JP2014001161A - Calcium sensor protein using red fluorescent protein - Google Patents

Calcium sensor protein using red fluorescent protein Download PDF

Info

Publication number
JP2014001161A
JP2014001161A JP2012137434A JP2012137434A JP2014001161A JP 2014001161 A JP2014001161 A JP 2014001161A JP 2012137434 A JP2012137434 A JP 2012137434A JP 2012137434 A JP2012137434 A JP 2012137434A JP 2014001161 A JP2014001161 A JP 2014001161A
Authority
JP
Japan
Prior art keywords
sequence
amino acid
gly
ala
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012137434A
Other languages
Japanese (ja)
Other versions
JP6051438B2 (en
Inventor
Masamichi Okura
正道 大倉
Junichi Nakai
淳一 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2012137434A priority Critical patent/JP6051438B2/en
Publication of JP2014001161A publication Critical patent/JP2014001161A/en
Application granted granted Critical
Publication of JP6051438B2 publication Critical patent/JP6051438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a red fluorescent calcium sensor used for detecting variation of calcium in the organism (extracellular and intracellular) and measuring concentration of calcium and having more excellent reactivity than the conventional one.SOLUTION: The red fluorescent calcium sensor protein is a modified protein obtained by modifying the structure of red fluorescent protein mApple in the vicinity of a hot spot amino acid residue exerting influence on fluorescent properties, linking thereto functional molecules functioning so as to change fluorescent properties, and adding linker peptide made of specified 15 amino acid and specified peptide made of 22 amino acid to the C terminal region thereof. Such a protein exhibits high fluorescence reactivity and exhibits no localization into the nuclei.

Description

本発明は、特定部位のアミノ酸を置換した赤色蛍光蛋白質(以下、RFP)、又はそのホモログを用いたカルシウムセンサー蛋白質に関する。より具体的には、従来の赤色蛍光カルシウムセンサー蛋白質よりも更に反応性に優れた、かつ細胞内で発現後に細胞質から核内への移行を示さない、カルシウムセンサー蛋白質、及び前記カルシウムセンサー蛋白質をコードするカルシウムセンサー遺伝子に関する。   The present invention relates to a calcium sensor protein using a red fluorescent protein (hereinafter referred to as RFP) in which an amino acid at a specific site is substituted, or a homologue thereof. More specifically, the calcium sensor protein, which is more reactive than the conventional red fluorescent calcium sensor protein and does not show a transition from the cytoplasm to the nucleus after expression in the cell, and the calcium sensor protein is encoded. It relates to the calcium sensor gene.

カルシウムは生体にとって、構造の維持に必須である骨の主要な構成成分であると同時に、筋肉の収縮、神経興奮性やホルモン分泌、酵素活性の変化などの各種の細胞機能の調節因子として、生体機能の維持および調節に不可欠な役割を担っている。このため、生体内(細胞外及び細胞内)のカルシウム変動を探知し、カルシウム濃度を測定するのに用いられるカルシウムセンサーの重要性が高まっている。
カルシウムセンサーは大きく分けて4種類のものがこれまでに開発されている。以下にその概要を示す。
Calcium is a major component of bone that is essential for the maintenance of the structure for the living body, and at the same time as a regulator of various cellular functions such as muscle contraction, nerve excitability, hormone secretion, and changes in enzyme activity. It plays an essential role in maintaining and regulating function. For this reason, the importance of the calcium sensor used for detecting calcium fluctuation in the living body (extracellular and intracellular) and measuring the calcium concentration is increasing.
Four types of calcium sensors have been developed so far. The outline is shown below.

1)カルシウム感受性の合成色素:カルシウムに感受性のある化学合成された色素であり、現在一般によく使用されている。細胞内において使用する場合は、外部から細胞に取り込ませる必要があるが、特定の細胞のみに色素を取り込ませることは難しく、ガラス針等により細胞に該色素を注入しなければならないという問題点を有する。 1) Calcium-sensitive synthetic pigments: These are chemically synthesized pigments sensitive to calcium, and are currently commonly used. When used in a cell, it is necessary to make the cell take in from outside, but it is difficult to make the dye take in only a specific cell, and the dye must be injected into the cell with a glass needle or the like. Have.

2)エクオリン:カルシウムに反応して発光する蛋白質であり、細胞に直接注入するか、該蛋白質を産生する遺伝子を細胞に導入して使用する。細胞内で機能するためには細胞に補酵素を供給する必要があり、また発光が極めて微弱であるという問題点を有する。 2) Aequorin: a protein that emits light in response to calcium, and is directly injected into a cell, or a gene that produces the protein is introduced into a cell and used. In order to function in a cell, it is necessary to supply a coenzyme to the cell, and there is a problem that luminescence is extremely weak.

3)蛍光共鳴エネルギー移動(FRET)を応用したカルシウム感受性蛋白質:カルシウムに感受性のあるカルモジュリン(CaM)とそれに結合するミオシン軽鎖キナーゼの一部の配列、二つの色の異なるGFP又はそのホモログを結合した蛋白質であり、カルシウムがCaMに結合するとその構造が変化し、FRETを起こして二つのGFPまたはそのホモログの発する蛍光強度が変化することを利用している。該蛋白質は、細胞に直接注入するか、該蛋白質をコードする遺伝子を細胞に取り込ませて使用する。FRETにおる蛍光変化は軽微であり、さらに一般的に用いられているアルゴンレーザーを搭載したレーザー顕微鏡により測定することが出来ないという問題点がある。 3) Calcium-sensitive protein using fluorescence resonance energy transfer (FRET): Calcium-sensitive calmodulin (CaM) and a partial sequence of myosin light chain kinase that binds to it, two different colors of GFP or their homologs This protein utilizes the fact that when calcium binds to CaM, its structure changes, and FRET occurs to change the fluorescence intensity emitted by two GFPs or their homologues. The protein is used by directly injecting into a cell or by allowing a gene encoding the protein to be taken into the cell. There is a problem that the fluorescence change in FRET is slight and cannot be measured by a laser microscope equipped with a commonly used argon laser.

4)一つのGFP又はRFPからなるカルシウム感受性蛋白質:GFP又はRFP、好ましくはmApple、の改変体にCaMとミオシン軽鎖キナーゼの一部の配列を結合したカルシウム感受性蛋白質であり、カルシウムがCaMに結合すると蛋白質の構造が変化し、GFP又はRFPの発する蛍光強度が変化することを利用している。該蛋白質も、細胞に直接注入するか、その他遺伝子を細胞に取り込ませて使用する。一般にカルシウムに対する感度が低く、実際の細胞では信号/雑音比が低いため、測定が困難であるという問題点を有する。また従来のmAppleからなるカルシウム感受性蛋白質(R-GECO1:非特許文献1)は細胞内での発現部位が細胞質と核内であるため、該蛋白質を用いた測定では同一細胞の細胞質と核において異なるタイミングで蛍光変化が生じる場合があるという問題点がある。 4) A calcium-sensitive protein consisting of one GFP or RFP: a calcium-sensitive protein in which a partial sequence of CaM and myosin light chain kinase is bound to a variant of GFP or RFP, preferably mAapple, and calcium binds to CaM. This utilizes the fact that the protein structure changes and the fluorescence intensity emitted by GFP or RFP changes. The protein is also used by directly injecting it into cells or by incorporating other genes into cells. In general, since the sensitivity to calcium is low and the signal / noise ratio is low in an actual cell, there is a problem that measurement is difficult. In addition, since the calcium-sensitive protein (R-GECO1: Non-patent document 1) made of conventional apple is expressed in the cytoplasm and nucleus in the cell, the measurement using the protein differs in the cytoplasm and nucleus of the same cell. There is a problem that fluorescence changes may occur at the timing.

本発明者らは、上記4)の応用として、GFPの蛍光特性を制御することが可能なカルシウムセンサー蛋白質を作成する方法、並びに該方法により作成されるカルシウムセンサー蛋白質、および該カルシウムセンサー蛋白質をコードするカルシウムセンサー遺伝子を提供し(特許文献1)、カルシウムに対する感度が従来のカルシウムセンサーに比して高く、かつ特定細胞への取り込みが容易であり、更に測定に特別な装置及び補酵素等を必要としないカルシウムセンサー蛋白質の作成に成功している(特許文献2、特許文献3)。
しかし、近年、生体内でのカルシウムの微少な変動を感知する必要性が以前にも増して高まっており、上記特許文献1、特許文献2及び特許文献3のカルシウムセンサー蛋白質をもってしても、十分な成果が上げられない状況となっている。
As an application of the above 4), the present inventors have prepared a method for producing a calcium sensor protein capable of controlling the fluorescence characteristics of GFP, a calcium sensor protein produced by the method, and a code for the calcium sensor protein. Provides a calcium sensor gene that can be used (Patent Document 1), has higher sensitivity to calcium than conventional calcium sensors, is easily incorporated into specific cells, and requires special equipment and coenzymes for measurement. Have succeeded in producing a calcium sensor protein (Patent Document 2, Patent Document 3).
However, in recent years, there has been an ever-increasing need to detect minute fluctuations of calcium in a living body, and even with the calcium sensor proteins of Patent Document 1, Patent Document 2, and Patent Document 3, sufficient It is a situation that can not be achieved.

また近年、光刺激で細胞機能を操作し、同時に蛍光カルシウムイメージングで細胞機能を測定するという実験の要求が高まってきた。蛍光カルシウムイメージングに応用される赤色蛍光カルシウムセンサー蛋白質は、その励起波長が細胞機能操作を目的として汎用される光刺激プローブChannelrhodopsin−2(非特許文献2)の活性化波長と重複しないため、Channelrhodopsin−2との併用が可能である。つまり赤色蛍光カルシウムセンサー蛋白質によって細胞機能操作と細胞機能測定を同時に行う実験が可能となる。そのためChannelrhodopsin−2と併用可能な赤色蛍光カルシウムセンサー蛋白質の開発が強く望まれている状況である。   In recent years, there has been a growing demand for experiments in which cell functions are manipulated by light stimulation and at the same time cell functions are measured by fluorescent calcium imaging. The red fluorescent calcium sensor protein applied to fluorescent calcium imaging has an excitation wavelength that does not overlap with the activation wavelength of the light stimulating probe Channelrhodopsin-2 (Non-patent Document 2), which is widely used for the purpose of cell function manipulation. 2 can be used together. In other words, the red fluorescent calcium sensor protein enables an experiment in which cell function manipulation and cell function measurement are performed simultaneously. For this reason, development of a red fluorescent calcium sensor protein that can be used in combination with Channelrhodopsin-2 is strongly desired.

特開2002−153279JP 2002-153279 A 特開2011−125318JP2011-125318A 特開2012−85542JP2012-85542

Zhaoら,Science 333:1888−1891,2011Zhao et al., Science 333: 1888-1891, 1011 Nagelら,Proc Natl Acad Sci USA 100:13940−13945,2003Nagel et al., Proc Natl Acad Sci USA 100: 13940-13945, 2003. Nagaiら,Proc Natl Acad Sci USA 98:3197−3202,2001Nagai et al., Proc Natl Acad Sci USA 98: 3197-3202,2001. Tianら,Nat Methods 6:875−881,2009Tian et al., Nat Methods 6: 875-881, 2009. Maoら,PLoS One 3:e1796,2008Mao et al., PLoS One 3: e1796, 2008

上記事情に鑑み、本発明は、従来の赤色蛍光カルシウムセンサーよりも、さらに、反応性に優れ、かつ細胞内で発現後に細胞質から核内への移行を示さない、カルシウムセンサー蛋白質、及び、該蛋白質をコードする遺伝子の提供を目的とする。   In view of the above circumstances, the present invention provides a calcium sensor protein, which is more reactive than a conventional red fluorescent calcium sensor and does not show a transition from cytoplasm to nucleus after expression in the cell, and the protein It aims at providing the gene which codes.

発明者らは、既存の赤色蛍光カルシウムセンサーであるR−GECO1よりも高い蛍光反応性を示すセンサーの開発を目的として鋭意研究を行ったところ、まず、R−GECO1よりも約1.4倍の高い蛍光反応性を示すセンター、R−CaMP1.01を完成させた。しかし、R−CaMP1.01は、R−GECO1と同様に発現後に核内にも局在するものであった。細胞質カルシウム測定を目的とした研究において、この局在パターンは好ましいものではない。その理由としては、1)細胞質と核内ではカルシウム濃度変化に時差があり(非特許文献3)、細胞質と核での蛍光シグナルを分離して検出する必要がある、2)カルシウムセンサーの分解産物が核内に局在した細胞では通常の細胞質カルシウム応答パターンに異変が見られたという報告(非特許文献4)から、核内局在による細胞機能への悪影響が考えられる、等が挙げられる。
そこで、発明者らは、カルシウムセンサーとしての性能はセンサーのN末端やC末端へのペプチド付加によって修飾を受けるとの知見に基づき(非特許文献5)、R−CaMP1.01の更なる改良を目的として、R−CaMP1.01へ種々様々なペプチドを付加した改変体を作製し、その機能を検討した。その結果、R−CaMP1.01のC末端に15アミノ酸のリンカーと22アミノ酸からなるペプチド(配列番号12)を付加した改変体(以下、R−CaMP1.07と称する)は、核内への局在を示さず、かつR−CaMP1.01よりもさらに高い蛍光反応性を示すことを見出した。
本発明は以上の知見に基づいて完成されたものである。
The inventors conducted intensive research for the purpose of developing a sensor exhibiting higher fluorescence reactivity than R-GECO1, which is an existing red fluorescent calcium sensor. First, about 1.4 times that of R-GECO1. A center exhibiting high fluorescence reactivity, R-CaMP1.01, was completed. However, R-CaMP1.01 was also localized in the nucleus after expression in the same manner as R-GECO1. In studies aimed at measuring cytosolic calcium, this localization pattern is not preferred. The reasons are as follows: 1) There is a time difference in changes in calcium concentration in the cytoplasm and nucleus (Non-patent Document 3), and it is necessary to separate and detect the fluorescence signals in the cytoplasm and nucleus. 2) Degradation products of the calcium sensor From the report (Non-patent Document 4) that abnormal changes were observed in the normal cytoplasmic calcium response pattern in cells localized in the nucleus, there is an adverse effect on the cell function due to the localization in the nucleus.
Therefore, the inventors have further improved R-CaMP1.01 based on the knowledge that the performance as a calcium sensor is modified by adding a peptide to the N-terminus or C-terminus of the sensor (Non-Patent Document 5). For the purpose, the modified body which added various peptides to R-CaMP1.01 was produced, and the function was examined. As a result, a modified form (hereinafter referred to as R-CaMP1.07) in which a 15-amino acid linker and a 22-amino acid peptide (SEQ ID NO: 12) were added to the C-terminus of R-CaMP1.01 was It was found that the fluorescent reactivity was higher than that of R-CaMP1.01.
The present invention has been completed based on the above findings.

すなわち、本発明は以下の(1)〜(10)に関する。
(1)下記(a)〜(k)のアミノ酸配列を、N末端から順に有することを特徴とするカルシウムセンサー蛋白質:
(a)配列番号1で示されるアミノ酸配列;
(b)3つのアミノ酸からなる配列 Met−Xaa1−Xaa2(ここでXaa1及びXaa2はそれぞれ独立して任意のアミノ酸である)(リンカーA)(配列番号2);
(c)ミオシン軽鎖キナーゼ蛋白質、又はカルモジュリン結合部位を含むその部分アミノ酸配列;
(d)前記(c)の配列と後記(e)の配列とを連結する、Iso−Iso、Iso−Leu、Iso−Met、Iso−Pro、Iso−Val、Iso−Gly、Iso−Ala、Leu−Iso、Leu−Leu、Leu−Met、Leu−Pro、Leu−Val、Leu−Gly、Leu−Ala、Met−Iso、Met−Leu、Met−Met、Met−Pro、Met−Val、Met−Gly、Met−Ala、Pro−Iso、Pro−Leu、Pro−Met、Pro−Pro、Pro−Val、Pro−Gly、Pro−Ala、Val−Iso、Val−Leu、Val−Met、Val−Pro、Val−Val、Val−Gly、Val−Ala、Gly−Iso、Gly−Leu、Gly−Met、Gly−Pro、Gly−Val、Gly−Gly、Gly−Ala、Ala−Iso、Ala−Leu、Ala−Met、Ala−Pro、Ala−Val、Ala−Gly及びAla−Alaからなる群より選択される何れか一のアミノ酸配列(リンカーB);
(e)配列番号3で示される配列のX番目〜236番目までのアミノ酸配列であって、151番目及び/又は152番目及び/又は169番目及び/又は171番目及び/又は219番目のアミノ酸を他のアミノ酸に置換したもの(ここで、Xは151〜153の任意の位置である);
(f)前記(e)の配列と後記(g)の配列を連結する、6つのアミノ酸配列からなる配列Gly−Gly−Xaa5−Gly−Gly−Xaa6(ここでXaa5及びXaa6はそれぞれ独立して任意のアミノ酸である)(配列番号4);
(g)配列番号3で示される配列の1番目〜Y番目までのアミノ酸配列であって、
1番目及び/又は8番目及び/又は52番目及び/又は54番目及び/又は76番目及び/又は136番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列(ここで、Yは144〜150の任意の位置である);
(h)前記(g)の配列と後記(i)の配列とを連結するアミノ酸配列Thr−Arg、Phe−Arg、Trp−Arg、Tyr−Arg、Gly−Arg、Ala−Arg又はThr(リンカーC);
(i)配列番号9で示される配列の2番目〜148番目までのアミノ酸配列であって、63番目及び/又は77番目及び/又は101番目及び/又は111番目及び/又は127番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列;
(j)前記(i)の配列と後記(k)の配列とを連結する、15個のアミノ酸配列からなる配列Gly−Gly−Gly−Xaa7−Gly−Gly−Xaa8−Gly−Gly−Gly−Gly−Gly−Gly−Xaa9−Xaa10(ここでXaa7、Xaa8、Xaa9及びXaa10はそれぞれ独立して任意のアミノ酸である)(リンカーD)(配列番号10);
(k)Pro−Val−Lys−Gln−Thr−Leu−Asn−Phe−Asp−Leu−Leu−Lys−Leu−Ala−Gly−Asp−Val−Glu−Ser−Asn−Pro−Gly(配列番号12)、Gln−Cys−Thr−Asn−Tyr−Ala−Leu−Leu−Lys−Leu−Ala−Gly−Asp−Val−Glu−Ser−Asn−Pro−Gly(配列番号13)、Glu−Gly−Arg−Gly−Ser−Leu−Leu−Thr−Cys−Gly−Asp−Val−Glu−Glu−Asn−Pro−Gly(配列番号14)又はAla−Thr−Asn−Phe−Ser−Leu−Leu−Lys−Gln−Ala−Gly−Asp−Val−Glu−Glu−Asn−Pro−Gly(配列番号15)のいずれかのアミノ酸配列。
That is, the present invention relates to the following (1) to (10).
(1) Calcium sensor protein having the following amino acid sequences (a) to (k) in order from the N-terminus:
(A) the amino acid sequence represented by SEQ ID NO: 1;
(B) a sequence consisting of three amino acids Met-Xaa1-Xaa2 (where Xaa1 and Xaa2 are each independently any amino acid) (linker A) (SEQ ID NO: 2);
(C) a myosin light chain kinase protein, or a partial amino acid sequence thereof comprising a calmodulin binding site;
(D) The sequence of (c) and the sequence of (e) described below are linked, Iso-Iso, Iso-Leu, Iso-Met, Iso-Pro, Iso-Val, Iso-Gly, Iso-Ala, Leu -Iso, Leu-Leu, Leu-Met, Leu-Pro, Leu-Val, Leu-Gly, Leu-Ala, Met-Iso, Met-Leu, Met-Met, Met-Pro, Met-Val, Met-Gly , Met-Ala, Pro-Iso, Pro-Leu, Pro-Met, Pro-Pro, Pro-Val, Pro-Gly, Pro-Ala, Val-Iso, Val-Leu, Val-Met, Val-Pro, Val -Val, Val-Gly, Val-Ala, Gly-Iso, Gly-Leu, Gly-Met, Gl Any selected from the group consisting of Pro, Gly-Val, Gly-Gly, Gly-Ala, Ala-Iso, Ala-Leu, Ala-Met, Ala-Pro, Ala-Val, Ala-Gly and Ala-Ala Any one amino acid sequence (linker B);
(E) the amino acid sequence from the Xth to the 236th amino acid sequence of the sequence shown in SEQ ID NO: 3, except for the 151st and / or 152th and / or 169th and / or 171st and / or 219th amino acids (Wherein X is an arbitrary position of 151 to 153);
(F) A sequence Gly-Gly-Xaa5-Gly-Gly-Xaa6 consisting of six amino acid sequences connecting the sequence of (e) and the sequence of (g) to be described later (where Xaa5 and Xaa6 are each independently arbitrary (SEQ ID NO: 4);
(G) an amino acid sequence from the first to the Y-th of the sequence represented by SEQ ID NO: 3,
Amino acid sequence in which the first and / or eighth and / or 52 and / or 54 and / or 76 and / or 136 amino acids are substituted with other amino acids (where Y is any of 144 to 150) Position);
(H) Amino acid sequence Thr-Arg, Phe-Arg, Trp-Arg, Tyr-Arg, Gly-Arg, Ala-Arg or Thr (linker C) linking the sequence of (g) and the sequence of (i) described later );
(I) Amino acid sequence from 2nd to 148th of the sequence shown in SEQ ID NO: 9, except for the 63rd and / or 77th and / or 101st and / or 111th and / or 127th amino acids An amino acid sequence substituted with the amino acid of
(J) A sequence consisting of 15 amino acid sequences Gly-Gly-Gly-Xaa7-Gly-Gly-Xaa8-Gly-Gly-Gly-Gly, linking the sequence of (i) and the sequence of (k) described later -Gly-Gly-Xaa9-Xaa10 (where Xaa7, Xaa8, Xaa9 and Xaa10 are each independently any amino acid) (linker D) (SEQ ID NO: 10);
(K) Pro-Val-Lys-Gln-Thr-Leu-Asn-Phe-Asp-Leu-Leu-Lys-Leu-Ala-Gly-Asp-Val-Glu-Ser-Asn-Pro-Gly (SEQ ID NO: 12 ), Gln-Cys-Thr-Asn-Tyr-Ala-Leu-Leu-Lys-Leu-Ala-Gly-Asp-Val-Glu-Ser-Asn-Pro-Gly (SEQ ID NO: 13), Glu-Gly-Arg -Gly-Ser-Leu-Leu-Thr-Cys-Gly-Asp-Val-Glu-Glu-Asn-Pro-Gly (SEQ ID NO: 14) or Ala-Thr-Asn-Phe-Ser-Leu-Leu-Lys- Gln-Ala-Gly-Asp-Val-Glu-Glu-Asn-Pro-Gly Any of the amino acid sequences of the number 15).

(2)前記(a)の配列の5番目から10番目に存在するHisの数が0〜5であり、及び/又は前記(a)の配列の2番目のArgが欠失し、及び/又は前記(e)の配列の151番目のアミノ酸がIso、Leu、Met、Pro、Val、Tyr、Phe、Trp、Thr、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の152番目のアミノ酸がTyr、Phe、Trp、Thr、Ser、Asp、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の169番目のアミノ酸がHis、Lys、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の171番目のアミノ酸がArg、His、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の219番目のアミノ酸がPhe、Trp、Thr、Ser、Cys、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の1番目のアミノ酸がIso、Leu、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の8番目のアミノ酸がGln、Asp、Glu、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の52番目のアミノ酸がArg、His、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の54番目のアミノ酸がTyr、Phe、Trp、Ser、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の76番目のアミノ酸がIso、Leu、Met、Pro、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の136番目のアミノ酸がTyr、Phe、Trp、Thr、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の63番目のアミノ酸がLeu、Met、Pro、Val、Tyr、Phe、Trp、Thr、Ser、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の77番目のアミノ酸がArg、His、Asn、Gln、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の101番目のアミノ酸がTyr、Phe、Trp、Thr、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の111番目のアミノ酸がGln、Asp、Glu、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の127番目のアミノ酸がAsp、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換されることを特徴とする上記(1)に記載のカルシウムセンサー蛋白質。 (2) The number of His present in the 5th to 10th positions of the sequence (a) is 0 to 5 and / or the second Arg of the sequence (a) is deleted, and / or The 151st amino acid of the sequence (e) is substituted with Iso, Leu, Met, Pro, Val, Tyr, Phe, Trp, Thr, Gly or Ala, and / or the 152nd amino acid of the sequence (e) An amino acid is substituted with Tyr, Phe, Trp, Thr, Ser, Asp, Gly or Ala, and / or the 169th amino acid of the sequence of (e) is substituted with His, Lys, Gly or Ala, and / or The 171st amino acid of the sequence (e) is substituted with Arg, His, Gly or Ala, and / or the 219th amino acid of the sequence (e) is Phe. Substituted with Trp, Thr, Ser, Cys, Gly or Ala and / or the first amino acid of the sequence (g) is substituted with Iso, Leu, Pro, Val, Gly or Ala and / or g) the 8th amino acid in the sequence of Gln, Asp, Glu, Gly or Ala, and / or the 52nd amino acid of the sequence of (g) is Arg, His, Iso, Leu, Met, Pro, Substituted with Val, Gly or Ala, and / or the 54th amino acid of the sequence of (g) is substituted with Tyr, Phe, Trp, Ser, Iso, Leu, Met, Pro, Val, Gly or Ala; and / Or the 76th amino acid of the sequence (g) is Iso, Leu, Met, Pro, Gly or Ala And / or the 136th amino acid of the sequence (g) is replaced with Tyr, Phe, Trp, Thr, Iso, Leu, Met, Pro, Val, Gly or Ala, and / or (i) In the sequence of SEQ ID NO: 9, the 63rd amino acid of the sequence represented by SEQ ID NO: 9 is substituted with Leu, Met, Pro, Val, Tyr, Phe, Trp, Thr, Ser, Gly or Ala, and / or the above (i) In the sequence, the 77th amino acid of the sequence represented by SEQ ID NO: 9 is substituted with Arg, His, Asn, Gln, Gly or Ala, and / or in the sequence of (i), the sequence represented by SEQ ID NO: 9 101st amino acid is substituted with Tyr, Phe, Trp, Thr, Gly or Ala, and / or the above (i) In the sequence, the 111th amino acid of the sequence represented by SEQ ID NO: 9 is substituted with Gln, Asp, Glu, Gly or Ala, and / or the 127th sequence of the sequence represented by SEQ ID NO: 9 in the sequence (i) The calcium sensor protein according to (1) above, wherein the amino acid is substituted with Asp, Iso, Leu, Met, Pro, Val, Gly or Ala.

(3)前記(e)の配列が配列番号3で示される配列の151番目〜236番目までのアミノ酸配列であり、前記(g)の配列が配列番号3で示される配列の1番目〜150番目までのアミノ酸配列であることを特徴とする上記(1)又は(2)に記載のカルシウムセンサー蛋白質。 (3) The sequence of (e) is the amino acid sequence 151 to 236 of the sequence represented by SEQ ID NO: 3, and the sequence of (g) is the first to 150th of the sequence represented by SEQ ID NO: 3. The calcium sensor protein according to (1) or (2) above, which has an amino acid sequence up to

(4)前記(b)の配列が配列番号5若しくは配列番号6で示されるアミノ酸配列であり、及び/又は前記(c)の配列が配列番号7で示されるアミノ酸配列であり、及び/又は前記(f)の配列が配列番号8で示されるアミノ酸配列であることを特徴とする上記(1)乃至(3)のいずれかに記載のカルシウムセンサー蛋白質。 (4) The sequence of (b) is an amino acid sequence represented by SEQ ID NO: 5 or 6 and / or the sequence of (c) is an amino acid sequence represented by SEQ ID NO: 7, and / or The calcium sensor protein according to any one of (1) to (3) above, wherein the sequence (f) is the amino acid sequence represented by SEQ ID NO: 8.

(5)前記(b)の配列が配列番号6で示されるアミノ酸配列であり、前記(d)の配列がPro−Valであり、前記(h)の配列がThr−Argであることを特徴とする上記(4)に記載のカルシウムセンサー蛋白質。 (5) The sequence of (b) is an amino acid sequence represented by SEQ ID NO: 6, the sequence of (d) is Pro-Val, and the sequence of (h) is Thr-Arg, The calcium sensor protein according to (4) above.

(6)前記(e)の配列がアミノ酸の置換を含まない配列番号3で示される配列の151番目〜236番目までのアミノ酸配列であり、前記(g)の配列がアミノ酸の置換を含まない配列番号3で示される配列の1番目〜150番目であり、前記(i)の配列がアミノ酸の置換を含まない配列番号9で示される配列の2番目〜148番目であることを特徴とする上記(5)に記載のカルシウムセンサー蛋白質。 (6) The sequence of (e) is an amino acid sequence from position 151 to position 236 of the sequence represented by SEQ ID NO: 3 that does not include amino acid substitution, and the sequence of (g) does not include amino acid substitution (1) to the 150th sequence of the sequence represented by No. 3, and the sequence (i) is the second to 148th sequence of the sequence represented by SEQ ID No. 9 that does not include amino acid substitution ( The calcium sensor protein according to 5).

(7)前記(e)の配列が配列番号3で示される配列の151番目〜236番目であって、151番目のアミノ酸がValに置換され、152番目のアミノ酸がSerに置換され、169番目のアミノ酸がGlyに置換され、171番目のアミノ酸がArgに置換され、219番目のアミノ酸がCysに置換され、前記(g)の配列が配列番号3で示される配列の1番目〜150番目までのアミノ酸配列であり、1番目のアミノ酸がLeuに置換され、8番目のアミノ酸がAspに置換され、52番目のアミノ酸がValに置換され、54番目のアミノ酸がValに置換され、76番目のアミノ酸がAlaに置換され、136番目のアミノ酸がProに置換され、前記(i)の配列が配列番号9で示される配列の63番目のアミノ酸がPheに置換され、77番目のアミノ酸がAsnに置換され、101番目のアミノ酸がGlyに置換され、111番目のアミノ酸がAspに置換され、127番目のアミノ酸がValに置換されていることを特徴とする上記(5)に記載のカルシウムセンサー蛋白質。 (7) The sequence of (e) is from position 151 to position 236 of the sequence represented by SEQ ID NO: 3, wherein the 151st amino acid is replaced with Val, the 152nd amino acid is replaced with Ser, and the 169th Amino acid is substituted with Gly, 171st amino acid is substituted with Arg, 219th amino acid is substituted with Cys, and the sequence of (g) is the first to 150th amino acids of the sequence represented by SEQ ID NO: 3 The first amino acid is replaced with Leu, the eighth amino acid is replaced with Asp, the 52nd amino acid is replaced with Val, the 54th amino acid is replaced with Val, and the 76th amino acid is replaced with Ala. And the 136th amino acid is substituted with Pro, and the 63rd amino acid of the sequence represented by SEQ ID NO: 9 is the Phe Wherein the 77th amino acid is substituted with Asn, the 101st amino acid is substituted with Gly, the 111th amino acid is substituted with Asp, and the 127th amino acid is substituted with Val. The calcium sensor protein according to (5).

(8)前記(j)の配列が配列番号10で示される配列であることを特徴とする上記(1)乃至(7)のいずれかに記載のカルシウムセンサー蛋白質。 (8) The calcium sensor protein according to any one of (1) to (7) above, wherein the sequence of (j) is the sequence represented by SEQ ID NO: 10.

(9)前記(k)の配列が配列番号12で示される配列であることを特徴とする上記(1)乃至(8)のいずれかに記載のカルシウムセンサー蛋白質。 (9) The calcium sensor protein according to any one of (1) to (8) above, wherein the sequence of (k) is the sequence represented by SEQ ID NO: 12.

(10)上記(1)乃至(9)のいずれかに記載の蛋白質をコードするカルシウムセンサー遺伝子。 (10) A calcium sensor gene encoding the protein according to any one of (1) to (9) above.

本発明により、従来の赤色蛍光カルシウムセンサーに比べ、更に反応性に優れ、かつ細胞内で発現後に細胞質から核内への移行を示さない、カルシウムセンサー蛋白質の提供が可能となる。 According to the present invention, it is possible to provide a calcium sensor protein that is more reactive than a conventional red fluorescent calcium sensor and that does not show a transition from cytoplasm to nucleus after expression in cells.

図1は、カルシウムセンサー蛋白質(R−GECO1、R−CaMP1.01又はR−CaMP1.07)のDNAをトランスフェクション法により導入し発現させたヒト子宮癌由来株化細胞(HeLa細胞)の画像図である。FIG. 1 is an image of a human uterine cancer-derived cell line (HeLa cell) in which DNA of a calcium sensor protein (R-GECO1, R-CaMP1.01 or R-CaMP1.07) is introduced and expressed by a transfection method. It is. 図2は、ATPに対して、HeLa細胞に発現したカルシウムセンサー蛋白質(R−GECO1、R−CaMP1.01又はR−CaMP1.07)の蛍光強度が変化する様子を示すグラフ図である。FIG. 2 is a graph showing how the fluorescence intensity of a calcium sensor protein (R-GECO1, R-CaMP1.01 or R-CaMP1.07) expressed in HeLa cells changes with respect to ATP. 図3は、本発明のカルシウムセンサー蛋白質(R−CaMP1.07)又はその前駆体(R−CaMP1.01)又は従来のカルシウムセンサー蛋白質(R−GECO1)を発現させたHeLa細胞へのATP処理に対する蛍光強度変化量を比較したグラフ図である。FIG. 3 shows ATP treatment for HeLa cells expressing the calcium sensor protein (R-CaMP1.07) or a precursor thereof (R-CaMP1.01) or a conventional calcium sensor protein (R-GECO1) of the present invention. It is the graph which compared the fluorescence intensity change amount. 図4は、精製したカルシウムセンサー蛋白質(R−GECO1、R−CaMP1.01又はR−CaMP1.07)のカルシウム濃度と蛍光量との関係を示すグラフ図である。FIG. 4 is a graph showing the relationship between the calcium concentration of the purified calcium sensor protein (R-GECO1, R-CaMP1.01 or R-CaMP1.07) and the amount of fluorescence.

本発明のカルシウムセンサー蛋白質は、下記(a)〜(k)のアミノ酸配列を、N末端から順に有することを特徴とする蛋白質である:
(a)配列番号1で示されるアミノ酸配列;
(b)3つのアミノ酸からなる配列 Met−Xaa1−Xaa2(ここでXaa1及びXaa2はそれぞれ独立して任意のアミノ酸である)(リンカーA)(配列番号2);
(c)ミオシン軽鎖キナーゼ蛋白質、又はカルモジュリン結合部位を含むその部分アミノ酸配列;
(d)前記(c)の配列と後記(e)の配列とを連結する、Iso−Iso、Iso−Leu、Iso−Met、Iso−Pro、Iso−Val、Iso−Gly、Iso−Ala、Leu−Iso、Leu−Leu、Leu−Met、Leu−Pro、Leu−Val、Leu−Gly、Leu−Ala、Met−Iso、Met−Leu、Met−Met、Met−Pro、Met−Val、Met−Gly、Met−Ala、Pro−Iso、Pro−Leu、Pro−Met、Pro−Pro、Pro−Val、Pro−Gly、Pro−Ala、Val−Iso、Val−Leu、Val−Met、Val−Pro、Val−Val、Val−Gly、Val−Ala、Gly−Iso、Gly−Leu、Gly−Met、Gly−Pro、Gly−Val、Gly−Gly、Gly−Ala、Ala−Iso、Ala−Leu、Ala−Met、Ala−Pro、Ala−Val、Ala−Gly及びAla−Alaからなる群より選択される何れか一のアミノ酸配列(リンカーB);
(e)配列番号3で示される配列のX番目〜236番目までのアミノ酸配列であって、151番目及び/又は152番目及び/又は169番目及び/又は171番目及び/又は219番目のアミノ酸を他のアミノ酸に置換したもの(ここで、Xは151〜153の任意の位置である);
(f)前記(e)の配列と後記(g)の配列を連結する、6つのアミノ酸配列からなる配列Gly−Gly−Xaa5−Gly−Gly−Xaa6(ここでXaa5及びXaa6はそれぞれ独立して任意のアミノ酸である)(配列番号4);
(g)配列番号3で示される配列の1番目〜Y番目までのアミノ酸配列であって、
1番目及び/又は8番目及び/又は52番目及び/又は54番目及び/又は76番目及び/又は136番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列(ここで、Yは144〜150の任意の位置である);
(h)前記(g)の配列と後記(i)の配列とを連結するアミノ酸配列Thr−Arg、Phe−Arg、Trp−Arg、Tyr−Arg、Gly−Arg、Ala−Arg又はThr(リンカーC);
(i)配列番号9で示される配列の2番目〜148番目までのアミノ酸配列であって、63番目及び/又は77番目及び/又は101番目及び/又は111番目及び/又は127番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列;
(j)前記(i)の配列と後記(k)の配列とを連結する、15個のアミノ酸配列からなる配列Gly−Gly−Gly−Xaa7−Gly−Gly−Xaa8−Gly−Gly−Gly−Gly−Gly−Gly−Xaa9−Xaa10(ここでXaa7、Xaa8、Xaa9及びXaa10はそれぞれ独立して任意のアミノ酸である)(リンカーD)(配列番号10);
(k)Pro−Val−Lys−Gln−Thr−Leu−Asn−Phe−Asp−Leu−Leu−Lys−Leu−Ala−Gly−Asp−Val−Glu−Ser−Asn−Pro−Gly(配列番号12)、Gln−Cys−Thr−Asn−Tyr−Ala−Leu−Leu−Lys−Leu−Ala−Gly−Asp−Val−Glu−Ser−Asn−Pro−Gly(配列番号13)、Glu−Gly−Arg−Gly−Ser−Leu−Leu−Thr−Cys−Gly−Asp−Val−Glu−Glu−Asn−Pro−Gly(配列番号14)又はAla−Thr−Asn−Phe−Ser−Leu−Leu−Lys−Gln−Ala−Gly−Asp−Val−Glu−Glu−Asn−Pro−Gly(配列番号15)のいずれかのアミノ酸配列。
The calcium sensor protein of the present invention is a protein characterized by having the following amino acid sequences (a) to (k) in order from the N-terminus:
(A) the amino acid sequence represented by SEQ ID NO: 1;
(B) a sequence consisting of three amino acids Met-Xaa1-Xaa2 (where Xaa1 and Xaa2 are each independently any amino acid) (linker A) (SEQ ID NO: 2);
(C) a myosin light chain kinase protein, or a partial amino acid sequence thereof comprising a calmodulin binding site;
(D) The sequence of (c) and the sequence of (e) described below are linked, Iso-Iso, Iso-Leu, Iso-Met, Iso-Pro, Iso-Val, Iso-Gly, Iso-Ala, Leu -Iso, Leu-Leu, Leu-Met, Leu-Pro, Leu-Val, Leu-Gly, Leu-Ala, Met-Iso, Met-Leu, Met-Met, Met-Pro, Met-Val, Met-Gly , Met-Ala, Pro-Iso, Pro-Leu, Pro-Met, Pro-Pro, Pro-Val, Pro-Gly, Pro-Ala, Val-Iso, Val-Leu, Val-Met, Val-Pro, Val -Val, Val-Gly, Val-Ala, Gly-Iso, Gly-Leu, Gly-Met, Gl Any selected from the group consisting of Pro, Gly-Val, Gly-Gly, Gly-Ala, Ala-Iso, Ala-Leu, Ala-Met, Ala-Pro, Ala-Val, Ala-Gly and Ala-Ala Any one amino acid sequence (linker B);
(E) the amino acid sequence from the Xth to the 236th amino acid sequence of the sequence shown in SEQ ID NO: 3, except for the 151st and / or 152th and / or 169th and / or 171st and / or 219th amino acids (Wherein X is an arbitrary position of 151 to 153);
(F) A sequence Gly-Gly-Xaa5-Gly-Gly-Xaa6 consisting of six amino acid sequences connecting the sequence of (e) and the sequence of (g) to be described later (where Xaa5 and Xaa6 are each independently arbitrary (SEQ ID NO: 4);
(G) an amino acid sequence from the first to the Y-th of the sequence represented by SEQ ID NO: 3,
Amino acid sequence in which the first and / or eighth and / or 52 and / or 54 and / or 76 and / or 136 amino acids are substituted with other amino acids (where Y is any of 144 to 150) Position);
(H) Amino acid sequence Thr-Arg, Phe-Arg, Trp-Arg, Tyr-Arg, Gly-Arg, Ala-Arg or Thr (linker C) linking the sequence of (g) and the sequence of (i) described later );
(I) Amino acid sequence from 2nd to 148th of the sequence shown in SEQ ID NO: 9, except for the 63rd and / or 77th and / or 101st and / or 111th and / or 127th amino acids An amino acid sequence substituted with the amino acid of
(J) A sequence consisting of 15 amino acid sequences Gly-Gly-Gly-Xaa7-Gly-Gly-Xaa8-Gly-Gly-Gly-Gly, linking the sequence of (i) and the sequence of (k) described later -Gly-Gly-Xaa9-Xaa10 (where Xaa7, Xaa8, Xaa9 and Xaa10 are each independently any amino acid) (linker D) (SEQ ID NO: 10);
(K) Pro-Val-Lys-Gln-Thr-Leu-Asn-Phe-Asp-Leu-Leu-Lys-Leu-Ala-Gly-Asp-Val-Glu-Ser-Asn-Pro-Gly (SEQ ID NO: 12 ), Gln-Cys-Thr-Asn-Tyr-Ala-Leu-Leu-Lys-Leu-Ala-Gly-Asp-Val-Glu-Ser-Asn-Pro-Gly (SEQ ID NO: 13), Glu-Gly-Arg -Gly-Ser-Leu-Leu-Thr-Cys-Gly-Asp-Val-Glu-Glu-Asn-Pro-Gly (SEQ ID NO: 14) or Ala-Thr-Asn-Phe-Ser-Leu-Leu-Lys- Gln-Ala-Gly-Asp-Val-Glu-Glu-Asn-Pro-Gly Any of the amino acid sequences of the number 15).

ここで、配列(a)(配列番号1で示されるアミノ酸配列)は、5番目から10番目がHisで構成されているが、このHisの数は、0〜6の間のいずれであってもよく、好ましくは6である。また、2番目のArgは存在していても、欠失していてもよい。
また、上記配列(e)、(g)及び(i)は、少なくとも1の配列((e)、(g)又は(i))に上述のアミノ酸置換が含まれていればよく、例えば、配列(e)の152番目と169番目のアミノ酸のみが置換され、配列(g)が配列番号3で示される配列の1番目〜Y番目までのアミノ酸配列であってアミノ酸の置換を含まず(ここで、Yは141〜148の任意の位置である)、配列(i)が配列番号9で示される配列の2番目〜148番目までのアミノ酸配列であってアミノ酸の置換を含まないものであってもよい。
Here, the sequence (a) (amino acid sequence represented by SEQ ID NO: 1) is composed of His at the 5th to 10th positions, and the number of His may be any number between 0 and 6. Well, preferably 6. The second Arg may be present or may be deleted.
In addition, the sequences (e), (g) and (i) need only contain the above-mentioned amino acid substitution in at least one sequence ((e), (g) or (i)). Only the 152nd and 169th amino acids in (e) are substituted, and the sequence (g) is the first to Yth amino acid sequence of the sequence represented by SEQ ID NO: 3 and does not include amino acid substitution (here Y is an arbitrary position of 141 to 148), and the sequence (i) is an amino acid sequence from the 2nd to the 148th amino acid sequence of the sequence represented by SEQ ID NO: 9 and does not include amino acid substitution Good.

上記配列(k)は、本発明のカルシウムセンサー蛋白質が核へ移行しないという性質を付与する働きをする。配列(k)は、Leu−Xaa11−Xaa12−Xaa13−Gly−Asp−Val−Glu−Xaa14−Asn−Pro−Gly(配列番号22)からなる配列をコンセンサス配列として含むものが望ましく、Xaa11はK又はL、Xaa12はL、T又はQ、Xaa13はA又はC、Xaa14はS又はEであることが好ましく、配列(k)としては、例えば、配列番号12〜15に示される配列が好ましく、配列番号12で示される配列が特に好ましい。   The sequence (k) functions to impart the property that the calcium sensor protein of the present invention does not move to the nucleus. The sequence (k) preferably includes a sequence consisting of Leu-Xaa11-Xaa12-Xaa13-Gly-Asp-Val-Glu-Xaa14-Asn-Pro-Gly (SEQ ID NO: 22) as a consensus sequence, and Xaa11 is K or L, Xaa12 is preferably L, T or Q, Xaa13 is preferably A or C, and Xaa14 is preferably S or E. As the sequence (k), for example, the sequences shown in SEQ ID NOs: 12 to 15 are preferable, The sequence represented by 12 is particularly preferred.

上記のカルシウムセンサー蛋白質は、主として、改変mApple(e及びgが該当)、(2)機能性分子(c及びiが該当)、(3)リンカー(b、d、f及びh)、(4)カルシウムセンサー蛋白質の核移行を抑制するペプチド(kが該当)から構成されている。   The calcium sensor protein is mainly composed of modified mapple (e and g), (2) functional molecule (c and i), (3) linker (b, d, f and h), (4) It consists of a peptide (k corresponds) that suppresses nuclear translocation of calcium sensor protein.

改変mAppleとは、蛍光特性に影響を及ぼすホットスポットアミノ酸残基の近傍でmAppleのアミノ酸配列を切断して該蛋白質の構造を改変し、さらに特定部位のアミノ酸残基を置換したものである。   The modified mapple is a protein in which the amino acid sequence of the mapple is cleaved in the vicinity of the hot spot amino acid residue that affects the fluorescence properties to modify the protein structure, and the amino acid residue at a specific site is further substituted.

本発明のmAppleは、配列番号3で示されるアミノ酸配列からなる蛋白質である。また、本発明のmAppleのホモログとは、配列番号3で示されるアミノ酸と同一又は実質的に同一のアミノ酸配列を含む蛋白質のことである。ここで、「実質的に同一のアミノ酸配列を含む蛋白質」とは、配列番号3で示されるアミノ酸配列と約60%以上、好ましくは約70%以上、より好ましくは約80%,81%,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%,92%,93%,94%,95%,96%,97%,98%,最も好ましくは約99%のアミノ酸同一性を有するアミノ酸配列を含み、かつ、蛍光を発する蛋白質のことであり、例えば、DsRed、mCherry、mStrawberry、mBanana、mPlum、tdTomato等のmAppleホモログがあげられる。   The mApple of the present invention is a protein consisting of the amino acid sequence represented by SEQ ID NO: 3. In addition, the homolog of the mapple of the present invention is a protein containing the same or substantially the same amino acid sequence as the amino acid represented by SEQ ID NO: 3. Here, the “protein containing substantially the same amino acid sequence” is about 60% or more, preferably about 70% or more, more preferably about 80%, 81%, or 82 with the amino acid sequence represented by SEQ ID NO: 3. %, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, Most preferably, it is a protein that contains an amino acid sequence having about 99% amino acid identity and emits fluorescence, and examples thereof include mapple homologues such as DsRed, mCherry, mStrawberry, mBanana, mPlum, and tdTomato.

あるいは、配列番号3で示されるアミノ酸配列と実質的に同一のアミノ酸配列を含む蛋白質としては、配列番号3で表わされるアミノ酸配列中の1又は数個(好ましくは、1〜30個程度、より好ましくは1〜10個程度、さらに好ましくは1〜5個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、蛍光を発する蛋白質のことである。   Alternatively, as a protein comprising an amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 3, one or several (preferably, about 1 to 30 amino acids, more preferably, in the amino acid sequence represented by SEQ ID NO: 3 Is a protein that consists of an amino acid sequence in which about 1 to 10 amino acids, more preferably 1 to 5 amino acids are deleted, substituted, or added, and emits fluorescence.

本発明において、mAppleの蛍光特性に影響を及ぼす「ホットスポットアミノ酸残基」とは、改変mAppleを作成する際に、その改変位置の指標となるmApple上のアミノ酸残基であり、該アミノ酸残基の近傍でmAppleの構造を改変することにより、所望の改変mAppleを作成することを可能とするものである。本発明において推定されるmAppleのホットスポットアミノ酸残基は、配列番号3で示されるGFPのアミノ酸配列中、第151番目のアミノ酸である。   In the present invention, the “hot spot amino acid residue” that affects the fluorescence properties of mapple is an amino acid residue on the mapple that serves as an index of the modified position when creating a modified mapple. By modifying the structure of the mapple in the vicinity of, it is possible to create a desired modified mapple. The hot spot amino acid residue of mapple estimated in the present invention is the 151st amino acid in the amino acid sequence of GFP represented by SEQ ID NO: 3.

mAppleの構造を改変するとは、好ましくは、推定されるホットスポットアミノ酸残基の近傍(好ましくは、ホットスポットアミノ酸残基の前後5アミノ酸の範囲内の各位置)でmAppleを切断し、さらに切断部位から適切な数のアミノ酸(好ましくは1−10個のアミノ酸)を除去し、必要に応じてmApple本来のN末端と本来のC末端とを適切なアミノ酸配列で連結することをいう。   Modifying the structure of mApple preferably cleaves mApple in the vicinity of the presumed hot spot amino acid residue (preferably each position within the range of 5 amino acids before and after the hot spot amino acid residue), An appropriate number of amino acids (preferably 1 to 10 amino acids) are removed from, and if necessary, the original N-terminus and the original C-terminus of mA Apple are connected with an appropriate amino acid sequence.

特定部位のアミノ酸残基を置換した改変mAppleとは、配列番号3で示されるmAppleのアミノ酸配列上、特定部位のアミノ酸残基(好ましくは1番目及び/又は8番目及び/又は52番目及び/又は54番目及び/又は76番目及び/又は136番目及び/又は151番目及び/又は152番目及び/又は169番目及び/又は171番目及び/又は219番目のアミノ酸残基)を、いずれかのアミノ酸に置換(例えば、1番目のアミノ酸をIso、Leu、Pro、Val、Gly若しくはAla、特に好ましくはLeuに置換し、8番目のアミノ酸をGln、Asp、Glu、Gly若しくはAla、特に好ましくはAspに置換し、52番目のアミノ酸をArg、His、Iso、Leu、Met、Pro、Val、Gly若しくはAla、特に好ましくは、Valに置換し、54番目のアミノ酸をTyr、Phe、Trp、Ser、Iso、Leu、Met、Pro、Val、Gly若しくはAla、特に好ましくはValに置換し、76番目のアミノ酸をIso、Leu、Met、ProGly若しくはAla、特に好ましくはAlaに置換し、136番目のアミノ酸をTyr、Phe、Trp、Thr、Iso、Leu、Met、Pro、Val、Gly若しくはAla、特に好ましくはProに置換し、151番目のアミノ酸をIso、Leu、Met、Pro、Val、Tyr、Phe、Trp、Thr、Gly若しくはAla、特に好ましくはValに置換し、152番目のアミノ酸をTyr、Phe、Trp、Thr、Ser、Asp、Gly若しくはAla、特に好ましくはSerに置換し、169番目のアミノ酸をHis、Lys、Gly若しくはAla、特に好ましくはGlyに置換し、171番目のアミノ酸をArg、His、Gly若しくはAla、特に好ましくはArgに置換し、219番目のアミノ酸をPhe、Trp、Thr、Ser、Cys、Gly若しくはAla、特に好ましくはCysに置換)したmAppleを用いて、上記にあるように構造を改変したmAppleをいう。   The modified mAapple in which an amino acid residue at a specific site is substituted refers to an amino acid residue at a specific site (preferably at the 1st and / or 8th and / or 52nd and / or on the amino acid sequence of mApple shown in SEQ ID NO: 3. 54th and / or 76th and / or 136th and / or 151st and / or 152th and / or 169th and / or 171st and / or 219th amino acid residues) (For example, the first amino acid is replaced with Iso, Leu, Pro, Val, Gly or Ala, particularly preferably Leu, and the eighth amino acid is replaced with Gln, Asp, Glu, Gly or Ala, particularly preferably Asp. , Amino acid 52, Arg, His, Iso, Leu, Met, Pro, Val, Gly Or Ala, particularly preferably Val, and the 54th amino acid is replaced with Tyr, Phe, Trp, Ser, Iso, Leu, Met, Pro, Val, Gly or Ala, particularly preferably Val, and 76th Is replaced with Iso, Leu, Met, ProGly or Ala, particularly preferably Ala, and the 136th amino acid is Tyr, Phe, Trp, Thr, Iso, Leu, Met, Pro, Val, Gly or Ala, particularly preferred Is replaced with Pro, the 151st amino acid is replaced with Iso, Leu, Met, Pro, Val, Tyr, Phe, Trp, Thr, Gly or Ala, particularly preferably Val, and the 152nd amino acid is replaced with Tyr, Phe, Trp, Thr, Ser, Asp, Gly Is replaced with Ala, particularly preferably Ser, the 169th amino acid is replaced with His, Lys, Gly or Ala, particularly preferably Gly, and the 171st amino acid is replaced with Arg, His, Gly or Ala, particularly preferably Arg. A mapple having a structure modified as described above using a mapple substituted and substituted with the amino acid at position 219 by Phe, Trp, Thr, Ser, Cys, Gly or Ala, particularly preferably Cys).

改変mAppleの特に好ましい例としては、配列番号3で示される配列の151番目〜236番目までのアミノ酸配列であって、151番目のアミノ酸をValに置換し、152番目のアミノ酸をSerに置換し、169番目のアミノ酸をGlyに置換し、171番目のアミノ酸をArgに置換し、219番目のアミノ酸をCysに置換したアミノ酸配列をN末端側とし、配列番号3で示される配列の1番目〜150番目までのアミノ酸であって、1番目のアミノ酸をLeuに置換し、8番目のアミノ酸をAspに置換し、52番目のアミノ酸をValに置換し、54番目のアミノ酸をValに置換し、76番目のアミノ酸をAlaに置換し、136番目のアミノ酸をProに置換したアミノ酸をC末端側として、適切なアミノ酸配列により連結したものが挙げられる。
なお、配列番号3において、52番目と54番目のアミノ酸置換については、本発明において初めて見出されたものである。他の位置のアミノ酸置換については、Zhao et al., Science 333:1888-1891 2011(非特許文献1)を参照した。
As a particularly preferred example of the modified mapple, the amino acid sequence from position 151 to position 236 of the sequence represented by SEQ ID NO: 3, wherein the 151st amino acid is substituted with Val, the 152nd amino acid is substituted with Ser, The amino acid sequence in which the 169th amino acid is replaced with Gly, the 171st amino acid is replaced with Arg, and the 219th amino acid is replaced with Cys is the N-terminal side. The first to 150th positions of the sequence shown in SEQ ID NO: 3 The first amino acid is replaced with Leu, the eighth amino acid is replaced with Asp, the 52nd amino acid is replaced with Val, the 54th amino acid is replaced with Val, the 76th amino acid is replaced with By replacing the amino acid with Ala and substituting the 136th amino acid with Pro for the C-terminal side, the appropriate amino acid sequence The concatenation, and the like.
In SEQ ID NO: 3, the 52nd and 54th amino acid substitutions were found for the first time in the present invention. For amino acid substitutions at other positions, refer to Zhao et al., Science 333: 1888-1891 2011 (Non-patent Document 1).

機能性分子とは、機能性分子自身が、該分子に作用する因子の結合等の作用により、立体構造に変化を起こし得る分子であって、改変mAppleに連結することで、自身の立体構造の変化を該改変mAppleに伝え得る分子のことである。この際、該機能性分子は、自身の立体構造の変化を前記改変mAppleに伝えることにより、前記改変mAppleの立体構造を変化させ、蛍光特性を変化させるように機能する。   A functional molecule is a molecule that itself can change its steric structure by the action of a factor that acts on the molecule, etc., and is linked to the modified mapple to Molecules that can transmit changes to the modified mApple. At this time, the functional molecule functions to change the three-dimensional structure of the modified mapple by changing its own three-dimensional structure to the modified mapple, thereby changing the fluorescence characteristics.

従って、機能性分子は、自身の立体構造の変化を改変mAppleに伝達し改変mAppleの構造に変化を及ぼし得る位置で、改変mAppleに連結されている必要がある。従って機能性分子は、本来のmApple構造を改変した部分に近接して連結されていることが好ましい。具体的には、mAppleを切断した位置にリンカー分子を介して連結されていることが好ましい。   Therefore, the functional molecule needs to be linked to the modified mapple at a position where it can transmit a change in its three-dimensional structure to the modified mapple and change the structure of the modified mapple. Therefore, it is preferable that the functional molecule is linked in the vicinity of a portion where the original mA Apple structure is modified. Specifically, it is preferable to be linked via a linker molecule to the position where the mapple has been cleaved.

このような機能性分子は、一分子であってもよいし、二分子以上であってもよい。二分子の場合、機能性分子に作用する因子は、まず一方の機能性分子の立体構造に変化を及ぼし、次いでその立体構造が改変mAppleの立体構造に変化を起こさせる。本発明における機能性分子としては、カルモジュリン蛋白質とミオシン軽鎖キナーゼ蛋白質との組み合わせが挙げられる。   Such a functional molecule may be one molecule or two or more molecules. In the case of two molecules, factors acting on a functional molecule first change the three-dimensional structure of one functional molecule, and then the three-dimensional structure causes a change to the three-dimensional structure of the modified mAple. Examples of the functional molecule in the present invention include a combination of a calmodulin protein and a myosin light chain kinase protein.

また、改変mAppleに連結する機能性分子は、その機能性分子が生体内で発現している通りの全構造を有する必要はなく、機能性分子に作用する因子が結合する部位のみを有する一部構造であってもよい。本発明における好ましい例としては、カルモジュリン蛋白質、及び配列番号7に示すカルモジュリン結合機能を有するミオシン軽鎖キナーゼの一部を機能性分子として挙げることができる。このような機能性分子を改変mAppleに適式に連結することで、該融合蛋白質はカルシウムセンサーとして機能し得る。   In addition, the functional molecule linked to the modified mAple does not need to have the entire structure as the functional molecule is expressed in the living body, and has only a part to which a factor acting on the functional molecule binds. It may be a structure. Preferred examples of the present invention include a calmodulin protein and a part of a myosin light chain kinase having a calmodulin binding function shown in SEQ ID NO: 7 as functional molecules. By appropriately linking such a functional molecule to the modified mapple, the fusion protein can function as a calcium sensor.

ここで機能性分子として使用したラットカルモジュリン蛋白質の1番目のアミノ酸から148番目のアミノ酸配列を配列番号9に示す。この機能性分子においても、特定の部位のアミノ酸残基が置換されていることが望ましい。例えば、配列番号9で示される配列中、63番目及び/又は77番目及び/又は101番目及び/又は111番目及び/又は127番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列などを好ましいアミノ酸置換の例として挙げることができる。
なお、ここで示すアミノ酸の好ましい位置については、Zhao et al., Science 333:1888-1891 2011(非特許文献1)を参照した。
The amino acid sequence from the 1st amino acid to the 148th amino acid sequence of the rat calmodulin protein used as a functional molecule is shown in SEQ ID NO: 9. Also in this functional molecule, it is desirable that an amino acid residue at a specific site is substituted. For example, in the sequence represented by SEQ ID NO: 9, an amino acid sequence obtained by substituting the 63rd and / or 77th and / or 101st and / or 111th and / or 127th amino acid with another amino acid is preferable amino acid substitution As an example.
In addition, Zhao et al., Science 333: 1888-1891 2011 (nonpatent literature 1) was referred about the preferable position of the amino acid shown here.

リンカーとは、上記改変mAppleの切断部位、該改変mAppleと上記機能性分子間の連結部位、及び改変mAppleと機能性分子を連結してなる蛋白質とそのN末端側にあるアミノ酸配列(本発明においては配列番号1で示されるアミノ酸配列)との連結部位に位置する数残基のアミノ酸からなるペプチドである。各リンカー分子を区別するべく、以下のような名称を付している。   The linker refers to the cleavage site of the modified mapple, the linking site between the modified mapple and the functional molecule, the protein obtained by linking the modified mapple and the functional molecule, and the amino acid sequence on the N-terminal side (in the present invention). Is a peptide consisting of several residues of amino acids located at the linking site to the amino acid sequence shown in SEQ ID NO: 1. In order to distinguish each linker molecule, the following names are given.

改変mAppleと機能性分子からなる融合蛋白質全体のN末端に存在する配列番号1で示されるアミノ酸配列(上記配列(a))とミオシン軽鎖キナーゼ蛋白質又はカルモジュリン結合部位を含むその部分アミノ酸配列とを連結するリンカーをリンカーAと称する。リンカーAは、Metを含む任意のアミノ酸配列であるが、好ましくは1〜10残基のアミノ酸ペプチドであり、より好ましくは、3つのアミノ酸からなる配列Met−Xaa1−Xaa2(ここでXaa1及びXaa2はそれぞれ独立して任意のアミノ酸である;配列番号2)、さらに好ましくは、Met−Gly−Thr(配列番号5)またはMet−Val−Asp(配列番号6)である。   An amino acid sequence represented by SEQ ID NO: 1 (the above-mentioned sequence (a)) present at the N-terminus of the entire fusion protein consisting of a modified mAapple and a functional molecule, and a partial amino acid sequence including a myosin light chain kinase protein or a calmodulin binding site The linker to be linked is called linker A. The linker A is an arbitrary amino acid sequence including Met, but is preferably an amino acid peptide having 1 to 10 residues, more preferably a sequence Met-Xaa1-Xaa2 (where Xaa1 and Xaa2 are each composed of 3 amino acids). Each is independently an arbitrary amino acid; SEQ ID NO: 2), more preferably Met-Gly-Thr (SEQ ID NO: 5) or Met-Val-Asp (SEQ ID NO: 6).

改変mAppleのN末端側と機能性分子を連結するリンカーはリンカーBと称し、任意のアミノ酸配列であるが、好ましくは0〜10残基のアミノ酸ペプチドであり、より好ましくは、2つのアミノ酸からなる配列Xaa3−Xaa4(ここでXaa3およびXaa4はいずれもIso、Leu、Met、Pro、Val、GlyおよびAlaからなる群から選択される何れか一のアミノ酸である)、さらに好ましくは、Pro−Valである。   The linker that connects the functional molecule to the N-terminal side of the modified mAple is referred to as linker B, and is an arbitrary amino acid sequence, preferably an amino acid peptide of 0 to 10 residues, more preferably composed of two amino acids. The sequence Xaa3-Xaa4 (wherein Xaa3 and Xaa4 are all any one amino acid selected from the group consisting of Iso, Leu, Met, Pro, Val, Gly and Ala), more preferably Pro-Val is there.

改変mAppleのC末端側と機能性分子を連結するリンカーはリンカーCと称し、Thr−Arg、Phe−Arg、Trp−Arg、Tyr−Arg、Gly−Arg、Ala−Arg又はThrであり、特に好ましくはThr−Argである。   The linker that connects the functional molecule to the C-terminal side of the modified mapple is referred to as linker C, and is preferably Thr-Arg, Phe-Arg, Trp-Arg, Tyr-Arg, Gly-Arg, Ala-Arg, or Thr. Is Thr-Arg.

機能性分子のC末端側に連結するリンカーはリンカーDと称し、15個のアミノ酸配列からなる配列Gly−Gly−Gly−Xaa7−Gly−Gly−Xaa8−Gly−Gly−Gly−Gly−Gly−Gly−Xaa9−Xaa10(ここでXaa7、Xaa8、Xaa9及びXaa10はそれぞれ独立して任意のアミノ酸である)(配列番号10)であり、特に好ましい例としては、Gly−Gly−Gly−Thr−Gly−Gly−Ser−Gly−Gly−Gly−Gly−Gly−Gly−Glu−Phe(配列番号11)が挙げられる。   The linker linked to the C-terminal side of the functional molecule is referred to as linker D, and is a sequence consisting of 15 amino acids Gly-Gly-Gly-Xaa7-Gly-Gly-Xaa8-Gly-Gly-Gly-Gly-Gly-Gly -Xaa9-Xaa10 (where Xaa7, Xaa8, Xaa9 and Xaa10 are each independently any amino acid) (SEQ ID NO: 10), and a particularly preferred example is Gly-Gly-Gly-Thr-Gly-Gly. -Ser-Gly-Gly-Gly-Gly-Gly-Gly-Glu-Phe (sequence number 11) is mentioned.

なお、mAppleの本来のN末端とC末端とを連結するアミノ酸ペプチドもリンカーであり、好ましくは、アミノ酸2〜10残基からなるペプチドであり、Glyを多く含むものが好ましく、さらに好ましくは、6つのアミノ酸配列からなる配列Gly−Gly−Xaa5−Gly−Gly−Xaa6(ここでXaa5及びXaa6はそれぞれ独立して任意のアミノ酸である;配列番号4)であり、特に好ましい例としては、Gly−Gly−Thr−Gly−Gly−Ser(配列番号8)が挙げられる。   The amino acid peptide that connects the original N-terminal and C-terminal of mApple is also a linker, preferably a peptide consisting of 2 to 10 amino acids, preferably containing a large amount of Gly, more preferably 6 A sequence consisting of two amino acid sequences Gly-Gly-Xaa5-Gly-Gly-Xaa6 (where Xaa5 and Xaa6 are each independently any amino acid; SEQ ID NO: 4). Particularly preferred examples include Gly-Gly -Thr-Gly-Gly-Ser (SEQ ID NO: 8).

本発明でのカルシウムセンサー蛋白質とは、当該蛋白質に含まれる機能性分子の立体構造に影響を及ぼす因子であるカルシウムを作用させることで該機能性分子の立体構造に影響を与え、該立体構造の変化がカルシウムセンサー蛋白質に含まれる改変mAppleの立体構造に影響を与えることで、該改変mAppleの蛍光特性を可逆的に変化させる蛋白質をいう。この変化は、蛍光顕微鏡若しくはレーザー顕微鏡等で捉えることが出来る程度の変化をいい、好ましくは肉眼で捉えることが出来る程度の変化をいう。蛍光特性の変化が蛍光強度の変化である場合、蛍光の変化量ΔF/Fが、好ましくは、少なくとも0.1以上変化すること、より好ましくは1以上の範囲で変化することをいう。   The calcium sensor protein in the present invention affects the three-dimensional structure of the functional molecule by acting calcium, which is a factor affecting the three-dimensional structure of the functional molecule contained in the protein. This refers to a protein that reversibly changes the fluorescent properties of the modified mApple by affecting the three-dimensional structure of the modified mApple contained in the calcium sensor protein. This change refers to a change that can be detected with a fluorescence microscope or a laser microscope, and preferably a change that can be detected with the naked eye. When the change in fluorescence characteristics is a change in fluorescence intensity, it means that the fluorescence change amount ΔF / F preferably changes by at least 0.1 or more, more preferably changes by 1 or more.

本発明において蛍光特性とは、蛍光強度、蛍光波長、蛍光強度比、吸光度、吸光波長などの蛍光特性を指す。本発明では蛍光特性の一例として、蛍光強度を使用する。   In the present invention, the fluorescence characteristics refer to fluorescence characteristics such as fluorescence intensity, fluorescence wavelength, fluorescence intensity ratio, absorbance, and absorption wavelength. In the present invention, fluorescence intensity is used as an example of fluorescence characteristics.

本発明において、蛍光特性が蛍光強度である場合、カルシウムセンサー蛋白質は、蛍光を発する状態と蛍光を発しない状態の臨界状態にある。この臨界状態においてカルシウムセンサー蛋白質は、蛍光を発しない状態にあってもよいし、蛍光強度の低い状態にあってもよい。あるいは蛍光強度の高い状態にあってもよい。ここで、蛍光を発しないとは、光学機器を使用して蛍光を確認できないことをいう。蛍光強度が低いとは、カルシウムの存在により、上記の変化量(ΔF/Fが少なくとも0.1以上変化する量)を示して、蛍光強度が高い状態に変化し得る程度に低いことをいう。同様に、蛍光強度が高いとは、カルシウムの存在により、上記の変化量(ΔF/Fが少なくとも0.1以上変化する量)を示して、蛍光強度が低い状態に変化し得る程度に高いことをいう。   In the present invention, when the fluorescence characteristic is fluorescence intensity, the calcium sensor protein is in a critical state of a state of emitting fluorescence and a state of not emitting fluorescence. In this critical state, the calcium sensor protein may be in a state where it does not emit fluorescence, or may be in a state where fluorescence intensity is low. Or you may exist in a state with high fluorescence intensity. Here, not emitting fluorescence means that fluorescence cannot be confirmed using an optical device. “Low fluorescence intensity” means the above change amount (amount that ΔF / F changes by at least 0.1 or more) due to the presence of calcium and is low enough to change the fluorescence intensity to a high state. Similarly, high fluorescence intensity indicates the amount of change described above (the amount by which ΔF / F changes by at least 0.1) due to the presence of calcium, and is high enough to change the fluorescence intensity to a low state. Say.

本発明におけるカルシウムセンサー蛋白質は、従来のカルシウムセンサー蛋白質に比べ、上記のように配列(a)、改変mApple及びラットカルモジュリンの特定部位のアミノ酸残基を置換し、上記のような特定のリンカーを用いることにより、カルシウム作用時に、より大きな蛍光特性の変化を引き起こすことを特徴とする。ここでより大きな蛍光特性変化とは、蛍光特性の変化が蛍光強度の変化である場合、蛍光の変化量ΔF/Fが、従来のカルシウムセンサー蛋白質よりも大きく、好ましくは、2倍以上増強されることをいう。   Compared with the conventional calcium sensor protein, the calcium sensor protein in the present invention substitutes the amino acid residues at specific sites of the sequence (a), modified mApple and rat calmodulin as described above, and uses the specific linker as described above. Thus, it is characterized in that it causes a greater change in fluorescence characteristics during calcium action. Here, the larger change in fluorescence characteristic means that when the change in fluorescence characteristic is a change in fluorescence intensity, the amount of change ΔF / F in fluorescence is larger than that of the conventional calcium sensor protein, and is preferably enhanced two times or more. That means.

融合蛋白質の作成は、公知の遺伝子工学的手法を用いて行うことができる。例えば、融合したい各蛋白質部分をコードする遺伝子(即ち、特定アミノ酸部位の弛緩を伴う改変mApple及び機能性分子をコードする遺伝子)の断片をそれぞれPCRにより作成し、これら断片を繋ぎ合わせることにより融合遺伝子を作成し、次いで、該融合遺伝子を含むプラスミドを所望の細胞に導入して発現させることにより、融合蛋白質は作られる。   The fusion protein can be prepared using a known genetic engineering technique. For example, a fragment of a gene encoding each protein part to be fused (that is, a gene encoding a modified mapple with relaxation of a specific amino acid site and a functional molecule) is prepared by PCR, and these fragments are joined together to form a fusion gene. Then, a fusion protein is produced by introducing a plasmid containing the fusion gene into a desired cell and expressing it.

また、本発明においてカルシウムセンサー遺伝子は、本発明のカルシウムセンサー蛋白質をコードする遺伝子のことをいう。該カルシウムセンサー遺伝子は、上記にあるように、作成したいカルシウムセンサー蛋白質を構成する各構成部分をコードする遺伝子断片をそれぞれPCRにより作成し、次いで、これら各遺伝子断片を連結させることにより、融合遺伝子の形で作成され得る。   In the present invention, the calcium sensor gene refers to a gene encoding the calcium sensor protein of the present invention. As described above, the calcium sensor gene is prepared by PCR by generating gene fragments encoding each component constituting the calcium sensor protein to be prepared, and then linking these gene fragments to form a fusion gene. Can be created in shape.

本発明において作成されたカルシウムセンサー蛋白質は、細胞内及び細胞外でカルシウム濃度をより安定に、かつ高感度に測定することが出来る。   The calcium sensor protein prepared in the present invention can measure calcium concentration more stably and with high sensitivity inside and outside the cell.

例えば、本発明のカルシウムセンサー遺伝子を大腸菌などに導入して予め産生されたカルシウムセンサー蛋白質と検体とを混合することによりカルシウム濃度を測定することが可能である。また、大腸菌などを使用して産生させた蛋白質を、カルシウム濃度を測定したい細胞に直接注入することにより、細胞内のカルシウム濃度を測定することも可能である。あるいは、本発明のカルシウムセンサー遺伝子を、カルシウム濃度を測定したい細胞に導入して細胞に蛋白質を産生させることにより、細胞内のカルシウム濃度を測定することも可能である。   For example, it is possible to measure the calcium concentration by introducing the calcium sensor gene of the present invention into Escherichia coli or the like and mixing a calcium sensor protein produced in advance with a specimen. It is also possible to measure the intracellular calcium concentration by directly injecting a protein produced using Escherichia coli or the like into the cell whose calcium concentration is to be measured. Alternatively, the intracellular calcium concentration can be measured by introducing the calcium sensor gene of the present invention into a cell whose calcium concentration is to be measured and causing the cell to produce a protein.

カルシウム濃度の測定は、ある特定の波長の光(例えば、568nmの励起光)をカルシウムセンサー蛋白質に当てることにより、該蛋白質の発する蛍光特性を光学機器(例えば、レーザー顕微鏡)で検出することにより行う。なお、濃度測定に使用するカルシウムセンサー蛋白質が、どのくらいのカルシウム濃度でどのような蛍光特性を示すのか、予め調べておくことが必要である。具体的には、例えば、大腸菌により産生したカルシウムセンサー蛋白質により、蛍光分光光度計を用いて種々のカルシウム濃度に対する蛍光強度変化を測定しておくことが必要である(例えば、図4を参照のこと)。本測定により、Kd174nM、Hill係数1.58、最大蛍光変化量28.7という結果を得た。   The calcium concentration is measured by applying light of a specific wavelength (for example, excitation light of 568 nm) to the calcium sensor protein, and detecting the fluorescence characteristics emitted by the protein with an optical instrument (for example, a laser microscope). . In addition, it is necessary to investigate in advance what fluorescence characteristics the calcium sensor protein used for concentration measurement shows at what calcium concentration. Specifically, it is necessary to measure changes in fluorescence intensity with respect to various calcium concentrations using, for example, a calcium sensor protein produced by Escherichia coli using a fluorescence spectrophotometer (see, for example, FIG. 4). ). By this measurement, the results of Kd 174 nM, Hill coefficient 1.58, and maximum fluorescence change 28.7 were obtained.

以下に本発明の実施例を示すが、これらの実施例はあくまでも例示にすぎず、本発明の範囲を限定するものではない。   Examples of the present invention will be shown below, but these examples are merely illustrative and do not limit the scope of the present invention.

本発明のカルシウムセンサー蛋白質であるR−CaMP1.07の特性
本発明のカルシウムセンサー蛋白質であるR−CaMP1.07、その前駆体であるR−CaMP1.01および従来のカルシウムセンサー蛋白質であるR−GECO1について、これらの蛋白質をコードする遺伝子をヒト子宮癌由来株化細胞であるHeLa細胞に導入して、カルシウムセンサーとしての性能を評価した。まず細胞内局在部位について検討した結果、R−GECO1およびR−CaMP1.01はいずれも細胞質と核内への局在を示したのに対し、R−CaMP1.07は細胞質には局在するが核内には局在しないことがわかった(図1)。
Characteristics of R-CaMP1.07, a calcium sensor protein of the present invention R-CaMP1.07, a calcium sensor protein of the present invention, R-CaMP1.01 as a precursor thereof, and R-GECO1 as a conventional calcium sensor protein The genes encoding these proteins were introduced into HeLa cells, which are human uterine cancer-derived cell lines, and their performance as calcium sensors was evaluated. First, as a result of examining the intracellular localization site, R-GECO1 and R-CaMP1.01 both showed localization in the cytoplasm and nucleus, whereas R-CaMP1.07 was localized in the cytoplasm. Was not localized in the nucleus (FIG. 1).

次いでR−GECO1、R−CaMP1.01およびR−CaMP1.07を発現させたHeLa細胞に、該細胞の細胞内カルシウムイオン濃度を増大させることが既知である、ATP(0.1mM)を作用させた。その時の反応例を図2に示す。従来のカルシウムセンサー蛋白質R−GECO1よりも本発明のカルシウムセンサー蛋白質であるR−CaMP1.07およびその前駆体であるR−CaMP1.01の方が、大きな蛍光強度の上昇を示すことがわかった。   Next, ATP (0.1 mM), which is known to increase intracellular calcium ion concentration, is allowed to act on HeLa cells expressing R-GECO1, R-CaMP1.01 and R-CaMP1.07. It was. An example of the reaction at that time is shown in FIG. It was found that R-CaMP1.07 which is the calcium sensor protein of the present invention and R-CaMP1.01 which is a precursor thereof show a larger increase in fluorescence intensity than the conventional calcium sensor protein R-GECO1.

本発明のカルシウムセンサー蛋白質R−CaMP1.07およびその前駆体であるR−CaMP1.01を発現させたHeLa細胞でのATPに対する蛍光強度の変化量は、従来のカルシウムセンサー蛋白質R−GECO1のそれに比して両者とも約1.7倍大きいことを確認した。(図3)。
さらに、本発明のカルシウムセンサー蛋白質R−CaMP1.07およびその前駆体R−CaMP1.01の精製蛋白質溶液、およびR−GECO1を含む細胞破砕液を用いて試験管レベルでカルシウム濃度と蛍光量との関係を検討した結果、R−CaMP1.07およびR−CaMP1.01は、R−GECO1と比較すると、カルシウムイオンの有無での蛍光強度変化量が各々約2倍および約1.4倍大きい(カルシウムイオンの有無での蛍光強度の比率を求めると、R−CaMP1.07は28.7倍でありR−CaMP1.01は20.3倍であるのに対し、R−GECO1は14.2倍である)ことを確認した(図4)。
このように本発明のカルシウムセンサー蛋白質R−CaMP1.07およびその前駆体R−CaMP1.01は、従来のカルシウムセンサー蛋白質R−GECO1に比して、より高い蛍光反応性を示すことが証明されている。またR−CaMP1.07は、R−CaMP1.01およびR−GECO1と異なり、細胞に発現させた場合に細胞質には局在するが核内には局在しないという、細胞質カルシウム濃度測定に適した局在パターンを示すことが証明されている。
The amount of change in fluorescence intensity with respect to ATP in HeLa cells in which the calcium sensor protein R-CaMP1.07 and its precursor R-CaMP1.01 of the present invention were expressed was compared with that of the conventional calcium sensor protein R-GECO1. It was confirmed that both were about 1.7 times larger. (Figure 3).
Furthermore, the calcium concentration and fluorescence amount at the test tube level using the purified protein solution of the calcium sensor protein R-CaMP1.07 and its precursor R-CaMP1.01 of the present invention and the cell lysate containing R-GECO1. As a result of investigating the relationship, R-CaMP1.07 and R-CaMP1.01 have about two times and about 1.4 times larger fluorescence intensity changes in the presence or absence of calcium ions, respectively, than R-GECO1 (calcium When the ratio of the fluorescence intensity with and without ions is determined, R-CaMP1.07 is 28.7 times and R-CaMP1.01 is 20.3 times, whereas R-GECO1 is 14.2 times. (Fig. 4).
Thus, it has been proved that the calcium sensor protein R-CaMP1.07 and its precursor R-CaMP1.01 of the present invention exhibit higher fluorescence reactivity than the conventional calcium sensor protein R-GECO1. Yes. Moreover, unlike R-CaMP1.01 and R-GECO1, R-CaMP1.07 is suitable for the measurement of cytoplasmic calcium concentration, which is localized in the cytoplasm when expressed in cells but not in the nucleus. It has been proven to show a localized pattern.

カルシウムセンサー蛋白質R−CaMP1.07の製法及び測定法
(A)R−CaMP1.07の製法
(A−1)細菌発現用および哺乳動物発現用のプラスミド構築
R−CaMP1.07の細菌発現用プラスミドであるpRSET−R−CaMP1.07及び哺乳動物発現用プラスミドであるpN1−R−CaMP1.07は、非特許文献1(Science 333(6051):1888-1891,2011)に記載のR−GECO1(配列番号24)をコードするcDNA(配列番号25)を用いて後述のように構築した。
すなわち、まずR−GECO1をコードするcDNAを化学的な遺伝子合成により構築し、そのcDNAを用いてR−GECO1の細菌発現用プラスミドpRSET―R−GECO1および哺乳動物発現用プラスミドpN1―R−GECO1を構築した。次にR−GECO1の蛋白質精製を可能にするため、R−GECO1のN末端にRSETタグ(蛋白質精製用のHis6タグを含む)(配列番号23)を付加したクローンであるdRGecの細菌発現用プラスミドpRSET―dRGecを構築した。さらに蛍光変化量の大きいdRGecの変異体の開発を目指して、pRSET―dRGecをテンプレートとしたランダムPCRによりdRGecの改変mApple部分にさまざまな変異を導入した変異体を作製した。このPCR産物で大腸菌KRXを形質転換して明るく赤色蛍光を発し、かつカルシウムの有無での明るさの差が大きいdRGecの変異体クローンをスクリーニングした結果、dRGec(K52V/T54V)を発見した。このクローンをR−CaMP1.01(配列番号16(アミノ酸配列)、配列番号17(核酸配列))と命名した。次にR−CaMP1.01の細菌発現用プラスミドであるpRSET―R−CaMP1.01を用い、R−CaMP1.01の哺乳動物発現用プラスミドであるpN1―R−CaMP1.01を構築した。
Method for producing and measuring calcium sensor protein R-CaMP1.07 (A) Method for producing R-CaMP1.07 (A-1) Plasmid construction for bacterial expression and mammalian expression Plasmid for bacterial expression of R-CaMP1.07 PRSET B -R-CaMP1.07 and pN1-R-CaMP1.07 which is a plasmid for mammalian expression are R-GECO1 (Non-patent Document 1 (Science 333 (6051): 1888-1891, 2011)). It was constructed as described below using cDNA (SEQ ID NO: 25) encoding SEQ ID NO: 24).
That is, first, cDNA encoding R-GECO1 is constructed by chemical gene synthesis, and R-GECO1 bacterial expression plasmid pRSET B- R-GECO1 and mammalian expression plasmid pN1-R-GECO1 are used by using the cDNA. Built. Next, in order to enable protein purification of R-GECO1, a plasmid for bacterial expression of dRGec, which is a clone with an RSET tag (including His6 tag for protein purification) (SEQ ID NO: 23) added to the N-terminus of R-GECO1 pRSET B -dRGec was constructed. Furthermore, with the aim of developing mutants of dRGec with a large amount of fluorescence change, mutants were prepared by introducing various mutations into the modified mApple part of dRGec by random PCR using pRSET B- dRGec as a template. Escherichia coli KRX was transformed with this PCR product and bright red fluorescence was emitted, and mutant mutants of dRGec having a large difference in brightness with and without calcium were screened. As a result, dRGec (K52V / T54V) was discovered. This clone was named R-CaMP1.01 (SEQ ID NO: 16 (amino acid sequence), SEQ ID NO: 17 (nucleic acid sequence)). Next, pN1-R-CaMP1.01, which is a plasmid for mammalian expression of R-CaMP1.01, was constructed using pRSET B- R-CaMP1.01, which is a plasmid for bacterial expression of R-CaMP1.01.

次に、カルシウムセンサー蛋白質の構造は一般的に非常に繊細であり、その性能がN末端やC末端へのペプチド融合により修飾されることが知られていることから、R−CaMP1.01の改良の一環として、該センサー蛋白質へのN末端やC末端へのペプチド融合を検討した。ここではR−CaMP1.01のC末端への15アミノ酸のリンカー配列(配列番号11)およびF2A配列(配列番号12)で構成されるペプチドを融合させた実施例を述べる。15アミノ酸のリンカー配列(配列番号11)およびF2A配列(配列番号12)をC末端に付加させたR−CaMP1.01改変体をR−CaMP1.07(配列番号18(アミノ酸配列)、配列番号19(核酸配列))と命名し、その細菌発現用プラスミドpRSET―R−CaMP1.07および哺乳動物発現用プラスミドpN1―R−CaMP1.07を構築した。 Next, since the structure of the calcium sensor protein is generally very delicate and its performance is known to be modified by peptide fusion to the N-terminus or C-terminus, improvement of R-CaMP1.01 As part of this, peptide fusion to the N-terminal and C-terminal to the sensor protein was examined. Here, an example in which a peptide composed of a 15 amino acid linker sequence (SEQ ID NO: 11) and an F2A sequence (SEQ ID NO: 12) to the C-terminus of R-CaMP1.01 is described. An R-CaMP1.01 variant in which a 15-amino acid linker sequence (SEQ ID NO: 11) and an F2A sequence (SEQ ID NO: 12) were added to the C-terminus was converted to R-CaMP1.07 (SEQ ID NO: 18 (amino acid sequence), SEQ ID NO: 19 (Nucleic acid sequence)) and the bacterial expression plasmid pRSET B- R-CaMP1.07 and the mammalian expression plasmid pN1-R-CaMP1.07 were constructed.

より具体的には、1番目にまずR−GECO1のcDNAを化学合成(Genscript)し、これをNdeI−NotIで消化した1.26kbの断片をpRSET―G−CaMP6(特許文献3)をNdeI−NotIで消化した2.77kbの断片とライゲーションさせてR−GECO1の細菌発現用プラスミドであるpRSET―R−GECO1を構築した。またpRSET―R−GECO1をSalI−NotIで消化した1.25kbの断片をpN1―G−CaMP(特許文献1)をSalI−NotIで消化した3.96kbの断片とライゲーションさせてR−GECO1の哺乳動物発現用プラスミドであるpN1―R−GECO1を構築した。次にpN1―R−GECO1をSalI−NotIで消化した1.25kbの断片をpRSET―G−CaMP6(特開2012−85542)をSalI−NotIで消化した2.88kbの断片とライゲーションさせてR−GECO1のN末端にRSETタグ(配列番号23)を付加したクローンであるdRGecの細菌発現用プラスミドであるpRSET―dRGecを構築した。 More specifically, R-GECO1 cDNA was first chemically synthesized (Genscript), and a 1.26 kb fragment obtained by digesting this with NdeI-NotI was converted into pRSET B -G-CaMP6 (Patent Document 3). -PRSET B -R-GECO1, which is a plasmid for bacterial expression of R-GECO1, was constructed by ligation with a 2.77 kb fragment digested with NotI. In addition, a 1.25 kb fragment obtained by digesting pRSET B- R-GECO1 with SalI-NotI was ligated with a 3.96 kb fragment obtained by digesting pN1-G-CaMP (Patent Document 1) with SalI-NotI. PN1-R-GECO1, a plasmid for mammalian expression, was constructed. Next, the 1.25 kb fragment obtained by digesting pN1-R-GECO1 with SalI-NotI was ligated with the 2.88 kb fragment obtained by digesting pRSET B- G-CaMP6 (Japanese Patent Laid-Open No. 2012-85542) with SalI-NotI. -Construction of pRSET B -dRGec, which is a plasmid for bacterial expression of dRGec, a clone with a RSET tag (SEQ ID NO: 23) added to the N-terminus of GECO1.

2番目に、pRSET―dRGecをテンプレートとして以下の合成プライマー(Operon)
5’−AGCTATAGGTCGGCTGAGCTCA−3’(M13(Saca))(配列番号20)
5’−CTTCAGTCAGTTGGTCACGCGT−3’(rCaM(Mlu))(配列番号21)
を用いてPCRによるランダム変異導入を後述の方法で行った。このPCR産物をSacIとMluIで消化した0.74kbの断片をSacIとMluIで消化したpRSET―dRGecの3.39kbの断片とライゲーションさせてpRSET―dRGec(random)を構築した。pRSET―dRGec(random)で大腸菌KRXを形質転換して明るく赤色蛍光を発し、かつカルシウムの有無での明るさの差が大きいdRGecの変異体クローンをスクリーニングした結果、dRGecの改良体であるdRGec(K52V/T54V)を発見した。このクローンをR−CaMP1.01(配列番号16(アミノ酸配列)、配列番号17(核酸配列))と命名した。R−CaMP1.01の細菌発現用プラスミドであるpRSET―R−CaMP1.01をSalIとNotIで消化した1.25kbの断片をpN1―G−CaMP6(特許文献3)をSalIとNotIで消化した4.06kbの断片とライゲーションさせてR−CaMP1.01の哺乳動物発現用プラスミドであるpN1−R−CaMP1.01を構築した。
Second, the following synthetic primer (Operon) using pRSET B- dRGec as a template
5′-AGCTATAGGTCGGCTGAGCTCA-3 ′ (M13 (Saca)) (SEQ ID NO: 20)
5′-CTTCAGTCAGTTGGTCACGCGT-3 ′ (rCaM (Mlu)) (SEQ ID NO: 21)
Random mutagenesis by PCR was carried out by the method described later. The PCR product was digested with SacI and MluI, and the 0.74 kb fragment was ligated with the 3.39 kb fragment of pRSET B- dRGec digested with SacI and MluI to construct pRSET B- dRGec (random). Escherichia coli KRX was transformed with pRSET B -dRGec (random), and a mutant clone of dRGec that emitted bright red fluorescence and had a large difference in brightness with or without calcium was screened. (K52V / T54V) was discovered. This clone was named R-CaMP1.01 (SEQ ID NO: 16 (amino acid sequence), SEQ ID NO: 17 (nucleic acid sequence)). PRSET B -R-CaMP1.01, which is a plasmid for bacterial expression of R-CaMP1.01, was digested with SalI and NotI. A 1.25 kb fragment was digested with pN1-G-CaMP6 (Patent Document 3) with SalI and NotI. PN1-R-CaMP1.01, which is a plasmid for mammalian expression of R-CaMP1.01, was constructed by ligation with the 4.06 kb fragment.

3番目に、カルモジュリンのC末端部分(129〜148番目のアミノ酸を含む)、15アミノ酸のリンカー配列(配列番号11)およびF2A配列(配列番号12)を含むcDNAを化学合成(Genscript)し、これをClaI−NotIで消化した0.17kbの断片をpRSET―R−CaMP1.01をClaI−NotIで消化した4.07kbの断片とライゲーションさせて15アミノ酸のリンカー配列およびF2A配列をC末端に付加させたR−CaMP1.01改変体であるR−CaMP1.07の細菌発現用プラスミドであるpRSET―R−CaMP1.07を構築した。pRSET―R−CaMP1.07をSalIとNotIで消化した1.36kbの断片をpN1―G−CaMP6(特許文献3)をSalIとNotIで消化した4.06kbの断片とライゲーションさせてR−CaMP1.07の哺乳動物発現用プラスミドであるpN1−R−CaMP1.07を構築した。 Third, a cDNA containing the C-terminal part of calmodulin (including amino acids 129 to 148), 15 amino acid linker sequence (SEQ ID NO: 11) and F2A sequence (SEQ ID NO: 12) was chemically synthesized (Genscript). The 0.17 kb fragment digested with ClaI-NotI was ligated with the 4.07 kb fragment digested with pRSET B- R-CaMP1.01 with ClaI-NotI to add a 15 amino acid linker sequence and F2A sequence to the C-terminus PRSET B -R-CaMP1.07, which is a plasmid for bacterial expression of R-CaMP1.07, which is a modified version of R-CaMP1.01, was constructed. A 1.36 kb fragment obtained by digesting pRSET B- R-CaMP1.07 with SalI and NotI was ligated with a 4.06 kb fragment obtained by digesting pN1-G-CaMP6 (Patent Document 3) with SalI and NotI to obtain R-CaMP1. PN1-R-CaMP1.07, a mammalian expression plasmid of 0.07, was constructed.

PCRによるランダム変異導入は以下のように行った。すなわち詳細には、まずテンプレートのプラスミドを1μg、10xバッファーを5μl、2.5mMのdNTPを1μl、10μMのフォワードプライマー(配列番号20)を1μl、10μMのリバースプライマー(配列番号21)を1μl、5mMのMnCl2を1.5μl、Taq DNA polymerase(Takara)を1μl、水を加えて全量を47μlとした混合液を4つ用意した。4つの混合液にはさらに各々1)10mMのdTTPを1μl、10mMのdGTPを1μl、10mMのdCTPを1μl、または2)10mMのdATPを1μl、10mMのdGTPを1μl、10mMのdCTPを1μl、または3)10mMのdATPを1μl、10mMのdTTPを1μl、10mMのdCTPを1μl、または4)10mMのdATPを1μl、10mMのdTTPを1μl、10mMのdGTPを1μl、を加えて各々全量を50μlとし、下記の条件に付した。 Random mutagenesis by PCR was performed as follows. Specifically, first, 1 μg of template plasmid, 5 μl of 10 × buffer, 1 μl of 2.5 mM dNTP, 1 μl of 10 μM forward primer (SEQ ID NO: 20), 1 μl of 10 μM reverse primer (SEQ ID NO: 21), 5 mM Four MnCl 2 , 1.5 μl Taq DNA polymerase (Takara) 1 μl, and water were added to prepare a total of 47 μl. Each of the four mixtures further includes 1) 1 μl of 10 mM dTTP, 1 μl of 10 mM dGTP, 1 μl of 10 mM dCTP, or 2) 1 μl of 10 mM dATP, 1 μl of 10 mM dGTP, or 1 μl of 10 mM dCTP, or 3) 1 μl of 10 mM dATP, 1 μl of 10 mM dTTP, 1 μl of 10 mM dCTP, or 4) 1 μl of 10 mM dATP, 1 μl of 10 mM dTTP, 1 μl of 10 mM dGTP, The following conditions were applied.

ステップ1
摂氏94度 2分
ステップ2
摂氏94度 30秒
摂氏55度 30秒
摂氏68度 30秒
上記を38サイクル
ステップ3
摂氏68度 1分
上記の4つの混合液から各々2.5μlずつを取って混合した10μlを下記の方法でアガロース電気泳動に付し、PCR産物の確認を行った。
Step 1
94 degrees Celsius 2 minutes step 2
94 degrees Celsius 30 seconds 55 degrees Celsius 30 seconds 68 degrees Celsius 30 seconds
68 degrees Celsius, 1 minute Each 10 μl of 2.5 μl of each of the above four mixtures was mixed and subjected to agarose electrophoresis by the following method to confirm the PCR product.

制限酵素によるDNAの切断はNEB社、Toyobo社、またはTakara社の制限酵素、およびその添付バッファーと添付Bovine Serum Albumin(100xBSA)を用いて行った。反応は、1〜2μgのDNAに添付バッファー(3μl)、添付100xBSA(0.3μl)および各制限酵素(10ユニット)を加えて全量を30μlとした中で、摂氏37度で1〜3時間行った。   Cleavage of DNA with restriction enzymes was performed using NEB, Toyobo, or Takara restriction enzymes, and their attached buffers and attached Bovine Serum Albumin (100 × BSA). The reaction was performed at 37 ° C. for 1 to 3 hours by adding 1 to 2 μg of DNA to the attached buffer (3 μl), attached 100 × BSA (0.3 μl) and each restriction enzyme (10 units) to a total volume of 30 μl. It was.

アガロースゲル(Agarose LE、ナカライテスク)は、TAEバッファー(4.98g/l Tris base(ナカライテスク)、1.142ml/l氷酢酸(ナカライテスク)、1mM EDTA(pH8)(Dojindo))にて加熱溶解し、1%または2%となるように調製した。λHindIIIdigest(Toyobo)または100bp DNA Ladder(Toyobo)をDNAサイズマーカーとして、DNA試料は制限酵素に添付されている10xサンプルバッファーを1/10量と、DMSO(Sigma)にて100倍希釈したSYBR Green I(Invitrogen)を1/10量加えたものを、TAEバッファーを用いて100Vにて電気泳動を行い、Safe Imager(Invitrogen)を用いて検出した。   Agarose gel (Agarose LE, Nacalai Tesque) was heated with TAE buffer (4.98 g / l Tris base (Nacalai Tesque), 1.142 ml / l glacial acetic acid (Nacalai Tesque), 1 mM EDTA (pH 8) (Dojindo)). Dissolved and prepared to 1% or 2%. λHindIII digest (Toyobo) or 100 bp DNA Ladder (Toyobo) is used as a DNA size marker, and a DNA sample is SYBR Green I diluted 100-fold with DMSO (Sigma) in 1/10 volume of 10 × sample buffer attached to a restriction enzyme. What added 1/10 amount of (Invitrogen) was electrophoresed at 100V using TAE buffer, and detected using Safe Imager (Invitrogen).

ゲルからのDNAの回収にはMagExtractor(Toyobo)を用い、操作はそのマニュアルに従って行った。詳細には、まずアガロースゲル電気泳動後Safe Imager上で目的のバンドをなるべく小さくなるようにメスで切り出し、吸着液を400μl加えて室温に放置してゲルを完全に溶解させた。次に磁性ビーズを30μl加えて時々撹拌しながら室温に2分放置した。DNAを吸着した磁性ビーズはマグネットスタンドを用いて吸着し、上清は捨てた。回収した磁気ビーズに洗浄液を600μl加えてボルテックスミキサーで10秒撹拌し、マグネットスタンドを用いてDNAを吸着した磁性ビーズを同様の手法で回収した。これに75%エタノールを1ml加えてボルテックスミキサーで10秒撹拌し、DNAを吸着した磁性ビーズはマグネットスタンドを用いて回収した。これをスピンダウンして完全に上清を捨て、55度で2分間乾燥させた後、水又はTEを25〜100μl加えて時々撹拌しながら、室温で2分間放置した。DNAを解離させた後の磁性ビーズはマグネットスタンドを用いて分離し、DNAを含む上清を回収した。   MagExtractor (Toyobo) was used for DNA recovery from the gel, and the operation was performed according to the manual. Specifically, first, after agarose gel electrophoresis, the target band was cut out with a scalpel so as to be as small as possible on the Safe Imager, and 400 μl of the adsorbed solution was added and left at room temperature to completely dissolve the gel. Next, 30 μl of magnetic beads were added and left at room temperature for 2 minutes with occasional stirring. The magnetic beads adsorbed with DNA were adsorbed using a magnet stand, and the supernatant was discarded. 600 μl of the washing solution was added to the collected magnetic beads and stirred for 10 seconds with a vortex mixer, and the magnetic beads adsorbed with DNA using a magnetic stand were collected by the same method. 1 ml of 75% ethanol was added thereto and stirred for 10 seconds with a vortex mixer, and the magnetic beads adsorbed with DNA were collected using a magnet stand. This was spun down, and the supernatant was completely discarded. After drying at 55 ° C. for 2 minutes, 25 to 100 μl of water or TE was added and allowed to stand at room temperature for 2 minutes with occasional stirring. The magnetic beads after the DNA was dissociated were separated using a magnet stand, and the supernatant containing the DNA was collected.

Ligation反応にはDNA Ligation Kit Ver.2(Takara)を用い、操作はそのマニュアルに従って行った。詳細には、約25fmolのプラスミドベクターおよび約25〜250fmolのインサートDNAの混合溶液に等量のLigation Mixを添加して混和した後、摂氏16度で30分間反応させた。   In the Ligation reaction, DNA Ligation Kit Ver. 2 (Takara) was used and the operation was performed according to the manual. Specifically, an equal volume of Ligation Mix was added to and mixed with a mixed solution of about 25 fmol of plasmid vector and about 25 to 250 fmol of insert DNA, and then reacted at 16 degrees Celsius for 30 minutes.

形質転換はE.coliコンピテントセルDH5α(Takara)、またはKRX(Takara)を用いて行った。詳細には、100μlのコンピテントセルを氷上にて溶解し、DNA溶液1μlまたはLigation反応液1μlを加えて氷上で30分間放置した後、摂氏42度で45秒間加熱した。その後さらに氷上で5分間放置し、LB培地500μlを加えて摂氏37度で1時間培養後、100μg/mlのアンピシリンまたは50μg/mlのカナマイシン(Wako Chemicals)を含む選択培地(LB培地)に植えて、摂氏37度にて一晩培養した。翌日、コロニーを100μg/mlのアンピシリンまたは50μg/mlのカナマイシンを含む1〜5mlの液体培地(LB培地)に植えつぎ、摂氏37度にて16時間培養した。   Transformation is performed in E. coli. E. coli competent cells DH5α (Takara) or KRX (Takara) were used. Specifically, 100 μl of competent cells were dissolved on ice, 1 μl of DNA solution or 1 μl of ligation reaction solution was added and left on ice for 30 minutes, and then heated at 42 degrees Celsius for 45 seconds. Thereafter, the mixture is further left on ice for 5 minutes, added with 500 μl of LB medium, cultured at 37 ° C. for 1 hour, and then planted in a selective medium (LB medium) containing 100 μg / ml ampicillin or 50 μg / ml kanamycin (Wako Chemicals). Incubate overnight at 37 degrees Celsius. The next day, the colonies were inoculated into 1 to 5 ml of liquid medium (LB medium) containing 100 μg / ml ampicillin or 50 μg / ml kanamycin and cultured at 37 degrees Celsius for 16 hours.

大腸菌からのプラスミドの回収にはMiniprep Kit(Qiagen)を用い、操作はそのマニュアルに従って行った。詳細には、まず5mlの大腸菌培養液を約2,000xg、10分の遠心に付し、上清をデカンテーションまたはピペッティングで除去して大腸菌の沈殿を得た。この沈殿に氷冷したRNase入りP1バッファーを250μl加えてサスペンドし、P2バッファーを250μl加えて室温に5分放置してアルカリSDSにより菌体を破砕した。その後N3バッファーを350μl加えて中性化した。その菌体破砕液をspin columnに移し、約13,200xg、30秒〜1分の遠心に付してプラスミドをカラムに吸着させた。カラム素通り液はデカンテーションにて除去した。次にカラムにPEバッファーを750μl加えて約13,200xg、30秒〜1分の遠心に付してカラムを洗浄した。カラム素通り液はデカンテーションにて除去した。さらにバッファーを加えずにもう一度約13,200xg、30秒〜1分の遠心に付してカラムに残った液滴を完全に除去した。カラムを新しい回収用マイクロチューブにとりつけ、カラムにEBバッファーを50μl加えて約13,200xg、30秒〜1分の遠心に付してカラムからプラスミドを溶出し回収した。   Miniprep Kit (Qiagen) was used to recover the plasmid from E. coli, and the operation was performed according to the manual. Specifically, first, 5 ml of E. coli culture solution was centrifuged at about 2,000 × g for 10 minutes, and the supernatant was removed by decantation or pipetting to obtain an E. coli precipitate. To this precipitate, 250 μl of ice-cooled RNase-containing P1 buffer was added and suspended, 250 μl of P2 buffer was added and left at room temperature for 5 minutes, and the cells were disrupted with alkaline SDS. Thereafter, 350 μl of N3 buffer was added for neutralization. The cell disruption solution was transferred to spin column and centrifuged at about 13,200 × g for 30 seconds to 1 minute to adsorb the plasmid to the column. The column passage liquid was removed by decantation. Next, 750 μl of PE buffer was added to the column, and the column was washed by centrifugation at about 13,200 × g for 30 seconds to 1 minute. The column passage liquid was removed by decantation. Further, the liquid droplets remaining on the column were completely removed by further centrifuging at about 13,200 × g for 30 seconds to 1 minute without adding any buffer. The column was attached to a new collection microtube, 50 μl of EB buffer was added to the column, and centrifuged at about 13,200 × g for 30 seconds to 1 minute to elute and collect the plasmid from the column.

LB液体培地
10g/l Bacto−tryptone(ナカライテスク)、5g/l Bacto−yeast extract(ナカライテスク)、5g/l NaCl(ナカライテスク)、1g/l glucose(Wako Chemicals)。オートクレーブにて滅菌して調製。
LB liquid medium 10 g / l Bacto-tryptone (Nacalai Tesque), 5 g / l Bacto-yeast extract (Nacalai Tesque), 5 g / l NaCl (Nacalai Tesque), 1 g / l glucose (Wako Chemicals). Sterilized in an autoclave.

LB寒天培地
10g/l Bacto−tryptone(ナカライテスク)、5g/l Bacto−yeast extract(ナカライテスク)、5g/l NaCl(ナカライテスク)、1g/l glucose(Wako Chemicals)、15g/l Agar(ナカライテスク)。オートクレーブにて滅菌後、温度が45度程度まで下がったところで抗生物質(100μg/mlのアンピシリンまたは50μg/mlのカナマイシン(Wako Chemicals))を加え、プラスチックディシュに流し込んで調製。
TE(pH8)(10mM Tris−HCl, 1mM EDTA)(Wako Chemicals)
LB agar medium 10 g / l Bacto-tryptone (Nacalai Tesque), 5 g / l Bacto-yeast extract (Nacalai Tesque), 5 g / l NaCl (Nacalai Tesque), 1 g / l glucose (Wako Chemicals), 15 g / l Ala Tesque). After sterilization in an autoclave, when the temperature drops to about 45 degrees, antibiotics (100 μg / ml ampicillin or 50 μg / ml kanamycin (Wako Chemicals)) are added and poured into a plastic dish.
TE (pH 8) (10 mM Tris-HCl, 1 mM EDTA) (Wako Chemicals)

(A−2)蛋白質の精製
R−CaMP1.07およびR−CaMP1.01の蛋白質精製にはこれらの蛋白質がHisタグを持っていることを利用して、Hisタグに特異的に結合するNi−NTA agarose(Qiagen)を用い、操作はそのマニュアルに従って行った。詳細には、pRSET−R−CaMP1.07をE.coliコンピテントセルKRXに形質転換し、100μg/mlのアンピシリンを含むLB選択培地に植え、摂氏37度で一晩培養した。コロニーを100μg/mlのアンピシリンを含む10mlの液体培地(LB培地)に植えつぎ、摂氏37度にて16時間培養した。培養液10mlをさらに100μg/mlのアンピシリンを含む200mlの液体培地(LB培地)に植えつぎ、吸光度OD600で0.5〜1となるまで摂氏37度で培養した後、最終濃度が1%になるようにラムノース(プロメガ)を加えて、摂氏18〜22.5度で4〜5時間さらに培養した。
(A-2) Protein purification The protein purification of R-CaMP1.07 and R-CaMP1.01 utilizes the fact that these proteins have His tags, and Ni- that specifically binds to His tags. The operation was performed according to the manual using NTA agarose (Qiagen). Specifically, pRSET B -R-CaMP 1.07 E. coli competent cells KRX were transformed into LB selection medium containing 100 μg / ml ampicillin and cultured overnight at 37 degrees Celsius. The colony was inoculated into 10 ml of liquid medium (LB medium) containing 100 μg / ml ampicillin and cultured at 37 degrees Celsius for 16 hours. 10 ml of the culture solution is further planted in 200 ml of liquid medium (LB medium) containing 100 μg / ml ampicillin and cultured at 37 degrees Celsius until the absorbance OD600 is 0.5 to 1, after which the final concentration becomes 1%. Rhamnose (Promega) was added and cultured at 18-22.5 degrees Celsius for 4-5 hours.

3,000回転15分遠心して(6200遠心機、Kubota)、大腸菌を回収した。1mlのLB培地で大腸菌を懸濁した。摂氏−20度で30分凍らせたのち、室温で30分解凍した。もう1度凍結、解凍を繰り返した。氷上で冷やした40mlのsuspension buffer(25mM Tris−HCl(pH8)(Sigma)、1mM 2−メルカプトエタノール(ナカライテスク)、蛋白分解酵素阻害剤(0.1mM PMSF、5μg/ml ロイペプチン(Wako Chemicals))を加え、よく混ぜて大腸菌を懸濁した。摂氏4度にて100,000xgで15分間遠心し、上清を得た。5M NaClを最終濃度が0.3Mとなるように加え、2mlの50% Ni−NTA agarose(Qiagen;蛋白質結合能5〜10mg/mlレジン)をさらに加えて1時間室温でおだやかに混ぜて反応させた。反応液を空のカラム(エコノカラム;カラムサイズ 〜20ml(Bio−Rad))に移し、余分の液がカラムから滴下してなくなるのを待った。10mlの洗浄液(50mM NaHPO(pH8)(ナカライテスク)、0.3M NaCl、20mM imidazole(ナカライテスク))で2回洗浄した後、3〜4mlの回収液(50mM NaHPO(pH8)(ナカライテスク)、0.3M NaCl、250mM imidazole(ナカライテスク))にて溶出し、Hisタグ付きの蛋白質をカラムから回収した。次に、回収した液を透析チューブ(Sankoujunyaku)に入れて125mlまたはそれ以上のKMバッファー(0.1M KCl(ナカライテスク)、20mM MOPS−Tris(pH7.5)(Dojindo))で摂氏4度にて透析した。KMバッファーは4〜5時間ごとに交換し、液交換を3回以上行った後、透析チューブから蛋白質の溶液を回収した。 After centrifugation at 3,000 rpm for 15 minutes (6200 centrifuge, Kubota), E. coli was recovered. Escherichia coli was suspended in 1 ml of LB medium. After freezing at -20 degrees Celsius for 30 minutes, it was thawed at room temperature for 30 minutes. Freezing and thawing were repeated once more. 40 ml suspension buffer (25 mM Tris-HCl (pH 8) (Sigma), 1 mM 2-mercaptoethanol (Nacalai Tesque)), protease inhibitor (0.1 mM PMSF, 5 μg / ml leupeptin (Wako Chemicals)) chilled on ice Suspended Escherichia coli at 4 degrees Celsius and centrifuged at 100,000 xg for 15 minutes to obtain a supernatant, 5M NaCl was added to a final concentration of 0.3M, and 2ml of 50ml was added. % Ni-NTA agarose (Qiagen; protein binding ability 5 to 10 mg / ml resin) was further added, and the mixture was gently mixed at room temperature for 1 hour to allow the reaction to proceed, and the reaction solution was added to an empty column (Econo column; column size ˜20 ml (Bio- Rad)) and the excess liquid is not dripped from the column. After washing twice with 10 ml of washing solution (50 mM NaH 2 PO 4 (pH 8) (Nacalai Tesque), 0.3 M NaCl, 20 mM imidazole (Nacalai Tesque)), 3 to 4 ml of recovery solution (50 mM The His-tagged protein was recovered from the column by elution with NaH 2 PO 4 (pH 8) (Nacalai Tesque), 0.3 M NaCl, 250 mM imidazole (Nacalai Tesque). In sanko junyaku), it was dialyzed with 125 ml or more of KM buffer (0.1 M KCl (Nacalai Tesque), 20 mM MOPS-Tris (pH 7.5) (Dojindo)) at 4 degrees Celsius. After changing every hour, and after changing liquids 3 times or more It was recovered solution of the protein from the dialysis tube.

蛋白質の濃度測定にはプロテインアッセイキット(Bio−Rad)を用い、操作はそのマニュアルに従ってBradford法(Bradford, M. M. Anal. Biochem. 1976, 72, 248―254.)で測定した。まず、10〜200μg/mlとなるように水で希釈した蛋白質の溶液50μlにBradford試薬を1ml加えて30分後に595nmの吸光度を測定した。蛋白質の基準濃度は牛血清アルブミンを基準蛋白質として用いて測定して求めた。測定は室温にて行った。   The protein concentration was measured using a protein assay kit (Bio-Rad), and the operation was measured by the Bradford method (Bradford, M. M. Anal. Biochem. 1976, 72, 248-254.) According to the manual. First, 1 ml of Bradford reagent was added to 50 μl of a protein solution diluted with water to 10 to 200 μg / ml, and the absorbance at 595 nm was measured 30 minutes later. The reference concentration of the protein was determined by measuring using bovine serum albumin as the reference protein. The measurement was performed at room temperature.

(B)R−CaMP1.07を用いた測定法
(B−1)カルシウム結合能の測定
R−CaMP1.07蛋白質のカルシウム結合能はさまざまなカルシウム濃度溶液中における蛍光強度を測定して得られたカルシウム濃度―蛍光強度の容量反応曲線に基づいて算出した。既述のように精製したR−CaMP1.07蛋白質はKMバッファーで最終濃度が0.3μMとなるように希釈した。蛍光強度測定には、蛍光分光光度計F−2500(Hitachi)を用い560nmで励起し585nmで蛍光を記録した。まず測定標品に20mM BAPTA((Dojindo))を添加してカルシウム非存在下における測定を行った後、逐次CaClをさまざまな濃度になるように添加して測定した。測定は室温にて行った。
(B) Measurement method using R-CaMP1.07 (B-1) Measurement of calcium binding ability The calcium binding ability of R-CaMP1.07 protein was obtained by measuring the fluorescence intensity in various calcium concentration solutions. It was calculated based on a volumetric response curve of calcium concentration-fluorescence intensity. The R-CaMP1.07 protein purified as described above was diluted with KM buffer to a final concentration of 0.3 μM. For fluorescence intensity measurement, a fluorescence spectrophotometer F-2500 (Hitachi) was used to excite at 560 nm and record fluorescence at 585 nm. First, 20 mM BAPTA ((Dojindo)) was added to the measurement sample and measurement was performed in the absence of calcium, and then CaCl 2 was successively added at various concentrations and measured. The measurement was performed at room temperature.

(B−2)HeLa細胞の培養とプラスミドの導入
炭酸ガス培養器を用いて、培地(DMEM(Gibco)、10% Fetal Bovine Serum(Gibco)、1xペニシリン・ストレプトマイシン(Gibco))にてHeLa細胞を摂氏37度で培養し、Lipofectamine 2000(Invitrogen)を用いて培養細胞にpN1−R−CaMP1.07のプラスミドを導入した。導入操作は試薬のマニュアルに従って行った。まず、血清を含まないDMEM50μlでプラスミド0.8μgを希釈した。次に2μlのLipofectamine 2000を血清を含まないDMEM50μlに加え室温で5分放置した。その後両希釈液を混合して室温で20分放置した。この混合液の全量を24穴培養シャーレ中のHeLa細胞に投与してプラスミドを導入した。プラスミドを導入した後細胞は摂氏37度で1〜3日培養した。
(B-2) HeLa cell culture and plasmid introduction Using a carbon dioxide incubator, HeLa cells were cultured in a medium (DMEM (Gibco), 10% Fetal Bovine Serum (Gibco), 1x penicillin streptomycin (Gibco)). After culturing at 37 degrees Celsius, the plasmid pN1-R-CaMP1.07 was introduced into the cultured cells using Lipofectamine 2000 (Invitrogen). The introduction operation was performed according to the reagent manual. First, 0.8 μg of plasmid was diluted with 50 μl of DMEM without serum. Next, 2 μl of Lipofectamine 2000 was added to 50 μl of serum-free DMEM and left at room temperature for 5 minutes. Thereafter, both dilutions were mixed and allowed to stand at room temperature for 20 minutes. The entire amount of this mixed solution was administered to HeLa cells in a 24-well culture dish to introduce the plasmid. After introducing the plasmid, the cells were cultured at 37 degrees Celsius for 1-3 days.

(B−3)HeLa細胞での蛍光測定
蛍光測定にはコンピューターにて制御(アクアコスモス(浜松ホトニクス))されたCCDカメラ(ORCA−ER、浜松ホトニクス)を搭載した倒立蛍光顕微鏡(IX70(オリンパス)、WIYフィルターセット(オリンパス)、対物レンズ20x(オリンパス))を用いた。プラスミドを導入した細胞を顕微鏡にセットし、HBSバッファー(107mM NaCl、6mM KCl、1.2mM MgSO(ナカライテスク)、2mM CaCl、1.2mM KHPO(ナカライテスク)、11.5mM glucose、20mM HEPES(Dojindo)(pH7.4))を細胞外液として還流し、100μM ATP(Sigma)を細胞外に投与して細胞を刺激し、その際に起こる細胞内カルシウム濃度変化を蛍光強度変化として検出した。測定は室温にて行った。
(B-3) Fluorescence measurement with HeLa cells An inverted fluorescence microscope (IX70 (Olympus)) equipped with a CCD camera (ORCA-ER, Hamamatsu Photonics) controlled by a computer (Aquacosmos (Hamamatsu Photonics)) for fluorescence measurement , WIY filter set (Olympus), objective lens 20x (Olympus)). Cells into which the plasmid was introduced were set in a microscope, and HBS buffer (107 mM NaCl, 6 mM KCl, 1.2 mM MgSO 4 (Nacalai Tesque), 2 mM CaCl 2 , 1.2 mM KH 2 PO 4 (Nacalai Tesque)), 11.5 mM glucose , 20 mM HEPES (Dojindo) (pH 7.4)) was refluxed as an extracellular solution, and 100 μM ATP (Sigma) was administered extracellularly to stimulate the cells. Detected as. The measurement was performed at room temperature.

本発明は、筋肉の収縮、神経興奮性やホルモン分泌、酵素活性の変化などの各種の細胞機能の調節因子として、生体機能の維持および調節に不可欠な役割を担っているカルシウム濃度の生体内での変動を、従来のものに比べ極めて高感度で測定するカルシウムセンサー蛋白質を提供するもので、その利用価値は高く、生体機序の解明や医学・創薬といった分野に大きく貢献するものである。   The present invention provides a calcium concentration that plays an essential role in the maintenance and regulation of biological functions as a regulator of various cellular functions such as muscle contraction, nerve excitability, hormone secretion, and changes in enzyme activity. Provides a calcium sensor protein that can measure the fluctuations of the protein with extremely high sensitivity compared to the conventional one, and its use value is high, and it greatly contributes to the field of elucidation of biological mechanisms, medicine and drug discovery.

Claims (10)

下記(a)〜(k)のアミノ酸配列を、N末端から順に有することを特徴とするカルシウムセンサー蛋白質:
(a)配列番号1で示されるアミノ酸配列;
(b)3つのアミノ酸からなる配列 Met−Xaa1−Xaa2(ここでXaa1及びXaa2はそれぞれ独立して任意のアミノ酸である)(リンカーA)(配列番号2);
(c)ミオシン軽鎖キナーゼ蛋白質、又はカルモジュリン結合部位を含むその部分アミノ酸配列;
(d)前記(c)の配列と後記(e)の配列とを連結する、Iso−Iso、Iso−Leu、Iso−Met、Iso−Pro、Iso−Val、Iso−Gly、Iso−Ala、Leu−Iso、Leu−Leu、Leu−Met、Leu−Pro、Leu−Val、Leu−Gly、Leu−Ala、Met−Iso、Met−Leu、Met−Met、Met−Pro、Met−Val、Met−Gly、Met−Ala、Pro−Iso、Pro−Leu、Pro−Met、Pro−Pro、Pro−Val、Pro−Gly、Pro−Ala、Val−Iso、Val−Leu、Val−Met、Val−Pro、Val−Val、Val−Gly、Val−Ala、Gly−Iso、Gly−Leu、Gly−Met、Gly−Pro、Gly−Val、Gly−Gly、Gly−Ala、Ala−Iso、Ala−Leu、Ala−Met、Ala−Pro、Ala−Val、Ala−Gly及びAla−Alaからなる群より選択される何れか一のアミノ酸配列(リンカーB);
(e)配列番号3で示される配列のX番目〜236番目までのアミノ酸配列であって、151番目及び/又は152番目及び/又は169番目及び/又は171番目及び/又は219番目のアミノ酸を他のアミノ酸に置換したもの(ここで、Xは151〜153の任意の位置である);
(f)前記(e)の配列と後記(g)の配列を連結する、6つのアミノ酸配列からなる配列Gly−Gly−Xaa5−Gly−Gly−Xaa6(ここでXaa5及びXaa6はそれぞれ独立して任意のアミノ酸である)(配列番号4);
(g)配列番号3で示される配列の1番目〜Y番目までのアミノ酸配列であって、
1番目及び/又は8番目及び/又は52番目及び/又は54番目及び/又は76番目及び/又は136番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列(ここで、Yは144〜150の任意の位置である);
(h)前記(g)の配列と後記(i)の配列とを連結するアミノ酸配列Thr−Arg、Phe−Arg、Trp−Arg、Tyr−Arg、Gly−Arg、Ala−Arg又はThr(リンカーC);
(i)配列番号9で示される配列の2番目〜148番目までのアミノ酸配列であって、63番目及び/又は77番目及び/又は101番目及び/又は111番目及び/又は127番目のアミノ酸を他のアミノ酸に置換したアミノ酸配列;
(j)前記(i)の配列と後記(k)の配列とを連結する、15個のアミノ酸配列からなる配列Gly−Gly−Gly−Xaa7−Gly−Gly−Xaa8−Gly−Gly−Gly−Gly−Gly−Gly−Xaa9−Xaa10(ここでXaa7、Xaa8、Xaa9及びXaa10はそれぞれ独立して任意のアミノ酸である)(リンカーD)(配列番号10);
(k)Pro−Val−Lys−Gln−Thr−Leu−Asn−Phe−Asp−Leu−Leu−Lys−Leu−Ala−Gly−Asp−Val−Glu−Ser−Asn−Pro−Gly(配列番号12)、Gln−Cys−Thr−Asn−Tyr−Ala−Leu−Leu−Lys−Leu−Ala−Gly−Asp−Val−Glu−Ser−Asn−Pro−Gly(配列番号13)、Glu−Gly−Arg−Gly−Ser−Leu−Leu−Thr−Cys−Gly−Asp−Val−Glu−Glu−Asn−Pro−Gly(配列番号14)又はAla−Thr−Asn−Phe−Ser−Leu−Leu−Lys−Gln−Ala−Gly−Asp−Val−Glu−Glu−Asn−Pro−Gly(配列番号15)のいずれかのアミノ酸配列。
Calcium sensor protein having the following amino acid sequences (a) to (k) in order from the N-terminus:
(A) the amino acid sequence represented by SEQ ID NO: 1;
(B) a sequence consisting of three amino acids Met-Xaa1-Xaa2 (where Xaa1 and Xaa2 are each independently any amino acid) (linker A) (SEQ ID NO: 2);
(C) a myosin light chain kinase protein, or a partial amino acid sequence thereof comprising a calmodulin binding site;
(D) The sequence of (c) and the sequence of (e) described below are linked, Iso-Iso, Iso-Leu, Iso-Met, Iso-Pro, Iso-Val, Iso-Gly, Iso-Ala, Leu -Iso, Leu-Leu, Leu-Met, Leu-Pro, Leu-Val, Leu-Gly, Leu-Ala, Met-Iso, Met-Leu, Met-Met, Met-Pro, Met-Val, Met-Gly , Met-Ala, Pro-Iso, Pro-Leu, Pro-Met, Pro-Pro, Pro-Val, Pro-Gly, Pro-Ala, Val-Iso, Val-Leu, Val-Met, Val-Pro, Val -Val, Val-Gly, Val-Ala, Gly-Iso, Gly-Leu, Gly-Met, Gl Any selected from the group consisting of Pro, Gly-Val, Gly-Gly, Gly-Ala, Ala-Iso, Ala-Leu, Ala-Met, Ala-Pro, Ala-Val, Ala-Gly and Ala-Ala Any one amino acid sequence (linker B);
(E) the amino acid sequence from the Xth to the 236th amino acid sequence of the sequence shown in SEQ ID NO: 3, except for the 151st and / or 152th and / or 169th and / or 171st and / or 219th amino acids (Wherein X is an arbitrary position of 151 to 153);
(F) A sequence Gly-Gly-Xaa5-Gly-Gly-Xaa6 consisting of six amino acid sequences connecting the sequence of (e) and the sequence of (g) to be described later (where Xaa5 and Xaa6 are each independently arbitrary (SEQ ID NO: 4);
(G) an amino acid sequence from the first to the Y-th of the sequence represented by SEQ ID NO: 3,
Amino acid sequence in which the first and / or eighth and / or 52 and / or 54 and / or 76 and / or 136 amino acids are substituted with other amino acids (where Y is any of 144 to 150) Position);
(H) Amino acid sequence Thr-Arg, Phe-Arg, Trp-Arg, Tyr-Arg, Gly-Arg, Ala-Arg or Thr (linker C) linking the sequence of (g) and the sequence of (i) described later );
(I) Amino acid sequence from 2nd to 148th of the sequence shown in SEQ ID NO: 9, except for the 63rd and / or 77th and / or 101st and / or 111th and / or 127th amino acids An amino acid sequence substituted with the amino acid of
(J) A sequence consisting of 15 amino acid sequences Gly-Gly-Gly-Xaa7-Gly-Gly-Xaa8-Gly-Gly-Gly-Gly, linking the sequence of (i) and the sequence of (k) described later -Gly-Gly-Xaa9-Xaa10 (where Xaa7, Xaa8, Xaa9 and Xaa10 are each independently any amino acid) (linker D) (SEQ ID NO: 10);
(K) Pro-Val-Lys-Gln-Thr-Leu-Asn-Phe-Asp-Leu-Leu-Lys-Leu-Ala-Gly-Asp-Val-Glu-Ser-Asn-Pro-Gly (SEQ ID NO: 12 ), Gln-Cys-Thr-Asn-Tyr-Ala-Leu-Leu-Lys-Leu-Ala-Gly-Asp-Val-Glu-Ser-Asn-Pro-Gly (SEQ ID NO: 13), Glu-Gly-Arg -Gly-Ser-Leu-Leu-Thr-Cys-Gly-Asp-Val-Glu-Glu-Asn-Pro-Gly (SEQ ID NO: 14) or Ala-Thr-Asn-Phe-Ser-Leu-Leu-Lys- Gln-Ala-Gly-Asp-Val-Glu-Glu-Asn-Pro-Gly Any of the amino acid sequences of the number 15).
前記(a)の配列の5番目から10番目に存在するHisの数が0〜5であり、及び/又は前記(a)の配列の2番目のArgが欠失し、及び/又は前記(e)の配列の151番目のアミノ酸がIso、Leu、Met、Pro、Val、Tyr、Phe、Trp、Thr、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の152番目のアミノ酸がTyr、Phe、Trp、Thr、Ser、Asp、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の169番目のアミノ酸がHis、Lys、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の171番目のアミノ酸がArg、His、Gly若しくはAlaに置換され、及び/又は前記(e)の配列の219番目のアミノ酸がPhe、Trp、Thr、Ser、Cys、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の1番目のアミノ酸がIso、Leu、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の8番目のアミノ酸がGln、Asp、Glu、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の52番目のアミノ酸がArg、His、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の54番目のアミノ酸がTyr、Phe、Trp、Ser、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(g)の配列の76番目のアミノ酸がIso、Leu、Met、ProGly若しくはAlaに置換され、及び/又は前記(g)の配列の136番目のアミノ酸がTyr、Phe、Trp、Thr、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の63番目のアミノ酸がLeu、Met、Pro、Val、Tyr、Phe、Trp、Thr、Ser、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の77番目のアミノ酸がArg、His、Asn、Gln、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の101番目のアミノ酸がTyr、Phe、Trp、Thr、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の111番目のアミノ酸がGln、Asp、Glu、Gly若しくはAlaに置換され、及び/又は前記(i)の配列において、配列番号9で示される配列の127番目のアミノ酸がAsp、Iso、Leu、Met、Pro、Val、Gly若しくはAlaに置換されることを特徴とする請求項1に記載のカルシウムセンサー蛋白質。   The number of His present from the 5th position to the 10th position of the sequence (a) is 0 to 5 and / or the second Arg of the sequence (a) is deleted and / or the (e ) Is substituted with Iso, Leu, Met, Pro, Val, Tyr, Phe, Trp, Thr, Gly or Ala, and / or the 152nd amino acid of the sequence (e) is Tyr. , Phe, Trp, Thr, Ser, Asp, Gly or Ala and / or the 169th amino acid of the sequence (e) is substituted with His, Lys, Gly or Ala, and / or (e ) Of the sequence 171 is substituted with Arg, His, Gly or Ala, and / or the 219th amino acid of the sequence (e) is Phe, Tr , Thr, Ser, Cys, Gly or Ala, and / or the first amino acid of the sequence (g) is substituted with Iso, Leu, Pro, Val, Gly or Ala, and / or (g ) Is substituted with Gln, Asp, Glu, Gly or Ala, and / or the 52nd amino acid of the sequence (g) is Arg, His, Iso, Leu, Met, Pro, Val , Gly or Ala, and / or 54th amino acid of the sequence (g) is substituted with Tyr, Phe, Trp, Ser, Iso, Leu, Met, Pro, Val, Gly or Ala, and / or Alternatively, the 76th amino acid of the sequence (g) is replaced with Iso, Leu, Met, ProGly or Ala. And / or the 136th amino acid of the sequence (g) is substituted with Tyr, Phe, Trp, Thr, Iso, Leu, Met, Pro, Val, Gly or Ala, and / or the sequence (i) The 63rd amino acid of the sequence shown in SEQ ID NO: 9 is replaced with Leu, Met, Pro, Val, Tyr, Phe, Trp, Thr, Ser, Gly or Ala, and / or in the sequence (i) The 77th amino acid of the sequence represented by SEQ ID NO: 9 is substituted with Arg, His, Asn, Gln, Gly or Ala, and / or the 101st sequence of the sequence represented by SEQ ID NO: 9 in the sequence (i) Are replaced with Tyr, Phe, Trp, Thr, Gly or Ala and / or in the sequence (i) above. The 111th amino acid of the sequence represented by SEQ ID NO: 9 is substituted with Gln, Asp, Glu, Gly or Ala, and / or the 127th sequence of the sequence represented by SEQ ID NO: 9 in the sequence (i) The calcium sensor protein according to claim 1, wherein the amino acid is substituted with Asp, Iso, Leu, Met, Pro, Val, Gly, or Ala. 前記(e)の配列が配列番号3で示される配列の151番目〜236番目までのアミノ酸配列であり、前記(g)の配列が配列番号3で示される配列の1番目〜150番目までのアミノ酸配列であることを特徴とする請求項1又は2に記載のカルシウムセンサー蛋白質。   The sequence (e) is the amino acid sequence from position 151 to position 236 of the sequence represented by SEQ ID NO: 3, and the sequence (g) is the amino acid from position 1 to position 150 of the sequence represented by SEQ ID NO: 3. The calcium sensor protein according to claim 1 or 2, wherein the calcium sensor protein is a sequence. 前記(b)の配列が配列番号5若しくは配列番号6で示されるアミノ酸配列であり、及び/又は前記(c)の配列が配列番号7で示されるアミノ酸配列であり、及び/又は前記(f)の配列が配列番号8で示されるアミノ酸配列であることを特徴とする請求項1乃至3のいずれかに記載のカルシウムセンサー蛋白質。   The sequence of (b) is an amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 6, and / or the sequence of (c) is an amino acid sequence represented by SEQ ID NO: 7, and / or (f) The calcium sensor protein according to any one of claims 1 to 3, wherein the sequence is an amino acid sequence represented by SEQ ID NO: 8. 前記(b)の配列が配列番号6で示されるアミノ酸配列であり、前記(d)の配列がPro−Valであり、前記(h)の配列がThr−Argであることを特徴とする請求項4に記載のカルシウムセンサー蛋白質。   The sequence of (b) is an amino acid sequence represented by SEQ ID NO: 6, the sequence of (d) is Pro-Val, and the sequence of (h) is Thr-Arg. 4. The calcium sensor protein according to 4. 前記(e)の配列がアミノ酸の置換を含まない配列番号3で示される配列の151番目〜236番目までのアミノ酸配列であり、前記(g)の配列がアミノ酸の置換を含まない配列番号3で示される配列の1番目〜150番目であり、前記(i)の配列がアミノ酸の置換を含まない配列番号9で示される配列の2番目〜148番目であることを特徴とする請求項5に記載のカルシウムセンサー蛋白質。   The sequence (e) is an amino acid sequence from position 151 to position 236 of the sequence represented by SEQ ID NO: 3 that does not contain amino acid substitution, and the sequence (g) is SEQ ID NO: 3 that does not contain amino acid substitution. 6. The sequence according to claim 5, wherein the sequence is the first to 150th of the sequence shown, and the sequence of (i) is the second to 148th of the sequence shown in SEQ ID NO: 9 which does not include amino acid substitution. Calcium sensor protein. 前記(e)の配列が配列番号3で示される配列の151番目〜236番目であって、151番目のアミノ酸がValに置換され、152番目のアミノ酸がSerに置換され、169番目のアミノ酸がGlyに置換され、171番目のアミノ酸がArgに置換され、219番目のアミノ酸がCysに置換され、前記(g)の配列が配列番号3で示される配列の1番目〜150番目までのアミノ酸配列であり、1番目のアミノ酸がLeuに置換され、8番目のアミノ酸がAspに置換され、52番目のアミノ酸がValに置換され、54番目のアミノ酸がValに置換され、76番目のアミノ酸がAlaに置換され、136番目のアミノ酸がProに置換され、前記(i)の配列が配列番号9で示される配列の63番目のアミノ酸がPheに置換され、77番目のアミノ酸がAsnに置換され、101番目のアミノ酸がGlyに置換され、111番目のアミノ酸がAspに置換され、127番目のアミノ酸がValに置換されていることを特徴とする請求項5に記載のカルシウムセンサー蛋白質。   The sequence of (e) is from position 151 to position 236 of the sequence represented by SEQ ID NO: 3, wherein the 151st amino acid is substituted with Val, the 152nd amino acid is substituted with Ser, and the 169th amino acid is Gly. The 171st amino acid is substituted with Arg, the 219th amino acid is substituted with Cys, and the sequence of (g) is the amino acid sequence from the 1st to the 150th of the sequence shown in SEQ ID NO: 3. 1st amino acid is replaced with Leu, 8th amino acid is replaced with Asp, 52nd amino acid is replaced with Val, 54th amino acid is replaced with Val, and 76th amino acid is replaced with Ala The 136th amino acid is replaced with Pro, and the 63rd amino acid of the sequence shown in SEQ ID NO: 9 is replaced with Phe in the sequence (i). The 77th amino acid is substituted with Asn, the 101st amino acid is substituted with Gly, the 111th amino acid is substituted with Asp, and the 127th amino acid is substituted with Val. 5. The calcium sensor protein according to 5. 前記(j)の配列が、配列番号10で示される配列であることを特徴とする請求項1乃至7のいずれかに記載のカルシウムセンサー蛋白質。   The calcium sensor protein according to any one of claims 1 to 7, wherein the sequence (j) is a sequence represented by SEQ ID NO: 10. 前記(k)の配列が配列番号12で示される配列であることを特徴とする請求項1乃至8のいずれかに記載のカルシウムセンサー蛋白質。   The calcium sensor protein according to any one of claims 1 to 8, wherein the sequence of (k) is a sequence represented by SEQ ID NO: 12. 請求項1乃至9のいずれかに記載の蛋白質をコードするカルシウムセンサー遺伝子。   A calcium sensor gene encoding the protein according to any one of claims 1 to 9.
JP2012137434A 2012-06-19 2012-06-19 Calcium sensor protein using red fluorescent protein Active JP6051438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137434A JP6051438B2 (en) 2012-06-19 2012-06-19 Calcium sensor protein using red fluorescent protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137434A JP6051438B2 (en) 2012-06-19 2012-06-19 Calcium sensor protein using red fluorescent protein

Publications (2)

Publication Number Publication Date
JP2014001161A true JP2014001161A (en) 2014-01-09
JP6051438B2 JP6051438B2 (en) 2016-12-27

Family

ID=50034700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137434A Active JP6051438B2 (en) 2012-06-19 2012-06-19 Calcium sensor protein using red fluorescent protein

Country Status (1)

Country Link
JP (1) JP6051438B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190083A1 (en) * 2014-06-11 2015-12-17 国立研究開発法人科学技術振興機構 Calcium reporter gene
US20160176931A1 (en) * 2014-12-23 2016-06-23 Howard Hughes Medical Institute Red genetically encoded calcium indicators and methods of use
CN112480271A (en) * 2020-12-15 2021-03-12 中国科学院深圳先进技术研究院 High-performance red cAMP fluorescent probe and application thereof
JP2021515550A (en) * 2018-03-02 2021-06-24 ザ・ガバナーズ・オブ・ザ・ユニバーシティー・オブ・アルバータ Low affinity red fluorescence indicator for imaging Ca2 + in excitatory and non-excitatory cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016021111; Science, 2011, Vol. 333, p. 1888-1891 *
JPN6016021112; PLOS ONE, 2008, Vol. 3, No. 3, e1796 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836802B2 (en) 2014-06-11 2020-11-17 Japan Science And Technology Agency Calcium reporter gene
CN106687588B (en) * 2014-06-11 2021-06-08 国立研究开发法人科学技术振兴机构 Calcium indicator gene
JPWO2015190083A1 (en) * 2014-06-11 2017-04-20 国立研究開発法人科学技術振興機構 Calcium indicator gene
WO2015190083A1 (en) * 2014-06-11 2015-12-17 国立研究開発法人科学技術振興機構 Calcium reporter gene
CN106687588A (en) * 2014-06-11 2017-05-17 国立研究开发法人科学技术振兴机构 Calcium reporter gene
US9644007B2 (en) * 2014-12-23 2017-05-09 Howard Hughes Medical Institute Red genetically encoded calcium indicators and methods of use
US10053492B2 (en) * 2014-12-23 2018-08-21 Howard Hughes Medical Institute Red genetically encoded calcium indicators and methods of use
US20170198015A1 (en) * 2014-12-23 2017-07-13 Howard Hughes Medical Institute Red genetically encoded calcium indicators and methods of use
US20160176931A1 (en) * 2014-12-23 2016-06-23 Howard Hughes Medical Institute Red genetically encoded calcium indicators and methods of use
JP2021515550A (en) * 2018-03-02 2021-06-24 ザ・ガバナーズ・オブ・ザ・ユニバーシティー・オブ・アルバータ Low affinity red fluorescence indicator for imaging Ca2 + in excitatory and non-excitatory cells
JP7313636B2 (en) 2018-03-02 2023-07-25 ザ・ガバナーズ・オブ・ザ・ユニバーシティー・オブ・アルバータ A low-affinity red fluorescent indicator for imaging Ca2+ in excitable and non-excitable cells
CN112480271A (en) * 2020-12-15 2021-03-12 中国科学院深圳先进技术研究院 High-performance red cAMP fluorescent probe and application thereof
CN112480271B (en) * 2020-12-15 2022-11-01 中国科学院深圳先进技术研究院 High-performance red cAMP fluorescent probe and application thereof

Also Published As

Publication number Publication date
JP6051438B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
ES2399563T3 (en) Modified fluorescent green proteins and method for their use
WO2014026136A2 (en) Protease-resistant systems for polypeptide display and methods of making and using thereof
US20240027344A1 (en) Fluorescent Probe for Branched Chain Amino Acids and Use Thereof
JP6051438B2 (en) Calcium sensor protein using red fluorescent protein
CN109666075A (en) Glutamine optical probe and its preparation method and application
WO2019109017A1 (en) Light-responsive fusion proteins for controlling binding to targets
WO2022215532A1 (en) Novel polypeptide exhibiting fluorescent properties and use for same
DK2687847T3 (en) PROBE TO ANALYZE BIOLOGICAL Tissue AND PROCEDURE FOR USING SAME
JP5306995B2 (en) Target substance detection method, tag, DNA, vector, probe and detection kit used therefor
CN109666068A (en) Proline optical probe and its preparation method and application
CN109748970B (en) Alpha-ketoglutaric acid optical probe and preparation method and application thereof
CA2606876C (en) Fluorescent proteins and uses thereof
US20180044383A1 (en) Monomeric near-infrared fluorescent proteins engineered from bacterial phytochromes and methods for making same
JP2011097930A (en) Photoactivatable physiological function sensor protein
JP6667897B2 (en) Polypeptides exhibiting fluorescent properties and uses thereof
JP5788160B2 (en) Calcium sensor protein using green fluorescent protein or its homologue substituted with amino acid at specific site
JP5669080B2 (en) Calcium sensor protein using a green fluorescent protein or its homologue substituted with an amino acid at a specific site
RU2493260C2 (en) Isolated nucleic acid coding fluorescent biosensor for detection of hydrogen peroxide, expression cassette, cell that produces biosensor, isolated fluorescent biosensor for detection of hydrogen peroxide, isolated nucleic acid that codes fluorescent biosensor, efficiently fused with nucleic acid that codes signal of intracellular localisation
KR20100119104A (en) Fast maturating red fluorescent protein, fmred, as a novel reporter and molecular probe
RU2535336C1 (en) Red fluorescent biosensor for detection of hydrogen peroxide in living cells
KR20140115626A (en) Red Fluorescence Protein Variants
WO2021164665A1 (en) Arginine fluorescent probe, preparation method therefor and application thereof
TWI580691B (en) Blue fluorescent protein derived fromstichodactyla haddoni
RU2599443C2 (en) Modified genetically coded photosensitizer
JP2018174818A (en) Florescent calcium sensor proteins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6051438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250