JP2014001159A - Surface-modified iron oxide nanoparticle carrying medicine - Google Patents

Surface-modified iron oxide nanoparticle carrying medicine Download PDF

Info

Publication number
JP2014001159A
JP2014001159A JP2012136924A JP2012136924A JP2014001159A JP 2014001159 A JP2014001159 A JP 2014001159A JP 2012136924 A JP2012136924 A JP 2012136924A JP 2012136924 A JP2012136924 A JP 2012136924A JP 2014001159 A JP2014001159 A JP 2014001159A
Authority
JP
Japan
Prior art keywords
iron oxide
drug
oxide nanoparticles
group
anticancer agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136924A
Other languages
Japanese (ja)
Inventor
Yukio Nagasaki
幸夫 長崎
Kei Asai
佳 浅井
Halupka Brill Magdalena
ハルプカ・ブリル マグダレナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2012136924A priority Critical patent/JP2014001159A/en
Publication of JP2014001159A publication Critical patent/JP2014001159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an agent-carrier complex stably carrying an anticancer agent.SOLUTION: An iron oxide nanoparticle, as a carrier, having its surface covered with polyethylene glycol-b-poly(vinylbenzyl phosphonate), carries an anticancer agent.

Description

本発明は、低分子抗癌剤を担持した表面修飾酸化鉄ナノ粒子、より具体的には、正荷電性基と疎水性部分を有する抗癌剤と特定のブロック共重合体で表面修飾した酸化鉄ナノ粒子の複合体およびその製造方法に関する。   The present invention relates to a surface-modified iron oxide nanoparticle carrying a low molecular weight anticancer agent, more specifically, an iron oxide nanoparticle surface-modified with a specific block copolymer and an anticancer agent having a positively charged group and a hydrophobic moiety. The present invention relates to a composite and a method for producing the same.

低分子薬剤を血中へ投与するとそのほとんどが肝臓による代謝や尿中への排泄を受け体内から消失する。そのため治療効果を発揮するためには大量の薬剤を投与する必要があるが、それに伴い正常組織に対する副作用が問題となる。この問題を解決するために薬剤を特定の脂質由来のリポソームやブロック共重合体由来の高分子ミセル等のキャリアに内包させる方策が検討されてきた。こうして、後者においては、例えば、ブロック共重合体の一方のブロックを親水性、非イオン性、かつ、生体適合性であるポリエチレングリコールで構成し、他方を疎水性や特有の性質を有するポリマーで構成し、しかも、薬剤の内包の仕方等を工夫することにより、臨床使用に供し得る薬剤−キャリアコンジュゲート(または複合体)が開発されている(例えば、特許文献1参照)。これらの研究をはじめとする当該技術分野の研究を通じ、コンジュゲートのサイズを数十nmに制御することによって薬剤を血中に長期滞留させられることがわかっており、このようなコンジュゲートは固形がんや炎症部位に蓄積しやすいことも知られている(例えば、非特許文献1参照)。   When low-molecular-weight drugs are administered into the blood, most of them disappear from the body due to metabolism by the liver and excretion into the urine. Therefore, in order to exert a therapeutic effect, it is necessary to administer a large amount of drug, but this causes a problem of side effects on normal tissues. In order to solve this problem, a method of encapsulating a drug in a carrier such as a specific lipid-derived liposome or a block copolymer-derived polymeric micelle has been studied. Thus, in the latter case, for example, one block of the block copolymer is made of polyethylene glycol that is hydrophilic, nonionic, and biocompatible, and the other is made of a polymer having hydrophobicity or specific properties. Moreover, drug-carrier conjugates (or complexes) that can be used for clinical use have been developed by devising how to encapsulate drugs (see, for example, Patent Document 1). Through research in this technical field including these studies, it has been found that by controlling the size of the conjugate to several tens of nanometers, the drug can be retained in the blood for a long time. It is also known that it tends to accumulate in inflammatory sites (for example, see Non-Patent Document 1).

特許第2517760号公報Japanese Patent No. 2517760

Y.Matsumura,et al.,Cancer Res.46(1986)6387−6392Y. Matsumura, et al. , Cancer Res. 46 (1986) 6387-6392

しかしながら、従来技術では、一般的に、薬剤コンジュゲートを個体に投与した際、高塩濃度等の苛酷な生物学的環境にさらされることにより当該コンジュゲートが崩壊し糸球体から排泄されるとの課題や、血清タンパクの吸着が起こることで大きな凝集体を生じ肝臓のクッパー細胞などに貪食されるとの課題ある。また、薬物を上記のような高分子ミセル等に担持させる効率が必ずしも高くなく、さらに血中滞留中に漏れ出しが起こるため、十分な薬物送達ができないとの課題もある。   However, in the prior art, generally, when a drug conjugate is administered to an individual, the conjugate is disintegrated and excreted from the glomerulus by exposure to a harsh biological environment such as a high salt concentration. There is a problem that a large aggregate is formed by adsorption of serum protein and is phagocytosed by liver Kupffer cells. In addition, there is a problem that sufficient drug delivery cannot be performed because the efficiency of loading the drug on the above-described polymer micelle or the like is not necessarily high, and leakage occurs during the retention in the blood.

本発明者らは、上記のような薬剤キャリアの開発とともに、上述したポリエチレングリコール(以下、“PEG”ともいう)の特性を活用したバイオデバイスもしくは量子ドットの表面をポリエチレングリコールで修飾(または“PEGylation”)することを提案してきた。例えば、本発明者の一部は、酸化鉄ナノ粒子をPEGylationするに際し、ポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)(以下、“PEG−b−PVBP”ともいう)を用いて、粒子表面を被覆したところ、PEGの極めて高い固定化安定性を示しかつ、相対的に高密度のPEGで被覆した表面修飾酸化鉄ナノ粒子をもたらし、かような酸化鉄ナノ粒子が血中に長期滞留し、かつマウス腫瘍モデルにおいて標的化リガンド無しに腫瘍蓄積性を促進することも確認できることを報告した(Y.Nagasaki,et al.,Colloids and surface
s.B,Biointerfaces 2011,88,771−778、以下、Nagasaki,et al.という。この文献は、ここに引用することにより、その記載事項の全てが本明細書に組み入れられる。)。このような表面修飾酸化鉄ナノ粒子それ自体は、例えば、腫瘍の温熱療法(hyperthermia)等の技術分野で使用が期待されている。しかし、仮に、薬剤が、当該表面修飾酸化鉄ナノ粒子に効率よく導入でき、しかも、その特性、例えば、長期血中滞留性、腫瘍蓄積性に悪影響を及ぼさないのであれば、かような薬剤導入酸化鉄ナノ粒子の提供は、上述の課題を解決することに資するであろう。
In addition to the development of the above-described drug carrier, the present inventors modified the surface of a biodevice or quantum dot utilizing the above-described properties of polyethylene glycol (hereinafter also referred to as “PEG”) with polyethylene glycol (or “PEGylation”). ") Has been proposed to do. For example, some of the inventors used polyethylene glycol-b-poly (vinyl benzyl phosphonate) (hereinafter also referred to as “PEG-b-PVBP”) to PEGylate iron oxide nanoparticles. When coated on the surface, PEG exhibits extremely high immobilization stability and results in surface-modified iron oxide nanoparticles coated with a relatively high density of PEG, such iron oxide nanoparticles staying in the blood for a long time In addition, it has been reported that it can be confirmed to promote tumor accumulation without a targeting ligand in a mouse tumor model (Y. Nagasaki, et al., Colloids and surface).
s. B, Biointerfaces 2011, 88, 771-778, hereinafter, Nagasaki, et al. That's it. This document is incorporated herein by reference in its entirety. ). Such surface-modified iron oxide nanoparticles themselves are expected to be used in technical fields such as hyperthermia of tumors. However, if the drug can be efficiently introduced into the surface-modified iron oxide nanoparticles, and if it does not adversely affect the characteristics such as long-term blood retention and tumor accumulation, such drug introduction The provision of iron oxide nanoparticles will contribute to solving the above-mentioned problems.

今ここに、PEG−b−PVBPで表面を被覆した酸化鉄ナノ粒子が効率よく、ドキソルビシンのような正荷電性基と疎水性部分を有する抗癌剤であれば、容易に前記酸化鉄ナノ粒子に担持することができ、しかも当該ナノ粒子が有していた特性がほぼ維持できることを見出した。   Now, if the iron oxide nanoparticles whose surface is coated with PEG-b-PVBP is efficient and is an anticancer agent having a positively charged group and a hydrophobic portion such as doxorubicin, it is easily supported on the iron oxide nanoparticles. In addition, the inventors have found that the characteristics of the nanoparticles can be substantially maintained.

したがって、本発明は、薬剤を担持した酸化鉄ナノ粒子であって、薬剤が正荷電性基と疎水性部分を有する抗癌剤であり、酸化鉄ナノ粒子がポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)で表面が被覆されており、かつ、リン酸緩衝化生理食塩水中(PBS)で分散性を有する、前記酸化鉄ナノ粒子(以下、「ナノ複合体」ともいう)、ならびにその製造方法を提供する。   Therefore, the present invention provides iron oxide nanoparticles carrying a drug, wherein the drug is an anticancer agent having a positively charged group and a hydrophobic moiety, and the iron oxide nanoparticles are polyethylene glycol-b-poly (vinyl benzyl phospho). The iron oxide nanoparticles (hereinafter also referred to as “nanocomposite”) having a surface coated with natto and having dispersibility in phosphate buffered saline (PBS), and a method for producing the same provide.

本発明のより具体的な態様のものは、次のとおりである:
薬剤を担持した酸化鉄ナノ粒子であって、薬剤が正荷電性基と疎水性部分を有する抗腫瘍剤であり、酸化鉄ナノ粒子がポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)で表面が被覆されており、かつ、当該ブロック共重合体が下記式(I)で表される前記酸化鉄ナノ粒子。
More specific embodiments of the present invention are as follows:
A drug-supported iron oxide nanoparticle, the drug is an antitumor agent having a positively charged group and a hydrophobic moiety, and the iron oxide nanoparticle is polyethylene glycol-b-poly (vinylbenzyl phosphonate) surface And the iron oxide nanoparticles represented by the following formula (I).

Figure 2014001159
Figure 2014001159

式中、
Rは、非置換または置換C−C12アルキル基を表し、置換されている場合の置換基は、ホルミル基または式RCH−の基を表し、ここで、R及びRは独立して、C−CアルコキシまたはRとRは一緒になって−OCHCHO−、−O(CHO−もしくは−O(CHO−を表し、
Lは、連結基を表し、
mは、14〜5,000の整数であり、
nは、2〜1,000の整数であり、
但し、ポリ(ビニルベンジルフォスフォナート)セグメント中に、当該ビニルベンジルフォスフォナート反復単位に代わり、ビニルベンジルヒドロキシおよびビニルベンジルオキシC1−アルキルからなる群より選ばれる反復単位をランダムにまたはブロックとし
て30%まで含むことができる。
Where
R represents an unsubstituted or substituted C 1 -C 12 alkyl group, and when substituted, the substituent represents a formyl group or a group of formula R 1 R 2 CH—, where R 1 and R 2 independently, C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or -O (CH 2) 4 O- and Represent,
L represents a linking group,
m is an integer of 14 to 5,000,
n is an integer of 2 to 1,000,
However, in the poly (vinyl benzyl phosphonate) segment, in place of the vinyl benzyl phosphonate repeating unit, a repeating unit selected from the group consisting of vinyl benzyl hydroxy and vinyl benzyloxy C 1 -C 4 alkyl is randomly or It can contain up to 30% as a block.

<発明の詳細な説明>
以下、本発明を規定するのに使用する用語、記述等について説明する。
「酸化鉄ナノ粒子」にいう、酸化鉄には、いかなる製法により得られ、また、いかなる形態のものであっても、本発明の目的に沿うものであれば、すべて包含される。しかし、限定されるものではないが、好ましいものとしては、磁鉄鋼(Fe等)、三酸化二鉄(Fe)のα態、γ態、より好ましくはγ態の酸化鉄を挙げることができる。ナノ粒子とは、平均径が、nmオーダーにある粒子を意味し、これらの径は、少なくとも100粒子の各電子顕微鏡画像からの直径を測定することにより決定される径か、水性媒体中に存在する状態で動的光散乱(DLS)測定による流体力学的な径(hydrodynamic diameter)を基準とする。具体的には、酸化鉄それ自体の粒子にあっては、限定されるものでないが、数平均粒子径が3〜100nmであり、酸化鉄ナノ粒子がポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)で表面が被覆された粒子(または「表面修飾酸化鉄ナノ粒子」ともいう)にあっては、流体力学的な径が、限定されるものでないが、10〜200nm、好ましくは、20〜60nmである。
<Detailed Description of the Invention>
Hereinafter, terms, descriptions and the like used to define the present invention will be described.
The iron oxide referred to as “iron oxide nanoparticles” can be obtained by any manufacturing method, and can be in any form as long as it meets the object of the present invention. However, although it is not limited, preferred are iron oxides such as magnetite steel (Fe 3 O 4 and the like), ferric trioxide (Fe 2 O 3 ) α state, γ state, more preferably γ state iron oxide. Can be mentioned. Nanoparticles mean particles whose average diameter is on the order of nm, and these diameters are those determined by measuring the diameter from each electron microscopic image of at least 100 particles or present in an aqueous medium. In this state, a hydrodynamic diameter by dynamic light scattering (DLS) measurement is used as a reference. Specifically, the particles of iron oxide itself are not limited, but the number average particle diameter is 3 to 100 nm, and the iron oxide nanoparticles are made of polyethylene glycol-b-poly (vinyl benzyl phospho). In the particles whose surface is coated with natto (also referred to as “surface-modified iron oxide nanoparticles”), the hydrodynamic diameter is not limited, but is 10 to 200 nm, preferably 20 to 20 nm. 60 nm.

「酸化鉄ナノ粒子がポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)(PEG−b−PVBP)で表面が被覆されており」とは、理論により本発明の技術的範囲の解釈が、拘束されるものでないが、Nagasaki,et al.に記載されているごとく、PEG−b−PVBPの複数のPVBPセグメントにおけるフォスフォナート基の多点定着(multipoint anchoring)を介して酸化鉄表面にPEG−b−PVBPが結合した状態にあるものと理解している。また、当該技術分野では、フォスフォナート基が酸化鉄をはじめとする種々の酸化金属への結合能を有することが公知であるとおり、さらには、ポリスチレンからなるPVBPセグメントの主鎖構造が疎水性であることから、PEG−b−PVBPの酸化鉄表面への結合はPEG鎖を強固かつ、稠密に当該表面に固定することを可能にするものと理解されている。本発明で薬剤のキャリアとして使用する、表面修飾酸化鉄ナノ粒子の表面PEG鎖密度は、当該粒子製造時の、仕込み、PEG−b−PVBPと酸化鉄の形成するための鉄塩の重量比を変動することにより、変動でき、zeta電位の測定等によると、1nm当り、ほぼ0.8PEG鎖の密度まで、例えば、0.43〜0.81PEG鎖に調製したものとを使用することが好ましい。 “Iron oxide nanoparticles are coated with polyethylene glycol-b-poly (vinyl benzyl phosphonate) (PEG-b-PVBP)” means that the interpretation of the technical scope of the present invention is limited by theory. Although not described, Nagasaki, et al. PEG-b-PVBP is bonded to the iron oxide surface through multipoint anchoring of phosphonate groups in a plurality of PVBP segments of PEG-b-PVBP. I understand. In addition, as it is known in the art that the phosphonate group has the ability to bind to various metal oxides including iron oxide, the main chain structure of the PVBP segment made of polystyrene is hydrophobic. Thus, it is understood that the binding of PEG-b-PVBP to the iron oxide surface allows the PEG chain to be firmly and densely immobilized on the surface. The surface PEG chain density of the surface-modified iron oxide nanoparticles used as a drug carrier in the present invention is the same as the preparation, the weight ratio of PEG-b-PVBP and iron salt for forming iron oxide at the time of production of the particles. By varying the zeta potential, it is preferable to use one prepared to 0.43 to 0.81 PEG chains, for example, up to a density of approximately 0.8 PEG chains per nm 2 .

このような表面修飾酸化鉄ナノ粒子は、脱イオン水または適当に緩衝化した水溶液の水性媒体中で薬剤たる正荷電性基と疎水性部分を有する抗癌剤と接触させることにより、容易に薬剤を担持した表面修飾酸化鉄ナノ粒子(ナノ複合体)を提供することができる。このことは、上記から理解できるように、表面修飾酸化鉄ナノ粒子は、表面にフォスフォナート基および疎水性ドメインを有するものと理解できるので、前記特性を有する薬剤は、当該表面と静電相互作用および/または疎水性結合を介して、表面修飾酸化鉄ナノ粒子に化学結合し、固定または担持されるものと理解されている。後述するが、こうして得られる本発明に従うナノ複合体は、薬剤が表面修飾酸化鉄ナノ粒子に担持さるにもかかわらず、薬剤を担持していない表面修飾酸化鉄ナノ粒子と同等の、安定な血中滞留性を示し、また、薬剤それ自体が有する細胞毒性に比べ有意に低下した細胞毒性を示す。   Such surface-modified iron oxide nanoparticles easily carry the drug by contacting the drug with a positively charged group and an anticancer drug having a hydrophobic moiety in an aqueous medium of deionized water or an appropriately buffered aqueous solution. Surface-modified iron oxide nanoparticles (nanocomposites) can be provided. As can be understood from the above, the surface-modified iron oxide nanoparticles can be understood as having a phosphonate group and a hydrophobic domain on the surface. It is understood that it is chemically bonded and immobilized or supported on the surface-modified iron oxide nanoparticles via action and / or hydrophobic bonds. As will be described later, the nanocomposite according to the present invention thus obtained has a stable blood equivalent to the surface-modified iron oxide nanoparticles that do not carry a drug even though the drug is carried on the surface-modified iron oxide nanoparticles. It exhibits moderate retention and also exhibits significantly reduced cytotoxicity compared to the cytotoxicity of the drug itself.

このような安定性は、薬剤を担持した表面修飾酸化鉄ナノ粒子の総重量当り、薬剤重量を、22%としたときでさえ、維持される。したがって、本発明にしたがって提供できるナノ複合体は、限定されるものでないが、前記総重量当り、重量で5%〜40%、好ましくは、10%〜40%薬剤を含み得る。   Such stability is maintained even when the drug weight is 22% based on the total weight of the surface-modified iron oxide nanoparticles carrying the drug. Accordingly, the nanocomposites that can be provided according to the present invention can include, but are not limited to, 5% to 40%, preferably 10% to 40% drug by weight, based on the total weight.

PEG−b−PVBPは、酸化鉄ナノ粒子表面と上記のように相互作用し得るものであ
れば、各ブロックの分子量、また、追加のマイナー(全分子量中5%まで占めるできる)な反復単位、置換基等を含み得る。しかし、PEG−b−PVBPの典型的なものとしては、下記式(I)で表されるブロック共重合体を挙げることができる。
PEG-b-PVBP is capable of interacting with the iron oxide nanoparticle surface as described above, the molecular weight of each block, and additional minor (can account for up to 5% of the total molecular weight) repeating units, Substituents and the like may be included. However, a typical example of PEG-b-PVBP includes a block copolymer represented by the following formula (I).

Figure 2014001159
Figure 2014001159

式中、
Rは、非置換または置換C−C12アルキル基を表し、置換されている場合の置換基は、ホルミル基または式RCH−の基を表し、ここで、R及びRは独立して、C−CアルコキシまたはRとRは一緒になって−OCHCHO−、−O(CHO−もしくは−O(CHO−を表し、
Lは、連結基を表し、
mは、14〜5,000、好ましくは90〜1200の整数であり、
nは、2〜1,000、好ましくは10〜100の整数であり、
但し、ポリ(ビニルベンジルフォスフォナート)セグメント中に、当該ビニルベンジルフォスフォナート反復単位に代わり、ビニルベンジルヒドロキシおよびビニルベンジルオキシC1−アルキルからなる群より選ばれる反復単位をランダムにまたはブロックとして30%まで、好ましくは、10%まで、より好ましくは5%まで含むことができるが、特に好ましくは、0%である。
Where
R represents an unsubstituted or substituted C 1 -C 12 alkyl group, and when substituted, the substituent represents a formyl group or a group of formula R 1 R 2 CH—, where R 1 and R 2 independently, C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or -O (CH 2) 4 O- and Represent,
L represents a linking group,
m is an integer of 14 to 5,000, preferably 90 to 1200;
n is an integer of 2 to 1,000, preferably 10 to 100;
However, in the poly (vinyl benzyl phosphonate) segment, in place of the vinyl benzyl phosphonate repeating unit, a repeating unit selected from the group consisting of vinyl benzyl hydroxy and vinyl benzyloxy C 1 -C 4 alkyl is randomly or The block may contain up to 30%, preferably up to 10%, more preferably up to 5%, particularly preferably 0%.

上記の但し書き中の反復単位は、通常、PEG−b−PVBPの製造方法により、含むことができる。
−C12アルキル基またはC−Cアルキルにいうアルキル基は、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、イソヘキシル、ヘプチル、ドデシル等を包含する。
また、連結基Lは、上述したPEG−b−PVBPと酸化鉄ナノ粒子との相互作用に悪影響を及ぼさないかぎり、いかなる基であってもよいが、−(CHS−、−CO(CHS−、−COO(CHS−、−COC(CH−、からなる群より選ばれ、ここでcは1ないし5の整数であることができる。なお、式(I)中のこれらの連結基の結合の方向性は記載した順であり、例えば、−(CHS−のときは、Sを介してポリ(ビニルベンジルフォスフォナート)セグメントに結合することを意味する。
The repeating unit in the above proviso can usually be included by the production method of PEG-b-PVBP.
C 1 -C 12 alkyl group or an alkyl group referred to in C 1 -C 4 alkyl are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s- butyl, t- butyl, pentyl, isopentyl, neopentyl, hexyl, isohexyl, Includes heptyl, dodecyl and the like.
The linking group L may be any group as long as it does not adversely affect the above-described interaction between PEG-b-PVBP and iron oxide nanoparticles, but — (CH 2 ) c S—, —CO (CH 2 ) c S—, —COO (CH 2 ) c S—, —COC (CH 3 ) 2 —, are selected, where c can be an integer from 1 to 5. Incidentally, wherein the direction of the binding of these linking groups in (I) is a forward described, for example, - (CH 2) When c S- of poly through a S (vinylbenzyl phosphonate) Means to join segments.

薬剤は、上記の作用機序により表面修飾酸化鉄ナノ粒子に担持されるものと理解できるので、正荷電性基と疎水性部分を有する、低分子抗癌剤であればいかなる薬剤をも包含できる。正荷電性基とは、アミノ基、イミノ基等の窒素原子含有基を意味し、また、疎水性部分とは、飽和もしくは部分的に窒素原子もしくは酸素原子を1もしくは2個含んでいてもより不飽和縮合炭化水素環を含有する部分を意味し、低分子抗癌剤とは、タンパク質、
ポリペプチ、核酸系の抗癌剤に対する概念のものとして用いている。このような薬剤には、限定されるものでないが、当該技術分野で通常用いられている概念である、アントラサイクリン系抗癌剤、キノリンアルカロイド系抗癌剤、ビンカアルカロイド系抗癌剤からなる群より選ばれる少なくとも1種の抗癌剤であることができる。本発明では、2種以上の抗癌剤であっても、同時に各ナノ粒子に担持できる。上記アントラサイクリン系抗癌剤としては、限定されるものでないが、ドキソルビシン、エピルビシン、イダルビシン、ピラルビシンを挙げることができる。また、キノリンアルカロイド系抗癌剤としては、限定されるものでないが、トポテカン、イリノテカン、カンプトテシンを挙げることができる。また、ビンカアルカロイド系抗癌剤としては、限定されるものではないが、ビンブラスチン、ビンクリスチン、ビノレルビン、エリブリンを挙げることができる。
Since it can be understood that the drug is supported on the surface-modified iron oxide nanoparticles by the above-mentioned mechanism of action, any drug can be included as long as it is a low-molecular anticancer drug having a positively charged group and a hydrophobic moiety. The positively charged group means a nitrogen atom-containing group such as an amino group or an imino group, and the hydrophobic part is saturated or partially contains one or two nitrogen atoms or oxygen atoms. This means a moiety containing an unsaturated condensed hydrocarbon ring, and a low molecular weight anticancer agent is a protein,
It is used as a concept for polypeptide and nucleic acid anticancer agents. Such drugs include, but are not limited to, at least one selected from the group consisting of an anthracycline anticancer agent, a quinoline alkaloid anticancer agent, and a vinca alkaloid anticancer agent, which is a concept commonly used in the art. It can be an anticancer agent. In the present invention, two or more types of anticancer agents can be simultaneously supported on each nanoparticle. Examples of the anthracycline anticancer agent include, but are not limited to, doxorubicin, epirubicin, idarubicin, and pirarubicin. The quinoline alkaloid anticancer agent includes, but is not limited to, topotecan, irinotecan, and camptothecin. Examples of vinca alkaloid anticancer agents include, but are not limited to, vinblastine, vincristine, vinorelbine, and eribulin.

これらの薬剤を担持したナノ複合体は、後述する、高濃度のPBS含有溶液中、ウシ胎児血清(FBS)を加えたPBS溶液中で長期の安定性を示し、また、担持した薬剤の細胞毒性が薬剤それ自体のものに比べ有意に低下することを示すことから、水性媒体中では、稠密なPEG鎖のブラシが表面に形成されているものと理解できる。また、流体力学的粒径も、表面修飾酸化鉄ナノ粒子のそれを著しく変動させるものでなく、ほぼ50nm以下に調製できるので、EPR(enhanced permeability and retention)効果を介して腫瘍または癌組織に蓄積できるものと思われ、また、かような組織が、一般に酸性側にあるpHを有することを考慮すると、上記のような機序で担持された正荷電性基を有する薬剤は、当該組織中で選択的に放出される蓋然性は高いものと考えられる。したがって、本発明にしたがうナノ複合体は、従来の薬剤−キャリアコンジュゲート(または複合体)を超えた有用性を有するものと理解できる。   The nanocomplex loaded with these drugs exhibits long-term stability in a PBS solution containing fetal bovine serum (FBS) in a high-concentration PBS-containing solution, which will be described later, and the cytotoxicity of the loaded drug. Can be understood that a dense PEG chain brush is formed on the surface in an aqueous medium. In addition, the hydrodynamic particle size does not significantly change that of the surface-modified iron oxide nanoparticles, and can be adjusted to approximately 50 nm or less, so that it accumulates in the tumor or cancer tissue via the EPR (enhanced permeability and retention) effect. Considering that such a tissue has a pH that is generally on the acidic side, a drug having a positively charged group carried by the mechanism as described above can be used in the tissue. The probability of selective release is considered high. Thus, it can be understood that the nanocomposites according to the present invention have utility beyond conventional drug-carrier conjugates (or complexes).

このようなナノ複合体は、鉄塩およびPEG−b−PVBPを用いる共沈法、熱分解法、水熱処理法等のいずれの方法で製造されたものであっても上記特性を備えた表面修飾酸化鉄ナノ粒子と薬剤を水性媒体中で接触させることにより製造できる。したがって、本発明によれば、上記の課題を解決する手段として、PEG−b−PVBPで表面が被覆された酸化鉄ナノ粒子含有溶液を、正荷電性基と疎水性部分を有する抗癌剤含有溶液を混合するステップ、および形成された抗癌剤を担持した酸化鉄ナノ粒子を回収するステップを含んでなる、抗癌剤を担持した酸化鉄ナノ粒子の製造方法も提供される。PEG−b−PVBPで表面が被覆された酸化鉄ナノ粒子含有溶液は、必要により、適当な緩衝剤により、pHを調節した水溶液として調製し、一方で、薬剤の種類に応じて、薬剤の適当塩酸塩から前記のようにpHを調節した水溶液を調製し、両水溶液を混合し、必要により遮光した室温下で撹拌することにより、薬剤を担持した表面修飾酸化鉄ナノ粒子を形成する。撹拌は、12時間〜32時間行えばよい。こうして形成されたナノ複合体は、それ自体公知の回収方法、例えば、遠心限外ろ過により担持されなかった薬剤等から分離することにより回収できる。   Such a nanocomposite is a surface modification having the above characteristics even if it is produced by any method such as a coprecipitation method using iron salt and PEG-b-PVBP, thermal decomposition method, hydrothermal treatment method, etc. It can be produced by contacting iron oxide nanoparticles and a drug in an aqueous medium. Therefore, according to the present invention, as means for solving the above-mentioned problems, an iron oxide nanoparticle-containing solution whose surface is coated with PEG-b-PVBP is converted into an anticancer agent-containing solution having a positively charged group and a hydrophobic portion. There is also provided a method for producing iron oxide nanoparticles carrying an anticancer agent, comprising the steps of mixing and recovering the formed iron oxide nanoparticles carrying the anticancer agent. A solution containing iron oxide nanoparticles whose surface is coated with PEG-b-PVBP is prepared as an aqueous solution adjusted in pH with an appropriate buffer, if necessary. An aqueous solution adjusted in pH as described above is prepared from the hydrochloride, and both aqueous solutions are mixed, and stirred at room temperature protected from light as necessary to form surface-modified iron oxide nanoparticles carrying a drug. Stirring may be performed for 12 hours to 32 hours. The nanocomposite thus formed can be recovered by separating it from a drug or the like that has not been supported by a recovery method known per se, for example, centrifugal ultrafiltration.

試験1の結果を示す、PBSおよび10%FBS溶液中でのPEG化酸化鉄ナノ粒子の安定性を示すグラフである。なお、縦軸は、流体力学的粒子径(nm)を表し、横軸は試験時間(日)を表す。It is a graph which shows the result of the test 1 and shows the stability of the PEGylated iron oxide nanoparticle in PBS and 10% FBS solution. The vertical axis represents the hydrodynamic particle size (nm), and the horizontal axis represents the test time (days). 実施例1における、粒子―薬剤混合溶液をSECに通して分取し、各フラクションの吸光度測定を行った結果を表すグラフである。縦軸は薬剤に起因する吸光度(481nm)を示し、横軸は溶出フラクションを示す。黒塗り四角のデータは遊離薬剤溶液であり、黒塗り丸のデータは粒子―薬剤複合体溶液である。It is a graph showing the result of having fractionated the particle-drug mixed solution in Example 1 through SEC and measuring the absorbance of each fraction. The vertical axis represents the absorbance due to the drug (481 nm), and the horizontal axis represents the elution fraction. The black square data is the free drug solution, and the black circle data is the particle-drug complex solution. 試験2における薬剤濃度の変化に対する細胞生存率を測定した結果を表すグラフである。縦軸は細胞生存率を表し、横軸は薬剤濃度(μM)を表す。黒塗り四角のデータは遊離薬剤溶液であり、黒塗り丸のデータは粒子―薬剤複合体溶液である。It is a graph showing the result of having measured the cell viability with respect to the change of the drug concentration in Test 2. FIG. The vertical axis represents cell viability and the horizontal axis represents drug concentration (μM). The black square data is the free drug solution, and the black circle data is the particle-drug complex solution.

以下、具体例を挙げて本発明をさらに詳細に説明するがこれらに本発明を限定することを意図するものではない。
PEG−b−PVBPで表面が被覆された酸化鉄ナノ粒子は、上記のNagasaki,et al.に記載された方法により、種々の共重合体被覆率のナノ粒子を製造できるが、典型例について下記に示す。以下の製造例および試験において温度について記載していない場合は、室温(25℃)で、処理を行った。
Hereinafter, the present invention will be described in more detail with reference to specific examples, but it is not intended to limit the present invention thereto.
Iron oxide nanoparticles whose surface is coated with PEG-b-PVBP are described in Nagasaki, et al. Nanoparticles with various copolymer coverages can be produced by the method described in 1), but typical examples are shown below. When the temperature was not described in the following production examples and tests, the treatment was performed at room temperature (25 ° C.).

<参考例製造例1> ポリエチレングリコール−b−ポリクロロメチルスチレン(PEG−b−PCMS)ブロック共重合体の合成
PEG−b−PCMSは、次の合成スキーム1に従い合成した:
Reference Example Production Example 1 Synthesis of Polyethylene Glycol-b-Polychloromethylstyrene (PEG-b-PCMS) Block Copolymer PEG-b-PCMS was synthesized according to the following synthesis scheme 1:

Figure 2014001159
Figure 2014001159

α末端にメトキシ基、ω末端にチオール基を有しているポリエチレングリコール(PEG−SH)(M=5,000g/mol;0.2mmol,1.0g)とアゾビスイソブチロニトリル(0.1mmol,16.5mg)を反応容器に加えた。次に、反応容器中を真空にした後、窒素ガスを吹き込む操作を3回繰り返すことにより、反応容器内を窒素雰囲気にした。反応容器に10mLのトルエンとクロロメチルスチレン(10mmol,1.38mL)を加え、60℃まで加熱し、24時間撹拌した。反応混合物をポリクロロメチルスチレンホモポリマーに対して良溶媒であるジエチルエーテルを用いて3回洗浄操作を行った後、ベンゼン凍結乾燥を行い、白い粉体を得た。収量は1.4gであり収率は96%であった。目的のPEG−b−PCMSブロック共重合体が取得できたことは、サイズ排除クロマトグラフィー(SEC)測定とH NMR測定によるスペクトルを検討した結果確認できた。 Polyethylene glycol (PEG-SH) having a methoxy group at the α-terminal and a thiol group at the ω-terminal (M n = 5,000 g / mol; 0.2 mmol, 1.0 g) and azobisisobutyronitrile (0 0.1 mmol, 16.5 mg) was added to the reaction vessel. Next, after the inside of the reaction vessel was evacuated, the operation of blowing nitrogen gas was repeated three times to make the inside of the reaction vessel a nitrogen atmosphere. 10 mL of toluene and chloromethylstyrene (10 mmol, 1.38 mL) were added to the reaction vessel, heated to 60 ° C., and stirred for 24 hours. The reaction mixture was washed three times using polyethyl ether which is a good solvent for polychloromethylstyrene homopolymer, and then freeze-dried with benzene to obtain a white powder. The yield was 1.4 g and the yield was 96%. The acquisition of the target PEG-b-PCMS block copolymer was confirmed by examining the spectrum by size exclusion chromatography (SEC) measurement and 1 H NMR measurement.

<参考製造例2> 亜リン酸基とベンゼン骨格を複数有するPEGブロックコポリマー(PEG−b−PVBP)の合成
窒素雰囲気下でNaH(5.25mmol,126mg)とNaI(ca.40mg)、反応溶媒としてTHFを5mL加えた後、氷浴中で亜リン酸ジエチル(2.55mmol,0.33mL)を加えた。また、別の窒素雰囲気下反応容器中でPEG−b−PCMS(500mg)をTHF 5mLに溶解した。後者をシリンジで前者にゆっくりと滴下し、室温で一晩反応させることによりCMSに亜リン酸ジエチル基を導入した(PEG−b−PDEVBP)。生成物の溶媒をエバポレート後、メタノール透析(MWCO 3500)を行い、ベンゼンに溶解させ凍結乾燥後、粉末を回収した。構造解析は、H,31P−NMR測定により行った。H NMRからは亜リン酸ジエチルに由来したピークの出現およびベンジル位由来のピークの高磁場シフトが確認され、亜リン酸ジエチル基の導入が確認できた。また、31P−NMRからも亜リン酸ジエチル由来と思われる単一のピークが確認され(26.91ppm)、目的の反応が進行したことが確認できた。収量は532mgであり収率は88%であった。
Reference Production Example 2 Synthesis of PEG Block Copolymer (PEG-b-PVBP) Having Multiple Phosphite Groups and Benzene Skeleton NaH (5.25 mmol, 126 mg), NaI (ca. 40 mg), reaction solvent under nitrogen atmosphere After adding 5 mL of THF, diethyl phosphite (2.55 mmol, 0.33 mL) was added in an ice bath. Further, PEG-b-PCMS (500 mg) was dissolved in 5 mL of THF in a reaction vessel under another nitrogen atmosphere. The latter was slowly added dropwise to the former with a syringe and reacted overnight at room temperature to introduce a diethyl phosphite group into CMS (PEG-b-PDEVBPBP). After evaporating the solvent of the product, methanol dialysis (MWCO 3500) was performed, and the product was dissolved in benzene and freeze-dried, and then the powder was recovered. The structural analysis was performed by 1 H, 31 P-NMR measurement. From 1 H NMR, the appearance of a peak derived from diethyl phosphite and a high magnetic field shift of the peak derived from the benzyl position were confirmed, and the introduction of a diethyl phosphite group could be confirmed. In addition, a single peak that seems to be derived from diethyl phosphite was confirmed from 31 P-NMR (26.91 ppm), confirming that the target reaction had progressed. The yield was 532 mg and the yield was 88%.

続いて窒素雰囲気下でPEG−b−PDEVBP(430mg)、反応溶媒としてジクロロメタン5mLを加えた後、ブロモトリメチルシラン(0.47mL,3.55mmol)を加え、オイルバス中で45℃,2時間リフラックスした。反応後は溶媒をエバポレートし、メタノールを加え、室温で15時間撹拌した後、メタノール透析(MWCO 3500)を行い、ベンゼンに溶解させ凍結乾燥後、粉末を回収した。構造解析は、H,31P−NMR測定により行った。H NMRからは加メタノール分解の進行による亜リン酸ジエチル基由来のピークの消失が観察できた。更にPEG−b−PDEVBPと比較し31P NMRのピークが高磁場シフトしていることから(26.91→24.17ppm)、PEG−b−PVBPの合成が確認できた。収量は384mgであり収率は85%であった。 Subsequently, PEG-b-PDEVBP (430 mg) and 5 mL of dichloromethane as a reaction solvent were added under a nitrogen atmosphere, bromotrimethylsilane (0.47 mL, 3.55 mmol) was then added, and the mixture was removed in an oil bath at 45 ° C. for 2 hours. Fluxed. After the reaction, the solvent was evaporated, methanol was added, and the mixture was stirred at room temperature for 15 hours, then dialyzed with methanol (MWCO 3500), dissolved in benzene, freeze-dried, and the powder was collected. The structural analysis was performed by 1 H, 31 P-NMR measurement. From 1 H NMR, the disappearance of the peak derived from the diethyl phosphite group due to the progress of methanol decomposition was observed. Furthermore, since the 31 P NMR peak was shifted by a high magnetic field compared with PEG-b-PDEVBPBP (26.91 → 24.17 ppm), the synthesis of PEG-b-PVBP could be confirmed. The yield was 384 mg and the yield was 85%.

<参考製造例3> PEG化酸化鉄ナノ粒子の合成
反応容器に0.05MのFeCl水溶液と0.1MのFeCl水溶液をそれぞれ75μLずつ加えたところに27mg/mLのPEG−b−PVBP水溶液を100μL加えて5分間撹拌した。その後反応容器を超音波の発生している水槽に浸しながら28% NHOH溶液を504μL加え、2時間撹拌を行った。反応後の溶液は水透析(MWCO 12−14,000)を行い、過剰なNHOHを除去した。得られた溶液を用いて動的光散乱(DLS)測定を行ったところ、平均粒径が25−30nmの単峰性の分布を有する粒子が合成できていることが確認された。
Reference Production Example 3 Synthesis of PEGylated Iron Oxide Nanoparticles To each reaction vessel, 75 μL each of 0.05 M FeCl 2 aqueous solution and 0.1 M FeCl 3 aqueous solution were added, and 27 mg / mL PEG-b-PVBP aqueous solution was added. Was added and stirred for 5 minutes. Thereafter, 504 μL of 28% NH 4 OH solution was added while the reaction vessel was immersed in a water tank in which ultrasonic waves were generated, and stirred for 2 hours. The solution after the reaction was subjected to water dialysis (MWCO 12-14,000) to remove excess NH 4 OH. When dynamic light scattering (DLS) measurement was performed using the obtained solution, it was confirmed that particles having a unimodal distribution with an average particle diameter of 25-30 nm could be synthesized.

<試験1> PEG化酸化鉄ナノ粒子の分散安定性
合成した粒子溶液に10倍濃い濃度のPBS溶液、またはウシ胎児血清(FBS)を加え、PBS溶液中または10% FBS含有PBS溶液中における粒子の平均粒径の変化を動的光散乱(DLS)測定により記録した。いずれの場合においても粒子の平均粒径は長期間変化せず、生体内における安定性が高いことが示唆された(図1)。
<Test 1> Dispersion Stability of PEGylated Iron Oxide Nanoparticles Particles in PBS solution or PBS solution containing 10% FBS were added to the synthesized particle solution with a 10-fold concentrated PBS solution or fetal bovine serum (FBS). The change in the average particle size was recorded by dynamic light scattering (DLS) measurement. In either case, the average particle size of the particles did not change for a long time, suggesting that the in vivo stability is high (FIG. 1).

<実施例1> PEG化酸化鉄ナノ粒子―ドキソルビシン複合体の合成
PEG化酸化鉄ナノ粒子溶液を10mM HEPESバッファ中で透析することによりpH7.4に調整した。そこへドキソルビシン(以下、“DOX”ともいう)塩酸塩のHEPES溶液(pH7.4)を最終濃度が1mg/mLまたは2mg/mLになるように加え、遮光した環境下(25℃)で1日間撹拌した。遠心限外濾過装置(MWCO 30,000)を用いて粒子―薬剤混合溶液における担持されていない薬剤を分離し、分離溶液の吸光度を測定することにより、薬剤担持効率と担持量を算出したところ、DOX最終濃度が1mg/mLのサンプルはそれぞれ98.3±0.9%、12.0±0.1%であり、DOX最終濃度が2mg/mLのサンプルはそれぞれ99.0±0.7%、21.5±0.1%であった。またDLS測定による平均粒径はそれぞれ33.7±6nm、44.0±9nmであった。さらに粒子―薬剤混合溶液をSECに通して分取し、各フラクションの吸光度測定を行ったところ未反応のDOX由来の吸光度が検出されなかったため、ほとんどのDOXが粒子に担持されたことが確認された(図2参照)。
<Example 1> Synthesis of PEGylated iron oxide nanoparticle-doxorubicin complex The pH of the PEGylated iron oxide nanoparticle solution was adjusted to 7.4 by dialysis in a 10 mM HEPES buffer. Thereto, a HEPES solution (pH 7.4) of doxorubicin (hereinafter also referred to as “DOX”) hydrochloride was added to a final concentration of 1 mg / mL or 2 mg / mL, and it was kept in a light-shielded environment (25 ° C.) for 1 day. Stir. When the unsupported drug in the particle-drug mixed solution was separated using a centrifugal ultrafiltration device (MWCO 30,000) and the absorbance of the separated solution was measured, the drug loading efficiency and the loaded amount were calculated. Samples with a DOX final concentration of 1 mg / mL are 98.3 ± 0.9% and 12.0 ± 0.1%, respectively, and samples with a DOX final concentration of 2 mg / mL are 99.0 ± 0.7%, respectively. 21.5 ± 0.1%. Moreover, the average particle diameters by DLS measurement were 33.7 ± 6 nm and 44.0 ± 9 nm, respectively. Further, the particle-drug mixed solution was separated by passing through SEC, and the absorbance of each fraction was measured. As a result, no absorbance from unreacted DOX was detected, and it was confirmed that most of the DOX was supported on the particles. (See FIG. 2).

<試験2> 粒子―DOX混合溶液を用いた細胞毒性試験
DOX溶液または粒子―DOX混合溶液をPC3細胞に48時間接触させ、MTTアッセイにより細胞生存率を測定した。結果を図3に示す。細胞培地中のDOX濃度で比較した場合、DOX溶液に比べ粒子―DOX混合溶液の細胞毒性が小さかったことから、薬剤が粒子に担持されていることが示唆される。また、当該細胞培養条件下で、少なくとも48時間粒子―DOXからDOXは放出されないことも示唆される。
<Test 2> Cytotoxicity test using particle-DOX mixed solution The DOX solution or particle-DOX mixed solution was brought into contact with PC3 cells for 48 hours, and the cell viability was measured by MTT assay. The results are shown in FIG. When compared with the DOX concentration in the cell culture medium, the cytotoxicity of the particle-DOX mixed solution was smaller than that of the DOX solution, which suggests that the drug is supported on the particles. It is also suggested that no DOX is released from the particle-DOX for at least 48 hours under the cell culture conditions.

本発明は、特定の抗癌剤を安定に担持した表面修飾酸化鉄ナノ粒子を提供するので、例
えば、医薬製造業で利用できる。
Since the present invention provides surface-modified iron oxide nanoparticles that stably carry a specific anticancer agent, it can be used, for example, in the pharmaceutical manufacturing industry.

Claims (7)

薬剤を担持した酸化鉄ナノ粒子であって、薬剤が正荷電性基と疎水性部分を有する抗癌剤であり、酸化鉄ナノ粒子がポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)で表面が被覆されており、かつ、リン酸緩衝化生理食塩水(PBS)中で分散性を有する、前記酸化鉄ナノ粒子。 Iron oxide nanoparticles carrying a drug, the drug is an anticancer drug having a positively charged group and a hydrophobic moiety, and the surface is coated with polyethylene glycol-b-poly (vinylbenzyl phosphonate). The iron oxide nanoparticles that are dispersed in phosphate buffered saline (PBS). 薬剤を担持した酸化鉄ナノ粒子であって、薬剤が正荷電性基と疎水性部分を有する抗癌剤であり、酸化鉄ナノ粒子がポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)で表面が被覆されており、かつ、当該ブロック共重合体が下記式(I)で表される前記酸化鉄ナノ粒子。
Figure 2014001159
式中、
Rは、非置換または置換C−C12アルキル基を表し、置換されている場合の置換基は、ホルミル基または式RCH−の基を表し、ここで、R及びRは独立して、C−CアルコキシまたはRとRは一緒になって−OCHCHO−、−O(CHO−もしくは−O(CHO−を表し、
Lは、連結基を表し、
mは、14〜5,000の整数であり、
nは、2〜1,000の整数であり、
但し、ポリ(ビニルベンジルフォスフォナート)セグメント中に、当該ビニルベンジルフォスフォナート反復単位に代わり、ビニルベンジルヒドロキシおよびビニルベンジルオキシC1−アルキルからなる群より選ばれる反復単位をランダムにまたはブロックとして30%まで含むことができる。
Iron oxide nanoparticles carrying a drug, the drug is an anticancer drug having a positively charged group and a hydrophobic moiety, and the surface is coated with polyethylene glycol-b-poly (vinylbenzyl phosphonate). And the iron oxide nanoparticles wherein the block copolymer is represented by the following formula (I).
Figure 2014001159
Where
R represents an unsubstituted or substituted C 1 -C 12 alkyl group, and when substituted, the substituent represents a formyl group or a group of formula R 1 R 2 CH—, where R 1 and R 2 independently, C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or -O (CH 2) 4 O- and Represent,
L represents a linking group,
m is an integer of 14 to 5,000,
n is an integer of 2 to 1,000,
However, in the poly (vinyl benzyl phosphonate) segment, in place of the vinyl benzyl phosphonate repeating unit, a repeating unit selected from the group consisting of vinyl benzyl hydroxy and vinyl benzyloxy C 1 -C 4 alkyl is randomly or It can contain up to 30% as a block.
連結基が−(CHS−、−CO(CHS−、−COO(CHS−、−COC(CH−、からなる群より選ばれ、ここでcは1ないし5の整数である、請求項2記載の酸化鉄ナノ粒子。 Wherein the linking group is selected from the group consisting of — (CH 2 ) c S—, —CO (CH 2 ) c S—, —COO (CH 2 ) c S—, —COC (CH 3 ) 2 —, The iron oxide nanoparticles according to claim 2, wherein c is an integer of 1 to 5. 薬剤が、アントラサイクリン系抗癌剤、キノリンアルカロイド系抗癌剤、ビンカアルカロイド系抗癌剤からなる群より選ばれる少なくとも1種の抗癌剤である、請求項1〜3のいずれかに記載の酸化鉄ナノ粒子。 The iron oxide nanoparticles according to any one of claims 1 to 3, wherein the drug is at least one anticancer agent selected from the group consisting of an anthracycline anticancer agent, a quinoline alkaloid anticancer agent, and a vinca alkaloid anticancer agent. 薬剤が、ドキソルビシン、エピルビシン、イダルビシン、ピラルビシンから選ばれるアントラサイクリン系抗癌剤であるか、またはトポテカン、イリノテカン、カンプトテシンから選ばれるキノリンアルカロイド系抗癌剤であるか、またはビンブラスチン、ビンクリスチン、ビノレルビン、エリブリンから選ばれるビンカアルカロイド系抗癌剤である、請求項1〜3のいずれかに記載の酸化鉄ナノ粒子。 The drug is an anthracycline anticancer drug selected from doxorubicin, epirubicin, idarubicin, pirarubicin, or a quinoline alkaloid anticancer drug selected from topotecan, irinotecan, camptothecin, or vincaine selected from vinblastine, vincristine, vinorelbine, eribulin The iron oxide nanoparticles according to any one of claims 1 to 3, which is an alkaloid anticancer agent. リン酸緩衝化生理食塩水(PBS)中で分散性を有する、請求項2記載の薬剤を担持した酸化鉄ナノ粒子。 The iron oxide nanoparticle which carry | supported the chemical | medical agent of Claim 2 which has dispersibility in phosphate buffered saline (PBS). ポリエチレングリコール−b−ポリ(ビニルベンジルフォスフォナート)で表面が被覆された酸化鉄ナノ粒子含有溶液を、正荷電性基と疎水性部分を有する抗癌剤含有溶液を混合するステップ、および形成された抗癌剤を担持した酸化鉄ナノ粒子を回収するステップを含んでなる、抗癌剤を担持した酸化鉄ナノ粒子の製造方法。 Mixing an iron oxide nanoparticle-containing solution, the surface of which is coated with polyethylene glycol-b-poly (vinylbenzyl phosphonate), with an anticancer agent-containing solution having a positively charged group and a hydrophobic moiety, and the formed anticancer agent A method for producing iron oxide nanoparticles carrying an anticancer agent, comprising the step of recovering iron oxide nanoparticles carrying iron.
JP2012136924A 2012-06-18 2012-06-18 Surface-modified iron oxide nanoparticle carrying medicine Pending JP2014001159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136924A JP2014001159A (en) 2012-06-18 2012-06-18 Surface-modified iron oxide nanoparticle carrying medicine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136924A JP2014001159A (en) 2012-06-18 2012-06-18 Surface-modified iron oxide nanoparticle carrying medicine

Publications (1)

Publication Number Publication Date
JP2014001159A true JP2014001159A (en) 2014-01-09

Family

ID=50034698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136924A Pending JP2014001159A (en) 2012-06-18 2012-06-18 Surface-modified iron oxide nanoparticle carrying medicine

Country Status (1)

Country Link
JP (1) JP2014001159A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561294C1 (en) * 2014-05-08 2015-08-27 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Method for inhibiting pliss lymphosarcoma growth experimentally
WO2015150502A1 (en) * 2014-04-01 2015-10-08 Centre National De La Recherche Scientifique Dendronized metallic oxide nanoparticles, a process for preparing the same and their uses
WO2016052463A1 (en) * 2014-09-30 2016-04-07 国立大学法人筑波大学 Poly(ethylene glycol)-b-poly(halomethylstyrene) and derivatives thereof, and production process therefor
JPWO2017094691A1 (en) * 2015-11-30 2018-09-13 国立大学法人 筑波大学 Nitroxy radical-containing copolymer having phosphate residues and use thereof
KR101945632B1 (en) 2017-10-26 2019-02-07 충남대학교산학협력단 Preparation of self-assembled nano-drug delivery system of pegylated anti-cancer prodrug for cancer precision theranostics and nano-drug delivery system thereof
WO2019245002A1 (en) 2018-06-20 2019-12-26 国立大学法人大阪大学 Method for producing lens to be fitted to eye, and lens to be fitted to eye
CN114848840A (en) * 2022-03-24 2022-08-05 北京福纳康生物技术有限公司 Modified iron-based nano material, iron-based nano liposome and anti-tumor application thereof
CN114848644A (en) * 2022-04-20 2022-08-05 深圳市龙华区人民医院 Nano-targeting sustained-release drug, and preparation method, device and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150502A1 (en) * 2014-04-01 2015-10-08 Centre National De La Recherche Scientifique Dendronized metallic oxide nanoparticles, a process for preparing the same and their uses
US10624976B2 (en) 2014-04-01 2020-04-21 Centre National De La Recherche Scientifique Dendronized metallic oxide nanoparticles, a process for preparing the same and their uses
RU2561294C1 (en) * 2014-05-08 2015-08-27 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Method for inhibiting pliss lymphosarcoma growth experimentally
WO2016052463A1 (en) * 2014-09-30 2016-04-07 国立大学法人筑波大学 Poly(ethylene glycol)-b-poly(halomethylstyrene) and derivatives thereof, and production process therefor
JPWO2016052463A1 (en) * 2014-09-30 2017-07-20 国立大学法人 筑波大学 POLY (ETHYLENE GLYCOL) -B-POLY (halomethylstyrene), DERIVATIVE AND PRODUCTION METHOD
US10208152B2 (en) 2014-09-30 2019-02-19 University Of Tsukuba Poly(ethylene glycol)-b-poly(halomethylstyrene), derivative thereof, and method for producing same
JPWO2017094691A1 (en) * 2015-11-30 2018-09-13 国立大学法人 筑波大学 Nitroxy radical-containing copolymer having phosphate residues and use thereof
KR101945632B1 (en) 2017-10-26 2019-02-07 충남대학교산학협력단 Preparation of self-assembled nano-drug delivery system of pegylated anti-cancer prodrug for cancer precision theranostics and nano-drug delivery system thereof
WO2019245002A1 (en) 2018-06-20 2019-12-26 国立大学法人大阪大学 Method for producing lens to be fitted to eye, and lens to be fitted to eye
CN114848840A (en) * 2022-03-24 2022-08-05 北京福纳康生物技术有限公司 Modified iron-based nano material, iron-based nano liposome and anti-tumor application thereof
CN114848840B (en) * 2022-03-24 2023-08-29 北京福纳康生物技术有限公司 Modified iron-based nano material, iron-based nano liposome and antitumor application thereof
CN114848644A (en) * 2022-04-20 2022-08-05 深圳市龙华区人民医院 Nano-targeting sustained-release drug, and preparation method, device and application thereof

Similar Documents

Publication Publication Date Title
JP2014001159A (en) Surface-modified iron oxide nanoparticle carrying medicine
Li et al. Recent advances in development of dendritic polymer‐based nanomedicines for cancer diagnosis
Bae et al. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging
Wang et al. Platelet membrane biomimetic bufalin-loaded hollow MnO2 nanoparticles for MRI-guided chemo-chemodynamic combined therapy of cancer
Qin et al. pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy
Singh et al. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications
Zhou et al. Core–shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications
Li et al. Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging
Sánchez et al. Hybrid decorated core@ shell janus nanoparticles as a flexible platform for targeted multimodal molecular bioimaging of cancer
Babaei et al. Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma
Peng et al. Nanostructured magnetic nanocomposites as MRI contrast agents
Yan et al. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment
Della Rocca et al. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery
Lee et al. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery
Soliman et al. Incorporation of Ru (II) polypyridyl complexes into nanomaterials for cancer therapy and diagnosis
Rowe et al. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers
Zhang et al. Dendrimer grafted persistent luminescent nanoplatform for aptamer guided tumor imaging and acid-responsive drug delivery
Xu et al. Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging
Suarez-Garcia et al. Coordination polymers nanoparticles for bioimaging
Liu et al. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery
Li et al. Mussel-inspired multidentate block copolymer to stabilize ultrasmall superparamagnetic Fe3O4 for magnetic resonance imaging contrast enhancement and excellent colloidal stability
Chen et al. Renal clearable peptide functionalized NaGdF4 nanodots for high-efficiency tracking orthotopic colorectal tumor in mouse
Xu et al. Construction of high quality ultrathin lanthanide oxyiodide nanosheets for enhanced CT imaging and anticancer drug delivery to efficient cancer theranostics
Zhou et al. Acetylated polyethylenimine-entrapped gold nanoparticles enable negative computed tomography imaging of orthotopic hepatic carcinoma
Guo et al. Pepetide dendron-functionalized mesoporous silica nanoparticle-based nanohybrid: biocompatibility and its potential as imaging probe