JP2014001300A - Fluophor and method of producing the same - Google Patents

Fluophor and method of producing the same Download PDF

Info

Publication number
JP2014001300A
JP2014001300A JP2012137147A JP2012137147A JP2014001300A JP 2014001300 A JP2014001300 A JP 2014001300A JP 2012137147 A JP2012137147 A JP 2012137147A JP 2012137147 A JP2012137147 A JP 2012137147A JP 2014001300 A JP2014001300 A JP 2014001300A
Authority
JP
Japan
Prior art keywords
aluminum
phosphor
range
boron
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012137147A
Other languages
Japanese (ja)
Other versions
JP5867924B2 (en
Inventor
Kikuo Okuyama
喜久夫 奥山
Takashi Ogi
崇 荻
Masayoshi Yamanaka
雅義 山中
Hideji Iwasaki
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Kuraray Co Ltd
Original Assignee
Hiroshima University NUC
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Kuraray Co Ltd filed Critical Hiroshima University NUC
Priority to JP2012137147A priority Critical patent/JP5867924B2/en
Publication of JP2014001300A publication Critical patent/JP2014001300A/en
Application granted granted Critical
Publication of JP5867924B2 publication Critical patent/JP5867924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a fluophor with high fluorescence quantum yield and high crystallinity by using an inexpensive material with high supply stability and low environmental load, and such a fluophor.SOLUTION: A fluophor contains only boron and aluminium as a metal, a molar ratio between a boron atom and an aluminium atom is in the range of 1:4.5-1:5.5, and a molar ratio between a boron atom and an oxygen atom is in the range of 1:8.0-1:9.5.

Description

本発明は、ホウ素およびアルミニウムのみを金属として含有する蛍光体およびその製造方法に関する。   The present invention relates to a phosphor containing only boron and aluminum as metals and a method for producing the same.

蛍光体は、従来から蛍光管、夜光性表示板等に利用されており、近年ではLEDの色変換剤としての検討も進んでいる。発光色の多様化、発光強度の向上、経済性の向上等の課題解決に向けて、今なおさまざまな蛍光体の研究開発が行われている。   The phosphor has been conventionally used for a fluorescent tube, a nocturnal display panel, and the like, and in recent years, studies as a color conversion agent for LED are also progressing. Various phosphors are still being researched and developed to solve problems such as diversification of emission color, improvement of emission intensity, and improvement of economy.

例えば、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm又はYb等を発光中心元素としたβ型サイアロン蛍光体が知られている(特許文献1参照)。これらの発光中心元素の使用は、原料の供給安定性、生産コスト、廃棄時の環境負荷などの観点から課題を有している。   For example, a β-type sialon phosphor using Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb or the like as an emission center element is known (see Patent Document 1). The use of these luminescent center elements has problems from the viewpoints of supply stability of raw materials, production costs, environmental burden at the time of disposal, and the like.

そこで、供給安定性が高く、安価で、環境負荷の低い原料を用いた蛍光体の研究が進められている。たとえば、ホウ素、炭素、窒素、酸素のみからなる蛍光体(特許文献2および3参照)、酸化アルミニウムを用いた蛍光体(特許文献4参照)などが報告されている。   Therefore, research on phosphors using raw materials with high supply stability, low cost, and low environmental load is underway. For example, a phosphor composed only of boron, carbon, nitrogen, and oxygen (see Patent Documents 2 and 3), a phosphor using aluminum oxide (see Patent Document 4), and the like have been reported.

特開2009−19213号公報JP 2009-19213 A 国際公開第2008/126500号International Publication No. 2008/126500 国際公開第2010/67767号International Publication No. 2010/67767 国際公開第2010/114002号International Publication No. 2010/114002

特許文献2〜4に記載された蛍光体は、原料の供給安定性、生産コスト、廃棄時の環境負荷などの観点からは有利である。しかしながら、特許文献2および3に記載された蛍光体は、結晶性が低いため、長期使用時の安定性が問題となる可能性が高い。また特許文献4に記載された蛍光体は、蛍光量子収率が40%以下と低い。   The phosphors described in Patent Documents 2 to 4 are advantageous from the viewpoints of supply stability of raw materials, production cost, environmental load at the time of disposal, and the like. However, since the phosphors described in Patent Documents 2 and 3 have low crystallinity, there is a high possibility that stability during long-term use becomes a problem. Further, the phosphor described in Patent Document 4 has a low fluorescence quantum yield of 40% or less.

本発明の目的は、このような事情を鑑み、供給安定性が高く、安価で、環境負荷が低い原料から得られ、かつ蛍光量子収率が高く、結晶性の高い蛍光体および該蛍光体の製造方法を提供することにある。   In view of such circumstances, the object of the present invention is to obtain a phosphor having high crystallinity and high fluorescence quantum yield, which is obtained from a raw material having high supply stability, low cost, and low environmental load, and the phosphor. It is to provide a manufacturing method.

本発明によれば、上記した目的は
[1]金属としてホウ素およびアルミニウムのみを含有し、ホウ素原子とアルミニウム原子とのモル比が1:4.5〜1:5.5の範囲であるとともに、ホウ素原子と酸素原子とのモル比が1:8.0〜1:9.5の範囲である蛍光体;
[2]ホウ酸(化学式:B(OH))、無水ホウ酸(化学式:B)、メタホウ酸(化学式:(HBO)および次ホウ酸(化学式:(B(OH))からなる群より選ばれる少なくとも1種のホウ酸類(以下、単に「ホウ酸類」と称する)、アルミニウム含有化合物並びに分散剤の混合物を、酸素存在下で焼成する上記[1]の蛍光体の製造方法;
[3]ホウ酸類に含まれるホウ素原子のモル数に対する、アルミニウム含有化合物に含まれるアルミニウム原子のモル数が5.5倍以下である上記[2]の蛍光体の製造方法;および
[4]分散剤が含窒素高分子化合物である上記[2]または[3]の製造方法;
を提供することにより達成される。
According to the present invention, the above object is [1] containing only boron and aluminum as metals, and the molar ratio of boron atom to aluminum atom is in the range of 1: 4.5 to 1: 5.5, A phosphor having a molar ratio of boron atom to oxygen atom in the range of 1: 8.0 to 1: 9.5;
[2] Boric acid (chemical formula: B (OH) 3 ), boric anhydride (chemical formula: B 2 O 3 ), metaboric acid (chemical formula: (HBO 2 ) n ) and hypoboric acid (chemical formula: (B (OH)) 2 ) The fluorescence of [1] above, wherein a mixture of at least one boric acid selected from the group consisting of 2 ) (hereinafter simply referred to as “boric acid”), an aluminum-containing compound and a dispersant is baked in the presence of oxygen. Body manufacturing method;
[3] The method for producing a phosphor according to the above [2], wherein the number of moles of aluminum atoms contained in the aluminum-containing compound is 5.5 times or less of the number of moles of boron atoms contained in boric acids; and [4] dispersion The production method of the above [2] or [3], wherein the agent is a nitrogen-containing polymer compound;
Is achieved by providing

本発明によれば、供給安定性が高く、安価で、環境負荷が低い原料から、蛍光量子収率が高く、結晶性の高い蛍光体を提供できる。   According to the present invention, a phosphor with high fluorescence quantum yield and high crystallinity can be provided from a raw material having high supply stability, low cost, and low environmental load.

実施例1で得られた蛍光体の紫外線励起による発光スペクトルである。2 is an emission spectrum of the phosphor obtained in Example 1 by ultraviolet excitation. 実施例1で得られた蛍光体のX線解析スペクトルである。2 is an X-ray analysis spectrum of the phosphor obtained in Example 1. FIG. 実施例1で得られた蛍光体の電子顕微鏡写真である。2 is an electron micrograph of the phosphor obtained in Example 1. FIG. 実施例2で得られた蛍光体の紫外線励起による発光スペクトルである。2 is an emission spectrum of the phosphor obtained in Example 2 by ultraviolet excitation. 実施例2で得られた蛍光体のX線解析スペクトルである。3 is an X-ray analysis spectrum of the phosphor obtained in Example 2.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

本発明の蛍光体は、金属としてホウ素、アルミニウムのみを含む。なお、本明細書中で金属とは、水素を除く1族元素;2族元素;ランタノイド、アクチノイドを含む3族元素;4〜13族元素;炭素を除く14族元素;窒素およびリンを除く15族元素;酸素、硫黄およびセレンを除く16族元素を指す。ホウ素およびアルミニウムは、13族元素に含まれる。本発明の蛍光体におけるホウ素原子とアルミニウム原子とのモル比は、1:4.5〜1:5.5の範囲であり、好ましくは1:4.7〜1:5.2の範囲である。アルミニウム原子のモル数がホウ素原子のモル数の4.5倍未満であると、得られる蛍光体は酸化ホウ素を多く含有し、5.5倍を超えると、得られる蛍光体中で酸化アルミニウムが凝集する。このため、ホウ素原子とアルミニウム原子とのモル比が1:4.5〜1:5.5の範囲を外れると、蛍光強度が低下する。また本発明の蛍光体におけるホウ素原子と酸素原子とのモル比は、1:8.0〜1:9.5の範囲であり、好ましくは1:8.3〜1:9.2の範囲である。本発明の蛍光体中において、ホウ素原子とアルミニウム原子は主にAlBOの結晶構造として含有されるものと推定される。本発明の蛍光体は、前記結晶構造を多く含むことで構造安定性が高く、長期安定性に優れる。酸素原子のモル数がホウ素原子のモル数の8.0倍未満であると、前記結晶構造中に欠陥が多くなり、酸素原子のモル数がホウ素原子のモル数の9.5倍を超えると蛍光体中のホウ素原子およびアルミニウム原子の酸化数が高くなるため、構造安定性が低下する傾向となる。 The phosphor of the present invention contains only boron and aluminum as metals. In this specification, the metal means a group 1 element excluding hydrogen; a group 2 element; a group 3 element including lanthanoids and actinoids; a group 4 to 13 element; a group 14 element excluding carbon; and 15 excluding nitrogen and phosphorus. Group elements: Group 16 elements excluding oxygen, sulfur and selenium. Boron and aluminum are included in group 13 elements. The molar ratio of boron atom to aluminum atom in the phosphor of the present invention is in the range of 1: 4.5 to 1: 5.5, preferably in the range of 1: 4.7 to 1: 5.2. . When the number of moles of aluminum atoms is less than 4.5 times the number of moles of boron atoms, the obtained phosphor contains a large amount of boron oxide. When the number of moles exceeds 5.5 times, aluminum oxide is contained in the obtained phosphor. Aggregate. For this reason, if the molar ratio of boron atoms to aluminum atoms is out of the range of 1: 4.5 to 1: 5.5, the fluorescence intensity decreases. The molar ratio of boron atom to oxygen atom in the phosphor of the present invention is in the range of 1: 8.0 to 1: 9.5, preferably in the range of 1: 8.3 to 1: 9.2. is there. In the phosphor of the present invention, it is presumed that boron atoms and aluminum atoms are mainly contained as a crystal structure of Al 5 BO 9 . Since the phosphor of the present invention contains a large amount of the crystal structure, the phosphor has high structural stability and excellent long-term stability. When the number of moles of oxygen atoms is less than 8.0 times the number of moles of boron atoms, the crystal structure has more defects, and when the number of moles of oxygen atoms exceeds 9.5 times the number of moles of boron atoms Since the oxidation numbers of boron atoms and aluminum atoms in the phosphor increase, the structural stability tends to decrease.

本発明の蛍光体は、ホウ素、アルミニウム、酸素以外の元素として、窒素および/または炭素を含有していてもよい。これらの元素の含有率は、好ましくは本発明の蛍光体の5質量%以下、より好ましくは3質量%以下である。   The phosphor of the present invention may contain nitrogen and / or carbon as an element other than boron, aluminum, and oxygen. The content of these elements is preferably 5% by mass or less, more preferably 3% by mass or less of the phosphor of the present invention.

本発明の蛍光体は、ホウ酸類、アルミニウム含有化合物および分散剤の混合物を、酸素存在下で焼成することにより得ることができる。焼成の際、昇温過程の温度が200℃未満においてホウ酸類とアルミニウム含有化合物が反応し、200℃以上において分散剤が分解すると考えられる。このような方法で製造することでAlBOの結晶構造中に分散剤の分解に伴うアルミニウムおよび酸素の欠陥が生成し、蛍光体として機能すると考えられる。 The phosphor of the present invention can be obtained by firing a mixture of boric acids, an aluminum-containing compound and a dispersant in the presence of oxygen. During firing, it is considered that boric acids react with the aluminum-containing compound when the temperature in the temperature raising process is lower than 200 ° C., and the dispersant is decomposed when the temperature is 200 ° C. or higher. By producing by such a method, it is considered that defects of aluminum and oxygen accompanying the decomposition of the dispersant are generated in the crystal structure of Al 5 BO 9 and function as a phosphor.

本発明の蛍光体の製造方法で使用するホウ酸類は、ホウ酸、無水ホウ酸、メタホウ酸および次ホウ酸からなる群より1種を選択して単独で使用しても、複数種を選択して混合して使用してもよい。ホウ酸類は、入手性および供給安定性の観点から、ホウ酸または無水ホウ酸が好ましい。   The boric acids used in the method for producing the phosphor of the present invention may be selected from the group consisting of boric acid, boric anhydride, metaboric acid and hypoboric acid, and may be used alone or in combination. May be mixed and used. The boric acids are preferably boric acid or anhydrous boric acid from the viewpoints of availability and supply stability.

本発明の蛍光体の製造方法において使用するアルミニウム含有化合物としては、例えば、酢酸アルミニウム、酪酸アルミニウムなどの有機酸のアルミニウム塩;硫酸アルミニウム、硝酸アルミニウム、燐酸アルミニウムなどの鉱酸のアルミニウム塩;塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウムなどのハロゲン化物;酸化アルミニウム;水酸化アルミニウム;等を使用でき、入手性および供給安定性の観点から、酸化アルミニウムおよび水酸化アルミニウムが好ましい。これらは一種単独で用いてもよく、複数種を混合して併用してもよい。   Examples of the aluminum-containing compound used in the phosphor production method of the present invention include aluminum salts of organic acids such as aluminum acetate and aluminum butyrate; aluminum salts of mineral acids such as aluminum sulfate, aluminum nitrate and aluminum phosphate; aluminum chloride , Aluminum bromide, aluminum iodide, and the like; aluminum oxide; aluminum hydroxide; and the like. Aluminum oxide and aluminum hydroxide are preferred from the viewpoint of availability and supply stability. These may be used individually by 1 type, and may mix and use multiple types.

本発明の蛍光体の製造方法において使用する分散剤は、ホウ酸類およびアルミニウム含有化合物の分散性を高めて、反応の均一性を高めるために添加する。分散剤としては、アルミニウム含有化合物と強く配位でき、且つ、200〜400℃の範囲で分解する化合物が好ましい。具体的には、例えば、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、ポリアニリン、ポリアクリロニトリル、ポリビニルピロリドン、ポリビニルピリジン、ポリ尿素などの含窒素高分子化合物が好ましく、入手性から、ポリエチレンイミン、ポリ尿素がより好ましい。含窒素高分子化合物の重量平均分子量(Mw)は、通常、2000〜750000の範囲であり、好ましくは2200〜500000の範囲であり、また、数平均分子量(Mn)は、通常、1200〜60000の範囲であり、好ましくは1500〜50000の範囲である。なお、本明細書におけるMwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)により測定された標準ポリスチレン換算の値である。これらの分散剤は一種単独で用いてもよく、複数種を併用してもよい。   The dispersant used in the method for producing the phosphor of the present invention is added in order to increase the dispersibility of the boric acids and the aluminum-containing compound and increase the uniformity of the reaction. As the dispersant, a compound that can be strongly coordinated with the aluminum-containing compound and decomposes in the range of 200 to 400 ° C. is preferable. Specifically, for example, nitrogen-containing polymer compounds such as polyethyleneimine, polyvinylamine, polyallylamine, polyaniline, polyacrylonitrile, polyvinylpyrrolidone, polyvinylpyridine, and polyurea are preferable, and polyethyleneimine and polyurea are more preferable because of their availability. preferable. The weight average molecular weight (Mw) of the nitrogen-containing polymer compound is usually in the range of 2000 to 750,000, preferably in the range of 2200 to 500000, and the number average molecular weight (Mn) is usually 1200 to 60000. It is a range, Preferably it is the range of 1500-50000. In addition, Mw and Mn in this specification are values in terms of standard polystyrene measured by gel permeation chromatography (GPC). These dispersing agents may be used individually by 1 type, and may use multiple types together.

ホウ酸類およびアルミニウム含有化合物の使用量は、使用する化合物の種類、焼成温度、時間などにも依存するが、通常、ホウ酸類に含まれるホウ酸原子のモル数に対し、アルミニウム含有化合物に含まれるアルミニウム原子のモル数が5.5倍以下となる範囲であることが好ましく、0.3〜5.2倍の範囲となる範囲であることがより好ましい。ホウ酸類に含まれるホウ酸原子のモル数に対し、アルミニウム含有化合物に含まれるアルミニウム原子のモル数が5.5倍を超えると、得られる蛍光体中に酸化アルミニウムが凝集し、蛍光強度が低下する傾向となる。   The amount of boric acid and aluminum-containing compound used depends on the type of compound used, the firing temperature, the time, etc., but is usually included in the aluminum-containing compound with respect to the number of moles of boric acid atoms contained in the boric acid. The number of moles of aluminum atoms is preferably in the range of 5.5 times or less, and more preferably in the range of 0.3 to 5.2 times. When the number of moles of aluminum atoms contained in the aluminum-containing compound exceeds 5.5 times the number of moles of boric acid atoms contained in boric acids, aluminum oxide aggregates in the resulting phosphor and the fluorescence intensity decreases. Tend to.

分散剤の使用量は、化合物の種類、焼成温度、焼成時間などにも依存するが、通常、アルミニウム含有化合物100質量部に対して、0.1〜500質量部の範囲が好ましく、1〜100質量部の範囲がより好ましく、製造時のエネルギー効率の観点から、2〜50質量部の範囲がさらに好ましい。   The amount of dispersant used depends on the type of compound, firing temperature, firing time, etc., but is usually preferably in the range of 0.1 to 500 parts by weight with respect to 100 parts by weight of the aluminum-containing compound. The range of parts by mass is more preferable, and the range of 2 to 50 parts by mass is more preferable from the viewpoint of energy efficiency during production.

本発明の製造方法で用いるホウ酸類、アルミニウム含有化合物および分散剤の混合物は、さらに溶媒を含有していてもよい。溶媒中に、ホウ酸類、アルミニウム含有化合物および分散剤が均一に溶解または分散することで、得られる蛍光体の均一性を一層高めることができる。用いることができる溶媒としては、例えば、超純水、純水、イオン交換水、蒸留水などの水;メタノール、エタノールなどのアルコール;テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサンなどのエーテル;が挙げられ、安全性の観点から水が好ましい。   The mixture of boric acids, aluminum-containing compound and dispersant used in the production method of the present invention may further contain a solvent. By uniformly dissolving or dispersing boric acids, an aluminum-containing compound, and a dispersant in the solvent, the uniformity of the obtained phosphor can be further enhanced. Examples of the solvent that can be used include water such as ultrapure water, pure water, ion exchange water, and distilled water; alcohols such as methanol and ethanol; ethers such as tetrahydrofuran, tetrahydropyran, and 1,4-dioxane; From the viewpoint of safety, water is preferable.

溶媒中にアルカリ金属、アルカリ土類金属、重金属またはこれらの元素を含む化合物が含まれていると、得られる蛍光体の発光性能に悪影響を及ぼす場合がある。またハロゲンまたはハロゲンを含む化合物が溶媒中に含まれていると、分散剤の分解を加速するため好ましくない。かかる観点から、混合物が溶媒を含有する場合、溶媒中のアルカリ金属、アルカリ土類金属、重金属およびハロゲンの元素としての含有量は、その合計として5000質量ppm以下であることが好ましく、1000質量ppm以下であることがより好ましい。   If the solvent contains an alkali metal, an alkaline earth metal, a heavy metal or a compound containing these elements, the luminous performance of the resulting phosphor may be adversely affected. In addition, when a halogen or a halogen-containing compound is contained in the solvent, decomposition of the dispersant is accelerated, which is not preferable. From this point of view, when the mixture contains a solvent, the content of alkali metal, alkaline earth metal, heavy metal and halogen in the solvent is preferably 5000 ppm by mass or less, and 1000 ppm by mass. The following is more preferable.

溶媒の使用量は、化合物の種類、焼成温度、焼成時間などにも依存するが、通常、アルミニウム含有化合物100質量部に対して、0.1〜50000質量部の範囲が好ましく、1〜10000質量部の範囲がより好ましく、製造時のエネルギー効率を高める観点から、2〜5000質量部の範囲がさらに好ましい。   The amount of the solvent used depends on the type of compound, the firing temperature, the firing time, etc., but is usually preferably in the range of 0.1 to 50000 parts by weight with respect to 100 parts by weight of the aluminum-containing compound, and 1 to 10000 parts by weight. The range of parts is more preferable, and the range of 2 to 5000 parts by mass is more preferable from the viewpoint of increasing the energy efficiency during production.

上記ホウ酸類、アルミニウム含有化合物および分散剤並びに任意成分である溶媒の混合物は、混合物が溶媒を含まない場合には、ボールミル、ターボミル、ジェットミル、乳鉢などを使用し、混合物が溶媒を含む場合には、ホットスターラ、マグネチックスターラ、超音波攪拌装置などを使用して混合することで調製できる。なお、混合物が溶媒を含む場合には、スプレードライ等の方法で溶媒を留去した後に混合してもよい。   The boric acids, aluminum-containing compounds and dispersants and optional solvent mixtures are ball mills, turbo mills, jet mills, mortars, etc. when the mixture does not contain a solvent, and the mixture contains a solvent. Can be prepared by mixing using a hot stirrer, magnetic stirrer, ultrasonic stirrer or the like. In addition, when a mixture contains a solvent, you may mix, after distilling a solvent off by methods, such as spray drying.

本発明の蛍光体の製造方法では、このようにして調製した混合物を酸素存在下で焼成する(本明細書中、「焼成工程」という場合がある)。前記混合物が溶媒を使用している場合は、溶媒の気散が完了するまでは窒素雰囲気下で加熱し、その後、酸素存在下で焼成を行うことが好ましい。焼成方法は、例えばロータリーキルン炉やコニカルキルン炉のような移動床、ローラーハース炉やプッシャー炉のような連続式固定床、雰囲気調整炉のようなバッチ式固定床などの加熱焼成炉でも、スプレーや噴霧法などの熱分解炉を用いたものでもよい。   In the method for producing a phosphor of the present invention, the mixture thus prepared is baked in the presence of oxygen (sometimes referred to as “baking step” in this specification). When the mixture uses a solvent, it is preferable to heat in a nitrogen atmosphere until the evaporation of the solvent is completed, and then perform baking in the presence of oxygen. The firing method is, for example, a heating and firing furnace such as a moving bed such as a rotary kiln furnace or a conical kiln furnace, a continuous fixed bed such as a roller hearth furnace or a pusher furnace, or a batch fixed bed such as an atmosphere adjustment furnace. A thermal decomposition furnace such as a spray method may be used.

焼成工程における最高温度は、使用するホウ酸類、アルミニウム含有化合物および分散剤の量にも依存するが、通常600〜1000℃の範囲が好ましく、分散剤の分解促進とエネルギー効率の観点から、700〜980℃の範囲がより好ましく、750〜950℃の範囲がさらに好ましい。   The maximum temperature in the firing step depends on the amount of boric acid, aluminum-containing compound and dispersant used, but is usually preferably in the range of 600 to 1000 ° C, from the viewpoint of promoting decomposition of the dispersant and energy efficiency. The range of 980 ° C is more preferable, and the range of 750 to 950 ° C is more preferable.

焼成工程における昇温速度は、特に制限されないが、製造装置への負荷を考慮して、通常1〜80℃/分の範囲が好ましく、2〜50℃/分の範囲がより好ましい。   Although the temperature increase rate in a baking process is not restrict | limited in particular, Considering the load to a manufacturing apparatus, the range of 1-80 degree-C / min is preferable normally, and the range of 2-50 degree-C / min is more preferable.

焼成工程において、最高温度における保持時間は、使用した分散剤の量などにも依存するが、通常、0〜180分の範囲が好ましく、得られる蛍光体の均質性と結晶性の観点から、1〜150分の範囲がより好ましく、5〜120分の範囲がさらに好ましい。   In the firing step, the retention time at the maximum temperature depends on the amount of the dispersant used and the like, but is usually preferably in the range of 0 to 180 minutes. From the viewpoint of homogeneity and crystallinity of the obtained phosphor, 1 The range of -150 minutes is more preferable, and the range of 5-120 minutes is more preferable.

焼成工程は酸素存在下で行われる必要があり、通常空気雰囲気下で行われる。   The firing step needs to be performed in the presence of oxygen, and is usually performed in an air atmosphere.

焼成工程における最高温度からの降温速度は、特に制限されないが、製造装置への負荷を考慮して、通常、1〜80℃/分の範囲が好ましく、2〜50℃/分の範囲がより好ましい。   The rate of temperature decrease from the maximum temperature in the firing step is not particularly limited, but is usually preferably in the range of 1 to 80 ° C./min, more preferably in the range of 2 to 50 ° C./min in consideration of the load on the production apparatus. .

降温(冷却)の操作は、例えば、窒素、希ガス(例、ヘリウム、アルゴンなど)などの不活性ガス雰囲気下または空気雰囲気下で実施できるが、安全性を考慮して、不活性ガス雰囲気下で降温することが好ましい。また、300℃以下における降温では、目的とする蛍光体表面への水分の付着を抑制するため、乾燥ガス雰囲気下で降温することが好ましい。   The temperature lowering (cooling) operation can be performed, for example, in an inert gas atmosphere such as nitrogen or a rare gas (eg, helium, argon, etc.) or an air atmosphere, but in an inert gas atmosphere in consideration of safety. It is preferable to lower the temperature. Further, when the temperature is lowered at 300 ° C. or lower, it is preferable to lower the temperature in a dry gas atmosphere in order to suppress adhesion of moisture to the target phosphor surface.

上記の焼成工程により得られた焼成物は、本発明の蛍光体となる。蛍光体の凝集を抑制し、均一性を高めるために、粉砕混合することが好ましい。この際に、再度分散剤を加えても構わない。粉砕混合は、例えば、ボールミル、ターボミル、ジェットミル、乳鉢などを使用して実施できる。   The fired product obtained by the above firing step becomes the phosphor of the present invention. In order to suppress aggregation of the phosphor and improve uniformity, it is preferable to pulverize and mix. At this time, a dispersant may be added again. The pulverization and mixing can be performed using, for example, a ball mill, a turbo mill, a jet mill, or a mortar.

上記の粉砕混合により得られた解砕物は、再度焼成、冷却、粉砕混合を行ってもよい。焼成、冷却、粉砕混合を繰り返して行うことで、得られる蛍光体の均一性が高まる。   The pulverized product obtained by the above pulverization and mixing may be fired, cooled and pulverized and mixed again. By repeating firing, cooling, and pulverization and mixing, the uniformity of the obtained phosphor is increased.

粉砕混合により得られた解砕物は、さらに破砕および分級などによって、所望の粒度に調整してもよい。   The pulverized product obtained by pulverization and mixing may be further adjusted to a desired particle size by crushing and classification.

以下、本発明を実施例により詳細に説明する。各実施例では、各種組成の蛍光体を製造し、得られた蛍光体のX線回折(XRD)、波長365nmの紫外線励起による発光スペクトル、蛍光量子収率を測定した。XRDはX線回折試験装置(株式会社リガク、Rint 2200V)により、波長365nmの紫外線励起による発光スペクトルは分光蛍光光度計(株式会社島津製作所、RF−5300PC)により、蛍光量子収率は絶対PL量子収率測定装置(浜松ホトニクス株式会社、C9920−02)により測定した。また、電子顕微鏡(株式会社キーエンス、VE−8800)により表面観察を行った。なお、本発明は以下の実施例に限定されるものではない。
本明細書において「蛍光量子収率」とは、波長350nmの入射光によって励起された蛍光体から放出される光子の数と入射光の光子の数との比であり、この数値が大きいほど蛍光体として好ましい。
Hereinafter, the present invention will be described in detail with reference to examples. In each example, phosphors having various compositions were produced, and X-ray diffraction (XRD) of the obtained phosphors, emission spectra due to ultraviolet excitation at a wavelength of 365 nm, and fluorescence quantum yield were measured. XRD is measured by an X-ray diffraction test apparatus (Rigaku Corporation, Rint 2200V), emission spectrum by ultraviolet excitation at a wavelength of 365 nm is measured by a spectrofluorometer (Shimadzu Corporation, RF-5300PC), and the fluorescence quantum yield is absolute PL quantum. It measured with the yield measuring apparatus (Hamamatsu Photonics Co., Ltd., C9920-02). Moreover, surface observation was performed with the electron microscope (Keyence Corporation, VE-8800). In addition, this invention is not limited to a following example.
In this specification, the “fluorescence quantum yield” is the ratio between the number of photons emitted from a phosphor excited by incident light having a wavelength of 350 nm and the number of photons of incident light. Preferred as a body.

[実施例1]
100mlビーカーに、ホウ酸0.9g(0.015モル)、水酸化アルミニウム0.8g(0.010モル)、ポリエチレンイミン(重量平均分子量:2000、分解温度:240℃)4gおよび超純水20gを加え、ホットスターラー(回転数500rpm)を用いて攪拌、溶解した(ホウ酸に含まれるホウ酸原子のモル数に対する、水酸化アルミニウムに含まれるアルミニウム原子のモル数:0.67倍)。得られた溶液をるつぼに移し、加熱炉において、空気雰囲気下で400℃まで30分で昇温し、400℃にて60分間保持した後900℃まで30分で昇温し、さらに900℃で30分間保持した。その後、空気雰囲気下で500℃まで30分間で降温し、500℃で30分間保持した後、窒素雰囲気下として100℃まで1時間で降温し、さらに室温まで自然冷却して、蛍光体を得た。
得られた蛍光体の波長365nmの紫外線励起による発光スペクトルの測定試験結果を図1に、蛍光量子収率の測定試験結果を表1に、X線回折の測定結果を図2に示す。図2で鋭いピークが観察されることから、得られた蛍光体は結晶性が高いと言える。また、電子顕微鏡写真(図3)では針状結晶が観察される。蛍光X線による成分分析結果を表2に示す。
[Example 1]
In a 100 ml beaker, 0.9 g (0.015 mol) of boric acid, 0.8 g (0.010 mol) of aluminum hydroxide, 4 g of polyethyleneimine (weight average molecular weight: 2000, decomposition temperature: 240 ° C.) and 20 g of ultrapure water The mixture was stirred and dissolved using a hot stirrer (rotation number: 500 rpm) (the number of moles of aluminum atoms contained in aluminum hydroxide relative to the number of moles of boric acid atoms contained in boric acid: 0.67 times). The resulting solution was transferred to a crucible, heated in a heating furnace to 400 ° C. in 30 minutes in an air atmosphere, held at 400 ° C. for 60 minutes, then heated to 900 ° C. in 30 minutes, and further at 900 ° C. Hold for 30 minutes. Thereafter, the temperature was lowered to 500 ° C. for 30 minutes in an air atmosphere, held at 500 ° C. for 30 minutes, then lowered to 100 ° C. for 1 hour under a nitrogen atmosphere, and further naturally cooled to room temperature to obtain a phosphor. .
The measurement test result of the emission spectrum of the obtained phosphor by ultraviolet excitation at a wavelength of 365 nm is shown in FIG. 1, the measurement test result of the fluorescence quantum yield is shown in Table 1, and the measurement result of X-ray diffraction is shown in FIG. Since a sharp peak is observed in FIG. 2, it can be said that the obtained phosphor has high crystallinity. In addition, acicular crystals are observed in the electron micrograph (FIG. 3). Table 2 shows the result of component analysis by fluorescent X-ray.

[実施例2]
実施例1において、水酸化アルミニウム0.8gに代えて、酸化アルミニウム0.5g(0.005モル)を使用した以外は、実施例1と同様の操作を行って(ホウ酸に含まれるホウ酸原子のモル数に対する、酸化アルミニウムに含まれるアルミニウム原子のモル数:0.67倍)、蛍光体を得た。
得られた蛍光体の波長365nmの紫外線励起による発光スペクトルの測定結果を図4に、蛍光量子収率の測定試験結果を表1に、X線回折の測定結果を図5に示す。図5で鋭いピークが観察されることから、得られた蛍光体は結晶性が高いと言える。蛍光X線による成分分析結果を表2に示す。
[Example 2]
In Example 1, the same operation as in Example 1 was performed except that 0.5 g (0.005 mol) of aluminum oxide was used instead of 0.8 g of aluminum hydroxide (boric acid contained in boric acid) The number of moles of aluminum atoms contained in the aluminum oxide relative to the number of moles of atoms: 0.67 times), a phosphor was obtained.
The measurement result of the emission spectrum of the obtained phosphor by ultraviolet excitation at a wavelength of 365 nm is shown in FIG. 4, the measurement test result of the fluorescence quantum yield is shown in Table 1, and the measurement result of X-ray diffraction is shown in FIG. Since a sharp peak is observed in FIG. 5, it can be said that the obtained phosphor has high crystallinity. Table 2 shows the result of component analysis by fluorescent X-ray.

[比較例1]
実施例1において、ホウ酸を添加しなかった以外は、実施例1と同様の操作を行った。得られた焼成物は酸化アルミニウムであり、蛍光は観測されなかった。
[Comparative Example 1]
In Example 1, the same operation as in Example 1 was performed except that boric acid was not added. The obtained fired product was aluminum oxide, and no fluorescence was observed.

[比較例2]
実施例1において、水酸化アルミニウムを添加しなかった以外は、実施例1同様に行った。得られた焼成物は無水ホウ酸であり、蛍光は観測されなかった。
[Comparative Example 2]
In Example 1, it carried out like Example 1 except not having added aluminum hydroxide. The obtained fired product was boric anhydride and no fluorescence was observed.

本発明によれば、供給安定性が高く、安価で、環境負荷が低い原料を用いて、蛍光量子収率が高く、かつ結晶性の高い蛍光体を提供できる。また該蛍光体の工業的に有利な製造方法を提供できる。   According to the present invention, it is possible to provide a phosphor with high fluorescence quantum yield and high crystallinity using a raw material with high supply stability, low cost, and low environmental load. In addition, an industrially advantageous production method of the phosphor can be provided.

Claims (4)

金属としてホウ素およびアルミニウムのみを含有し、ホウ素原子とアルミニウム原子とのモル比が1:4.5〜1:5.5の範囲であるとともに、ホウ素原子と酸素原子とのモル比が1:8.0〜1:9.5の範囲である蛍光体。   The metal contains only boron and aluminum, the molar ratio of boron atom to aluminum atom is in the range of 1: 4.5 to 1: 5.5, and the molar ratio of boron atom to oxygen atom is 1: 8. A phosphor in the range of 0 to 1: 9.5. ホウ酸、無水ホウ酸、メタホウ酸および次ホウ酸からなる群より選ばれる少なくとも1種のホウ酸類、アルミニウム含有化合物並びに分散剤の混合物を、酸素存在下で焼成することを特徴とする請求項1に記載の蛍光体の製造方法。   2. A mixture of at least one boric acid selected from the group consisting of boric acid, boric anhydride, metaboric acid and hypoboric acid, an aluminum-containing compound and a dispersant is calcined in the presence of oxygen. A method for producing the phosphor according to 1. ホウ酸類に含まれるホウ素原子のモル数に対する、アルミニウム含有化合物に含まれるアルミニウム原子のモル数が5.5倍以下である請求項2に記載の蛍光体の製造方法。   The method for producing a phosphor according to claim 2, wherein the number of moles of aluminum atoms contained in the aluminum-containing compound is 5.5 times or less of the number of moles of boron atoms contained in the boric acid. 分散剤が含窒素高分子化合物である請求項2または3に記載の製造方法。   The production method according to claim 2 or 3, wherein the dispersant is a nitrogen-containing polymer compound.
JP2012137147A 2012-06-18 2012-06-18 Phosphor and method for producing the same Expired - Fee Related JP5867924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137147A JP5867924B2 (en) 2012-06-18 2012-06-18 Phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137147A JP5867924B2 (en) 2012-06-18 2012-06-18 Phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014001300A true JP2014001300A (en) 2014-01-09
JP5867924B2 JP5867924B2 (en) 2016-02-24

Family

ID=50034780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137147A Expired - Fee Related JP5867924B2 (en) 2012-06-18 2012-06-18 Phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP5867924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180136529A1 (en) * 2015-01-08 2018-05-17 Innolux Corporation Display panels
CN116333731A (en) * 2023-04-07 2023-06-27 上海理工大学 Near ultraviolet/blue light excited aluminum boron/molybdate near infrared fluorescent powder and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021285A (en) * 1955-11-15 1962-02-13 Jacobi Elfriede Method of producing luminescent materials
US3755536A (en) * 1971-07-27 1973-08-28 Du Pont Isotypic borates of aluminum rhodium and thallium of calcite type crystal structure
JPH0345690A (en) * 1989-07-06 1991-02-27 Samsung Display Devices Co Ltd Phosphor and cathode ray tube made by using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021285A (en) * 1955-11-15 1962-02-13 Jacobi Elfriede Method of producing luminescent materials
US3755536A (en) * 1971-07-27 1973-08-28 Du Pont Isotypic borates of aluminum rhodium and thallium of calcite type crystal structure
JPH0345690A (en) * 1989-07-06 1991-02-27 Samsung Display Devices Co Ltd Phosphor and cathode ray tube made by using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180136529A1 (en) * 2015-01-08 2018-05-17 Innolux Corporation Display panels
CN116333731A (en) * 2023-04-07 2023-06-27 上海理工大学 Near ultraviolet/blue light excited aluminum boron/molybdate near infrared fluorescent powder and preparation method thereof
CN116333731B (en) * 2023-04-07 2024-05-14 上海理工大学 Near ultraviolet/blue light excited aluminum boron/molybdate near infrared fluorescent powder and preparation method thereof

Also Published As

Publication number Publication date
JP5867924B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
KR101608558B1 (en) Aluminum oxide phosphor and method for producing same
Mishra et al. Preparation and characterization of upconversion luminescent Tm 3+/Yb 3+ co-doped Y 2 O 3 nanophosphor
Zheng et al. Color control and white upconversion luminescence of LaOF: Ln 3+(Ln= Yb, Er, Tm) nanocrystals prepared by the sol–gel Pechini method
Tan et al. Influence of carbon templates and Yb3+ concentration on red and green luminescence of uniform Y2O3: Yb/Er hollow microspheres
Li et al. Facile synthesis, growth mechanism and luminescence properties of uniform La (OH) 3: Ho3+/Yb3+ and La 2 O 3: Ho3+/Yb3+ nanorods
Lee et al. Synthesis and luminescence properties of Eu3+ doped BaGd2Ti4O13 phosphors
Pavitra et al. Pump power induced tunable upconversion emissions from Er 3+/Tm 3+/Yb 3+ ions tri-doped SrY 2 O 4 nanocrystalline phosphors
Rafiaei et al. Effect of fuels on nanostructure and luminescence properties of combustion synthesized MgAl2O4: Eu3+ phosphors
Nuryadin et al. A red emitting of manganese-doped boron carbon oxynitride (BCNO) phosphor materials: facile approach and photoluminescence properties
KR101584393B1 (en) Process for producing m-c-n-o-based phosphor
Bao et al. Synthesis and luminescent properties of nanoparticles GdCaAl3O7: RE3+ (RE= Eu, Tb) via the sol–gel method
JP5867924B2 (en) Phosphor and method for producing the same
JP5704707B2 (en) Method for producing B—C—N—O phosphor
Niu et al. Tuning upconversion luminescence of LiYF4: Yb3+, Er3+/Tm3+/Ho3+ microcrystals synthesized through a molten salt process
Phaomei et al. Ce3+ sensitize RE3+ (RE= Dy, Tb, Eu, Sm) doped LaPO4 nanophosphor with white emission tunability
CN102559186A (en) Infrared up-conversion fluorescent powder and preparation method thereof
CN107760303B (en) Method for preparing YAG-Ce fluorescent powder in low-temperature solid phase manner
Dalal et al. Crystal structure investigation and photoluminescent aspects of green-emitting Tb3+ activated Ba2La4Zn2O10 nanocrystalline materials for solid-state illumination
Xia et al. Direct synthesis and intense luminescence of Y2O3: Eu nanophosphors by complexation combustion
Chen et al. Photoluminescence of Lu 2 O 3: Eu 3+ phosphors obtained by glycine-nitrate combustion synthesis
Liu et al. A facile co-precipitation synthesis and luminescence properties of red-emitting La2O2SO4: x% Eu3+ nanophosphors
Yang et al. Synthesis and luminescent properties of rare earth-doped YVO~ 4 nanocrystalline powders
Qiu et al. Combustion synthesis of novel Li0. 9Y (0.9− x− y) Zr0. 1O2: Eux3+, Ry3+ (R= Ce, Bi) red luminescence nanocrystal and emission-mechanism research
Koparkar et al. Combustion synthesis and photoluminescence properties of novel Eu3+ ion doped magnesium yttrium borate phosphor
Zhang et al. Fabrication and enhanced photoluminescence properties of $$\hbox {NaLa}(\hbox {MoO} _ {4}) _ {2} $$: $$\hbox {Sm}^{3+} $$, $$\hbox {Bi}^{3+} $$ phosphors with high efficiency white-light-emitting.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5867924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees