JP2014001085A - Recovery system and recovery method of sodium hydrogen carbonate - Google Patents

Recovery system and recovery method of sodium hydrogen carbonate Download PDF

Info

Publication number
JP2014001085A
JP2014001085A JP2012135379A JP2012135379A JP2014001085A JP 2014001085 A JP2014001085 A JP 2014001085A JP 2012135379 A JP2012135379 A JP 2012135379A JP 2012135379 A JP2012135379 A JP 2012135379A JP 2014001085 A JP2014001085 A JP 2014001085A
Authority
JP
Japan
Prior art keywords
concentrated
groundwater
carbon dioxide
sodium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012135379A
Other languages
Japanese (ja)
Other versions
JP6034601B2 (en
Inventor
Junji Mizutani
淳二 水谷
Hiroshi Fukada
博 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2012135379A priority Critical patent/JP6034601B2/en
Priority to AU2013202562A priority patent/AU2013202562B2/en
Publication of JP2014001085A publication Critical patent/JP2014001085A/en
Application granted granted Critical
Publication of JP6034601B2 publication Critical patent/JP6034601B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PROBLEM TO BE SOLVED: To collect sodium hydrogen carbonate included in ground water.SOLUTION: Ground water is concentrated by an evaporation-type concentrator 4. The concentrated ground water is contacted with carbon dioxide by a carbon dioxide absorption-type crystallizer 5 and sodium hydrogen carbonate crystallizes and precipitates. Recovery percentage of the sodium hydrogen carbonate is raised by introducing carbon dioxide generated by the evaporation-type concentrator 4 into the concentrated ground water of the carbon dioxide absorption-type crystallizer 5.

Description

本発明は、地下水に含まれる炭酸水素ナトリウムを回収する装置及び方法に関し、更に詳しくは、炭層メタンガスなどを採取する際に発生する随伴水等の地下水に含まれる炭酸水素ナトリウムの回収に好適な回収装置及び回収方法に関する。   The present invention relates to an apparatus and method for recovering sodium hydrogen carbonate contained in groundwater, and more particularly, suitable for recovering sodium hydrogen carbonate contained in groundwater such as associated water generated when collecting coalbed methane gas or the like. The present invention relates to an apparatus and a recovery method.

近年、石炭層から採取可能な炭層メタンガスの利用が進んでいる。この炭層メタンガスを採取する際に多量に発生する随伴水は、塩化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウムなどを含んでいる。   In recent years, utilization of coal bed methane gas that can be collected from the coal bed has been advanced. The accompanying water generated in a large amount when collecting the coal bed methane gas contains sodium chloride, sodium bicarbonate, sodium carbonate and the like.

このように随伴水は塩類を含んでいるので、灌漑用水としての利用や河川へ排水することはできず、このため、ため池に一時的に貯留して自然蒸発によって減容する等の処理が行なわれている。   As the accompanying water contains salt, it cannot be used as irrigation water or drained into rivers. For this reason, treatment such as temporary storage in a pond and volume reduction by natural evaporation is performed. It is.

しかしながら、ため池に貯留して自然蒸発させる蒸発池方式では、広大な敷地が必要となる。   However, the evaporating pond system that is stored in a reservoir and spontaneously evaporates requires a vast site.

そこで、蒸発池方式に比べて設備容量を大幅に低減するために、例えば、特許文献1には、逆浸透膜を用いた脱塩装置と蒸発法による濃縮装置とを組合せた濃縮装置が提案されている。   Therefore, in order to significantly reduce the installation capacity compared to the evaporating basin method, for example, Patent Document 1 proposes a concentrating device that combines a desalinating device using a reverse osmosis membrane and a concentrating device using an evaporation method. ing.

WO 2012/008013WO 2012/008013

上記特許文献1の濃縮装置によれば、設備容量を大幅に低減して随伴水を減容化できるものの、減容化した後の濃縮水の処理は容易でない。そこで、この濃縮水に含まれる有効なソーダ成分を分別回収することが望まれるが、上記特許文献1には、かかるソーダ成分の分別回収については、開示されていない。   According to the concentrating device of Patent Document 1, the capacity of the accompanying water can be reduced by greatly reducing the equipment capacity, but the treatment of the concentrated water after the volume reduction is not easy. Therefore, it is desired to collect and collect effective soda components contained in the concentrated water. However, the above Patent Document 1 does not disclose such collection of soda components.

本発明は、上述のような点に鑑みてなされたものであって、随伴水等の地下水に含まれるソーダ成分である炭酸水素ナトリウムを回収することを目的とする。   This invention is made | formed in view of the above points, Comprising: It aims at collect | recovering sodium hydrogencarbonate which is a soda component contained in groundwater, such as accompanying water.

上記目的を達成するために、本発明では次のように構成している。   In order to achieve the above object, the present invention is configured as follows.

(1)本発明の炭酸水素ナトリウムの回収装置は、少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する装置であって、前記地下水を濃縮する蒸発式濃縮装置と、前記蒸発式濃縮装置によって濃縮された濃縮地下水を炭酸ガスと接触させて、炭酸水素ナトリウムの結晶を析出させる炭酸ガス吸収式晶析装置とを備え、前記蒸発式濃縮装置で発生する炭酸ガスを、前記炭酸ガス吸収式晶析装置内の前記濃縮地下水へ導入するものである。   (1) The sodium hydrogen carbonate recovery device of the present invention is a device for recovering the sodium hydrogen carbonate from ground water containing at least sodium carbonate, sodium hydrogen carbonate and sodium chloride, and concentrating the ground water Carbon dioxide gas generated by the evaporative concentrator, and a carbon dioxide absorption crystallizer that precipitates sodium hydrogencarbonate crystals by bringing the concentrated groundwater concentrated by the evaporative concentrator into contact with carbon dioxide. Is introduced into the concentrated groundwater in the carbon dioxide absorption crystallization apparatus.

本発明によると、蒸発濃縮された濃縮地下水から、炭酸ガス吸収式晶析装置で炭酸水素ナトリウムの結晶を析出させる際に、蒸発式濃縮装置で発生した炭酸ガスを、炭酸ガス吸収式晶析装置の濃縮地下水に導入して接触させるので、濃縮地下水で炭酸水素イオンの生成が促進されて炭酸水素ナトリウムの回収率を高めることができる。   According to the present invention, when carbonic acid gas generated by the evaporation type concentrating device is precipitated from the concentrated ground water evaporated and evaporated by the carbon dioxide absorption type crystallizing device, the carbon dioxide absorption type crystallizing device is used. Therefore, the production of hydrogen carbonate ions is promoted in the concentrated ground water, and the recovery rate of sodium hydrogen carbonate can be increased.

(2)本発明の好ましい実施態様では、前記蒸発式濃縮装置に供給される濃縮前の前記地下水を、透過水と膜濃縮水とに分離する逆浸透膜式濃縮装置を備え、前記逆浸透膜式濃縮装置で分離された膜濃縮水を、前記蒸発式濃縮装置へ濃縮前の地下水として供給する。   (2) In a preferred embodiment of the present invention, the reverse osmosis membrane is provided with a reverse osmosis membrane type concentration device that separates the groundwater before concentration supplied to the evaporation type concentration device into permeated water and membrane concentrated water. The membrane concentrated water separated by the type concentrator is supplied to the evaporating type concentrator as ground water before concentration.

この実施態様によると、地下水を、逆浸透膜式濃縮装置によって膜濃縮し、更に、蒸発式濃縮装置によって蒸発濃縮するので、地下水を効率的に濃縮することができる。   According to this embodiment, the groundwater is concentrated by the reverse osmosis membrane type concentrator and further evaporated and concentrated by the evaporative type concentrator, so that the groundwater can be efficiently concentrated.

(3)本発明の炭酸水素ナトリウムの回収装置は、少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する装置であって、前記地下水を濃縮する蒸発式濃縮装置と、前記蒸発式濃縮装置によって濃縮された濃縮地下水を炭酸ガスと接触させて、炭酸水素ナトリウムの結晶を析出させる炭酸ガス吸収式晶析装置と、前記蒸発式濃縮装置に供給される濃縮前の前記地下水を、透過水と膜濃縮水とに分離する逆浸透膜式濃縮装置とを備え、前記逆浸透膜式濃縮装置で分離された前記透過水に含まれる炭酸ガスを取り出して、前記炭酸ガス吸収式晶析装置内の前記濃縮地下水へ導入する一方、前記逆浸透膜式濃縮装置で分離された膜濃縮水を、前記蒸発式濃縮装置へ濃縮前の地下水として供給するものである。   (3) The sodium hydrogen carbonate recovery device of the present invention is a device for recovering the sodium hydrogen carbonate from ground water containing at least sodium carbonate, sodium hydrogen carbonate and sodium chloride, and concentrating the ground water A carbon dioxide absorption crystallizer for bringing the concentrated groundwater concentrated by the evaporative concentrator into contact with carbon dioxide, thereby precipitating sodium hydrogencarbonate crystals, and before the concentration supplied to the evaporative concentrator A reverse osmosis membrane type concentrating device that separates the groundwater into permeated water and membrane concentrated water, and removing carbon dioxide contained in the permeated water separated by the reverse osmosis membrane type concentrating device; While introducing into the concentrated groundwater in the absorption crystallization apparatus, the membrane concentrated water separated by the reverse osmosis membrane type concentration apparatus is transferred to the evaporative concentration apparatus before being concentrated. And supplies as.

原水としての地下水には、多量の炭酸イオンが含まれているので、蒸発式濃縮装置の前段の逆浸透膜式濃縮装置によって分離される透過水中には、同様に多量の炭酸ガスが含まれる。この炭酸ガスは、例えば真空脱気装置などによって透過水から取り出すことが可能である。   Since the groundwater as raw water contains a large amount of carbonate ions, the permeated water separated by the reverse osmosis membrane type concentrator preceding the evaporation type concentrator also contains a large amount of carbon dioxide. This carbon dioxide gas can be taken out from the permeated water by, for example, a vacuum deaerator.

本発明によると、蒸発濃縮された濃縮地下水から、炭酸ガス吸収式晶析装置で炭酸水素ナトリウムの結晶を析出させる際に、逆浸透膜式濃縮装置で分離された透過水に含まれる炭酸ガスを取り出して、炭酸ガス吸収式晶析装置の濃縮地下水に導入して接触させるので、濃縮地下水で炭酸水素イオンの生成が促進されて炭酸水素ナトリウムの回収率を高めることができる。   According to the present invention, carbon dioxide contained in the permeated water separated by the reverse osmosis membrane type concentrator when the sodium hydrogen carbonate crystals are precipitated from the evaporated and concentrated concentrated groundwater by the carbon dioxide absorption type crystallizer. Since it is taken out and introduced into and brought into contact with the concentrated groundwater of the carbon dioxide absorption crystallizer, the generation of hydrogencarbonate ions is promoted in the concentrated groundwater, and the recovery rate of sodium bicarbonate can be increased.

また、地下水を、逆浸透膜式濃縮装置によって膜濃縮し、更に、蒸発式濃縮装置によって蒸発濃縮するので、地下水を効率的に濃縮することができる。   Further, since the groundwater is concentrated by the reverse osmosis membrane type concentrator and further evaporated and concentrated by the evaporation type concentrator, the groundwater can be efficiently concentrated.

(4)本発明の好ましい実施態様では、前記蒸発式濃縮装置で濃縮された前記濃縮地下水の熱によって、前記蒸発式濃縮装置に供給される濃縮前の前記地下水を予熱する熱回収装置を備える。   (4) In a preferred embodiment of the present invention, a heat recovery device is provided that preheats the groundwater before concentration supplied to the evaporative concentrator with heat of the concentrated groundwater concentrated by the evaporative concentrator.

この実施態様によると、蒸発式濃縮装置で、濃縮されて高温となった濃縮地下水の熱によって、前記蒸発式濃縮装置へ供給される濃縮前の地下水を予熱するので、濃縮地下水の熱を回収してエネルギー効率を高めることができる。濃縮地下水は温度が低下するので炭酸水素ナトリウムの溶解度を下げることができ、その結晶の回収率を上げることができる。さらに熱回収装置から排出される濃縮地下水はチラー水によって一層冷却するようにしてもよい。   According to this embodiment, since the groundwater before concentration supplied to the evaporative concentrator is preheated by the heat of the concentrated groundwater that has been concentrated and heated in the evaporative concentrator, the heat of the concentrated groundwater is recovered. Energy efficiency. Since the temperature of concentrated groundwater decreases, the solubility of sodium hydrogen carbonate can be lowered and the recovery rate of the crystals can be increased. Further, the concentrated groundwater discharged from the heat recovery device may be further cooled by chiller water.

(5)本発明の更に他の実施態様では、前記地下水が、石炭層から炭酸ガスと共に排出される随伴水である。   (5) In still another embodiment of the present invention, the groundwater is associated water discharged together with carbon dioxide from the coal bed.

石炭層から炭酸ガスと共に排出される随伴水は、pHが約8〜9程度であり、この実施態様によると、随伴水のpHを調整することなく、随伴水に含まれる炭酸水素ナトリウムを回収することができる。   The associated water discharged together with carbon dioxide from the coal bed has a pH of about 8 to 9, and according to this embodiment, sodium bicarbonate contained in the associated water is recovered without adjusting the pH of the associated water. be able to.

(6)本発明の炭酸水素ナトリウムの回収方法は、少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する方法であって、前記地下水を蒸発濃縮する工程と、前記工程で蒸発濃縮された濃縮地下水を、炭酸ガスと接触させて炭酸水素ナトリウムの結晶を析出させる工程とを含み、前記析出させる工程では、前記蒸発濃縮する工程で発生する炭酸ガスを、前記濃縮地下水に導入するものである。   (6) The method for recovering sodium bicarbonate of the present invention is a method for recovering the sodium bicarbonate from groundwater containing at least sodium carbonate, sodium bicarbonate and sodium chloride, and evaporating and concentrating the groundwater; The step of bringing the concentrated groundwater evaporated and concentrated in the step into contact with carbon dioxide to precipitate crystals of sodium hydrogen carbonate. In the step of precipitating, the carbon dioxide generated in the step of evaporating and concentrating is concentrated in the concentration step. Introduced into groundwater.

本発明によると、蒸発濃縮された濃縮地下水から、炭酸水素ナトリウムの結晶を析出させる際に、蒸発濃縮の際に発生した炭酸ガスを、濃縮地下水に導入するので、濃縮地下水で炭酸水素イオンの生成が促進されて炭酸水素ナトリウムの回収率を高めることができる。   According to the present invention, when depositing sodium bicarbonate crystals from the concentrated groundwater that has been evaporated and concentrated, the carbon dioxide gas generated during the evaporation and concentration is introduced into the concentrated groundwater. Can be promoted to increase the recovery rate of sodium hydrogen carbonate.

(7)本発明の炭酸水素ナトリウムの回収方法は、少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する方法であって、前記地下水を、逆浸透膜によって透過水と膜濃縮水とに分離する工程と、分離された前記膜濃縮水を蒸発濃縮して濃縮地下水とする工程と、蒸発濃縮された前記濃縮地下水を、炭酸ガスと接触させて炭酸水素ナトリウムの結晶を析出させる工程とを含み、前記析出させる工程では、前記逆浸透膜によって分離された前記透過水に含まれる炭酸ガスを取り出して、前記濃縮地下水に導入するものである。   (7) The method for recovering sodium hydrogen carbonate according to the present invention is a method for recovering the sodium hydrogen carbonate from ground water containing at least sodium carbonate, sodium hydrogen carbonate and sodium chloride, and permeates the ground water through a reverse osmosis membrane. A step of separating water into membrane concentrated water, a step of evaporating and concentrating the separated membrane concentrated water to obtain concentrated groundwater, and contacting the evaporated concentrated groundwater with carbon dioxide gas to form sodium bicarbonate. A step of precipitating crystals, and in the step of precipitating, carbon dioxide gas contained in the permeated water separated by the reverse osmosis membrane is taken out and introduced into the concentrated groundwater.

本発明によると、蒸発濃縮された濃縮地下水から、炭酸水素ナトリウムの結晶を析出させる際に、逆浸透膜によって分離された透過水に含まれる炭酸ガスを取り出して、濃縮地下水に導入するので、濃縮地下水で炭酸水素イオンの生成が促進されて炭酸水素ナトリウムの回収率を高めることができる。   According to the present invention, when precipitating sodium bicarbonate crystals from the concentrated groundwater that has been evaporated and concentrated, the carbon dioxide gas contained in the permeated water separated by the reverse osmosis membrane is taken out and introduced into the concentrated groundwater. The production of hydrogen carbonate ions is promoted in the groundwater, and the recovery rate of sodium hydrogen carbonate can be increased.

このように本発明によれば、蒸発濃縮された濃縮地下水から、炭酸ガス吸収式晶析装置によって炭酸水素ナトリウムの結晶を析出させる際に、蒸発式濃縮装置で発生した炭酸ガス、または、逆浸透膜式濃縮装置で分離された透過水に含まれる炭酸ガスを、濃縮地下水に導入するので、濃縮地下水で炭酸水素イオンの生成が促進されて炭酸水素ナトリウムの回収率を高めることができる。   As described above, according to the present invention, when the sodium hydrogen carbonate crystals are precipitated from the evaporated and concentrated concentrated groundwater by the carbon dioxide absorption crystallizer, the carbon dioxide gas generated by the evaporator or the reverse osmosis is generated. Since the carbon dioxide gas contained in the permeated water separated by the membrane concentrator is introduced into the concentrated groundwater, the production of hydrogen carbonate ions is promoted in the concentrated ground water, and the recovery rate of sodium hydrogen carbonate can be increased.

図1は、本発明の一実施形態の回収装置の全体構成図である。FIG. 1 is an overall configuration diagram of a collection device according to an embodiment of the present invention. 図2は、図1の蒸発式濃縮装置の構成図である。FIG. 2 is a block diagram of the evaporative concentration apparatus of FIG. 図3は、図1の熱回収装置の概略構成図である。FIG. 3 is a schematic configuration diagram of the heat recovery apparatus of FIG. 図4は、図1の炭酸ガス吸収式晶析装置の構成図である。FIG. 4 is a block diagram of the carbon dioxide absorption crystallization apparatus of FIG.

以下、図面によって本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る炭酸水素ナトリウムの回収装置の全体構成図である。   FIG. 1 is an overall configuration diagram of a sodium hydrogen carbonate recovery device according to an embodiment of the present invention.

この実施形態の回収装置1は、地下水、例えば、炭層メタンガス(Coal seam gas)を石炭層から採取する際に多量に発生する随伴水を原水とし、この原水に含まれる炭酸水素ナトリウムを回収するものである。   The recovery device 1 of this embodiment uses as its raw water the accompanying water generated in large quantities when groundwater, for example, coal seam gas is collected from the coal seam, and recovers sodium hydrogen carbonate contained in this raw water. It is.

この原水は、塩化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウムを主成分として含んでおり、回収装置1は、この原水に含まれる炭酸水素ナトリウムを回収する。この原水のpHは約8〜9程度であり、回収に際して、pHを調整する必要がない。   The raw water contains sodium chloride, sodium hydrogen carbonate, and sodium carbonate as main components, and the recovery device 1 recovers sodium hydrogen carbonate contained in the raw water. The pH of this raw water is about 8-9, and there is no need to adjust the pH during recovery.

この回収装置1は、地下水を、透過水(淡水)と非透過水とに分離する逆浸透膜式濃縮装置2と、この逆浸透膜式濃縮装置2で膜濃縮された非透過水である原水を、後述のようにして予熱する熱回収装置3と、この熱回収装置3で予熱された原水を飽和近くまで、または過飽和になるまで濃縮して上記熱回収装置3へ送る蒸発式濃縮装置4と、この蒸発式濃縮装置4で濃縮され、熱回収装置3で熱回収された濃縮原水を炭酸ガスと接触させて炭酸水素ナトリウムの結晶を析出させる炭酸ガス吸収式晶析装置5と、炭酸ガス吸収式晶析装置5で析出した炭酸水素ナトリウムの結晶を分離する固液分離装置6とを備えている。炭酸ガス吸収式晶析装置5には、後述のように、蒸発式濃縮装置4で生成する炭酸ガスが導入される。   The recovery device 1 includes a reverse osmosis membrane type concentration device 2 that separates groundwater into permeated water (fresh water) and non-permeated water, and raw water that is non-permeated water membrane-concentrated by the reverse osmosis membrane type concentration device 2. , And an evaporative concentration device 4 that concentrates the raw water preheated by the heat recovery device 3 to near saturation or supersaturation and sends it to the heat recovery device 3. A carbon dioxide absorption crystallizer 5 for concentrating the concentrated raw water concentrated in the evaporative concentration device 4 and recovered in the heat recovery device 3 with carbon dioxide to precipitate sodium hydrogen carbonate crystals, and carbon dioxide And a solid-liquid separator 6 for separating the sodium hydrogen carbonate crystals precipitated by the absorption crystallizer 5. The carbon dioxide gas generated by the evaporation type concentrator 4 is introduced into the carbon dioxide absorption crystallizer 5 as will be described later.

逆浸透膜式蒸発装置2には、図示しない前処理装置によってカルシウムやマグネシウム、バリウム、ストロンチュームなどの難溶解性塩を作るイオンの除去等の前処理が施された原水(地下水)が供給され、透過水と非透過水とに分離される。透過水は、淡水として利用され、膜濃縮された非透過水が、熱回収装置3へ供給されて予熱され、蒸発式濃縮装置4へ供給される。   The reverse osmosis membrane evaporator 2 is supplied with raw water (ground water) that has been subjected to a pretreatment such as removal of ions that make a hardly soluble salt such as calcium, magnesium, barium, and strontium by a pretreatment device (not shown). , Separated into permeate and non-permeate. The permeated water is used as fresh water, and the membrane-permeated non-permeated water is supplied to the heat recovery device 3 to be preheated and supplied to the evaporative concentration device 4.

この実施形態の蒸発式濃縮装置4は、図2に示す2効用の水平管薄膜流下式の蒸発装置である。なお、蒸発式濃縮装置4は、2効用に限らず、単効用、或いは、3効用以上の多重効用の蒸発装置であっても、また蒸気を使用しない自己蒸発蒸気機械圧縮式蒸発装置でもよい。   The evaporation type concentration apparatus 4 of this embodiment is a two-effect horizontal tube thin film flow type evaporation apparatus shown in FIG. The evaporative concentrator 4 is not limited to a dual effect, and may be a single effect or a multi-effect evaporator having three or more effects, or a self-evaporating vapor mechanical compression evaporator that does not use steam.

この蒸発式濃縮装置4は、第1効用蒸発缶7と第2効用蒸発缶8とを備えている。各蒸発缶7,8には、その上部内に多数本の伝熱管7a,8aが略水平にそれぞれ設けられると共に、その下部に供給される原水を汲み出して前記伝熱管7a,8aの外表面に散布するように循環させる循環管路31,32が設けられ、各循環管路31,32には、第1,第2循環ポンプ9,10がそれぞれ設置される。   This evaporative concentrator 4 includes a first effect evaporator 7 and a second effect evaporator 8. Each of the evaporators 7 and 8 is provided with a plurality of heat transfer tubes 7a and 8a substantially horizontally in the upper portion thereof, and pumps raw water supplied to the lower portion thereof on the outer surface of the heat transfer tubes 7a and 8a. Circulation pipes 31 and 32 that circulate so as to be sprayed are provided, and first and second circulation pumps 9 and 10 are installed in the respective circulation pipes 31 and 32, respectively.

熱回収装置3で予熱された原水は、供給管路11を介して第1効用蒸発缶7の下部へ供給され、この第1効用蒸発缶7内の原水の一部が、上述のように循環される一方、残部が、管路12を介して第2効用蒸発缶8の下部へ供給される。   The raw water preheated by the heat recovery device 3 is supplied to the lower part of the first effect evaporator 7 through the supply pipe 11, and a part of the raw water in the first effect evaporator 7 is circulated as described above. On the other hand, the remaining part is supplied to the lower part of the second effect evaporator 8 through the pipe 12.

また、前記各蒸発缶7,8の各伝熱管7a,8aの一端は、入口側ヘッダー7b,8bにそれぞれ連通し、他端は、出口側ヘッダー7c,8cにそれぞれ連通する。   Further, one end of each heat transfer tube 7a, 8a of each evaporator 7, 8 communicates with the inlet side header 7b, 8b, and the other end communicates with the outlet side header 7c, 8c.

図示しないボイラ等の熱源から蒸気ダクト13を介して供給される蒸気によって駆動される蒸気エゼクター14によって、第2効用蒸発缶8からの蒸気の一部が吸引圧縮された後、蒸気ダクト15を介して第1効用蒸発缶7の入口側ヘッダー7bに供給され、第1効用蒸発缶7における原水を蒸発させるための熱源となる。この第1効用蒸発缶7内で発生した蒸気が蒸気ダクト16を介して第2効用蒸発缶8の入口側ヘッダー8bに供給され、第2効用蒸発缶2における原水を蒸発させるための熱源となる。   A part of the steam from the second effect evaporator 8 is sucked and compressed by a steam ejector 14 driven by steam supplied from a heat source such as a boiler (not shown) through the steam duct 13 and then passed through the steam duct 15. Is supplied to the inlet side header 7b of the first effect evaporator 7 and becomes a heat source for evaporating the raw water in the first effect evaporator 7. The steam generated in the first effect evaporator 7 is supplied to the inlet side header 8b of the second effect evaporator 8 through the steam duct 16, and becomes a heat source for evaporating the raw water in the second effect evaporator 2. .

この第2効用蒸発缶8内で発生した蒸気の一部が、上述のように蒸気エゼクタ−14に供給される一方、残部が、分岐ダクト27を介して凝縮器17に供給され、冷却されて凝縮される。凝縮水は、凝縮水ポンプ30によって排出される。また、凝縮器17は、各蒸発缶7,8等を減圧するための真空ポンプ29に接続されている。   A part of the steam generated in the second effect evaporator 8 is supplied to the steam ejector 14 as described above, while the remaining part is supplied to the condenser 17 via the branch duct 27 and cooled. Condensed. The condensed water is discharged by the condensed water pump 30. The condenser 17 is connected to a vacuum pump 29 for depressurizing each of the evaporators 7, 8 and the like.

この蒸発式濃縮装置では、熱回収装置3から供給管路11よって第1効用蒸発缶7内に供給された原水は、ここでの加熱、蒸発によって濃縮され、次いで、第2効用蒸発缶8に送られ、ここでの加熱、蒸発によって更に濃縮される。   In this evaporation type concentrator, the raw water supplied into the first effect evaporator 7 from the heat recovery device 3 through the supply line 11 is concentrated by heating and evaporation here, and then is supplied to the second effect evaporator 8. Sent and further concentrated by heating and evaporation.

通常、第1効用蒸発缶7の温度は、100℃〜60℃、第2効用蒸発缶8の温度は、それよりやや低い温度で運転される。この実施形態では、第1効用蒸発缶7内で濃縮される濃縮原水の温度は、68℃程度であり、第2効用蒸発缶8内で濃縮される濃縮原水の温度は、65℃程度である。   Normally, the first effect evaporator 7 is operated at a temperature of 100 to 60 ° C., and the second effect evaporator 8 is operated at a slightly lower temperature. In this embodiment, the temperature of the concentrated raw water concentrated in the first effect evaporator 7 is about 68 ° C., and the temperature of the concentrated raw water concentrated in the second effect evaporator 8 is about 65 ° C. .

この第2効用蒸発缶8で濃縮された濃縮原水は、その一部が、上記循環管路32を介して循環される一方、残部が、熱回収装置3へ供給され、熱回収装置3において、逆浸透膜式濃縮装置2からの原水と熱交換してその熱が回収される。   A part of the concentrated raw water concentrated in the second effect evaporator 8 is circulated through the circulation pipe 32, while the remainder is supplied to the heat recovery device 3. The heat is recovered by exchanging heat with the raw water from the reverse osmosis membrane type concentrator 2.

この蒸発式濃縮装置4では、蒸発濃縮の際に炭酸ガス(CO2)が発生するが、この炭酸ガスを回収して炭酸ガス吸収式晶析装置5へ供給するようにしている。具体的には、炭酸ガスと蒸気との混合ガスは、第2効用蒸発缶8の上部の蒸気ダクト28から分岐した分岐ダクト27を介して凝縮器17に供給され、冷却されて同伴蒸気が取り除かれ、水封式の真空ポンプ29を介して炭酸ガス吸収式晶析装置5へ供給される。 In this evaporative concentration apparatus 4, carbon dioxide gas (CO 2 ) is generated during evaporative concentration. This carbon dioxide gas is recovered and supplied to the carbon dioxide absorption crystallization apparatus 5. Specifically, the mixed gas of carbon dioxide and steam is supplied to the condenser 17 via the branch duct 27 branched from the steam duct 28 at the upper part of the second effect evaporator 8 and is cooled to remove the accompanying steam. Then, it is supplied to the carbon dioxide absorption crystallization apparatus 5 through a water-sealed vacuum pump 29.

この実施形態の熱回収装置3は、図3の概略図に示すように、多段、例えば、7段のフラッシュ蒸発装置によって構成され、下部に濃縮された原水を流通させるための開口部31a〜37aを有する減圧された蒸発室31〜37を備え、蒸発式濃縮装置4で濃縮された濃縮原水を順次導入してフラッシュ蒸発させる一方、蒸発した蒸気を、上部の予熱管路18を流通する逆浸透膜式濃縮装置2からの低温の原水によって冷却する。これによって、高温の濃縮原水と低温の原水との熱交換が行われ、高温の濃縮原水の熱が回収され、予熱された原水が蒸発式濃縮装置4に供給される。 As shown in the schematic diagram of FIG. 3, the heat recovery device 3 of this embodiment is configured by a multi-stage, for example, seven-stage flash evaporator, and has an opening 3 1 a for circulating raw water concentrated in the lower part. Equipped with reduced-pressure evaporation chambers 3 1 to 3 7 having ˜3 7 a, the concentrated raw water concentrated in the evaporative concentrator 4 is sequentially introduced and flash-evaporated, while the evaporated steam is supplied to the upper preheating line It cools with the raw | natural water of the low temperature from the reverse osmosis membrane type | mold concentration apparatus 2 which distribute | circulates 18. Thus, heat exchange between the hot concentrated raw water and the low temperature raw water is performed, the heat of the hot concentrated raw water is recovered, and the preheated raw water is supplied to the evaporative concentrator 4.

蒸発式濃縮装置4の第2効用蒸発缶8から熱回収装置3へ供給される濃縮原水の温度は、65℃程度であり、熱回収装置3でフラシュ蒸発を繰り返して、逆浸透膜式濃縮装置2からの原水を予熱した後の濃縮原水の温度は、40℃程度まで低下する。   The temperature of the concentrated raw water supplied from the second effect evaporator 8 of the evaporation type concentrating device 4 to the heat recovery device 3 is about 65 ° C., and flash evaporation is repeated in the heat recovery device 3 so that the reverse osmosis membrane type concentration device. The temperature of the concentrated raw water after preheating the raw water from 2 is reduced to about 40 ° C.

このように蒸発式濃縮装置4で濃縮された濃縮原水の熱を回収するので、エネルギー効率を高めることができる。   Thus, since the heat | fever of the concentration raw | natural water concentrated with the evaporative concentration apparatus 4 is collect | recovered, energy efficiency can be improved.

なお、熱回収装置3としては、フラッシュ蒸発装置に代えて、熱交換器を用いてもよいが、濃縮地下水は炭酸塩が飽和または過飽和になっているので冷却に伴って結晶が伝熱面に析出する。さらには、原水にはシリカが含有されているので、蒸発式濃縮装置4によって濃縮された濃縮原水では、シリカの濃度が高く、熱交換器では、濃縮原水の温度が低下するのに伴ってシリカのスケールが熱交換面に付着して熱交換効率が低下する。このため、この実施形態では、フラッシュ蒸発装置を用いている。   As the heat recovery device 3, a heat exchanger may be used in place of the flash evaporator, but the concentrated groundwater is saturated or supersaturated with carbonate, so that the crystals are brought into the heat transfer surface with cooling. Precipitate. Furthermore, since the raw water contains silica, the concentrated raw water concentrated by the evaporative concentration device 4 has a high silica concentration. In the heat exchanger, the silica is reduced as the temperature of the concentrated raw water decreases. As a result, the scale is attached to the heat exchange surface and the heat exchange efficiency decreases. For this reason, in this embodiment, a flash evaporator is used.

この実施形態の炭酸ガス吸収式晶析装置5は、ジャケット冷却方式の晶析装置を用いている。   The carbon dioxide absorption crystallization apparatus 5 of this embodiment uses a jacket cooling type crystallization apparatus.

この炭酸ガス吸収式晶析装置5は、図4に示すように、晶析を行う結晶缶19の周囲にジャケット19aを有し、当該ジャケット19a内に図示しないチラーからの冷水を流通し、結晶缶19の壁面を介して冷却する。結晶缶19内の濃縮原水の温度は、15℃〜20℃まで冷却され、維持されるようになっている。   As shown in FIG. 4, the carbon dioxide absorption crystallization apparatus 5 has a jacket 19a around a crystal can 19 for crystallization, and circulates cold water from a chiller (not shown) in the jacket 19a. Cool through the wall of the can 19. The temperature of the concentrated raw water in the crystal can 19 is cooled to 15 ° C. to 20 ° C. and maintained.

結晶缶19は、上部が円筒状であって、下部が分級のためにコーン形状となっており、この下部には、供給管路22を介して熱回収装置3で降温された濃縮原水が供給される。   The crystal can 19 has a cylindrical shape at the top and a cone shape at the bottom for classification. The concentrated raw water cooled by the heat recovery device 3 is supplied to the bottom via the supply line 22. Is done.

また、結晶缶19の底部から、析出した炭酸水素ナトリウムの結晶を含むスラリーが取り出され、その一部が、固液分離装置6へ供給される一方、残部が、蒸発式濃縮装置4で発生する炭酸ガスをエゼクター25で吸引混合して、結晶缶19の下部に導入される。   Further, a slurry containing precipitated sodium hydrogencarbonate crystals is taken out from the bottom of the crystal can 19, and a part of the slurry is supplied to the solid-liquid separator 6, while the remainder is generated in the evaporation type concentrator 4. Carbon dioxide gas is sucked and mixed by the ejector 25 and introduced into the lower portion of the crystal can 19.

これによって、結晶缶19内の濃縮原液が攪拌され、炭酸ガスは、結晶缶19の全体に微小気泡となって溶解し、pHはやや低下し、炭酸イオン(CO3 -)成分の比率は低下する。このようにpHが低下して、炭酸ナトリウム(Na2CO3)の成分割合は小さくなるので、炭酸ナトリウムが結晶化するのを防ぐことができる。 As a result, the concentrated stock solution in the crystal can 19 is agitated, and the carbon dioxide gas dissolves as fine bubbles in the entire crystal can 19, the pH slightly decreases, and the ratio of the carbonate ion (CO 3 ) component decreases. To do. Thus it reduces the pH, because the component ratio of sodium carbonate (Na 2 CO 3) is reduced, it is possible to sodium carbonate is prevented from crystallizing.

また、蒸発式濃縮装置4で発生した炭酸ガスを回収して結晶缶19内に導入し、濃縮原水に溶解した炭酸ガスは、新たな炭酸水素イオン(HCO3 -)を生成するので、炭酸水素ナトリウムの回収率を高めることができる。 Further, the carbon dioxide gas generated in the evaporation type concentrator 4 is recovered and introduced into the crystal can 19, and the carbon dioxide gas dissolved in the concentrated raw water generates new hydrogen carbonate ions (HCO 3 ). The recovery rate of sodium can be increased.

結晶缶19の底部から取り出された炭酸水素ナトリウムの結晶を含むスラリーは、図1の固液分離装置6へ供給される。   The slurry containing sodium hydrogencarbonate crystals taken out from the bottom of the crystal can 19 is supplied to the solid-liquid separator 6 in FIG.

この固液分離装置6としては、例えば、遠心分離機、ロータリーバキュームフィルターなどが挙げられる。この固液体分離装置6によって、炭酸水素ナトリウムの結晶が分離されて回収され、ろ液は、図1に示すように、一部が系外へブローされ、残部が逆浸透膜式濃縮装置2からの非透過水(膜濃縮水)に戻されて混合され、熱回収装置3へ供給される。   Examples of the solid-liquid separation device 6 include a centrifuge and a rotary vacuum filter. This solid-liquid separator 6 separates and recovers the sodium bicarbonate crystals, and the filtrate is partially blown out of the system and the remainder from the reverse osmosis membrane type concentrator 2 as shown in FIG. The non-permeated water (membrane concentrated water) is mixed and supplied to the heat recovery device 3.

この実施形態の回収装置1によって炭酸水素ナトリウムを回収した地下水の組成の一例を表1に示す。   Table 1 shows an example of the composition of groundwater from which sodium hydrogen carbonate was recovered by the recovery device 1 of this embodiment.

Figure 2014001085
この表1には、逆浸透膜式濃縮装置2によって膜濃縮した原水(膜濃縮水)の組成も併せて示している。
Figure 2014001085
Table 1 also shows the composition of the raw water (membrane concentrated water) concentrated by the reverse osmosis membrane type concentrator 2.

逆浸透膜式濃縮装置2によって膜濃縮した表1に示される組成の原水を、蒸発式濃縮装置4によって蒸発濃縮した。   The raw water having the composition shown in Table 1 concentrated in the membrane by the reverse osmosis membrane type concentration device 2 was concentrated by evaporation using the evaporation type concentration device 4.

表1に示す成分の地下水の流量を26m3/hとし、固液分離装置6からの循環液の流量を、3m3/hとした。この蒸発式濃縮装置4の蒸発能力は、23t/hであり、供給された原水は約6倍に濃縮された。蒸発濃縮装置の第二効用では炭酸水素ナトリウムの結晶が640kg(7.6kmol/h)生成され3.7t/hの濃縮原水が取り出される。 The flow rate of the groundwater of the components shown in Table 1 was 26 m 3 / h, and the flow rate of the circulating liquid from the solid-liquid separator 6 was 3 m 3 / h. The evaporation capacity of the evaporation type concentration device 4 was 23 t / h, and the supplied raw water was concentrated about 6 times. In the second effect of the evaporative concentration apparatus, 640 kg (7.6 kmol / h) of sodium hydrogen carbonate crystals are produced, and 3.7 t / h of concentrated raw water is taken out.

この蒸発式濃縮装置4の内部では、濃縮される原水から炭酸ガスが発生し、上述の真空ポンプ29の出口から排出されるが、この炭酸ガスの量は56kg/hであった。   Inside the evaporative concentrator 4, carbon dioxide gas is generated from the raw water to be concentrated and is discharged from the outlet of the vacuum pump 29 described above. The amount of this carbon dioxide gas was 56 kg / h.

Figure 2014001085
さらにこの結晶を分離した濃縮原水から乾燥重量が405kg/h(4.8kmol/h)の炭酸水素ナトリウムの結晶物が得られた。
Figure 2014001085
Furthermore, a crystal of sodium hydrogen carbonate having a dry weight of 405 kg / h (4.8 kmol / h) was obtained from the concentrated raw water from which the crystals were separated.

地下水には、上述の表1に示すように、以下のソーダ成分が含まれている。   The groundwater contains the following soda components, as shown in Table 1 above.

HCO3:6,300mg/L,6.3/61=0.1mol/L
CO3:1300mg/L,1.3/60=0.022mol/L
合計、0.122mol/L、すなわち、0.122kmol/m3
であり、原水の流量は、表1に示すように、140m3/hであるので、
0.122kmol*140m3=17.1kmolであるから、その収率は、(7.6+4.8)/17.1=73%となる。
HCO 3 : 6,300 mg / L, 6.3 / 61 = 0.1 mol / L
CO 3 : 1300 mg / L, 1.3 / 60 = 0.022 mol / L
Total, 0.122 mol / L, ie 0.122 kmol / m 3
Since the raw water flow rate is 140 m 3 / h as shown in Table 1,
Since 0.122 kmol * 140 m 3 = 17.1 kmol, the yield is (7.6 + 4.8) /17.1=73%.

この実施形態によれば、70%以上の収率で炭酸水素ナトリウムを回収することができる。   According to this embodiment, sodium hydrogen carbonate can be recovered with a yield of 70% or more.

上述の実施形態では、地下水として、炭層メタンガスを採取する際に発生する随伴水に適用して説明したけれども、炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する他の地下水にも同様に適用できるものである。   In the above-described embodiment, the groundwater is described as applied to the accompanying water generated when collecting coal-bed methane gas. However, the groundwater can be similarly applied to other groundwater containing sodium carbonate, sodium bicarbonate, and sodium chloride. It is.

蒸発濃縮装置は第二効用で結晶が析出するようにしたが、別途蒸発濃縮式晶析装置を後段に設け、蒸発濃縮装置内部で結晶が生成しないようにしてもよい。   Although the evaporative concentration apparatus is configured to precipitate crystals with the second effect, a separate evaporative concentration type crystallizer may be provided in the subsequent stage so that crystals are not generated inside the evaporative concentration apparatus.

炭酸ガス吸収式晶析装置5は、チラーによるジャケット式冷却方式としたが、通常の冷却塔の場合に実現できる35℃から40℃でもよく、また冷却方式もジャケット方式に限らず、例えば、結晶缶の内部に冷却管を配置した構成やその他の晶析装置を用いてもよい。   Although the carbon dioxide absorption crystallization apparatus 5 is a jacket type cooling system using a chiller, it may be 35 ° C. to 40 ° C. that can be realized in the case of a normal cooling tower, and the cooling system is not limited to the jacket system. You may use the structure which has arrange | positioned the cooling pipe inside the can, and another crystallizer.

上述の実施形態では、蒸発式濃縮装置で発生した炭酸ガスを、炭酸ガス吸収式晶析装置に導入して濃縮原水に接触させたけれども、本発明の他の実施形態として、逆浸透膜式濃縮装置によって分離された透過水に含まれる炭酸ガスを、真空脱気装置などによって取り出し、この炭酸ガスを炭酸ガス吸収式晶析装置に導入して濃縮原水に接触させるようにしてもよく、あるいは、蒸発式濃縮装置で発生した炭酸ガス及び透過水から取り出した炭酸ガスの両方を、炭酸ガス吸収式晶析装置に導入してもよい。   In the above-described embodiment, the carbon dioxide gas generated in the evaporation type concentrator is introduced into the carbon dioxide absorption crystallizer and brought into contact with the concentrated raw water. However, as another embodiment of the present invention, the reverse osmosis membrane type concentrator is used. The carbon dioxide contained in the permeated water separated by the apparatus may be taken out by a vacuum deaerator, etc., and the carbon dioxide may be introduced into the carbon dioxide absorption crystallizer and brought into contact with the concentrated raw water, or You may introduce | transduce into the carbon dioxide absorption crystallizer both the carbon dioxide gas generated with the evaporation type | formula concentration apparatus and the carbon dioxide gas taken out from the permeated water.

2 逆浸透膜式濃縮装置
3 熱回収装置
4 蒸発式濃縮装置
5 炭酸ガス吸収式晶析装置
6 固液分離装置
7 第1効用蒸発缶
8 第2効用蒸発缶
19 結晶缶
2 Reverse Osmosis Membrane Concentrator 3 Heat Recovery Device 4 Evaporation Concentrator 5 Carbon Dioxide Absorption Crystallizer 6 Solid-Liquid Separator 7 First Effect Evaporator 8 Second Effect Evaporator 19 Crystal Can

Claims (7)

少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する装置であって、
前記地下水を濃縮する蒸発式濃縮装置と、
前記蒸発式濃縮装置によって濃縮された濃縮地下水を炭酸ガスと接触させて、炭酸水素ナトリウムの結晶を析出させる炭酸ガス吸収式晶析装置とを備え、
前記蒸発式濃縮装置で発生する炭酸ガスを、前記炭酸ガス吸収式晶析装置内の前記濃縮地下水へ導入する、
ことを特徴とする炭酸水素ナトリウムの回収装置。
An apparatus for recovering sodium bicarbonate from ground water containing at least sodium carbonate, sodium bicarbonate and sodium chloride,
An evaporative concentrator for concentrating the groundwater;
A carbon dioxide absorption crystallization apparatus for bringing concentrated hydrogen water concentrated by the evaporation type concentration apparatus into contact with carbon dioxide and precipitating sodium hydrogen carbonate crystals;
Introducing carbon dioxide gas generated in the evaporative concentration apparatus into the concentrated groundwater in the carbon dioxide absorption crystallization apparatus,
A sodium hydrogen carbonate recovery device.
前記蒸発式濃縮装置に供給される濃縮前の前記地下水を、透過水と膜濃縮水とに分離する逆浸透膜式濃縮装置を備え、
前記逆浸透膜式濃縮装置で分離された膜濃縮水を、前記蒸発式濃縮装置へ濃縮前の地下水として供給する、
請求項1に記載の炭酸水素ナトリウムの回収装置。
A reverse osmosis membrane type concentrating device for separating the groundwater before concentration supplied to the evaporation type concentrating device into permeated water and membrane concentrated water;
The membrane concentrated water separated by the reverse osmosis membrane type concentrator is supplied to the evaporative concentrator as groundwater before concentration.
The sodium hydrogen carbonate recovery device according to claim 1.
少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する装置であって、
前記地下水を濃縮する蒸発式濃縮装置と、
前記蒸発式濃縮装置によって濃縮された濃縮地下水を炭酸ガスと接触させて、炭酸水素ナトリウムの結晶を析出させる炭酸ガス吸収式晶析装置と、
前記蒸発式濃縮装置に供給される濃縮前の前記地下水を、透過水と膜濃縮水とに分離する逆浸透膜式濃縮装置とを備え、
前記逆浸透膜式濃縮装置で分離された前記透過水に含まれる炭酸ガスを取り出して、前記炭酸ガス吸収式晶析装置内の前記濃縮地下水へ導入する一方、前記逆浸透膜式濃縮装置で分離された膜濃縮水を、前記蒸発式濃縮装置へ濃縮前の地下水として供給する、
ことを特徴とする炭酸水素ナトリウムの回収装置。
An apparatus for recovering sodium bicarbonate from ground water containing at least sodium carbonate, sodium bicarbonate and sodium chloride,
An evaporative concentrator for concentrating the groundwater;
A carbon dioxide absorption crystallizer for bringing sodium hydrogen carbonate crystals into contact with the carbon dioxide gas by bringing the concentrated groundwater concentrated by the evaporative concentration device into contact with the carbon dioxide gas;
A reverse osmosis membrane type concentrating device that separates the groundwater before concentration supplied to the evaporation type concentrating device into permeated water and membrane concentrated water;
The carbon dioxide contained in the permeated water separated by the reverse osmosis membrane type concentrator is taken out and introduced into the concentrated groundwater in the carbon dioxide absorption crystallization device, while being separated by the reverse osmosis membrane type concentrator. Supplying the concentrated membrane water to the evaporative concentrator as groundwater before concentration,
A sodium hydrogen carbonate recovery device.
前記蒸発式濃縮装置で濃縮された前記濃縮地下水の熱によって、前記蒸発式濃縮装置に供給される濃縮前の前記地下水を予熱する熱回収装置を備える、
請求項1ないし3のいずれかに記載の炭酸水素ナトリウムの回収装置。
A heat recovery device that preheats the groundwater before concentration supplied to the evaporative concentration device by heat of the concentrated groundwater concentrated by the evaporative concentration device;
The sodium hydrogen carbonate recovery device according to any one of claims 1 to 3.
前記地下水が、石炭層から炭酸ガスと共に排出される随伴水である、
請求項1ないし4のいずれかに記載の炭酸水素ナトリウムの回収装置。
The groundwater is associated water discharged from the coal bed together with carbon dioxide,
The sodium hydrogen carbonate recovery device according to any one of claims 1 to 4.
少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する方法であって、
前記地下水を蒸発濃縮する工程と、
前記工程で蒸発濃縮された濃縮地下水を、炭酸ガスと接触させて炭酸水素ナトリウムの結晶を析出させる工程とを含み、
前記析出させる工程では、前記蒸発濃縮する工程で発生する炭酸ガスを、前記濃縮地下水に導入する、
ことを特徴とする炭酸水素ナトリウムの回収方法。
A method for recovering the sodium bicarbonate from ground water containing at least sodium carbonate, sodium bicarbonate and sodium chloride,
Evaporating and concentrating the groundwater;
And concentrating the groundwater evaporated and concentrated in the above step with carbon dioxide gas to precipitate sodium hydrogencarbonate crystals,
In the step of precipitating, carbon dioxide gas generated in the step of evaporating and concentrating is introduced into the concentrated groundwater.
A method for recovering sodium hydrogen carbonate, characterized in that
少なくとも炭酸ナトリウム、炭酸水素ナトリウム及び塩化ナトリウムを含有する地下水から前記炭酸水素ナトリウムを回収する方法であって、
前記地下水を、逆浸透膜によって透過水と膜濃縮水とに分離する工程と、
分離された前記膜濃縮水を蒸発濃縮して濃縮地下水とする工程と、
蒸発濃縮された前記濃縮地下水を、炭酸ガスと接触させて炭酸水素ナトリウムの結晶を析出させる工程とを含み、
前記析出させる工程では、前記逆浸透膜によって分離された前記透過水に含まれる炭酸ガスを取り出して、前記濃縮地下水に導入する、
ことを特徴とする炭酸水素ナトリウムの回収方法。
A method for recovering the sodium bicarbonate from ground water containing at least sodium carbonate, sodium bicarbonate and sodium chloride,
Separating the groundwater into permeated water and membrane concentrated water by a reverse osmosis membrane;
Evaporating and concentrating the separated membrane concentrated water into concentrated groundwater;
Bringing the concentrated groundwater evaporated and concentrated into contact with carbon dioxide gas to precipitate sodium hydrogen carbonate crystals,
In the precipitating step, the carbon dioxide gas contained in the permeated water separated by the reverse osmosis membrane is taken out and introduced into the concentrated groundwater.
A method for recovering sodium hydrogen carbonate, characterized in that
JP2012135379A 2012-06-15 2012-06-15 Sodium bicarbonate recovery device and recovery method Expired - Fee Related JP6034601B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012135379A JP6034601B2 (en) 2012-06-15 2012-06-15 Sodium bicarbonate recovery device and recovery method
AU2013202562A AU2013202562B2 (en) 2012-06-15 2013-03-27 Apparatus for recovering sodium hydrogen carbonate and method for recovering the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135379A JP6034601B2 (en) 2012-06-15 2012-06-15 Sodium bicarbonate recovery device and recovery method

Publications (2)

Publication Number Publication Date
JP2014001085A true JP2014001085A (en) 2014-01-09
JP6034601B2 JP6034601B2 (en) 2016-11-30

Family

ID=49918988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135379A Expired - Fee Related JP6034601B2 (en) 2012-06-15 2012-06-15 Sodium bicarbonate recovery device and recovery method

Country Status (2)

Country Link
JP (1) JP6034601B2 (en)
AU (1) AU2013202562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160000480A (en) * 2014-06-24 2016-01-05 순천대학교 산학협력단 Method and apparatus of NaHCO3 production from filtered solution of desulfurized crude waste
KR102013311B1 (en) * 2018-07-11 2019-08-22 주식회사 포스코 Treating method of by-product from removal of sulfur oxide in exhausted gas
CN111072213A (en) * 2019-12-31 2020-04-28 上海同济建设科技股份有限公司 Zero-discharge treatment process and device for fractured rock wastewater
WO2022071153A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Method for treating oil-containing drainage water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609761B1 (en) * 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
WO2012008014A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Associated-water concentration system and associated-water concentration method
WO2012008013A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609761B1 (en) * 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
WO2012008014A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Associated-water concentration system and associated-water concentration method
WO2012008013A1 (en) * 2010-07-12 2012-01-19 株式会社日立製作所 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160000480A (en) * 2014-06-24 2016-01-05 순천대학교 산학협력단 Method and apparatus of NaHCO3 production from filtered solution of desulfurized crude waste
KR101718722B1 (en) * 2014-06-24 2017-03-23 순천대학교 산학협력단 Method and apparatus of NaHCO3 production from filtered solution of desulfurized crude waste
KR102013311B1 (en) * 2018-07-11 2019-08-22 주식회사 포스코 Treating method of by-product from removal of sulfur oxide in exhausted gas
WO2020013400A1 (en) * 2018-07-11 2020-01-16 주식회사 포스코 Method for treating sintering flue gas desulfulization byproduct
CN111072213A (en) * 2019-12-31 2020-04-28 上海同济建设科技股份有限公司 Zero-discharge treatment process and device for fractured rock wastewater
WO2022071153A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Method for treating oil-containing drainage water

Also Published As

Publication number Publication date
AU2013202562B2 (en) 2014-07-31
AU2013202562A1 (en) 2014-01-16
JP6034601B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
US11097954B2 (en) Method and system for preparing battery grade and high purity grade lithium hydroxide and lithium carbonate from high-impurity lithium sources
CN105540619B (en) Method for directly preparing battery grade lithium carbonate from salt lake brine with high magnesium-to-lithium ratio
JP5599168B2 (en) Solidification equipment for solution and waste liquid
JP5865495B2 (en) Salt drainage treatment method and apparatus
US20080025908A1 (en) Method for extracting minerals with high purity from deep ocean water
CN104803535A (en) Recycling system and recycling process for recycling salt from desulfurization waste water
CN104310687B (en) Efficient MVR integrated seawater desalination device and seawater desalination method
CN109319998A (en) A kind of the near-zero release processing system and technique of ternary precursor material production waste water
JP6034601B2 (en) Sodium bicarbonate recovery device and recovery method
JP2011006275A (en) Method and apparatus for producing lithium carbonate
CN102838134B (en) Sal prunella coproduction technology and device adopting sodium sulfate type bittern mechanical vapour recompression method
JP2012213767A (en) Method and apparatus for recovering k and mg
CN115893452A (en) Method and device for separating and purifying sodium carbonate and sodium bromide from PTA (pure terephthalic acid) alkali recovery furnace ash solution
CN109879297A (en) From containing ammonium chloride, sodium chloride, ammonium hydrogen carbonate, sodium bicarbonate mother liquor in thermal method recycling product technique
CN104724873B (en) A kind of white carbon black industrial wastewater zero-emission and the method for recycling
CN106115740A (en) A kind of salt extraction process and salt making system
RU2656452C2 (en) Method for obtaining lithium hydroxide monohydrate from alcohols and the plant for its implementation
CN203229436U (en) Seawater desalination, resources comprehensive utilization and zero discharge treatment system
CN104724776A (en) Device and method for mixing secondary steam into pressurized water in pressurized evaporation
CN108314114A (en) A kind of method of ammonium salt-containing wastewater treatment
CN108996523A (en) The system for separating and purifying of desulfurization wastewater
CN113562910A (en) Wastewater non-discharge treatment device and method
RU91530U1 (en) PLANT FOR PRODUCING CAUSTIC SODA FROM ELECTROLYTIC ALKALI
CN110803821A (en) Method for deep treatment of concentrated liquid of sucralose high-salinity wastewater
JP3754953B2 (en) Salt making method and salt making apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 6034601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees