Cu sites in the Ba site.

また、本実施形態では、酸化物超電導薄膜1について説明したが、この酸化物超電導薄膜1は他の様々な機器に応用することができる。例えば超電導限流器、SMES(Superconducting Magnetic Energy Storage)、超電導トランス、NMR(核磁気共鳴)分析装置、単結晶引き上げ装置、リニアモーターカー、磁気分離装置等の機器に応用することができる。   In this embodiment, the oxide superconducting thin film 1 has been described. However, the oxide superconducting thin film 1 can be applied to various other devices. For example, it can be applied to devices such as a superconducting current limiting device, SMES (Superconducting Magnetic Energy Storage), a superconducting transformer, an NMR (nuclear magnetic resonance) analyzer, a single crystal pulling device, a linear motor car, and a magnetic separation device.

<超電導限流器>
次に、酸化物超電導薄膜1を超電導限流器に応用する場合の超電導限流器の構成を一例として挙げる。
<Superconducting fault current limiter>
Next, the configuration of the superconducting fault current limiter when the oxide superconducting thin film 1 is applied to the superconducting fault current limiter will be described as an example.

図3は、本発明の実施形態に係る超電導限流器40の概略構成図である。   FIG. 3 is a schematic configuration diagram of the superconducting fault current limiter 40 according to the embodiment of the present invention.

本発明の実施形態に係る超電導限流器40は、超電導体のS/N転移(superconducting-normal state transitions)を利用して、通常時はゼロ抵抗で、臨界電流以上の過電流が流れた時には高抵抗となって過電流を抑制する機能を持つ機器である。   The superconducting fault current limiter 40 according to the embodiment of the present invention uses a superconducting-normal state transitions (S / N) of a superconductor, and normally has zero resistance and an overcurrent exceeding a critical current flows. This is a device with high resistance and a function to suppress overcurrent.

この超電導限流器40は、容器本体42Aを蓋42Bで閉じて密閉される密閉容器42を備えている。
容器本体42Aには、冷凍機44が接続され、冷凍機44から密閉容器42の内部に液体窒素が導入される。蓋42Bには、密閉容器42の外部から内部へ電流を導入して流出する電流導入出部46が接続されている。電流導入出部46は、3相交流回路で構成され、具体的には3つの電流導入部46Aと、これらに対応する3つの電流流出部46Bとを含んで構成されている。
The superconducting current limiting device 40 includes a sealed container 42 that is sealed by closing a container body 42A with a lid 42B.
A refrigerator 44 is connected to the container main body 42 </ b> A, and liquid nitrogen is introduced into the sealed container 42 from the refrigerator 44. The lid 42B is connected to a current introduction / extraction portion 46 that introduces and flows out current from the outside to the inside of the sealed container 42. The current introduction / extraction unit 46 is configured by a three-phase AC circuit, and specifically includes three current introduction units 46A and three current outflow units 46B corresponding thereto.

電流導入部46Aと電流流出部46Bは、それぞれ、蓋42Bに対して貫通して垂直方向に伸びた導線48と、当該導線48を被覆する筒体50とで構成される。
電流導入部46Aの導線48のうち外部に露出した一端は、対応する電流流出部46Bの導線48のうち外部に露出した一端と、分流抵抗としての外部抵抗52を介して接続されている。
Each of the current introduction portion 46A and the current outflow portion 46B includes a conducting wire 48 that penetrates the lid 42B and extends in the vertical direction, and a cylindrical body 50 that covers the conducting wire 48.
One end of the conducting wire 48 of the current introduction portion 46A exposed to the outside is connected to one end of the corresponding conducting wire 48 of the current outflow portion 46B exposed to the outside via an external resistor 52 as a shunt resistor.

各筒体50の容器本体42A内部にある端部には、素子収容容器54が支持されている。
この素子収容容器54は、密閉容器42に内蔵され、当該密閉容器42に充填される液体窒素により内部まで冷却される。
An element housing container 54 is supported at the end of each cylinder 50 inside the container body 42A.
The element storage container 54 is built in the sealed container 42 and cooled to the inside by liquid nitrogen filled in the sealed container 42.

素子収容容器54には、酸化物超電導薄膜1に電極を付けて構成された複数の薄膜型超電導素子60を含む限流ユニット56が内蔵されている。本発明の実施形態では、具体的に、薄膜型超電導素子60が4行2列で配列された組が3組で限流ユニット56を構成している。
この限流ユニット56は、電流導入部46Aの導線48のうち内部にある他端と、電流流出部46Bの導線48のうち内部にある他端と、支柱58で支持されており、3相交流回路を構成するように、電流導入部46Aの導線48のうち内部にある他端と、電流流出部46Bの導線48のうち内部にある他端とが、薄膜型超電導素子60を介して電気的に接続されている。
The element housing container 54 incorporates a current limiting unit 56 including a plurality of thin film type superconducting elements 60 formed by attaching electrodes to the oxide superconducting thin film 1. In the embodiment of the present invention, specifically, the current limiting unit 56 is configured by three sets in which the thin film superconducting elements 60 are arranged in four rows and two columns.
This current limiting unit 56 is supported by the other end inside the conducting wire 48 of the current introducing portion 46A, the other end inside the conducting wire 48 of the current outflow portion 46B, and the support column 58, and is a three-phase alternating current. The other end inside the conducting wire 48 of the current introducing portion 46A and the other end inside the conducting wire 48 of the current outflow portion 46B are electrically connected via the thin film superconducting element 60 so as to constitute a circuit. It is connected to the.

ここで、超電導限流器の実用化には、できるだけ大きな電流を抵抗ゼロで流すことが求められ、そのためには、酸化物超電導薄膜の臨界電流特性を向上させる必要がある。本実施形態では、超電導限流器40の薄膜型超電導素子60として良好な臨界電流特性を示す酸化物超電導薄膜1を適用するため、より大きな電流を抵抗ゼロで流すことができ、実用化が可能となる。   Here, in order to put the superconducting fault current limiter into practical use, it is required to flow a current as large as possible with zero resistance. For this purpose, it is necessary to improve the critical current characteristics of the oxide superconducting thin film. In this embodiment, since the oxide superconducting thin film 1 showing good critical current characteristics is applied as the thin film type superconducting element 60 of the superconducting current limiter 40, a larger current can be flowed with zero resistance, and practical application is possible. It becomes.

以下に、本発明に係る酸化物超電導薄膜について、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
本実施例では、酸化物超電導薄膜として、超電導限流器に用いられる薄膜型超電導素子を作製した。
Hereinafter, the oxide superconducting thin film according to the present invention will be described with reference to examples, but the present invention is not limited to these examples.
In this example, a thin film superconducting element used for a superconducting fault current limiter was fabricated as an oxide superconducting thin film.

<薄膜型超電導素子の作製>
本実施例の薄膜型超電導素子の作製では、まず、サファイア単結晶のR面が主面となるサファイア基板を用意した。次に、サファイア基板を1000℃でプレアニールし、r面方向に切り出した。そして、切り出されたサファイア基板を1000℃でアニールを行った。次に、3×10−2Pa酸素中でプラズマを発生させ、700℃以上にサファイア基板を加熱した状態でCeOをEB(電子ビーム)を用いて10nmから40nm程度蒸着させ、中間層を形成した。
次に、中間層が成膜されたサファイア基板を800℃でアニールし、表面処理(平坦化・価数の制御)を行った。これにより、CeOの結晶性が増し、後述するように、超電導層となるYBCOが成長する際にCeOの歪が従来に比べ小さくなりYBCOにて格子緩和が起こり易くすることができる。
<Production of thin film superconducting element>
In the production of the thin film superconducting element of this example, first, a sapphire substrate having the R plane of the sapphire single crystal as the main surface was prepared. Next, the sapphire substrate was pre-annealed at 1000 ° C. and cut out in the r-plane direction. Then, the cut sapphire substrate was annealed at 1000 ° C. Next, plasma is generated in 3 × 10 −2 Pa oxygen, and CeO 2 is deposited by EB (electron beam) to about 10 nm to 40 nm with the sapphire substrate heated to 700 ° C. or more to form an intermediate layer. did.
Next, the sapphire substrate on which the intermediate layer was formed was annealed at 800 ° C., and surface treatment (planarization / valence control) was performed. As a result, the crystallinity of CeO 2 increases, and as will be described later, when YBCO serving as a superconducting layer grows, the strain of CeO 2 becomes smaller than that in the conventional case, and lattice relaxation can easily occur in YBCO.

次に、イットリウム、バリウム、銅の有機錯体の溶液をスピンコーターで塗布し、500℃空気中で仮焼成を行なった。そして、不活性雰囲気中、すなわち酸素分圧100ppm程度の不活性ガスの気流中にて800℃で本焼成を行ない、途中から酸素雰囲気に切り替えた。不活性雰囲気中で本焼成を行なうことでYBCOを形成する結晶の成長方向が定まり、YBCOの格子緩和を早い段階で起こすことができ、特性の良いYBCO薄膜が得られた。
得られた超電導薄膜に金銀合金をスパッターで成膜し、電極を取り付けることで超電導限流素子を作製した。この超電導限流素子は、液体窒素温度に冷やすことで超電導状態になるが一定以上の電流が流れると常電導状態となり限流を行うことが可能であった。
Next, a solution of an organic complex of yttrium, barium, and copper was applied with a spin coater, and pre-baked in air at 500 ° C. Then, main baking was performed at 800 ° C. in an inert atmosphere, that is, in an inert gas stream having an oxygen partial pressure of about 100 ppm, and the oxygen atmosphere was switched to the middle. By carrying out the main firing in an inert atmosphere, the growth direction of the crystals forming YBCO was determined, and the lattice relaxation of YBCO could be caused at an early stage, and a YBCO thin film with good characteristics was obtained.
A superconducting current limiting element was produced by depositing a gold-silver alloy on the obtained superconducting thin film by sputtering and attaching electrodes. This superconducting current limiting element becomes a superconducting state by cooling to liquid nitrogen temperature. However, when a current of a certain level or more flows, it becomes a normal conducting state and can perform current limiting.

<TEM評価>
得られた薄膜型超電導素子を加工し、TEM(透過型電子顕微鏡)を用いて薄膜型超電導素子における酸化物超電導薄膜の積層方向P断面のABF(環状明視野:annular bright-field)像を複数観察した。
図4は、本実施例に係る薄膜型超電導素子の酸化物超電導薄膜の積層方向P断面において、特に中間層(CeO層)と超電導層(YBCO層)との界面のABF像を示す図である。
<TEM evaluation>
The obtained thin film type superconducting element is processed, and a plurality of ABF (annular bright-field) images of the cross section in the stacking direction P of the oxide superconducting thin film in the thin film type superconducting element are processed using a TEM (transmission electron microscope). Observed.
FIG. 4 is a diagram showing an ABF image of the interface between the intermediate layer (CeO 2 layer) and the superconducting layer (YBCO layer) in the stacking direction P cross section of the oxide superconducting thin film of the thin film type superconducting element according to this example. is there.

図4に示すように、図中の積層方向P中央にあるCuO単鎖は、すなわち中間層側から積層方向Pにおいて1層目のRE系超電導体ユニット(YBCOの1単位格子)のCuO単鎖は、通常のCuO単鎖に比べ積層方向に長いことが確認された。
具体的には、通常、RE系超電導体ユニットの格子定数により定まる場合のCuO単鎖の長さは4.3Åなのに対し、本実施例におけるRE系超電導体ユニットのCuO単鎖の長さは、7.9Å(ほぼ倍)まで積層方向Pに長く伸びていることが確認された。なお、本実施例では「積層方向」はRE系超電導体ユニットの「c軸方向」と同等と見なすことができる。
このように、積層方向Pに長く伸びているCuO単鎖が超電導層内にあれば、中間層と超電導層との格子歪が緩和され、熱収縮によるクラックが入りにくくなり、厚膜化が可能となる。
As shown in FIG. 4, the CuO single chain at the center of the stacking direction P in the figure is a CuO single chain of the RE-based superconductor unit (one unit cell of YBCO) in the first layer in the stacking direction P from the intermediate layer side. Was confirmed to be longer in the stacking direction than ordinary CuO single chains.
Specifically, the length of the CuO single chain when determined by the lattice constant of the RE superconductor unit is usually 4.3 mm, whereas the length of the CuO single chain of the RE superconductor unit in this example is It was confirmed that the film extends long in the stacking direction P to 7.9 mm (almost double). In this embodiment, the “stacking direction” can be regarded as equivalent to the “c-axis direction” of the RE-based superconductor unit.
Thus, if the CuO single chain extending in the stacking direction P is long in the superconducting layer, the lattice strain between the intermediate layer and the superconducting layer is alleviated, cracks due to thermal contraction are less likely to occur, and a thicker film can be formed. It becomes.

また、中間層(CeO層)上に成長するYBCOの1層目は、Yの層から始まっている。すなわち、1層目のRE系超電導体ユニットは、希土類元素Yから積層されていることが確認された。これはCeOとの結合力を強めていると考えている。
さらに、1層目のRE系超電導体ユニットのCuO面の酸素イオンが(図中長いCuO単鎖の下にあるCuO面の酸素イオン)、RE系超電導体ユニットのハーフユニットセル位置に対してab面方向に1/8以上1/2以下の範囲内で偏って位置していることも確認された。
さらにまた、長いCuO単鎖を積層方向に挟むRE系超電導体ユニット同士が、ab面方向にRE系超電導体ユニットの1/8以上1/2以下ずれていることが確認された。
The first layer of YBCO grown on the intermediate layer (CeO 2 layer) starts from the Y layer. That is, it was confirmed that the RE-based superconductor unit of the first layer is laminated from the rare earth element Y. This is believed to strengthen the binding force with CeO 2 .
Furthermore, the oxygen ions on the CuO 2 surface of the RE superconductor unit of the first layer (the oxygen ions on the CuO 2 surface under the long CuO single chain in the figure) are relative to the half unit cell position of the RE superconductor unit. In addition, it was confirmed that the position was deviated in the range of 1/8 to 1/2 in the ab plane direction.
Furthermore, it was confirmed that RE-based superconductor units sandwiching a long CuO single chain in the stacking direction are shifted from one-eighth to one-half of RE-based superconductor units in the ab plane direction.

図5は、本実施例に係る薄膜型超電導素子の酸化物超電導薄膜の積層方向P断面において、特に中間層(CeO層)と超電導層(YBCO層)との界面の図4とは場所が異なる他のABF像を示す図である。 FIG. 5 is a cross section in the stacking direction P of the oxide superconducting thin film of the thin film type superconducting element according to the present embodiment, particularly where FIG. 4 at the interface between the intermediate layer (CeO 2 layer) and the superconductive layer (YBCO layer) is different It is a figure which shows another different ABF image.

図5に示すように、中間層(CeO層)と超電導層(YBCO層)との界面には、白い矢印の部分(下のCeOの格子の数に比べて上のYBCOの格子数が少なくなって、不連続な部分)に刃状転位が確認された。
このように刃状転位があれば、中間層のCeOに対して超電導層のYBCOの格子数が少なくなり、中間層と超電導層の格子不整合が緩和される。これにより、熱収縮によるクラックが入りにくい構造となり、厚膜化が可能となる。
As shown in FIG. 5, at the interface between the intermediate layer (CeO 2 layer) and the superconducting layer (YBCO layer), the number of white arrows (the number of upper YBCO lattices compared to the number of lower CeO 2 lattices) Edge dislocations were confirmed in the discontinuous part).
If there are edge dislocations in this way, the number of lattices of YBCO in the superconducting layer with respect to CeO 2 in the intermediate layer is reduced, and the lattice mismatch between the intermediate layer and the superconducting layer is alleviated. As a result, a structure in which cracks due to heat shrinkage are difficult to occur is achieved, and a thick film can be formed.

上述した実施例の製造方法のうち、超電導層13及び中間層12の焼成雰囲気(不活性雰囲気)と焼成温度を変えてCuO単鎖の長さを調整することで、表1に示すように、CuO単鎖の長さが異なるRE系超電導体ユニットを含む薄膜型超電導素子を形成した。具体的には、超電導層13(YBCO薄膜)形成時の酸素雰囲気に切り替える前の本焼成の温度と不活性雰囲気中の酸素分圧、および中間層12(CeO)形成時のEB蒸着する際のサファイア基板の加熱温度と酸素分圧を表1に示すように調整した。このとき、比較対象とする格子定数により定まる場合のCuO単鎖の長さは4.3Åとした。 By adjusting the length of the CuO single chain by changing the firing atmosphere (inert atmosphere) and firing temperature of the superconducting layer 13 and the intermediate layer 12 among the manufacturing methods of the above-described examples, as shown in Table 1, Thin film superconducting elements including RE-based superconductor units having different CuO single chain lengths were formed. Specifically, the main baking temperature before switching to the oxygen atmosphere at the time of forming the superconducting layer 13 (YBCO thin film), the oxygen partial pressure in the inert atmosphere, and the EB deposition at the time of forming the intermediate layer 12 (CeO 2 ) The heating temperature and oxygen partial pressure of the sapphire substrate were adjusted as shown in Table 1. At this time, the length of the CuO single chain when determined by the lattice constant to be compared was set to 4.3 mm.

得られた薄膜型超電導素子のCeO層とYBCO層の層間結合力と超電導層の配向性について次のように評価を行った。 Evaluation was made as follows with respect to the interlayer bonding force of the CeO 2 layer and the YBCO layer and the orientation of the superconducting layer of the obtained thin film superconducting element.

・CeO層とYBCO層の層間結合力の評価
CeO層とYBCO層の層間結合力は、マーデルング・エネルギーにより評価を行った。具体的には、TEMから読み取れる原子間距離からCuO面上の原子のマーデルング・エネルギーを求め、CuO鎖側からのエネルギーとREイオン側からのエネルギーを評価した。得られた値のうち、以下の基準によって評価を行った。
◎:REイオン側のエネルギーがCuO鎖側のエネルギーの2倍以上
○:REイオン側のエネルギーがCuO鎖側のエネルギーの1倍から2倍
×:REイオン側のエネルギーがCuO鎖側のエネルギーの1倍以下
Interlayer bonding strength, CeO 2 layer and evaluation CeO 2 layer of the interlayer bonding force of the YBCO layer and the YBCO layer was evaluated by Maderungu energy. Specifically, the Madelung energy of atoms on the CuO 2 surface was determined from the interatomic distance read from the TEM, and the energy from the CuO chain side and the energy from the RE ion side were evaluated. Of the obtained values, evaluation was performed according to the following criteria.
A: The energy on the RE ion side is more than twice the energy on the CuO chain side. ○: The energy on the RE ion side is 1 to 2 times the energy on the CuO chain side. X: The energy on the RE ion side is the energy on the CuO chain side. 1x or less

・超電導層の配向性
超電導層の配向性は、XRD測定によって、YBCOの006ピークの半値幅の値を測定し、得られた値のうち、以下の基準によって評価を行った。
◎:0.2度以下
○:0.2度から0.5度
×:0.5度以上
-Orientation of superconducting layer The orientation of the superconducting layer was evaluated by measuring the half-value width of the 006 peak of YBCO by XRD measurement, and among the obtained values, the following criteria were evaluated.
◎: 0.2 degrees or less ○: 0.2 degrees to 0.5 degrees ×: 0.5 degrees or more

・超電導層の性能
超電導層の性能は、臨界電流密度によって測定を行い、以下の基準によって評価を行った。
◎:3MA/cm以上
○:2MA/cm超〜3MA/cm未満
×:2MA/cm以下
-Performance of superconducting layer The performance of the superconducting layer was measured by the critical current density and evaluated according to the following criteria.
◎: 3MA / cm 2 or more ○: 2MA / cm 2 ultra ~3MA / cm 2 less than ×: 2MA / cm 2 or less

表1から判るように、長いCuO単鎖の積層方向Pの長さが、RE系超電導体ユニットの格子定数により定まるCuO単鎖の長さの1.2倍未満だと、CeO層とYBCO層の層間結合力が強く、超電導層の性能が低いことが分かった。また、長いCuO単鎖の積層方向Pの長さが、RE系超電導体ユニットの格子定数により定まるCuO単鎖の長さの2倍超だと、超電導層の配向性が低いことが分かった。
一方で、長いCuO単鎖の積層方向Pの長さが、RE系超電導体ユニットの格子定数により定まるCuO単鎖の長さの1.2倍以上2倍以下だと、CeO層とYBCO層の層間結合力が弱く、且つ、超電導層の配向性が高いため、超電導層の性能が高いことが分かった。
また、長いCuO単鎖の積層方向Pの長さが、RE系超電導体ユニットの格子定数により定まるCuO単鎖の長さの1.2倍以上1.3倍以下だと、超電導層の性能がより高くなることが分かった。
As can be seen from Table 1, when the length in the stacking direction P of the long CuO single chain is less than 1.2 times the length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit, the CeO 2 layer and the YBCO It was found that the interlayer bonding strength of the layers was strong and the performance of the superconducting layer was low. It was also found that the orientation of the superconducting layer was low when the length of the long CuO single chain in the stacking direction P was more than twice the length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit.
On the other hand, if the length of the long CuO single chain in the stacking direction P is 1.2 to 2 times the length of the CuO single chain determined by the lattice constant of the RE superconductor unit, the CeO 2 layer and the YBCO layer It was found that the performance of the superconducting layer was high because of its weak interlaminar bonding strength and high orientation of the superconducting layer.
Also, if the length of the long CuO single chain in the stacking direction P is 1.2 to 1.3 times the length of the CuO single chain determined by the lattice constant of the RE-based superconductor unit, the performance of the superconducting layer will be It turned out to be higher.

1 酸化物超電導薄膜
11 基材
12 中間層
13 超電導層
20 RE系超電導体
22 希土類元素
24 CuO
26 CuO単鎖(CuO鎖)
28 ハーフユニットセル位置
30 RE系超電導体ユニット
32 ab面方向
P 積層方向
DESCRIPTION OF SYMBOLS 1 Oxide superconducting thin film 11 Base material 12 Intermediate layer 13 Superconducting layer 20 RE system superconductor 22 Rare earth element 24 CuO 2 face 26 CuO single chain (CuO chain)
28 Half unit cell position 30 RE-based superconductor unit 32 ab plane direction P stacking direction

Claims (6)

基材と、
前記基材上に形成され、希土類元素とCuO鎖とCuO面とを含んで構成されたRE系超電導体ユニットを複数含有する超電導層と、
複数ある前記CuO鎖のうち、前記超電導層と前記超電導層の前記基材側に隣接する層との界面周囲の前記RE系超電導体ユニット中に存在し、前記RE系超電導体ユニットの格子定数により定まるCuO鎖の長さよりも1.2倍以上2倍以下積層方向に長いCuO鎖と、
前記長いCuO鎖に対して積層方向に隣接して存在する刃状転位と、
を備える酸化物超電導薄膜。
A substrate;
A superconducting layer containing a plurality of RE-based superconductor units formed on the base material and including a rare earth element, a CuO chain, and a CuO 2 surface;
Among the plurality of CuO chains, they exist in the RE-based superconductor unit around the interface between the superconducting layer and the layer adjacent to the substrate side of the superconducting layer, and depend on the lattice constant of the RE-based superconductor unit. A CuO chain that is 1.2 to 2 times longer than the determined CuO chain length,
Edge dislocations present adjacent to the long CuO chain in the stacking direction;
An oxide superconducting thin film.
前記基材と前記超電導層の間に、前記希土類元素の価数を取り得る他の希土類元素を含有する中間層を有する、
請求項1に記載の酸化物超電導薄膜。
Between the base material and the superconducting layer, having an intermediate layer containing another rare earth element capable of taking the valence of the rare earth element,
The oxide superconducting thin film according to claim 1.
前記長いCuO鎖は、前記超電導層と前記超電導層の前記基材側に隣接する層の界面から1層目又は2層目の前記RE系超電導体ユニット中に存在する、
請求項1又は請求項2に記載の酸化物超電導薄膜。
The long CuO chain is present in the RE-based superconductor unit of the first layer or the second layer from the interface between the superconducting layer and the layer adjacent to the substrate side of the superconducting layer.
The oxide superconducting thin film according to claim 1 or 2.
前記1層目のRE系超電導体ユニットは、前記希土類元素から積層されている、
請求項3に記載の酸化物超電導薄膜。
The first RE superconductor unit is laminated from the rare earth element.
The oxide superconducting thin film according to claim 3.
前記長いCuO鎖を積層方向に挟む前記RE系超電導体ユニット同士が、ab面方向に前記RE系超電導体ユニットの1/8以上1/2以下ずれている、
請求項2〜請求項4の何れか1項に記載の酸化物超電導薄膜。
The RE-based superconductor units sandwiching the long CuO chain in the stacking direction are displaced from each other by 1/8 to 1/2 of the RE-based superconductor unit in the ab plane direction.
The oxide superconducting thin film according to any one of claims 2 to 4.
前記中間層の少なくとも前記超電導層側の層は、CeO又はREMnOから構成される、
請求項2〜請求項5の何れか1項に記載の酸化物超電導薄膜。
At least the layer on the superconducting layer side of the intermediate layer is made of CeO 2 or REMnO 3 .
The oxide superconducting thin film according to any one of claims 2 to 5.
JP2012260224A 2012-05-23 2012-11-28 Oxide superconducting thin film Pending JP2014003270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260224A JP2014003270A (en) 2012-05-23 2012-11-28 Oxide superconducting thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012117913 2012-05-23
JP2012117913A JP2013008958A (en) 2011-05-23 2012-05-23 Oxide superconducting thin film
JP2012260224A JP2014003270A (en) 2012-05-23 2012-11-28 Oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JP2014003270A true JP2014003270A (en) 2014-01-09

Family

ID=50064805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260224A Pending JP2014003270A (en) 2012-05-23 2012-11-28 Oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2014003270A (en)

Similar Documents

Publication Publication Date Title
JP6422342B2 (en) Oxide superconducting thin film
EP2562769A1 (en) Oxide superconductor and production method for same
JP5757587B2 (en) Iron-based superconducting material, and iron-based superconducting layer comprising the same, iron-based superconducting tape wire, iron-based superconducting wire
KR101404531B1 (en) Oxide superconducting conductor and production method therefor
WO2013002372A1 (en) Re-123 superconducting wire and method for manufacturing same
JP5939648B2 (en) Oxide superconducting thin film, superconducting fault current limiter, and oxide superconducting thin film manufacturing method
WO2012161233A1 (en) Oxide superconducting thin film
JP6090794B2 (en) Oxide superconducting thin film and superconducting fault current limiter
JP2014003270A (en) Oxide superconducting thin film
JP2013008958A (en) Oxide superconducting thin film
US20130137580A1 (en) Substrate for superconducting thin film, superconducting thin film, and method of producing superconducting thin film
EP2940698A1 (en) Re-123 superconducting wire and manufacturing method therefor
JP6707164B1 (en) Superconducting wire connection structure and superconducting wire
US8921276B2 (en) Substrate for superconducting wire rod, superconducting wire rod, and method for producing superconducting wire rod
JP2013006759A (en) Oxide superconducting thin film
EP3176793A1 (en) Oxide superconductor, superconducting wire, and manufacturing method therefor
JP5889094B2 (en) Superconducting wire and method of manufacturing superconducting wire
JP5715938B2 (en) Reproduction target production method, superconducting wire production method
JP2013037838A (en) Oxide superconductive wire material and manufacturing method therefor