JP2013536995A - Slurry supply device for semiconductor provided with piping clogging prevention means - Google Patents

Slurry supply device for semiconductor provided with piping clogging prevention means Download PDF

Info

Publication number
JP2013536995A
JP2013536995A JP2013526980A JP2013526980A JP2013536995A JP 2013536995 A JP2013536995 A JP 2013536995A JP 2013526980 A JP2013526980 A JP 2013526980A JP 2013526980 A JP2013526980 A JP 2013526980A JP 2013536995 A JP2013536995 A JP 2013536995A
Authority
JP
Japan
Prior art keywords
slurry
semiconductor
vacuum
compressed air
supply apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013526980A
Other languages
Japanese (ja)
Inventor
キム、ヒョン・イル
ホン、サ・ムン
コウ、セ・ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C&G Hi Tech Co Ltd
Original Assignee
C&G Hi Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C&G Hi Tech Co Ltd filed Critical C&G Hi Tech Co Ltd
Publication of JP2013536995A publication Critical patent/JP2013536995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents

Abstract

本発明は、半導体用スラリー供給装置の真空発生手段内にスラリーが流入して固着することにより真空発生手段のオリフィス領域や排気管が詰まることを防止する配管詰まり防止手段が備えられた半導体用スラリー供給装置を開示する。本発明は、半導体素子の製造時に研磨工程でスラリーを供給するための半導体用スラリー供給装置において、前記スラリーが貯蔵された貯蔵タンクと、前記貯蔵タンクに各々連結され、前記貯蔵タンクからスラリーの供給を受けて外部に排出する複数の加圧ベッセルと、前記加圧ベッセルに連結されて前記加圧ベッセルに真空圧力を発生させる真空発生手段と、前記加圧ベッセルと前記真空発生手段の連結ラインに設けられ、流入される圧縮空気に含まれた異物質を遠心力で圧縮空気から分離させる遠心分離手段とを含んでなることを特徴とする。  The present invention relates to a semiconductor slurry provided with piping clogging prevention means for preventing clogging of an orifice region and an exhaust pipe of the vacuum generation means due to the slurry flowing into and fixing in the vacuum generation means of the semiconductor slurry supply apparatus. A supply device is disclosed. The present invention relates to a semiconductor slurry supply apparatus for supplying a slurry in a polishing process at the time of manufacturing a semiconductor device, the storage tank storing the slurry, and the supply of the slurry from the storage tank respectively connected to the storage tank A plurality of pressure vessels that are discharged to the outside, vacuum generating means connected to the pressure vessels and generating a vacuum pressure on the pressure vessels, and a connecting line between the pressure vessels and the vacuum generation means. And a centrifugal separation means for separating foreign substances contained in the compressed air that is introduced from the compressed air by centrifugal force.

Description

本発明は、配管詰まり防止手段が備えられた半導体用スラリー供給装置に関するものであって、さらに詳しくは、半導体用スラリー供給装置の真空発生器の内部にスラリー液が流入して固着することにより真空発生器のオリフィス領域や排気管が詰まることを防止する配管詰まり防止手段が備えられた半導体用スラリー供給装置に関するものである。   The present invention relates to a semiconductor slurry supply apparatus provided with piping clogging prevention means, and more specifically, a vacuum is obtained by injecting and fixing slurry liquid into a vacuum generator of a semiconductor slurry supply apparatus. The present invention relates to a semiconductor slurry supply apparatus provided with piping clogging prevention means for preventing clogging of an orifice region and an exhaust pipe of a generator.

一般的に半導体素子を製造するための工程技術には、半導体素子の高集積化及び高密度化が要求される。このためには微細なパターン形成技術を適用しなければならない。   In general, a process technology for manufacturing a semiconductor element requires high integration and high density of the semiconductor element. For this purpose, a fine pattern forming technique must be applied.

一方、配線の多層化構造が要求されることにより、半導体素子の表面構造はさらに複雑になり層間膜の段差はさらに激しくなる傾向がある。このように発生した層間膜の段差は工程不良をもたらすため、除去しなければならない。   On the other hand, when a multilayered structure of wiring is required, the surface structure of the semiconductor element is further complicated, and the step of the interlayer film tends to become more severe. The step in the interlayer film generated in this way causes a process failure and must be removed.

これを解消するために、従来は、ウェハーの平坦化技術としてエスオージー(SOG)、エッチバック(Etch back)、BPSG(Boron Phosphorus Silicate Glass)、リフロー(Reflow)工程、及び化学/機械的な研磨工程(以下、CMP工程)が適用されていた。このうち、CMP工程が最近よく使われているが、このCMP工程は、ウェハーの大口径化によってウェハーの広くなった面を平坦化するために、化学的な研磨工程と機械的な研磨工程とを一つの工程に結合したものである。これは、特に段差が形成されたウェハーの表面をポリシングパッド上に密着させた後、研磨剤をウェハーとポリシングパッドとの間に注入させてウェハーを平坦化させる方式であって、大口径ウェハーの平坦化工程に適している。   In order to solve this problem, conventionally, as a wafer flattening technique, SOG (SOG), etch back (Etch back), BPSG (Boron Phosphorus Silicate Glass), reflow (Reflow) process, and chemical / mechanical polishing are used. A process (hereinafter referred to as a CMP process) has been applied. Of these, the CMP process has been frequently used recently, and this CMP process includes a chemical polishing process and a mechanical polishing process in order to flatten the widened surface of the wafer by increasing the diameter of the wafer. Are combined into one process. This is a method of flattening a wafer by injecting an abrasive between the wafer and the polishing pad after the surface of the wafer having a step formed thereon is in close contact with the polishing pad. Suitable for planarization process.

このようなCMP工程の研磨剤には研磨粒子と化学的添加剤が含有された溶液を使用するが、これをスラリー(slurry)という。このような液状のスラリーを使用して半導体ウェハーに化学/機械的な平坦化工程を実施する。このとき、機械的研磨のために適用されるスラリー液のうち、懸濁状態に存在する固形状微粒子は、粒の大きさを一定範囲内で選抜してCMP装備に供給しなければならない。それは、一定以上の巨大粒子(例えば、オキサイドスラリーの場合は通常1μ以上)がCMP工程で使用されると、半導体ウェハー上に微細パターン損傷が発生する原因として作用し、半導体ウェハーの不良につながるためである。   A solution containing abrasive particles and a chemical additive is used as an abrasive in such a CMP process, which is called a slurry. A chemical / mechanical planarization process is performed on the semiconductor wafer using the liquid slurry. At this time, among the slurry liquid applied for mechanical polishing, solid fine particles present in a suspended state must be selected within a certain range and supplied to the CMP equipment. This is because if a large particle (for example, 1 μm or more in the case of oxide slurry) is used in the CMP process, it will cause fine pattern damage on the semiconductor wafer, leading to a defect in the semiconductor wafer. It is.

また、CMP工程設備にスラリーを使用するためには、各々の工程の特徴に合う粒子を選抜して供給するように、別途スラリー供給装置が提供される。このようなスラリー供給装置は、CMP工程に使用されるスラリー原液又は工程別特性に合うように添加剤を混合及び希釈した定量の混合液をCMP装置に供給する。   Further, in order to use the slurry in the CMP process equipment, a separate slurry supply device is provided so as to select and supply particles that match the characteristics of each process. Such a slurry supply apparatus supplies the CMP apparatus with a slurry mixture used in the CMP process or a quantitative mixed liquid in which additives are mixed and diluted so as to suit the characteristics of each process.

一般的にこの場合、POU(Point of User;供給出口)側への移送は、加圧ベッセル(Pressure Vessel)を使用して、さらに静的な状態を維持し、スラリーが固まる現象を最大防止しながら移送する。   Generally, in this case, the transfer to the POU (Point of User) side uses a pressurized vessel (Pressure Vessel) to maintain a more static state and to prevent the slurry from solidifying. Transport while.

そのために、加圧ベッセルと加圧ベッセルへのスラリーの吸入を行う真空発生装置、そして圧力を発生させて移送させるN2気体提供手段が提供される。ここで、加圧ベッセルへスラリーが充填される原理は、ベルヌーイ原理が適用される。具体的に、真空発生器(aspirator)で負圧を発生させると、この真空発生器の負圧力によって加圧ベッセル内部に負圧(真空圧)が発生し、加圧ベッセルへスラリーが流入され、加圧ベッセルにスラリーが一定量満たされる。   For this purpose, there are provided a pressurized vessel, a vacuum generator for sucking slurry into the pressurized vessel, and N2 gas providing means for generating and transferring pressure. Here, the Bernoulli principle is applied as the principle of filling the pressurized vessel with the slurry. Specifically, when a negative pressure is generated by a vacuum generator (aspirator), a negative pressure (vacuum pressure) is generated inside the pressurized vessel due to the negative pressure of the vacuum generator, and the slurry flows into the pressurized vessel, A certain amount of slurry is filled in the pressurized vessel.

このとき、吸入の頂点で、加圧ベッセル内部に満たされていたスラリーが液滴の状態で真空発生装置に吸入される現象が時々発生する。これは、非常に小さな数滴のスラリーが加圧ベッセルから飛び出し、真空発生器に吸入される現象であって、この際に吸入されたスラリー液は工程の進行とともに累積され、この状態で乾燥されると、スラリー固形体の状態で固着される。このとき、スラリー固形体は真空発生器のオリフィスを塞ぐ結果をもたらし、結果的に真空発生を妨害して設備の動作を止めるので、工程の損失をもたらす。   At this time, a phenomenon occurs in which the slurry filled in the pressurized vessel is sucked into the vacuum generator in the form of droplets at the top of the suction. This is a phenomenon in which a very small drop of slurry jumps out of a pressurized vessel and is sucked into a vacuum generator. The sucked slurry is accumulated as the process proceeds and dried in this state. Then, it adheres in the state of a slurry solid. At this time, the slurry solids have the result of blocking the orifice of the vacuum generator, resulting in a loss of process because the vacuum generation is interrupted and the operation of the equipment is stopped.

また、スラリー液が真空発生器の排気側を越えて累積される場合は、設備自体にさらに大きな損失をもたらすことになる。   In addition, when the slurry liquid is accumulated beyond the exhaust side of the vacuum generator, a further loss is caused in the equipment itself.

本発明は、上記のような問題を解決するためになされたものであって、半導体用スラリー供給装置の真空発生手段内にスラリーが流入して固着することにより真空発生手段のオリフィス領域や排気管が詰まることを防止する配管詰まり防止手段が備えられた半導体用スラリー供給装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and the slurry flows into the vacuum generating means of the semiconductor slurry supply device and is fixed, whereby the orifice region and the exhaust pipe of the vacuum generating means. It is an object of the present invention to provide a semiconductor slurry supply device provided with a pipe clogging prevention means for preventing clogging.

上記のような目的を達成するための本発明の一実施形態によると、半導体素子の製造時に研磨工程でスラリーを供給するための半導体用スラリー供給装置において、前記スラリーが貯蔵された貯蔵タンクと、前記貯蔵タンクに各々連結され、前記貯蔵タンクからスラリーの供給を受けて外部に排出する複数の加圧ベッセルと、前記加圧ベッセルに連結されて前記加圧ベッセルに真空圧力を発生させる真空発生手段と、前記加圧ベッセルと前記真空発生手段の連結ラインに設けられ、流入される圧縮空気に含まれた異物質を遠心力で圧縮空気から分離させる遠心分離手段とを含んでなる配管詰まり防止手段が備えられた半導体用スラリー供給装置が提供される。   According to one embodiment of the present invention for achieving the above object, in a semiconductor slurry supply apparatus for supplying a slurry in a polishing process when manufacturing a semiconductor element, a storage tank in which the slurry is stored; A plurality of pressure vessels connected to the storage tanks, receiving slurry supplied from the storage tank and discharging to the outside, and a vacuum generating means connected to the pressure vessels and generating a vacuum pressure on the pressure vessels. And a clogging preventing means provided in a connecting line between the pressurized vessel and the vacuum generating means, and separating the foreign substance contained in the compressed air flowing in from the compressed air by centrifugal force. A slurry supply apparatus for semiconductor provided with

前記遠心分離手段は、前記加圧ベッセルに連結された吸入口が側面に形成され、前記吸入口に垂直な位置に排気口が形成された柱形状の筒体からなり、前記吸入口に流入された圧縮空気は、前記筒体内で渦巻きを起こし、遠心力によって重量のスラリーが圧縮空気から分離されることが好ましい。   The centrifugal separating means comprises a columnar cylinder having a suction port connected to the pressure vessel formed on a side surface and an exhaust port formed at a position perpendicular to the suction port, and is introduced into the suction port. It is preferable that the compressed air is swirled in the cylindrical body, and the heavy slurry is separated from the compressed air by centrifugal force.

前記筒体は、下部に向かうほど上部より直径が短くなるように形成され、前記筒体の下部には、遠心分離されたスラリーが貯蔵されるためのスラリー貯蔵箱が備えられる。   The cylinder is formed to have a diameter that is shorter from the upper part toward the lower part, and a slurry storage box for storing the centrifuged slurry is provided at the lower part of the cylinder.

本発明によると、半導体用スラリー供給装置と真空発生手段に遠心分離機を設けて、流入される圧縮空気内に含まれているスラリーを遠心分離させ、純粋な圧縮空気のみ真空発生手段に流入されるようにすることによって、スラリー液の流入による詰まり現象を防止し、設備損失や工程損失が発生することを未然に防止することが可能である。   According to the present invention, the semiconductor slurry supply device and the vacuum generating means are provided with a centrifuge to centrifuge the slurry contained in the compressed air that is introduced, and only pure compressed air is introduced into the vacuum generating means. By doing so, it is possible to prevent the clogging phenomenon due to the inflow of the slurry liquid and to prevent the occurrence of equipment loss and process loss.

本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置を示す構成図である。It is a block diagram which shows the slurry supply apparatus for semiconductors provided with the piping clogging prevention means by one Example of this invention. 本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置の真空発生装置の構成を示す例示図である。It is an illustration showing a configuration of a vacuum generator of a semiconductor slurry supply apparatus provided with a pipe clogging prevention means according to an embodiment of the present invention. 本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置の遠心分離手段の構成を示す平面図である。It is a top view which shows the structure of the centrifugation means of the slurry supply apparatus for semiconductors provided with the piping clogging prevention means by one Example of this invention. 本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置の遠心分離手段の構成を示す側面図である。It is a side view which shows the structure of the centrifugation means of the slurry supply apparatus for semiconductors provided with the piping clogging prevention means by one Example of this invention.

以下、本発明の好ましい実施例を図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置を示す構成図であり、図2は本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置の真空発生装置の構成を示す例示図である。   FIG. 1 is a block diagram showing a semiconductor slurry supply apparatus provided with piping clogging prevention means according to an embodiment of the present invention, and FIG. 2 is a diagram for a semiconductor equipped with piping clogging prevention means according to an embodiment of the present invention. It is an illustration figure which shows the structure of the vacuum generator of a slurry supply apparatus.

図1に示したように、本発明の配管詰まり防止手段が備えられた半導体用スラリー供給装置は、貯蔵タンク10、加圧ベッセル21,22、真空発生手段30、及び遠心分離手段40から構成される。   As shown in FIG. 1, the semiconductor slurry supply apparatus provided with the pipe clogging prevention means of the present invention comprises a storage tank 10, pressurized vessels 21 and 22, a vacuum generation means 30, and a centrifugal separation means 40. The

前記加圧ベッセル21,22は複数からなり、貯蔵タンク10に並列連結され、スラリーの供給を受けてPOU(Point of User;供給出口)に排出する役割をする。   The pressurization vessels 21 and 22 are a plurality of, and are connected in parallel to the storage tank 10 to receive a slurry and discharge it to a POU (Point of User).

このとき、加圧ベッセル21,22へのスラリーの提供は、真空発生手段30から提供される真空圧力(負圧力)によってなされる。すなわち、真空発生手段30は、加圧ベッセル21,22に配管を介して各々連結され、加圧ベッセル21,22の内部に真空圧力が作用されるようにする。これにより、加圧ベッセル21,22に配管で連結された貯蔵タンク10のスラリーが真空圧により加圧ベッセル21,22に流入される。このとき、真空発生手段30に適用される圧縮ガス(真空圧力形成ガス)には、N2ガスや天然ガスが適用される。   At this time, the slurry is supplied to the pressure vessels 21 and 22 by the vacuum pressure (negative pressure) provided from the vacuum generating means 30. That is, the vacuum generating means 30 is connected to the pressure vessels 21 and 22 through the pipes so that a vacuum pressure is applied to the inside of the pressure vessels 21 and 22. As a result, the slurry in the storage tank 10 connected to the pressurized vessels 21 and 22 by piping flows into the pressurized vessels 21 and 22 by vacuum pressure. At this time, N 2 gas or natural gas is applied to the compressed gas (vacuum pressure forming gas) applied to the vacuum generating means 30.

図2に示したように、この真空発生手段30は、真空ポート31の両側にノズル32とディフューザー33とが結合された構造で提供される。このとき、ノズル32とディフューザー33との間にはオリフィス36が形成され、供給路35を介してN2ガスが供給されると、ディフューザー33の排出路34を介して排気されるが、真空ポート31内にはオリフィス36によって排出路34の入口に流入される気体の流れ(オリフィス領域と排出路の出口側の圧力差によって発生;ベンチュリー効果)が形成され、真空ポート31内に負圧を発生させる。これにより、流入路37に連通された加圧ベッセル21,22内に真空圧力を発生させることができる。   As shown in FIG. 2, the vacuum generating means 30 is provided with a structure in which a nozzle 32 and a diffuser 33 are coupled to both sides of a vacuum port 31. At this time, an orifice 36 is formed between the nozzle 32 and the diffuser 33, and when N 2 gas is supplied via the supply path 35, the gas is exhausted via the discharge path 34 of the diffuser 33, but the vacuum port 31. A gas flow (generated by a pressure difference between the orifice area and the outlet side of the discharge path; a Venturi effect) is formed in the vacuum port 31 by the orifice 36 to generate a negative pressure in the vacuum port 31. . Thereby, a vacuum pressure can be generated in the pressure vessels 21 and 22 communicated with the inflow passage 37.

一方、加圧ベッセル21,22で真空圧が発生されると、加圧ベッセル21,22にスラリーが供給される過程でスラリー液が真空ポート31まで流入される現象が時々発生する。前述した従来の問題のように、スラリー粒子が真空ポート31を介して流入され、オリフィス36や排出路34に固着することを防止するために、本発明では遠心分離手段40をさらに提供する。   On the other hand, when a vacuum pressure is generated in the pressure vessels 21 and 22, a phenomenon that the slurry liquid flows into the vacuum port 31 sometimes occurs in the process of supplying the slurry to the pressure vessels 21 and 22. In order to prevent the slurry particles from flowing in through the vacuum port 31 and sticking to the orifice 36 or the discharge path 34 as in the conventional problem described above, the present invention further provides a centrifuge 40.

図3は本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置の遠心分離手段の構成を示す平面図であり、図4は本発明の一実施例による配管詰まり防止手段が備えられた半導体用スラリー供給装置の遠心分離手段の構成を示す側面図である。   FIG. 3 is a plan view showing a configuration of a centrifugal separator of a semiconductor slurry supply apparatus provided with a pipe clogging prevention means according to an embodiment of the present invention, and FIG. 4 is a pipe clogging prevention means according to an embodiment of the present invention. It is a side view which shows the structure of the centrifugation means of the slurry supply apparatus for semiconductors with which was provided.

図3と図4に示したように、遠心分離手段40は円筒形の筒体46にスラリー貯蔵箱42が備えられた構造で提供される。このとき、筒体46の側面には吸入口43が形成され、この吸入口43に垂直に筒体46の上部には排出口44が形成される。また、吸入口43は加圧ベッセル21,22と各々連結され、排出口44は真空発生手段30と連結される。   As shown in FIGS. 3 and 4, the centrifugal separator 40 is provided in a structure in which a slurry storage box 42 is provided on a cylindrical tube 46. At this time, a suction port 43 is formed on the side surface of the cylindrical body 46, and a discharge port 44 is formed in the upper part of the cylindrical body 46 perpendicular to the suction port 43. The suction port 43 is connected to the pressure vessels 21 and 22, and the discharge port 44 is connected to the vacuum generating means 30.

また、筒体46は、下端41に向かうほど狭くなる形態をなし、内周面に傾斜面45が形成されるように構成される。これにより、下部に向かうほど筒体46の幅が狭くなるため、渦巻き発生時に傾斜面45に沿って回転加速度が増加される。もちろん、筒体46を上下直径の同一な円筒形に形成することも可能である。   Further, the cylindrical body 46 is configured to become narrower toward the lower end 41 and is configured such that an inclined surface 45 is formed on the inner peripheral surface. Thereby, since the width | variety of the cylinder 46 becomes narrow toward the lower part, a rotational acceleration is increased along the inclined surface 45 at the time of a vortex generation | occurrence | production. Of course, it is also possible to form the cylindrical body 46 into a cylindrical shape having the same vertical diameter.

また、筒体46の下端41にはスラリー貯蔵箱42が連結され、遠心力によって分離されたスラリーが重力によって下降することにより、最終的に貯蔵される。このとき、スラリー貯蔵箱42は筒体46から着脱可能であって、貯蔵されたスラリーを簡便に処理することができる。   Further, a slurry storage box 42 is connected to the lower end 41 of the cylindrical body 46, and the slurry separated by centrifugal force is finally stored by being lowered by gravity. At this time, the slurry storage box 42 can be detached from the cylindrical body 46, and the stored slurry can be easily processed.

このような構成を有する遠心分離手段40の作用は、まず、吸入口43を介して圧縮空気とともにスラリーが流入されると、筒体46の内周面に沿って渦巻き(サイクロン現象)を起こしながら排出口44を介して圧縮空気が抜け出る。これは、図3に示したように、吸入口43が筒体46の側面縁に設けられ、吸入口43と排出口44が互いに垂直に配置されることにより、円筒形の筒体46内で吸入された圧縮空気が筒体46の内周面に沿って加速され、渦巻き(渦流)を起こしながら排出口44を介して排気される流れを有する。   The operation of the centrifugal separator 40 having such a structure is as follows. First, when slurry is introduced together with compressed air through the suction port 43, a spiral (cyclonic phenomenon) is caused along the inner peripheral surface of the cylindrical body 46. Compressed air escapes through the outlet 44. As shown in FIG. 3, the suction port 43 is provided on the side edge of the cylindrical body 46, and the suction port 43 and the discharge port 44 are arranged perpendicular to each other, so that The sucked compressed air is accelerated along the inner peripheral surface of the cylindrical body 46 and has a flow that is exhausted through the discharge port 44 while causing a vortex (vortex).

このように筒体46の内部で流入された圧縮空気が渦巻きを起こすと、遠心力によって比較的重量のスラリーは外側に押し出される。このとき、スラリーは筒体46の傾斜面45に沿って回転するが、スラリーは重量によってさらに下端41側に回転しながら沈降(下降)し、結局は、スラリー貯蔵装置42に貯蔵される。   Thus, when the compressed air that has flowed into the cylinder 46 swirls, a relatively heavy slurry is pushed outward by centrifugal force. At this time, the slurry rotates along the inclined surface 45 of the cylindrical body 46, but the slurry settles (lowers) while rotating further toward the lower end 41 side by weight, and is eventually stored in the slurry storage device 42.

一方、純粋圧縮空気(スラリーが分離された圧縮空気)は、筒体46の中心側に集中し、排出口44を介して真空発生手段30に流入される。このとき、排出口44を介して排出される圧縮空気は、スラリーが含有されていない純粋な圧縮空気が排出されるため、真空発生手段30にスラリーが流入され、固着することによって発生する詰まり現象を未然に防止することができる。   On the other hand, pure compressed air (compressed air from which the slurry is separated) is concentrated on the center side of the cylindrical body 46 and flows into the vacuum generating means 30 through the discharge port 44. At this time, since the compressed air discharged through the discharge port 44 is discharged as pure compressed air containing no slurry, the clogging phenomenon that occurs when the slurry flows into and adheres to the vacuum generating means 30. Can be prevented in advance.

以上では本発明を特定の実施例について図示し、説明したが、本発明は上述した実施例にのみ限定されるものではなく、本発明の属する技術分野で通常の知識を有する者なら、請求範囲に記載された本発明の技術的思想の要旨を逸脱しない範囲で、いくらでも多様に変更して実施することができるのである。   Although the present invention has been illustrated and described with respect to specific embodiments, the present invention is not limited to the embodiments described above, and any person having ordinary knowledge in the technical field to which the present invention pertains will be claimed. The present invention can be implemented with various modifications without departing from the spirit of the technical idea of the present invention described in the above.

Claims (3)

半導体素子の製造時において研磨工程でスラリーを供給するための半導体用スラリー供給装置において、
前記スラリーが貯蔵された貯蔵タンクと、
前記貯蔵タンクに各々連結され、前記貯蔵タンクからスラリーの供給を受けて外部に排出する複数の加圧ベッセルと、
前記加圧ベッセルに連結されて前記加圧ベッセルに真空圧力を発生させる真空発生手段と、
前記加圧ベッセルと前記真空発生手段の連結ラインに設けられ、流入される圧縮空気に含まれた異物質を遠心力で圧縮空気から分離させる遠心分離手段とを含んでなることを特徴とする配管詰まり防止手段が備えられた半導体用スラリー供給装置。
In a semiconductor slurry supply apparatus for supplying a slurry in a polishing process at the time of manufacturing a semiconductor element,
A storage tank in which the slurry is stored;
A plurality of pressurized vessels each connected to the storage tank and receiving slurry supplied from the storage tank and discharged to the outside;
A vacuum generating means connected to the pressure vessel and generating a vacuum pressure on the pressure vessel;
Piping comprising: a centrifuge that is provided in a connecting line between the pressurized vessel and the vacuum generating means and separates foreign substances contained in the compressed air that is introduced from the compressed air by centrifugal force. A semiconductor slurry supply apparatus provided with clogging prevention means.
前記遠心分離手段は、
前記加圧ベッセルに連結された吸入口が側面に形成され、前記吸入口に垂直な位置に排気口が形成された円筒形の筒体からなり、
前記吸入口に流入された圧縮空気は、前記筒体内で渦巻きを形成し、遠心力によって重量のスラリーが圧縮空気から分離されることを特徴とする請求項1に記載の配管詰まり防止手段が備えられた半導体用スラリー供給装置。
The centrifuge means includes
A suction port connected to the pressurization vessel is formed on a side surface, and is formed of a cylindrical tube body in which an exhaust port is formed at a position perpendicular to the suction port.
2. The piping clogging prevention means according to claim 1, wherein the compressed air that has flowed into the suction port forms a spiral in the cylindrical body, and a heavy slurry is separated from the compressed air by centrifugal force. The semiconductor slurry supply apparatus.
前記筒体は、
下部に向かうほど直径が短くなるように形成され、
前記筒体の下部には、遠心分離されたスラリーが貯蔵されるためのスラリー貯蔵箱が備えられることを特徴とする請求項2に記載の配管詰まり防止手段が備えられた半導体用スラリー供給装置。
The cylinder is
It is formed so that the diameter becomes shorter toward the bottom,
The slurry supply apparatus for a semiconductor provided with pipe clogging prevention means according to claim 2, wherein a slurry storage box for storing the centrifuged slurry is provided at a lower portion of the cylindrical body.
JP2013526980A 2010-09-02 2010-09-03 Slurry supply device for semiconductor provided with piping clogging prevention means Pending JP2013536995A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0086113 2010-09-02
KR1020100086113A KR101138403B1 (en) 2010-09-02 2010-09-02 Apparatus for supplying slurry for semiconductor having means for preventing clogging pipe
PCT/KR2010/005992 WO2012030005A1 (en) 2010-09-02 2010-09-03 Device for supplying slurry for semiconductor, provided with pipe clogging prevention means

Publications (1)

Publication Number Publication Date
JP2013536995A true JP2013536995A (en) 2013-09-26

Family

ID=45773065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013526980A Pending JP2013536995A (en) 2010-09-02 2010-09-03 Slurry supply device for semiconductor provided with piping clogging prevention means

Country Status (4)

Country Link
US (1) US20130225053A1 (en)
JP (1) JP2013536995A (en)
KR (1) KR101138403B1 (en)
WO (1) WO2012030005A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111226A1 (en) * 2011-07-01 2011-09-30 Salvatore Russo AUTOMATIC SAND ABRASIVE LOADER, ESPECIALLY FOR WATER CUTTING MACHINES.
CN107042471B (en) * 2017-05-18 2020-03-31 合肥彩虹蓝光科技有限公司 Copper polishing solution supply equipment used in LED chip thinning process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275855A (en) * 2002-03-20 2003-09-30 Aisin Seiki Co Ltd System for coating powdery release agent and casting apparatus
JP2005163619A (en) * 2003-12-02 2005-06-23 Smc Corp Vacuum generation unit
JP2006043522A (en) * 2004-08-02 2006-02-16 Toshio Nakao Method and system for cleaning inside of piping
JP2006130614A (en) * 2004-11-05 2006-05-25 M Fsi Kk Slurry feeder and slurry feeding method
JP2007024314A (en) * 2005-07-15 2007-02-01 Asml Holding Nv Vacuum pre-loaded pneumatic bearing with onboard vacuum generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257627A (en) * 1989-03-30 1990-10-18 Kyushu Electron Metal Co Ltd Method and apparatus for polishing of semiconductor wafer
US20030047881A1 (en) * 2001-09-13 2003-03-13 Worm Steven Lee Sealing system and pressure chamber assembly including the same
KR100485311B1 (en) * 2003-06-24 2005-04-27 한성완 Wastewater treatment apparatus
KR101207602B1 (en) * 2004-09-07 2012-12-03 닛신 엔지니어링 가부시키가이샤 Process and apparatus for producing fine particle
KR100636021B1 (en) 2005-02-04 2006-10-18 삼성전자주식회사 Cyclone, apparatus for separating slurry, system and method of supplying slurry using the apparatus
US7810516B2 (en) * 2005-03-04 2010-10-12 Air Liquide Electronics U.S. Lp Control of fluid conditions in bulk fluid distribution systems
CN101500754A (en) * 2006-08-16 2009-08-05 旭硝子株式会社 Method of recovering abrasive from abrasive slurry waste liquid and apparatus therefor
KR100985861B1 (en) * 2008-09-24 2010-10-08 씨앤지하이테크 주식회사 Apparatus for supplying slurry for semiconductor and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275855A (en) * 2002-03-20 2003-09-30 Aisin Seiki Co Ltd System for coating powdery release agent and casting apparatus
JP2005163619A (en) * 2003-12-02 2005-06-23 Smc Corp Vacuum generation unit
JP2006043522A (en) * 2004-08-02 2006-02-16 Toshio Nakao Method and system for cleaning inside of piping
JP2006130614A (en) * 2004-11-05 2006-05-25 M Fsi Kk Slurry feeder and slurry feeding method
JP2007024314A (en) * 2005-07-15 2007-02-01 Asml Holding Nv Vacuum pre-loaded pneumatic bearing with onboard vacuum generator

Also Published As

Publication number Publication date
WO2012030005A1 (en) 2012-03-08
US20130225053A1 (en) 2013-08-29
KR20120022492A (en) 2012-03-12
KR101138403B1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US7503458B2 (en) Cyclone, apparatus for separating slurry having the cyclone, and system and method of supplying slurry using the apparatus
ES2538822T3 (en) Separation device with a previous gravity separator followed by a centrifugal separator
US20110259836A1 (en) Material Separator
TW201446342A (en) Substrate processing apparatus and substrate processing method
WO2017101255A1 (en) Filtering-liquid container for de-dusting equipment and de-dusting equipment having same
JP5549026B1 (en) Inner wall surface processing method for micro vacancy
CN103534035A (en) Filter
JP4597168B2 (en) Bubble damper in slurry supply equipment
JP4518001B2 (en) Separation method and separation apparatus
JP2013536995A (en) Slurry supply device for semiconductor provided with piping clogging prevention means
JP4660263B2 (en) Vacuum generator and method for starting the vacuum generator
CN203578037U (en) Ash discharging system with negative pressure operation cyclone separator
JP6529844B2 (en) Gas-liquid separator and polishing device
JP6632344B2 (en) Wafer transfer device
KR102105950B1 (en) Multi nozzle for cleaning wafer
JPH11333215A (en) Apparatus for preventing air lock of filtration filter
KR101395248B1 (en) nozzle unit
KR102368790B1 (en) Retainer ring in carrier head for chemical mechanical polishing apparatus and carrier head having the same
JP2011129741A (en) Substrate processing apparatus and method
US20220088517A1 (en) System for separation of gas and solid
JP7394534B2 (en) Wafer transfer device
JP2016087568A (en) Gas-liquid separator and polishing device
KR102029972B1 (en) Stickiness removing unit and dust collector having thereof
KR102592964B1 (en) cleaning liquid nozzle
JP2005349265A (en) Mist collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120