JP2014002077A - Position detector using reflective photosensor - Google Patents

Position detector using reflective photosensor Download PDF

Info

Publication number
JP2014002077A
JP2014002077A JP2012138287A JP2012138287A JP2014002077A JP 2014002077 A JP2014002077 A JP 2014002077A JP 2012138287 A JP2012138287 A JP 2012138287A JP 2012138287 A JP2012138287 A JP 2012138287A JP 2014002077 A JP2014002077 A JP 2014002077A
Authority
JP
Japan
Prior art keywords
light
light receiving
outputs
reflective
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012138287A
Other languages
Japanese (ja)
Other versions
JP6130628B2 (en
Inventor
Fumiaki Ono
文昭 大野
Kazuto Fukui
和人 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2012138287A priority Critical patent/JP6130628B2/en
Publication of JP2014002077A publication Critical patent/JP2014002077A/en
Application granted granted Critical
Publication of JP6130628B2 publication Critical patent/JP6130628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve detection of a specific position like an origin position with a simple configuration at a low cost.SOLUTION: At, for example, each of both end parts of a reflecting plate 10 having reflecting surfaces sa and non-reflecting surfaces sb alternately arranged in a movement direction of a moving object, a wide reflecting surface Twider than the reflecting surface (or the non-reflecting surface) in the movement direction is provided as a peculiar pattern where an alternation pattern is peculiarly varied. A photodetector 14 of a reflective photosensor 12 is provided with three light receiving parts 14a to 14c having light receiving areas different in a movement direction of the reflecting plate 10, so that outputs signals A to C different in phase difference can be obtained from the three light receiving parts 14a to 14c. A movement position of the reflecting plate 10 is detected by outputs A and B having a 90° phase difference, and a midpoint potential is calculated from outputs A and C having a 180° phase difference, and an end position of the reflecting plate 10 (for example, a start point and an end point of a lens barrel) is detected by the wide reflecting surfaces T.

Description

本発明は反射型フォトセンサを用いた位置検出装置、特にデジタルスチールカメラ、レンズ交換型カメラ、カムコーダ、監視カメラ等の装置内の可動体の位置や移動量の検出を行うための装置に関する。   The present invention relates to a position detection apparatus using a reflective photosensor, and more particularly to an apparatus for detecting the position and amount of movement of a movable body in an apparatus such as a digital still camera, a lens interchangeable camera, a camcorder, and a surveillance camera.

従来から、例えばデジタルスチールカメラ、レンズ交換型カメラ、カムコーダ、監視カメラ等では、各種のアクチュエータを使用してレンズを駆動しており、この可動レンズ等のポジションセンシングを行うために位置検出装置(センサ)が用いられる。   Conventionally, for example, in digital still cameras, interchangeable lens cameras, camcorders, surveillance cameras, etc., lenses are driven using various actuators, and position detection devices (sensors) are used to perform position sensing of these movable lenses. ) Is used.

例えば、フォーカスやズームのための可動レンズの位置及び移動量の検出装置としては、ステッピングモータ方式のようにパルス発生器を用いるタイプや、ピエゾモータ方式において光センサ或いは磁気センサを用いてアナログ的に変化量を検出するタイプがあり、前者の例としては特開平04−9712号公報(文献1)等が挙げられ、後者の例として特開平05−45179号公報(文献2)、特開2002−357762号公報(文献3)、特開2009−38321(文献6)等が挙げられる。   For example, as a detection device for the position and amount of movement of a movable lens for focusing and zooming, a type using a pulse generator such as a stepping motor method, or an analog change using an optical sensor or a magnetic sensor in a piezo motor method There is a type that detects the amount. Examples of the former include Japanese Patent Laid-Open No. 04-9712 (Reference 1), and examples of the latter include Japanese Patent Laid-Open No. 05-45179 (Reference 2) and Japanese Patent Laid-Open No. 2002-357762. No. (Reference 3), Japanese Unexamined Patent Application Publication No. 2009-38321 (Reference 6), and the like.

例えば、デジタルスチールカメラ等では、これまでステッピングモータ方式が主流であったが、動画撮影時の音声ノイズの発生回避やオートフォーカスの高速化等を重視するため、近年ではピエゾモータ方式やVCM(ボイスコイルモータ)方式が利用されるようになっている。このような方式で要求される位置検出の範囲は、アプリケーションの仕様により異なるが、デジタルスチールカメラのハイエンドモデル、一眼レフカメラ、カムコーダや監視カメラ等では、一般に、10mm以上の長距離検出が必要とされる。   For example, in digital still cameras, etc., the stepping motor method has been the mainstream until now, but in recent years, in order to emphasize the avoidance of audio noise during movie shooting and the speeding up of autofocus, etc., in recent years, the piezo motor method and VCM (voice coil) The motor) method is used. The range of position detection required by such a method varies depending on application specifications, but high-end models of digital still cameras, single-lens reflex cameras, camcorders, surveillance cameras, etc. generally require long distance detection of 10 mm or more. Is done.

そして、上記のピエゾモータ方式やVCM方式のカメラ等での移動物(可動体)の位置検出には、下記特許文献4に示されるように、一般に磁気センサが使用されている。   In order to detect the position of a moving object (movable body) with the above-described piezo motor type or VCM type camera, a magnetic sensor is generally used as shown in Patent Document 4 below.

図9には、従来のデジタルスチールカメラ等の位置検出の構成が示されており、このカメラ等では、図示のように、レンズ1を保持するレンズ筒(鏡胴)2が本体3に対し前後に進退自在に配置される。そして、上記レンズ筒2の側面にマグネット(磁気発生部材)4が取り付けられると共に、上記本体3側に、マグネット4の磁界を感知する磁気センサ(MR素子又はホール素子)5が配置されており、この磁気センサ5によってマグネット4からの磁界の変化を検出・演算することで、移動するレンズ筒2(マグネット4)の位置が検出される。   FIG. 9 shows a configuration for position detection of a conventional digital still camera or the like. In this camera or the like, a lens barrel (lens barrel) 2 that holds a lens 1 is front and rear with respect to a main body 3 as shown in the figure. It is arranged to move forward and backward. A magnet (magnetic generating member) 4 is attached to the side surface of the lens tube 2 and a magnetic sensor (MR element or Hall element) 5 for detecting the magnetic field of the magnet 4 is disposed on the main body 3 side. By detecting and calculating a change in the magnetic field from the magnet 4 by the magnetic sensor 5, the position of the moving lens cylinder 2 (magnet 4) is detected.

特開平04−9712号公報Japanese Patent Laid-Open No. 04-9712 特開平05−45179号公報JP 05-45179 A 特開2002−357762号公報JP 2002-357762 A 特開2006−292396号公報JP 2006-292396 A 特開2006−173306号公報JP 2006-173306 A 特開2009−38321号公報JP 2009-38321 A

ところで、上記デジタルスチールカメラ等のレンズ位置の検出において、移動物の位置を正確に把握し利用するためには、原点(基準)位置を正確に把握することが重要であるが、図9の磁気センサを用いた位置検出では、原点位置を把握することはできない。そこで、上記原点位置、この例では、レンズ可動域の両端位置を検出するため、図9に示されるように、本体3側におけるレンズ筒2の可動域の基部に反射型フォトセンサ6a、先端部に同様の反射型フォトセンサ6bを配置している。これら反射型フォトセンサ6a,6bは、レンズ筒2の後端位置を検知することができ、フォトセンサ6bによれば、図9(B)の状態でレンズ筒2の最大繰出し位置(前進端)が検出され、フォトセンサ6aによれば、図9(C)の状態でレンズ筒2の原点(基準)位置(収納端)が検出される。なお、上記の反射型フォトセンサとしては、特開2006−173306号公報(文献5)、特開2009−38321号公報(文献6)に示されるものがある。   By the way, in detecting the lens position of the digital still camera or the like, in order to accurately grasp and use the position of the moving object, it is important to accurately grasp the origin (reference) position. In position detection using a sensor, the origin position cannot be grasped. Therefore, in order to detect the origin position, in this example, both end positions of the lens movable range, as shown in FIG. 9, the reflection type photosensor 6a and the tip end portion are located at the base of the movable range of the lens tube 2 on the main body 3 side. A similar reflection type photosensor 6b is disposed. These reflection type photosensors 6a and 6b can detect the rear end position of the lens tube 2. According to the photosensor 6b, the maximum extension position (advance end) of the lens tube 2 in the state shown in FIG. 9B. The photo sensor 6a detects the origin (reference) position (storage end) of the lens barrel 2 in the state shown in FIG. 9C. In addition, as said reflection type photo sensor, there exist some which are shown by Unexamined-Japanese-Patent No. 2006-173306 (reference 5) and Unexamined-Japanese-Patent No. 2009-38321 (reference 6).

しかしながら、位置検出のためのマグネット4及び磁気センサ5に加えて、原点位置等の特定位置を検出するために、上記フォトセンサ6a,6bを配置するのは、位置検出の構成が複雑になり、コスト高になるという問題がある。また、磁気センサを使用する場合は、磁場検知のため、信号の直線性の改善が難しく、磁気かぶり等の影響で誤動作が生じる等の問題もある。   However, in order to detect a specific position such as the origin position in addition to the magnet 4 and the magnetic sensor 5 for position detection, the arrangement of the position detection becomes complicated because the photosensors 6a and 6b are arranged. There is a problem of high costs. In addition, when using a magnetic sensor, it is difficult to improve the linearity of the signal because of the magnetic field detection, and there is a problem that malfunction occurs due to the influence of magnetic fogging.

本発明は上記問題点に鑑みてなされたものであり、その目的は、原点位置等の特定位置の検出を簡単な構成で低コストにて達成することができる反射型フォトセンサを用いた位置検出装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object thereof is position detection using a reflective photosensor that can achieve detection of a specific position such as an origin position at a low cost with a simple configuration. To provide an apparatus.

上記目的を達成するために、請求項1の発明に係る反射型フォトセンサを用いた位置検出装置は、反射面と非反射面を移動物の移動方向に交互に並べると共に、この交互のパターン(ストライプパターン)に対し特異に変化する特異パターンを持たせた反射部と、この反射部に対し発光/受光する発光素子及び受光素子を有し、この受光素子には上記反射部の移動方向でそれぞれ異なる受光領域を持つ複数の受光部が設けられた反射型フォトセンサと、を備え、上記複数の受光部から位相差の異なる信号を出力し、これらの出力信号から上記移動物の位置を検出すると共に、上記特異パターンにより特定位置を検出することを特徴とする。   In order to achieve the above object, a position detection apparatus using a reflective photosensor according to the first aspect of the invention arranges reflective surfaces and non-reflective surfaces alternately in the moving direction of the moving object, And a light-emitting element and a light-receiving element that emit / receive light to / from the reflection part, and each light-receiving element has a moving direction of the reflection part. A reflection type photosensor provided with a plurality of light receiving portions having different light receiving areas, and outputs signals having different phase differences from the plurality of light receiving portions, and detects the position of the moving object from these output signals. In addition, the specific position is detected by the specific pattern.

請求項2の発明は、上記特異パターンを反射面のみ、又は非反射面のみとし、上記複数の受光部から90度位相差のある2つの信号を出力し、この出力をA,Bとすると、(A−B)/(A+B)及び(A+B)/(A−B)の演算を行うことにより、上記移動物の位置検出を実行し、上記複数の受光部から180度位相差のある2つの信号を出力し、この出力をA,Cとすると、(A+C)/2の演算を行うことにより、中点電位を求め、この中点電位を基準にして予め設定した判定レベル(閾値)を上記受光部の出力が超えるとき又は下回るとき、上記特定位置にあることを検出することを特徴とする。   Invention of Claim 2 makes the said specific pattern only a reflective surface or only a non-reflective surface, outputs two signals with a 90-degree phase difference from said several light-receiving part, and this output is made into A and B, By performing the calculation of (A−B) / (A + B) and (A + B) / (A−B), the position of the moving object is detected, and two signals having a phase difference of 180 degrees from the plurality of light receiving units are detected. When the signal is output and the outputs are A and C, the midpoint potential is obtained by performing the calculation of (A + C) / 2, and the determination level (threshold value) set in advance with reference to the midpoint potential is set to the above. When the output of the light receiving unit exceeds or falls, the presence of the specific position is detected.

上記請求項1の構成によれば、例えばカメラの可動レンズ等の移動物に反射面と非反射面が交互に形成された反射部(板)を取り付け、この反射部からの光反射の状態を、複数の(例えば3つ)の受光部(それぞれ異なる受光領域)で受光することにより、位相差の異なる複数の信号が出力され、これら複数の信号から移動物の位置や移動量を検出することができる。また、上記反射部には、片方の端部、両端部、中央部等に特異パターンが形成されており、この特異パターンからの反射光を受光することで、反射部の特定位置、即ち片方端部(原点)、両端部(エンド点、広角端、望遠端)、中央点等の位置が検出される。   According to the configuration of the first aspect, for example, a reflecting part (plate) in which a reflecting surface and a non-reflecting surface are alternately formed is attached to a moving object such as a movable lens of a camera, and the state of light reflection from the reflecting part is set. By receiving light at a plurality of (for example, three) light receiving portions (each having a different light receiving area), a plurality of signals having different phase differences are output, and the position and amount of movement of the moving object are detected from the plurality of signals. Can do. In addition, the reflection part has a unique pattern formed on one end, both ends, the center, etc., and by receiving the reflected light from this unique pattern, a specific position of the reflection part, that is, one end The position of the part (origin), both ends (end point, wide angle end, telephoto end), center point, etc. are detected.

上記請求項2の構成によれば、例えば3分割した受光素子により3つの信号(出力A〜C)が出力され、90度位相差のある信号出力AとBにより移動位置検出のための演算(リニア値演算)が行われ、180度位相差のある信号出力AとCにより中点(中心)電位が算出される。即ち、中点電位が検出の際に同時に得られる。そして、この中点電位から予め決められた判定レベル(閾値)が設定され、この判定レベルを受光部の出力(値)が超えるとき又は下回るとき、上記特定位置が検出されることになり、温度変化等で出力信号が変動した場合でも、中点電圧を一定に保った状態で移動物の位置や移動量が正確に検出される。   According to the configuration of the second aspect, for example, three signals (outputs A to C) are output by the light receiving element divided into three, and the calculation for detecting the moving position by the signal outputs A and B having a phase difference of 90 degrees ( Linear value calculation) is performed, and the midpoint (center) potential is calculated from the signal outputs A and C having a phase difference of 180 degrees. That is, the midpoint potential is obtained at the same time as the detection. Then, a predetermined determination level (threshold value) is set from this midpoint potential, and when the output (value) of the light receiving unit exceeds or falls below this determination level, the specific position is detected, and the temperature Even when the output signal fluctuates due to a change or the like, the position and amount of movement of the moving object can be accurately detected with the midpoint voltage kept constant.

本発明の位置検出装置によれば、原点等の特定位置の検出を簡単な構成で低コストにて達成することができ、従来の位置検出装置において原点位置等の検出のために追加されるフォトセンサ等が不要になるという利点がある。
また、位置検出の距離を複数に分離したい用途がある場合にも、反射板の任意の場所に特異パターンを設けることで所望の位置の検出が可能である。
According to the position detection device of the present invention, detection of a specific position such as the origin can be achieved with a simple configuration at low cost, and a photo added for detection of the origin position or the like in the conventional position detection device. There is an advantage that a sensor or the like becomes unnecessary.
Further, even when there is an application where it is desired to separate the position detection distance into a plurality of positions, it is possible to detect a desired position by providing a specific pattern at an arbitrary location on the reflector.

しかも、従来の磁気センサを用いる場合の不都合が解消される。即ち、磁気かぶり等の影響を受けることもなく、検出出力をオペアンプによって増幅する必要もなく、マグネットにおけるS極、N極の着磁のバラツキや磁場強度の不均一によって検出誤差が生じたり、マグネットの酸化により性能が劣化したりすることも防止されるという利点もある。   Moreover, the disadvantages of using a conventional magnetic sensor are eliminated. That is, it is not affected by magnetic fog, etc., and it is not necessary to amplify the detection output by an operational amplifier, and a detection error occurs due to variations in magnetization of the S pole and N pole in the magnet and uneven magnetic field strength, There is also an advantage that the performance is prevented from being deteriorated due to the oxidation.

上記請求項2の構成によれば、中点電位を一定に保つことができるので、フォトセンサが温度依存性を持つ場合や、温度変化によりフォトセンサからの出力信号に変動が生じるような場合で、中点電圧レベルが変化しても、演算式から得られる結果(リニア特性)に影響を与えなくなり、長距離位置検出を良好に行うことができる。また、リニア特性を得るための中点電位を、検出の際に同時に取り出すことができるという効果もある。   According to the configuration of the second aspect, since the midpoint potential can be kept constant, the photosensor has temperature dependence or the output signal from the photosensor varies due to temperature change. Even if the midpoint voltage level changes, the result (linear characteristic) obtained from the arithmetic expression is not affected, and long-range position detection can be performed satisfactorily. In addition, there is also an effect that the midpoint potential for obtaining the linear characteristics can be taken out at the same time during detection.

本発明の第1実施例に係る反射型フォトセンサを用いた位置検出装置の構成を示し、図(A)は主に反射部(反射板)の第1例の構成図、図(B)は反射型フォトセンサを含む検出演算回路の全体図である。The structure of the position detection apparatus using the reflective photosensor which concerns on 1st Example of this invention is shown, A figure (A) is a block diagram of the 1st example of a reflection part (reflector) mainly, A figure (B) is It is a general view of a detection arithmetic circuit including a reflective photosensor. 第1実施例の受光素子からの出力波形を示す図である。It is a figure which shows the output waveform from the light receiving element of 1st Example. 第1実施例の位置検出装置をカメラ用レンズモジュールに適用したときの構成を示し、図(A)は通常の動作時の図、図(B)はレンズ筒を先端まで移動させた時の図、図(C)はレンズ筒を後端まで移動させたときの図、図(D)は図(A)のD部分の検出部の拡大図である。1 shows a configuration when the position detection device of the first embodiment is applied to a lens module for a camera, where FIG. (A) is a diagram during normal operation, and FIG. (B) is a diagram when the lens barrel is moved to the tip. FIG. 4C is a view when the lens barrel is moved to the rear end, and FIG. 4D is an enlarged view of the detection portion of the D portion in FIG. 実施例における反射板の第2例の構成[図(A)]と、そのときの受光素子からの出力波形[図(B)]を示す図である。It is a figure which shows the structure [Figure (A)] of the 2nd example of the reflecting plate in an Example, and the output waveform [Figure (B)] from the light receiving element at that time. 実施例における反射板の第3例の構成[図(A)]と、そのときの受光素子からの出力波形[図(B)]を示す図である。It is a figure which shows the structure [figure (A)] of the 3rd example of the reflecting plate in an Example, and the output waveform [figure (B)] from the light receiving element at that time. 第2実施例の位置検出装置(検出演算回路)の構成を示す図である。It is a figure which shows the structure of the position detection apparatus (detection arithmetic circuit) of 2nd Example. 第1,第2実施例におけるセンサ位置(移動位置)の演算値を示す波形図である。It is a wave form diagram which shows the calculated value of the sensor position (movement position) in 1st, 2nd Example. 第1,第2実施例において算出される中点電位と判定レベルを示す図である。It is a figure which shows the midpoint electric potential and determination level which are calculated in the 1st, 2nd Example. 従来の磁気センサを用いた位置検出装置をカメラ用レンズモジュールに適用したときの構成を示す図である。It is a figure which shows a structure when the position detection apparatus using the conventional magnetic sensor is applied to the lens module for cameras.

図1乃至図3には、本発明の第1実施例に係る反射型フォトセンサを用いた位置検出装置の構成(デジタルスチールカメラのレンズ駆動部等に適用したもの)が示されており、図1(A)に示されるように、反射板(光学反射部)10と、この反射板10に対し発光し、その反射光を受光する反射型フォトセンサ12が設けられる。上記反射板10は、例えば数百μm程度の極細短冊形状の反射面(ミラー面)saと非反射面sbが交互に(縦縞状に)並べられたストライプパターンが形成されたものとされる。そして、実施例では、この反射板10の両端部に、特異パターンとして、反射面saの幅よりも広い幅の幅広反射面Tsaを設けており、この幅広反射面Tsaの存在によって、反射板10、即ち移動物(可動体)の端部位置(エンド点)が検出される。なお、上記非反射面sbは、スリット空間で構成してもよい。 FIGS. 1 to 3 show the configuration of a position detection apparatus using a reflective photosensor according to a first embodiment of the present invention (applied to a lens driving unit of a digital still camera). As shown in FIG. 1A, a reflecting plate (optical reflecting portion) 10 and a reflective photosensor 12 that emits light to the reflecting plate 10 and receives the reflected light are provided. The reflection plate 10 is formed with a stripe pattern in which, for example, a reflective surface (mirror surface) sa and a non-reflective surface sb having an extremely thin strip shape of about several hundred μm are arranged alternately (in a vertical stripe shape). In the embodiment, a wide reflection surface T sa having a width wider than the width of the reflection surface sa is provided as a unique pattern at both ends of the reflection plate 10, and the reflection due to the presence of the wide reflection surface T sa is reflected. The end position (end point) of the plate 10, that is, the moving object (movable body) is detected. Note that the non-reflective surface sb may be formed of a slit space.

図1(B)に示されるように、反射型フォトセンサ12は、発光素子13と3つの受光部14a,14b,14cを持つ受光素子14を備えており、このフォトセンサ12の発光/受光面側に、この発光/受光面に平行でかつ発光素子13と受光素子14の配列方向(図の縦方向)に略垂直な方向100に移動するように、上記反射板10が配置される。この反射板10は、レンズ筒等の移動物(可動体)と一体に移動するように取り付けられる。即ち、上記受光素子14の受光部14a〜14cは、受光領域を移動方向100においてそれぞれ異なる領域となるように分割したものであり、上記反射板10の反射面sa、非反射面sbの各幅と、3つの受光部14a〜14cの大きさ、形状や配置を調整することで、フォトセンサ12からの3つの出力が所望の位相ずれるように設計される。実施例では、例えば受光部14aからの出力Aを基準(0度)とすると、受光部14bからの出力Bが90度、受光部14cからの出力Cが180度の位相角が進む関係となるように設計している。   As shown in FIG. 1B, the reflective photosensor 12 includes a light-emitting element 13 and a light-receiving element 14 having three light-receiving portions 14a, 14b, and 14c. The reflector 10 is arranged on the side so as to move in a direction 100 that is parallel to the light emitting / receiving surface and substantially perpendicular to the arrangement direction of the light emitting elements 13 and the light receiving elements 14 (vertical direction in the figure). The reflecting plate 10 is attached so as to move integrally with a moving object (movable body) such as a lens tube. That is, the light receiving portions 14a to 14c of the light receiving element 14 are obtained by dividing the light receiving area so as to be different areas in the moving direction 100, and the widths of the reflecting surface sa and the non-reflecting surface sb of the reflecting plate 10. By adjusting the size, shape, and arrangement of the three light receiving portions 14a to 14c, the three outputs from the photosensor 12 are designed to be shifted in a desired phase. In the embodiment, for example, assuming that the output A from the light receiving unit 14a is a reference (0 degree), the output B from the light receiving unit 14b is 90 degrees, and the output C from the light receiving unit 14c is advanced by 180 degrees. Designed to be

また、上記受光素子14が接続される検出制御回路(LSI)15には、上記3つの受光部14a〜14cからの出力を受けるバッファアンプ16a〜16c、このアンプ16a〜16cの出力をアナログデジタル変換するA/D変換器17、このA/D変換器17の出力に基づきリニアな検出のため演算等を行うことで移動位置を求めるプロセッサ(演算回路)18、このプロセッサ18から出力されたオフセット補正信号や制御用信号をデジタルアナログ変換するD/A変換器19、アクチュエータドライバ20が設けられる。このアクチュエータドライバ20は、カメラ等において、レンズ筒を駆動するためのアクチュエータ21に対し駆動信号を出力する。なお、上記D/A変換器19は、出力A〜Cの振幅や基準レベルを補正するためのオフセット補正信号をバッファアンプ16a〜16cへ供給する。   A detection control circuit (LSI) 15 to which the light receiving element 14 is connected has buffer amplifiers 16a to 16c that receive outputs from the three light receiving units 14a to 14c, and analog / digital conversion of outputs from the amplifiers 16a to 16c. A / D converter 17 that performs, a processor (arithmetic circuit) 18 that obtains a moving position by performing calculations for linear detection based on the output of the A / D converter 17, and offset correction output from the processor 18 A D / A converter 19 and an actuator driver 20 are provided for digital-analog conversion of signals and control signals. The actuator driver 20 outputs a drive signal to an actuator 21 for driving a lens cylinder in a camera or the like. The D / A converter 19 supplies an offset correction signal for correcting the amplitudes and reference levels of the outputs A to C to the buffer amplifiers 16a to 16c.

図3には、デジタルスチールカメラ用レンズモジュール等に適用する場合の構成が示されており、実施例では、レンズ1を保持するレンズ筒2の側に反射板10が設けられ、レンズ筒2が前後移動可能となる本体3の側に反射型フォトセンサ12が取り付けられる。   FIG. 3 shows a configuration applied to a lens module for a digital still camera or the like. In the embodiment, a reflector 10 is provided on the side of the lens tube 2 that holds the lens 1, and the lens tube 2 is A reflective photosensor 12 is attached to the side of the main body 3 that can move back and forth.

第1実施例は以上の構成からなり、実施例では、反射型フォトセンサ12の発光素子13からの発光に基づき、反射面saから周期的に光が反射されることで、受光素子14を3分割した受光部14a〜14cにて出力A,B,Cが得られる。この出力A,B,Cは、図2に示されるように、正弦波(sin)又は余弦波(cos)状の信号で、出力Aに対し出力Bは位相角が90度ずれ、出力Bに対し出力Cは位相角が90度ずれたものとなる。   The first embodiment has the above-described configuration. In the embodiment, the light receiving element 14 is changed to 3 by periodically reflecting light from the reflecting surface sa based on the light emission from the light emitting element 13 of the reflective photosensor 12. Outputs A, B, and C are obtained by the divided light receiving portions 14a to 14c. As shown in FIG. 2, the outputs A, B, and C are sine wave (sin) or cosine wave (cos) signals, and the output B is 90 degrees out of phase with respect to the output A. On the other hand, the output C has a phase angle shifted by 90 degrees.

上記出力A〜Cの信号は、バッファアンプ16a〜16c、A/D変換器17を介してプロセッサ18へ供給され、このプロセッサ18にてエンド点(原点等)と移動位置の検出、演算、判定が行われる。例えば、図2に示されるように、電位判定レベル(閾値)をEaに設定した場合は、出力AとC(BとC等でもよい)の両方がこのEaレベルを超えたとき[ハイ(High)レベルになったとき]、反射板10の両端のエンド点、即ち移動動作の始点と終点が判定される。図3の構成の場合、図3(B)に示されるように、レンズ筒2が最大まで繰り出された状態の位置(例えば望遠端)や図3(C)に示されるように、レンズ筒2が原点(基準)位置まで戻された状態の位置(例えば広角端)が検出される。   The signals of the outputs A to C are supplied to the processor 18 via the buffer amplifiers 16a to 16c and the A / D converter 17, and the processor 18 detects, calculates, and determines the end point (origin, etc.) and the moving position. Is done. For example, as shown in FIG. 2, when the potential determination level (threshold value) is set to Ea, when both the outputs A and C (B and C may be used) exceed this Ea level [High When the level is reached], the end points at both ends of the reflecting plate 10, that is, the start point and end point of the moving operation are determined. In the case of the configuration of FIG. 3, as shown in FIG. 3B, the lens barrel 2 is extended to the maximum position (for example, the telephoto end) or as shown in FIG. A position (for example, the wide-angle end) in a state where is returned to the origin (reference) position is detected.

また、詳細は後述するが、出力AとBの信号に基づいて、プロセッサ18では、位置検出のための演算等が行われ、これによって、反射板10及びレンズ筒2の移動位置が検出される。そして、プロセッサ18は、検出されたエンド点信号及び移動位置信号に基づき、レンズ筒2を駆動のための制御信号をアクチュエータドライバ20へ供給することで、アクチュエータ21によるレンズ筒2の駆動が実行される。   Although details will be described later, on the basis of the signals of outputs A and B, the processor 18 performs calculations for position detection and the like, thereby detecting the movement positions of the reflecting plate 10 and the lens barrel 2. . Then, the processor 18 supplies a control signal for driving the lens cylinder 2 to the actuator driver 20 based on the detected end point signal and movement position signal, so that the actuator 21 drives the lens cylinder 2. The

図4には、反射板の第2例を用いたときの構成及び出力波形が示されており、図4(A)に示されるように、この例では、反射面saと非反射面sbの配置位置を図1の場合とは逆にし、反射板24の両端部に、特異パターンとして、非反射面sbの幅よりも広い幅の幅広非反射面Tsbを設けたものである。 FIG. 4 shows the configuration and output waveform when the second example of the reflector is used. As shown in FIG. 4A, in this example, the reflection surface sa and the non-reflection surface sb are shown. The arrangement positions are opposite to those in FIG. 1, and a wide non-reflective surface T sb having a width wider than the width of the non-reflective surface sb is provided as a unique pattern at both ends of the reflector 24.

この第2例の反射板24によれば、反射型フォトセンサ12の受光部14a〜14cからの出力A〜Cは、図4(B)に示されるようになり、判定レベルをEbに設定した場合、例えばA,B,Cの中のいずれか2つの信号がこのEbレベルを下回ったとき[ロウ(Low)レベルになったとき]、反射板24の両端のエンド点(移動動作の始点と終点)が判定される。   According to the reflector 24 of the second example, the outputs A to C from the light receiving portions 14a to 14c of the reflective photosensor 12 are as shown in FIG. 4B, and the determination level is set to Eb. In this case, for example, when any two signals of A, B, and C fall below this Eb level [when it becomes a low level], the end points at both ends of the reflector 24 (the start point of the movement operation) End point) is determined.

図5には、反射板の第3例を用いたときの構成及び出力波形が示されており、図5(A)に示されるように、この例では、特異パターンとして、反射板26の中央部に反射面saの幅よりも広い幅の幅広反射面Csaを設けたものである。なお、上記反射板26の反射面saと非反射面sbを逆にし、中央部に非反射面sbの幅よりも広い幅の幅広非反射面を設けてもよい。 FIG. 5 shows a configuration and an output waveform when the third example of the reflector is used. As shown in FIG. 5A, in this example, the center of the reflector 26 is used as a unique pattern. A wide reflection surface C sa having a width wider than that of the reflection surface sa is provided in the part. The reflecting surface sa and the non-reflecting surface sb of the reflecting plate 26 may be reversed, and a wide non-reflecting surface having a width wider than the width of the non-reflecting surface sb may be provided at the center.

この第3例の反射板26によれば、反射型フォトセンサ12の受光部14a〜14cからの出力A〜Cは、図5(B)に示されるようになり、中央部に信号レベルが最大となる状態の検出領域が現れることになる。この場合は、例えばA,B,Cの中のいずれか2つの信号が判定レベルEcを超えたとき(ハイレベルになったとき)、反射板26の中央点(移動範囲の中央点)が判定される。なお、中央部に幅広非反射面を設けた場合は、中央部に信号レベルが最小となる状態の検出領域が現れる。   According to the reflector 26 of the third example, the outputs A to C from the light receiving portions 14a to 14c of the reflective photosensor 12 are as shown in FIG. 5B, and the signal level is maximum at the center. The detection area of the state that becomes will appear. In this case, for example, when any two signals of A, B, and C exceed the determination level Ec (when the signal becomes high level), the center point of the reflector 26 (the center point of the movement range) is determined. Is done. When a wide non-reflective surface is provided at the center, a detection region in which the signal level is minimum appears at the center.

上記反射板の第3例では、反射板26(或いは移動物)の中央点だけでなく、任意に設定した特定点を検出する場合に用いることができ、また位置検出の距離を複数に分離した場合の分離点を検出する場合、或いは単一の移動物に対し2つの駆動系を接続し、この2つの駆動系の切換え点等を検出する場合等に適用することが可能である。   In the third example of the reflecting plate, not only the center point of the reflecting plate 26 (or moving object) but also a specific point set arbitrarily can be detected, and the position detection distances are separated into a plurality. The present invention can be applied to the case where the separation point is detected or the case where two drive systems are connected to a single moving object and the switching point of the two drive systems is detected.

図6には、第2実施例の位置検出装置の回路構成が示されており、この第2実施例はエンド点を検出する場合(第1例と第2例の反射板)の構成で、その検出速度が図1の構成よりも速くなるようにしたものである。
図6に示されるように、受光部14aからの出力Aを入力するコンパレータ31、受光部14cからの出力Cを入力するコンパレータ32、アンド回路33、エンド点制御回路(又はシャットダウン回路)34を設けると共に、プロセッサ35では、上記コンパレータ31,32の判定(基準)レベル信号をD/A変換器19を介して出力する。
FIG. 6 shows the circuit configuration of the position detection device of the second embodiment. This second embodiment is a configuration for detecting an end point (the reflectors of the first and second examples). The detection speed is made faster than that of the configuration of FIG.
As shown in FIG. 6, a comparator 31 for inputting the output A from the light receiving unit 14a, a comparator 32 for inputting the output C from the light receiving unit 14c, an AND circuit 33, and an end point control circuit (or shutdown circuit) 34 are provided. At the same time, the processor 35 outputs the determination (reference) level signals of the comparators 31 and 32 via the D / A converter 19.

この第2実施例によれば、コンパレータ31と32により出力AとCが判定レベル以上であるか否かが判定され、両方の出力A,Cが判定レベル以上となり、アンド回路33からハイレベルが出力されることで、反射板10,24(レンズ筒2等の移動物)がエンド点にあることが検出される。このエンド点の検出信号は、エンド点制御回路(又はシャットダウン回路)34へ供給され、このエンド点に基づいたレンズ筒2等のアクチュエータ制御等が行われる。また、34をシャットダウン回路とした場合は、このエンド点信号をフェィルセーフのシステムのトリガー信号として用いることができ、これによって、電源制御、異常表示等が行われる。   According to the second embodiment, the comparators 31 and 32 determine whether or not the outputs A and C are equal to or higher than the determination level. Both the outputs A and C are equal to or higher than the determination level. By outputting, it is detected that the reflectors 10 and 24 (moving objects such as the lens barrel 2) are at the end points. This end point detection signal is supplied to an end point control circuit (or shutdown circuit) 34, and actuator control of the lens barrel 2 and the like is performed based on the end point. Further, when 34 is a shutdown circuit, this end point signal can be used as a trigger signal for a fail-safe system, thereby performing power control, abnormality display, and the like.

このような検出処理によれば、図1のようにLSIからなる制御回路によらないので、検出・判定にかかる時間が速くなるという利点がある。なお、この第2実施例の構成は、反射板26を用いて中央点を検出する場合にも適用できる。   According to such a detection process, there is an advantage that the time required for detection / determination is increased because it does not depend on a control circuit composed of an LSI as shown in FIG. The configuration of the second embodiment can also be applied to the case where the center point is detected using the reflection plate 26.

図1及び図6において、プロセッサ18,35では、位置検出のための演算が行われるが、この演算として、2つの受光部14a,14bから出力された90度の位相差のある出力(値)A,Bを用い、図7に示されるように、(A−B)/(A+B)及び(A+B)/(A−B)の演算が行われる。   1 and 6, the processors 18 and 35 perform calculation for position detection. As this calculation, outputs (values) having a phase difference of 90 degrees output from the two light receiving units 14a and 14b. Using A and B, as shown in FIG. 7, (A−B) / (A + B) and (A + B) / (A−B) are calculated.

図7には、第1,第2実施例でのセンサ位置(移動位置)の演算値が示されており、プロセッサ18,35では、(A−B)/(A+B)[=b]及び(A+B)/(A−B)[=a]の演算を行うことで、図7に示されるように、反射板座標に対し上り傾斜部aと下り傾斜部bを繰り返す三角波形が求められる。この演算によって、フォトセンサ12の検出出力の直線性(リニアリティ)を向上させた上で、移動位置の検出が可能となる。   FIG. 7 shows the calculated values of the sensor positions (movement positions) in the first and second embodiments. In the processors 18 and 35, (A−B) / (A + B) [= b] and ( By performing the calculation of (A + B) / (A−B) [= a], as shown in FIG. 7, a triangular waveform is obtained that repeats the upward inclined portion a and the downward inclined portion b with respect to the reflector coordinates. This calculation makes it possible to detect the moving position while improving the linearity of the detection output of the photosensor 12.

上記の演算式によれば、反射型フォトセンサ12の温度特性も完全にキャンセルすることができる。例えば、温度の影響がなく、A=0.4(V)、B=0.1(V)であるとき、上記演算式(A−B)/(A+B)による値は0.6となり、これに対し、温度の影響により1割の変動があったとすると、A=0.44、B=0.11となるが、この場合も、演算値は0.6となり、変動分がキャンセルされる。従って、装置内温度をサーミスタでモニタしフィードバックをかける回路や、特別な温度特性キャンセル回路を設ける必要がない。   According to the above arithmetic expression, the temperature characteristics of the reflective photosensor 12 can be completely canceled. For example, when there is no influence of temperature and A = 0.4 (V) and B = 0.1 (V), the value according to the above equation (A−B) / (A + B) is 0.6. On the other hand, if there is a 10% fluctuation due to the temperature, A = 0.44 and B = 0.11. In this case as well, the calculated value is 0.6, and the fluctuation is cancelled. Therefore, there is no need to provide a circuit for monitoring the internal temperature of the apparatus with a thermistor for feedback and a special temperature characteristic cancel circuit.

また、第1,第2実施例では、180度位相差のある出力(値)AとCに基づき、図8に示されるように、中点電位を(A+C)/2により算出し、中点電位(電圧)を補正するようにしている。即ち、上記の位置検出演算では、受光素子14からの出力信号の中点電位を基準とした演算処理が必要であるが、反射型フォトセンサ12の温度依存性により、中点電位のレベルが変化した場合には、演算結果のリニアリティが崩れてしまう。そこで、実施例では、出力AとCから中点電位を求め、それぞれの中点電位を補正することで、センサ位置及び特定位置の検出が確実に行われる。   In the first and second embodiments, the midpoint potential is calculated by (A + C) / 2 based on the outputs (values) A and C having a phase difference of 180 degrees as shown in FIG. The potential (voltage) is corrected. That is, in the above position detection calculation, calculation processing based on the midpoint potential of the output signal from the light receiving element 14 is required, but the level of the midpoint potential changes due to the temperature dependence of the reflective photosensor 12. In such a case, the linearity of the calculation result is lost. Therefore, in the embodiment, the sensor position and the specific position are reliably detected by obtaining the midpoint potential from the outputs A and C and correcting each midpoint potential.

図8には、第1例の反射板10,第3例の反射板26に対応する中点電位及び判定レベル(閾値)が示されており(出力についてはAのみを表示)、図示されるように、(A+C)/2によって中点電位が算出されると、この中点電位に出力A〜Cの中点(基準点)が一致するように補正されると共に、この算出された中点電位に基づいて判定レベル(中点電位+予め決められた所定電位)Ea,Ecが設定される。そして、反射板10の場合は、判定レベルEaを出力A〜C(この中の少なくとも1つ)が超えたとき、両端のエンド点にあることが判定され、反射板26の場合は、移動範囲の中央点が検出される。なお、第2例の反射板24の場合は、算出された中点電位に基づいて判定レベル(中点電位−予め決められた所定電位)Ebが設定され、この判定レベルEbを下回ったとき、両端のエンド点が検出される。   FIG. 8 shows the midpoint potential and the determination level (threshold) corresponding to the reflector 10 of the first example and the reflector 26 of the third example (only A is displayed for output). Thus, when the midpoint potential is calculated by (A + C) / 2, the midpoint potential of the outputs A to C (reference point) is corrected to match the midpoint potential, and the calculated midpoint Determination levels (midpoint potential + predetermined predetermined potential) Ea, Ec are set based on the potential. In the case of the reflecting plate 10, when the outputs A to C (at least one of them) exceed the determination level Ea, it is determined that the end point is at both ends. In the case of the reflecting plate 26, the moving range is determined. The center point of is detected. In the case of the reflector 24 of the second example, a determination level (middle point potential−predetermined predetermined potential) Eb is set based on the calculated midpoint potential, and when the determination level Eb falls below the determination level Eb, End points at both ends are detected.

本発明は、長距離検出を高分解能で行う位置検出装置等として、例えば高倍率ズームが必要なデジタルスチールカメラ、一眼レフ、カムコーダ、CCTV等の長距離検出用アクチュエータ等に適用することができる。   The present invention can be applied to a long-distance detection actuator such as a digital still camera, a single-lens reflex camera, a camcorder, or a CCTV that requires high-magnification zoom as a position detection device that performs long-distance detection with high resolution.

2…レンズ筒、 6a,6b,12…反射型フォトセンサ、
10,24,26…反射板(反射部)、
13…発光素子、 14…受光素子、
14a〜14c…受光部、 15…検出制御回路(LSI)、
16a〜16c…バッファアンプ、
18,35…プロセッサ、 31,32…コンパレータ、
33…アンド回路、 34…エンド点制御回路、
sa…反射面、 sb…非反射面、
sa,Csa…幅広反射面、 Tsb…幅広非反射面。
2 ... lens tube, 6a, 6b, 12 ... reflection type photo sensor,
10, 24, 26 ... reflector (reflector),
13 ... Light emitting element, 14 ... Light receiving element,
14a to 14c ... light receiving part, 15 ... detection control circuit (LSI),
16a to 16c: buffer amplifier,
18, 35 ... processor, 31, 32 ... comparator,
33 ... AND circuit, 34 ... End point control circuit,
sa ... reflective surface, sb ... non-reflective surface,
T sa , C sa ... Wide reflecting surface, T sb ... Wide non-reflecting surface.

Claims (2)

反射面と非反射面を移動物の移動方向に交互に並べると共に、この交互のパターンに対し特異に変化する特異パターンを持たせた反射部と、
この反射部に対し発光/受光する発光素子及び受光素子を有し、この受光素子には上記反射部の移動方向でそれぞれ異なる受光領域を持つ複数の受光部が設けられた反射型フォトセンサと、を備え、
上記複数の受光部から位相差の異なる信号を出力し、これらの出力信号から上記移動物の位置を検出すると共に、上記特異パターンにより特定位置を検出することを特徴とする反射型フォトセンサを用いた位置検出装置。
The reflective part and the non-reflective surface are alternately arranged in the moving direction of the moving object, and the reflective part having a unique pattern that changes specifically with respect to the alternating pattern,
A reflective photosensor having a light-emitting element and a light-receiving element that emits / receives light with respect to the reflection part, and the light-receiving element includes a plurality of light-receiving parts each having a different light-receiving region in the moving direction of the reflection part; With
A reflection type photosensor that outputs signals having different phase differences from the plurality of light receiving units, detects a position of the moving object from these output signals, and detects a specific position by the specific pattern is used. The position detection device.
上記特異パターンを反射面のみ、又は非反射面のみとし、
上記複数の受光部から90度位相差のある2つの信号を出力し、この出力をA,Bとすると、(A−B)/(A+B)及び(A+B)/(A−B)の演算を行うことにより、上記移動物の位置検出を実行し、
上記複数の受光部から180度位相差のある2つの信号を出力し、この出力をA,Cとすると、(A+C)/2の演算を行うことにより、中点電位を求め、
この中点電位を基準にして予め設定した判定レベルを上記受光部の出力が超えるとき又は下回るとき、上記特定位置にあることを検出することを特徴とする請求項1記載の反射型フォトセンサを用いた位置検出装置。
The unique pattern is only a reflective surface or only a non-reflective surface,
When two signals having a phase difference of 90 degrees are output from the plurality of light receiving units and the outputs are A and B, the calculation of (A−B) / (A + B) and (A + B) / (A−B) is performed. By performing the position detection of the moving object,
Two signals having a phase difference of 180 degrees are output from the plurality of light receiving units, and when these outputs are A and C, a midpoint potential is obtained by performing (A + C) / 2,
2. The reflective photosensor according to claim 1, wherein when the output of the light receiving unit exceeds or falls below a predetermined determination level with reference to the midpoint potential, the reflection photosensor is detected at the specific position. The position detector used.
JP2012138287A 2012-06-20 2012-06-20 Camera lens position detection device using a reflective photosensor Active JP6130628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012138287A JP6130628B2 (en) 2012-06-20 2012-06-20 Camera lens position detection device using a reflective photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138287A JP6130628B2 (en) 2012-06-20 2012-06-20 Camera lens position detection device using a reflective photosensor

Publications (2)

Publication Number Publication Date
JP2014002077A true JP2014002077A (en) 2014-01-09
JP6130628B2 JP6130628B2 (en) 2017-05-17

Family

ID=50035375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138287A Active JP6130628B2 (en) 2012-06-20 2012-06-20 Camera lens position detection device using a reflective photosensor

Country Status (1)

Country Link
JP (1) JP6130628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158595A (en) * 2018-03-13 2019-09-19 新日本無線株式会社 Position detection device and position detection method using reflection type photosensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157523A (en) * 1985-12-28 1987-07-13 Aisin Warner Ltd Optical type rotary encoder
JPH0472517A (en) * 1990-07-13 1992-03-06 Yamaha Corp Optical type rotary encoder
JPH115344A (en) * 1997-03-17 1999-01-12 Hewlett Packard Co <Hp> Device for positioning movable sub-system in printer on home position
JP2001208567A (en) * 1999-12-30 2001-08-03 Osram Opt Semiconductors Gmbh & Co Offene Handels G Optical encoder for quantitative detection of linear motion or rotational motion
JP2006153753A (en) * 2004-11-30 2006-06-15 Olympus Corp Encoder
JP2006292396A (en) * 2005-04-06 2006-10-26 Konica Minolta Opto Inc Position detector and positioning apparatus
JP2007155720A (en) * 2005-12-01 2007-06-21 Agilent Technol Inc Improved interpolation encoder
JP2010256081A (en) * 2009-04-22 2010-11-11 Fujifilm Corp Optical position detecting apparatus and optical apparatus
JP2013036972A (en) * 2011-07-13 2013-02-21 New Japan Radio Co Ltd Position detection device using reflection type photo sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157523A (en) * 1985-12-28 1987-07-13 Aisin Warner Ltd Optical type rotary encoder
JPH0472517A (en) * 1990-07-13 1992-03-06 Yamaha Corp Optical type rotary encoder
JPH115344A (en) * 1997-03-17 1999-01-12 Hewlett Packard Co <Hp> Device for positioning movable sub-system in printer on home position
JP2001208567A (en) * 1999-12-30 2001-08-03 Osram Opt Semiconductors Gmbh & Co Offene Handels G Optical encoder for quantitative detection of linear motion or rotational motion
JP2006153753A (en) * 2004-11-30 2006-06-15 Olympus Corp Encoder
JP2006292396A (en) * 2005-04-06 2006-10-26 Konica Minolta Opto Inc Position detector and positioning apparatus
JP2007155720A (en) * 2005-12-01 2007-06-21 Agilent Technol Inc Improved interpolation encoder
JP2010256081A (en) * 2009-04-22 2010-11-11 Fujifilm Corp Optical position detecting apparatus and optical apparatus
JP2013036972A (en) * 2011-07-13 2013-02-21 New Japan Radio Co Ltd Position detection device using reflection type photo sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158595A (en) * 2018-03-13 2019-09-19 新日本無線株式会社 Position detection device and position detection method using reflection type photosensor
JP7120535B2 (en) 2018-03-13 2022-08-17 日清紡マイクロデバイス株式会社 POSITION DETECTION DEVICE AND POSITION DETECTION METHOD USING REFLECTIVE PHOTOSENSOR

Also Published As

Publication number Publication date
JP6130628B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
TWI485368B (en) Photosensor for position detecting device, position detecting device using same and position detecting method
US20060170418A1 (en) Drive unit provided with position detecting device
US9163959B2 (en) Position detecting device using reflection type photosensor
KR20080003777A (en) Position detector and positioning device
US9264604B2 (en) Optical instrument, and control method for optical instrument
US8687953B2 (en) Photographic optical device, photographic optical system and distance variation amount detecting device
US20050232094A1 (en) Driving device and an optical apparatus
US8682154B2 (en) Position detecting unit, lens unit and camera furnished with same, lens unit manufacturing method, and position detecting method
KR20180060234A (en) Actuator of camera module
US10447176B2 (en) Vibration type actuator control apparatus, apparatus having the same, and storage medium storing vibration type actuator control program
JPH11271831A (en) Interchangeable lens and shake correction camera
JP6130628B2 (en) Camera lens position detection device using a reflective photosensor
JP5864842B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND COMPUTER PROGRAM
JP2015179051A (en) Position detector, lens device including the same, and optical operation device
JP7046596B2 (en) Lens barrel and optical equipment
JP2006227274A (en) Imaging apparatus
US20170242215A1 (en) Lens control device and lens control method
JP4632423B2 (en) POSITION CONTROL DEVICE, POSITION CONTROL METHOD, AND OPTICAL DEVICE
JP2009015023A (en) Driving device and imaging apparatus equipped therewith
JPH0980547A (en) Shake correcting device
JPH11202377A (en) Shake correcting device and lens barrel
JP2015017918A (en) Position detector and control method
JP3199974B2 (en) Distance measuring device
JPH11119276A (en) Lens system
JP3077998B2 (en) Moving speed detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6130628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250