JP2013527574A - 不適当な調光器動作を検出し修正するための方法及び装置 - Google Patents

不適当な調光器動作を検出し修正するための方法及び装置 Download PDF

Info

Publication number
JP2013527574A
JP2013527574A JP2013510696A JP2013510696A JP2013527574A JP 2013527574 A JP2013527574 A JP 2013527574A JP 2013510696 A JP2013510696 A JP 2013510696A JP 2013510696 A JP2013510696 A JP 2013510696A JP 2013527574 A JP2013527574 A JP 2013527574A
Authority
JP
Japan
Prior art keywords
difference
corrective action
phase angle
dimmer
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013510696A
Other languages
English (en)
Other versions
JP5785611B2 (ja
Inventor
ミカエル ダッタ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2013527574A publication Critical patent/JP2013527574A/ja
Application granted granted Critical
Publication of JP5785611B2 publication Critical patent/JP5785611B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3574Emulating the electrical or functional characteristics of incandescent lamps
    • H05B45/3575Emulating the electrical or functional characteristics of incandescent lamps by means of dummy loads or bleeder circuits, e.g. for dimmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/31Phase-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

半導体照明負荷を含む照明システムの不適当な動作を検出し修正するための方法が提供される。当該方法は、半導体照明負荷を駆動する電力コンバータに接続された調光器のフェーズ角度の第1及び第2の値を検出するステップであって、第1及び第2の値は入力メイン電圧信号の連続的な半周期に対応する当該ステップと、第1の値と第2の値との間の差を決定するステップとを有する。前記入力メイン電圧信号の非対称波形を示している、前記差が差の閾値より大きいとき、選択された修正処置が実行される。

Description

本発明は、概して、半導体照明器具の制御に向けられている。より詳しくは、本願で開示される様々な本発明の方法及び装置は、半導体照明負荷を含む照明システムの調光器の不適当な動作を検出して修正することに関する。
デジタル又は半導体照明技術、すなわち、LEDのような半導体光源に基づく照明は、伝統的な蛍光灯、高輝度放電ランプ(HID)及び白熱電球の実行可能な代替物を提供する。LEDの機能的利点及び利益は、高いエネルギー変換、光効率、耐久性、低い稼働コスト及び他の多くを含む。LED技術の最近の進歩は、多くの用途で様々な照明効果を可能にする効率的且つロバストなフルスペクトル光源を提供した。
これらのソースを具現化する器具の幾つかは、例えば、米国特許第6,016,038号及び米国特許第6,211,626号に詳述されるように、様々な色及び色変更照明効果を生成するためにLEDの出力を独立して制御するコントローラ又はプロセッサだけでなく、白色光及び/又は異なる色の光、例えば、赤、緑及び青の光を生じる一つ以上のLEDを含む照明モジュールを特徴とする。LED技術は、Philips Color Kinetics社から入手可能なESSENTIAL WHITEシリーズのような、ライン電圧で給電される照明器具を含む。斯様な照明器具は、120VAC又は220VACライン電圧(すなわち、入力メイン電圧)に対する電気低電圧(ELV)タイプの調光器のような後縁部調光技術を使用して調光可能である。
多くの照明アプリケーションは、調光器を使用する。従来の調光器は、白熱(バルブ及びハロゲン)ランプで良好に動作する。しかしながら、コンパクト蛍光ランプ(CFL)、電子変成器を使用する低電圧ハロゲンランプ、並びにLED及びOLEDのような半導体照明(SSL)ランプを含む他のタイプの電子ランプで課題が発生する。特に、電子変成器を使用する低電圧ハロゲンランプは、電気低電圧(ELV)タイプの調光器又は抵抗容量性(RC)調光器のような、入力部に力率補正(PFC)回路を持つ負荷で適切に働く特別な調光器を使用して調光される。
従来の調光器は、通常は、入力メイン電圧信号の各波形の一部をチョッピングし、波形の残りを照明器具に送る。先端エッジすなわち順方向フェーズ調光器は、電圧信号波形の前縁部をチョッピングする。後縁部すなわち逆方向フェーズ調光器は、電圧信号波形の後縁部をチョッピングする。LEDドライバのような電子負荷は、通常は、後縁部調光器で良好に動作する。
フェーズカッティング調光器により生じるチョッピングされた正弦波に対してエラーなしで自然に反応する白熱及び他の抵抗照明デバイスとは異なり、LED及び他の半導体照明負荷は、斯様なフェーズチョッピング調光器に配置されるとき、ローエンドドロップアウト、トライアック失弧、最小負荷問題、ハイエンドフリッカ及び光出力の大きなステップのような多くの課題を招く。幾つかの課題は、フェーズチョッピング調光器及び半導体照明負荷ドライバ(例えば、電力コンバータ)のような照明システムの部品間の互換性を含み、光出力の望ましくないフリッカに結果となるような対応症状を示す。フリッカは、通常、波形が非対称である整流された入力メイン電圧信号のチョッピングされたサイン波間の均一性の欠如により生じる。
例えば、図1Aは、フェーズチョッピング調光器への整流されていない入力メイン電圧信号入力の波形を示し、ここで、整流されていない入力メイン電圧信号は周期的に発生する正及び負の半周期を持つ。図1Bは、調光器から出力された整流された入力メイン電圧信号出力のチョッピングされた波形を示し、ここで、調光レベルは調光器スライダの相対的な位置により示されるように約50パーセントである。特に、図1Bは、調光器及び半導体照明負荷ドライバが正しく機能しているシナリオを示し、このように正及び負の半周期に対応する実質的に均一な整流されたチョッピングされたサイン波を供給する。すなわち、調光された整流された入力メイン電圧信号は、整流されていない入力メイン電圧の正及び負の半周期両方の対称形のチョッピングを持つ。
対照的に、図1Cは、調光器及び半導体照明負荷ドライバが誤って機能している調光器から出力された整流された入力メイン電圧信号出力のチョッピングされた波形を示し、よって、均一でなく整流されたチョッピングされたサイン波形を供給する。すなわち、調光された整流された入力メイン電圧信号は、整流されていない入力メイン電圧の正及び負の半周期の非対称形のチョッピングを持つ。整流された入力メイン電圧信号のチョッピングされた波形のこの非対称の呈示は、半導体照明負荷で光出力のフリッカに結果としてなる。
不適当な動作は、複数の可能な課題から生じる。1つの課題は、調光器の内部スイッチを通る不十分な負荷電流である。調光器は、半導体照明負荷を通る電流に基づいて、その内部タイミング信号を取り出す。半導体照明負荷はごくわずかな白熱負荷であるので、調光器によって流れる電流は内部タイミング信号の正しい動作を保証するのに十分でない。他の課題は、調光器が、負荷に流れる電流を介して、その内部回路動作を保つ内部電源を得ているということである。負荷が充分でないときに、調光器の内部電源はドロップし、波形の非対称を引き起こす。
このように、調光器及び/又は半導体照明負荷ドライバのような照明システムの不適当な動作を検出し、不適当な動作を修正し及び/又は半導体照明負荷への電力を除去するための修正処置を識別して実行し、光フリッカのような望ましくない効果を排除するための技術のニーズがある。
本開示は、入力メイン電圧信号の正及び負の半周期の非対称により示される半導体照明システムの不正確な動作を検出し、選択的に修正処置を実行するための発明の方法及び装置に向けられている。
一般に、一つの態様では、本発明は、半導体照明負荷を含む照明システムの不適当な動作を検出し修正する方法に関する。当該方法は、半導体照明負荷を駆動する電力コンバータに接続された調光器のフェーズ角度の第1及び第2の測定値を検出するステップであって、第1及び第2の測定値は入力メイン電圧信号の連続的な半周期に対応する当該ステップと、第1の値と第2の値との間の差を決定するステップとを有する。前記入力メイン電圧信号の非対称波形を示している、前記差が差の閾値より大きいとき、選択された修正処置が実行される。
他の態様において、概して、本発明は、調光器、電力コンバータ及びフェーズ角度検出回路を含む、半導体照明負荷へ送られる電力を制御するためのシステムに焦点を当てている。調光器は、電圧メイン部に接続され、半導体照明負荷による光出力を調節可能に調光するように構成される。電力コンバータは、前記電圧メイン部から生じている整流された入力電圧信号に応じて前記半導体照明負荷を駆動するように構成される。フェーズ角度検出回路は、前記入力電圧信号の連続的な半周期を持つ前記調光器のフェーズ角度を検出し、連続的な半周期間の差を決定し、前記入力電圧信号の非対称波形を示している、前記差が差の閾値より大きいとき、修正処置を実行するように構成される。
更に他の態様では、本発明は、フェーズチョッピング調光器に応じて電力コンバータにより駆動されるLED光源による光出力からのフリッカを排除する方法に関係する。当該方法は、入力電圧信号の半周期を測定することにより調光器フェーズ角度を検出するステップと、半周期の差を決定するために連続的な半周期を比較するステップと、前記半周期の差を予め定められた差の閾値と比較するステップであって前記半周期の差が前記差の閾値より少ないと前記入力電圧信号の波形が対称であることを示し、前記半周期の差が前記差の閾値より大きいと前記入力電圧信号の波形が非対称であることを示す当該ステップとを含む。前記半周期の差が前記差の閾値より大きいとき、修正処置が実行される。
本開示の目的のために本明細書において用いられる場合、「LED」という用語は、任意のエレクトロルミネセンスダイオード又は電気信号に応じて放射を生成することができる他のタイプのキャリア注入/接合型のシステムを含むことを理解されたい。従って、LEDという用語は、電流に応じて光を発する種々の半導体を使用した構造体、発光ポリマ、有機発光ダイオード(OLED)、エレクトロルミネセンスストリップ等を含むが、これらに限定されない。特に、LEDという用語は、赤外線スペクトル、紫外線スペクトル及び(一般に、約400ナノメートルから約700ナノメートルまでの放射波長を含む)可視スペクトルの種々の部分の一つ以上において放射を生成するように構成され得る(半導体及び有機発光ダイオードを含む)全てのタイプの発光ダイオードのことを意味する。LEDの幾つかの例は、赤外LED、紫外LED、赤色LED、青色LED、緑色LED、黄色LED、琥珀色LED、橙色LED及び白色LEDを含むが、これらに限定されない(以下に、更に述べられる。)。LEDは、あるスペクトル(例えば、狭帯域幅、広帯域幅)に対して種々の帯域幅(例えば、半値全幅、すなわちFWHM)及びある一般的な色分類(色のカテゴリー化)内の種々の主波長を持つ放射を生成するように構成及び/又は制御され得ることも理解されたい。
例えば、本質的に白色の光を生成するように構成されたLED(例えば、白色LED照明器具)の1つの実行は、本質的に白色の光を形成するために組み合わせて混合するエレクトロルミネセンスの異なるスペクトルをそれぞれ発する幾つかのダイを含んでいる。他の実行では、白色光LED照明器具は、第1のスペクトルを持つエレクトロルミネセンスを異なる第2のスペクトルに変換する蛍光材料に関連している。この実行の一例では、かなり短波長であって、狭帯域幅のスペクトルを持つエレクトロルミネセンスが蛍光材料を「ポンピング」し、該蛍光材料は、その結果として幾らかより広い帯域幅のスペクトルを持つより長い波長の放射を放つ。
LEDという用語は、LEDの物理的及び/又は電気的なパッケージのタイプを限定するものではないことも理解されたい。例えば、上述したように、LEDは、異なるスペクトルの放射をそれぞれ発するように構成された複数のダイ(例えば、個々に制御可能である又はそうではない。)を有する単一の発光デバイスを指す場合がある。また、LEDは、当該LED(例えば、幾つかのタイプの白色LED)の一体部分とみなされる蛍光体と関連し得る。一般に、LEDという用語は、パッケージ化されたLED、パッケージ化されていないLED、表面実装型LED、チップオンボード型LED、Tパッケージ実装型LED、放射パッケージ型LED、電力パッケージ型LED、何らかのタイプのケース(encasement)及び/又は光学素子(例えば、拡散レンズ)を含むLED等を指す。
「光源」という用語は、(上述して規定された一つ以上のLEDを含む)LEDを使用したソース、白熱源(例えば、フィラメントランプ、ハロゲンランプ)、蛍光源、リン光源、高輝度放電源(例えば、ナトリウム、水銀及びメタルハライドランプ)、レーザ、他のタイプのエレクトロルミネセンス源、熱ルミネセンス源(例えば、炎)、キャンドルルミネセンス源(candle-luminescent source)(例えば、ガスマントル、カーボンアーク放射源)、フォトルミネセンス源(例えば、ガス放電源)、電子飽和を用いるカソードルミネセンス源、ガルバノルミネセンス源、クリスタロルミネセンス源、キネルミネセンス源(kine-lumincescent source)、熱ルミネセンス源、トリボルミネセンス源、ソノルミネセンス源、放射ルミネセンス源(radio luminescent source)及び発光ポリマを含むが、これらに限定されない種々の放射源の任意の一つ以上を意味すると理解されたい。
「照明器具」という用語は、本明細書では、特定のフォームファクタ、アセンブリ又はパッケージにおける一つ以上の照明ユニットの実行又は配置について言及するために用いられる。「照明ユニット」という用語は、本明細書では、同じタイプ又は異なるタイプの一つ以上の光源を含む装置について言及するために用いられる。ある照明ユニットは、光源、筐体/ハウジングの機構の形状及び/又は電気的及び機械的接続の構成のために種々の取り付け機構のうちの任意の1つを有している。また、ある照明ユニットは、オプションで、光源の動作に関連する様々な他の構成要素(例えば、制御回路)と関係がある(例えば、それを含んでいる、それに結合されている及び/又はそれとともにパッケージされている。)。「LEDを使用した照明ユニット」は、単独の又は他のLEDを使用していない光源と組み合わせた上述したような一つ以上のLEDを使用した光源を含む照明ユニットのことを意味する。「マルチチャネル」照明ユニットは、放射線のそれぞれ異なるスペクトルを生成するように構成される少なくとも2つの光源を含むLEDベース又は非LEDベースの照明ユニットを指し、各異なる光源のスペクトルは、マルチチャネル照明ユニットの「チャネル」と呼ばれる。
「コントローラ」という用語は、本明細書では、一つ以上の光源の動作に関連する種々の装置を広く説明するために用いられる。コントローラは、本明細書において述べられる様々な機能を実行するために(例えば、専用ハードウェアを用いて等の)種々の方法で実行され得る。「プロセッサ」は、本明細書において述べられる様々な機能を実行するためにソフトウェア(例えば、マイクロコード)を用いてプログラムされ得る一つ以上のマイクロプロセッサを使用するコントローラの一例である。コントローラは、プロセッサを用いて又は用いないで実行され、また、幾つかの機能を実行するための専用ハードウェアと他の機能を実行するためのプロセッサとの組み合わせ(例えば、一つ以上のプログラムされたマイクロプロセッサ及び関連回路)としても実行され得る。本開示の種々の実施の形態に使用され得るコントローラの構成要素の例は、従来のマイクロプロセッサ、特定用途向け集積回路(ASIC)及びフィールドプログラマブルゲートアレイ(FPGA)を含んでいるが、これらに限定されない。
様々な実行では、プロセッサ及び/又はコントローラは、(例えば、RAM、PROM、EPROM及びEEPROMのような揮発性及び不揮発性コンピュータメモリ、フロッピー(登録商標)ディスク、コンパクトディスク、光ディスク並びに磁気テープである「メモリ」と一般にここでは呼ばれる)一つ以上の記憶媒体と関連する。幾つかの実行では、上記記憶媒体は、一つ以上のプロセッサ及び/又はコントローラ上で実行されるとき、ここで説明される機能の少なくとも幾つかを実施する一つ以上のプログラムによりコード化される。種々の記憶媒体は、本明細書において説明される本発明の種々の観点を実行するために、プロセッサ若しくはコントローラ内に固定されているか、又は該記憶媒体に記憶された一つ以上のプログラムがプロセッサにロードされ得るように移送可能である。本明細書において用いられる「プログラム」又は「コンピュータプログラム」という用語は、一つ以上のプロセッサ又はコントローラをプログラムするために使用され得る任意のタイプのコンピュータコード(例えば、ソフトウェア又はマイクロコード)を意味するために本明細書において汎用的意味で用いられる。
上述の概念及び以下に極めて詳細に説明される更なる概念の全ての組み合わせは(そのような概念が相互に矛盾しないならば、)、本明細書において開示される発明の主観的事項の一部であると考えられることを理解されたい。特に、この開示の最後に示される特許請求の範囲の主観的事項の全ての組み合わせは、本明細書において開示される発明の主観的事項の一部であると考えられる。また、参照することにより組み込まれるいずれの開示にも表れ得る本明細書において明示的に使用される用語は、本明細書で開示される特定の概念と最も一貫性がある意味を与えられることも理解されたい。
図面では、類似の参照符号は、異なる図面全体にわたって概して同じ又は類似の部分を指す。また、図面は、必ずしも縮尺通りというわけではなく、代わりに、本発明の原理を例示する際に強調されている。
図1A乃至図1Cは、対称及び非対称の半周期を持つ、整流されていない波形及びチョッピングされた整流された波形を示す。 図2は、代表的な実施例による調光可能な照明システムを示すブロック線図である。 図3A及び図3Bは、代表的な実施例による調光器の非対称の半周期からのサンプル波形及び対応するデジタルパルスを示す。 図4は、代表的な実施例による調光可能な照明システムの不適当な動作を検出し修正するプロセスを示すフロー図である。 図5は、代表的な実施例による修正処置を識別し実行するプロセスを示すフロー図である。 図6は、代表的な実施例による照明システム用の制御回路を示す回路図である。 図7A乃至図7Cは、代表的な実施例による調光器のサンプル波形及び対応するデジタルパルスを示す。 図8は、代表的な実施例によるフェーズ角度を検出するプロセスを示すフロー図である。
以下の詳細な説明において、限定的ではなく説明のため、具体的な詳細を開示する典型的な実施例が、本教示の完全な理解を提供するために、説明される。しかしながら、本願で開示された具体的な詳細から離れた本教示による他の実施例も添付の請求の範囲の範囲内にあることは、本開示の利益を持った当業者には明らかであろう。その上、良く知られた装置及び方法の説明は、典型的な実施例の説明をぼかさないために、省略される。斯様な方法及び装置は、明らかに本教示の範囲内である。
一般に、調光器設定に関係なく、例えばフリッカ又は出力光レベルの制御されない変動なしで、LED光源のような半導体照明負荷からの安定した光出力を持つことが望ましい。出願人は、調光器、半導体照明負荷、及び半導体照明負荷を駆動する対応する電力コンバータにより生じる様々な課題を検出し修正できる回路を提供することが有益であると認識し理解した。様々な実施例において、課題は、例えば、電気的トランスフォーマ又は電力コンバータとフェーズチョッピング調光器との間のインタラクションによる正及び負のメイン半周期の非対称を識別することにより検出される。
前述の観点で、本発明の様々な実施例及び実行は、調光器のフェーズ角度をデジタル的に検出し測定し、(例えば、正及び負の半周期にそれぞれ対応する)連続的な測定値間の差が非対称のフェーズチョッピングを示す予め定められた閾値を超えるとき、修正処置を実行することにより、正及び負のメイン半周期の非対称により生じる半導体照明器具の不適当な動作を検出し修正するための回路及び方法に向けられている。
図2は、代表的な実施例による、調光可能な照明システムを示すブロック図である。図2を参照すると、調光可能な照明システム200は、調光器204及び整流回路205を含み、整流回路205は、電圧メイン部201から(調光された)整流電圧Urectを供給する。電圧メイン部201は、様々な実行に従って100VAC、120VAC、230VAC及び277VACのような異なる整流されてない入力メイン電圧を供給する。調光器204は、例えば、そのスライダ204aの垂直オペレーションに応じて電圧メイン部201から電圧信号波形の前縁部(前縁部調光器)又は後縁部(後縁部調光器)をチョッピングすることにより調光機能を供給するフェーズチョッピング調光器である。説明のため、調光器204が後縁部調光器であると仮定される。
一般に、整流電圧Urectの大きさは、低い調光設定に対応するフェーズ角度が低い整流電圧Urectに結果としてなり、また逆も成り立つように、調光器204により設定される調光のレベル又はフェーズ角度と比例している。図示された例では、スライダ204aが、フェーズ角度を低下させるために下方へ移動して、半導体照明負荷240による光出力の量を減らし、フェーズ角度を増大させるために上方へ移動して、半導体照明負荷240による光出力の量を増大すると仮定される。従って、最小の減光は、スライダ204aが(図2に図示されるように)一番上の位置にあるとき起こり、最大の減光は、スライダ204aが一番下の位置にあるとき起こる。
照明システム200は、更に調光器フェーズ角度検出回路210及び電力コンバータ220を含む。フェーズ角度検出回路210は、後述されるマイクロコントローラ又は他のコントローラを含み、整流電圧Urectに基づいて代表的な調光器204のフェーズ角度(調光レベル)の値を決定又は測定するように構成される。フェーズ角度検出回路210は、また、整流電圧Urectの正及び負の半周期に対応する検出フェーズ角度値を比較して、照明システム200が不適当に動作していることを正及び負の半周期の比較が示す場合、修正処置を実行する。例えば、検出フェーズ角度は、整流電圧Urectのチョッピングされた波形が(例えば、図1Bに示されるように)対称的にチョッピングされているか(図1Cに示されるように)非対称的にチョッピングされているかを決定するためのソフトウェアアルゴリズムへの入力として使われる。換言すると、チョッピングされた波形が対称であるか非対称であるかが決定される。非対称のチョッピングは、例えば調光器204及び電力コンバータ220を含む、調光器ドライバシステムが持つ課題を示す。様々な実施例において、フェーズ角度検出回路210は、更に、制御ライン229を介して電力制御信号を使用して、検出フェーズ角度に部分的に基づいて通常動作の間、電力コンバータ220の動作ポイントを動的に調整するように構成される。
一般に、チョッピングされた波形の非対称は、正の半周期から負の半周期まで、フェーズ角度検出回路210により生成されるフェーズ角度検出パルスの長さの大きな差を検出することにより検出できる。例えば、図3A及び図3Bは、代表的な実施例による、整流電圧Urectの正及び負の半周期に対応する調光器204及び修正回路205からチョッピングされた波形と、フェーズ角度検出回路210により生成される関連したデジタルパルスとを示す。図3Bに示されるように、第2のデジタルパルス332bの長さは第1のデジタルパルス331bの長さより著しく小さく、図3Aに示されるように、負の半周期波形332aが直前の正の半周期波形331aより重くチョッピングされていることを示す。
典型的には、ユーザがスライダ204aを調整することにより調光器204を手動で動作させるとき、結果は正の半周期と負の半周期との間の差についての非常に遅くゆっくりな効果を持つ。従って、例えば図3A及び3Bに示されるような1つのサイクルから他のサイクルへのより急激な変化は、不適当な動作として識別可能である。実施例において、差の閾値は、例えば、正の半周期と負の半周期との間の許容可能な差の上限値を示す経験的測定に基づいて確立されている。例えば、差の閾値は、フリッカが非対称の波形に基づいて発生し始めるポイントである。図4を参照して後述されるように、フェーズ角度検出回路210(例えばマイクロコントローラ又は他のコントローラを使用して)は、正及び負の半周期のデジタルパルス間の差を差の閾値と比較して、差が差の閾値を超えるとき不適当な動作の発生を識別する。
非対称の波形が複数の潜在的課題の兆しであるので、その全ては結果的に半導体照明負荷240からの光出力の望ましくないフリッカとなり、異なる修正処置又は方法が、課題を修正するためにフェーズ角度検出回路210の制御の下、試みられる。例えば、フェーズ角度検出回路210は、半導体照明負荷240と並列の(図2に示されない)抵抗ブリーダー回路において半導体照明負荷240に余分の電流を流すように切り替え、よって、調光器204の動作のためには充分最小まで負荷を増大させる。この動作がフリッカ又は存在する課題を修正しない場合、他の修正処置が試みられる。修正処置は、修正処置の1つが働くまで、予め定められた優先順位で、例えば、最も成功しそうな処置から最も成功しそうでない処置の順位で試みられる。しかしながら、どの修正処置も働かない場合、フリッカの光よりましな光はないことになるので、フェーズ角度検出回路210は、制御ライン229を介して送られる電力制御信号を用いて、電力コンバータ220を単にシャットダウンする。例えば、フェーズ角度検出回路210は、半導体照明負荷240へ電流を供給しないように電力コンバータ220を制御するか、又は電力コンバータ220を切る。
電力コンバータ220は、制御ライン229を介して電力制御信号と修正回路205からの整流電圧Urectとを受信し、半導体照明負荷240を供電するための対応する直流電圧を出力する。一般に、電力コンバータ220は、フェーズ角度検出回路210から受信された電力制御信号の値及び整流電圧Urectの大きさに少なくとも基づいて、整流電圧Urectと直流電圧との間を変換する。このように、電力コンバータ220による直流電圧出力は、調光器204により付与される調光器フェーズ角度及び整流電圧Urectを反映する。様々な実施例において、電力コンバータ220は、例えば、参照により本願に組み込まれるライスによる米国特許第7,256,554号に説明されるような開ループ又はフィードフォワード形式で動作する。
様々な実施例において、電力制御信号は、例えば、選択されたデューティサイクルに従って上下のレベルの間を交番させるパルス幅変調(PWM)信号である。例えば、電力制御信号は、調光器204の最大オン時間(高いフェーズ角度)に対応する高いデューティサイクル(例えば、100パーセント)と、調光器204の最小オン時間(低いフェーズ角度)に対応する低いデューティサイクル(例えば、0パーセント)とを持つ。調光器204が最大フェーズ角度と最小フェーズ角度との間に設定されるとき、フェーズ角度検出回路210は、検出フェーズ角度に特に対応する電力制御信号のデューティサイクルを決定する。
図4は、代表的な実施例による調光可能な照明システムの不適当な動作を検出するプロセスを示すフロー図である。プロセスは、例えば、図2に示されるフェーズ角度検出回路210により(又は、後述される図6のマイクロコントローラ615により)実行されるファームウェア及び/又はソフトウェアにより実行される。
説明のため、照明システム200が電源オンにされるとき、図4がブロックS410で開始すると仮定する。ブロックS410において、整流された入力メイン電圧Urectが定常状態に到達する間、遅延がある。遅延の後、フェーズ角度の初期値が決定され、ブロックS420で前の半周期レベル(Previous Half Cycle Level)として保存される。例えば、ブロックS430を参照して後述されるプロセスによると、フェーズ角度の初期値は、フェーズ角度を単に検出することにより決定される。代わりに、本教示の要旨を逸脱しない範囲で、フェーズ角度の初期値は、他のプロセスに従って決定されてもよいし、又は例えば、照明システム200の従来の動作から、以前に決定されたフェーズ角度を保存しているメモリから取り出されてもよい。
ブロックS430により示されるプロセスにおいて、フェーズ角度検出回路210は、フェーズ角度の他の値を決定又は測定するために、フェーズ角度を検出する。様々な実施例において、図6乃至図8を参照して後述されるアルゴリズムによると、フェーズ角度は、整流された入力メイン電圧Urectの各チョッピングされた波形に対応するデジタルパルスを得ることにより検出される。従って、図3A及び図3Bに示されるように、デジタルパルスは、正の半周期及び負の半周期ごとに生成される。もちろん、本教示の要旨を逸脱しない範囲で、フェーズ角度の値は、他のプロセスに従って決定されてもよい。
検出フェーズ角度は、ブロックS440において、現在の半周期レベル(Current Half Cycle Level)として保存される。以前の半周期レベル及び現在の半周期レベルは、メモリに保存される。例えば、図6を参照して後述されるように、メモリは、フェーズ角度検出回路210に含まれるマイクロコントローラ若しくは他のコントローラ及び/又はフェーズ角度検出回路210の内部メモリ若しくは外部メモリである。様々な実施例において、以前の半周期レベル及び現在の半周期レベルの値はテーブルを事前設定するために用いられるか、又は比較のため関係型データベースで保存されるが、以前の半周期レベル及び現在の半周期レベルを保存する他の手段が本教示の要旨を逸脱しない範囲で組み込まれてもよい。また、様々な実施例において、ブロックS430で検出されたフェーズ角度の値は、電力制御信号を生成するためにフェーズ角度検出回路210により用いられ、電力制御信号は、電力コントローラ220の動作ポイントを設定するために電力コントローラ220へ供給され、様々な他の制御基準に基づいて半導体照明負荷240による光出力の他の制御を可能にする。
以前の半周期レベルと現在の半周期レベルとの間の差ΔDimが、ブロックS450において、例えば、現在の半周期レベルを以前の半周期レベルから減算することにより、又はこの逆により決定される。その後、差ΔDimは、例えば、調光器204及び/又は電力コンバータ220の不適当な動作又はこれらの互換性がないことを示す、波形が非対称かどうかを決定するため、ブロックS460において、予め定められた差の閾値ΔThresholdと比較される。差ΔDimが閾値ΔThresholdより大きいとき(ブロックS460:はい)、非対称波形を示し、ブロックS480により示されるプロセスは、非対称の波形が生じている課題に対処するために適当な修正処置を識別して実行するように実施される。このプロセスは、以下に図5を参照して詳述される。差ΔDimが閾値ΔThresholdより大きくないとき(ブロックS460:いいえ)、実質的に対称形の波形を示し、現在の半周期レベルは、ブロックS470において現在の半周期レベルとして単に保存される。上記プロセスは、再びフェーズ角度を決定するためブロックS430へ戻り、ブロックS440乃至S480により示されるプロセスが繰り返される。
図5は、代表的な実施例による非同期波形の検出に応じて、修正処置を識別し実行するプロセスを示すフロー図である。当該プロセスは、例えば、図2に示されるフェーズ角度検出回路210により実行されるファームウェア及び/又はソフトウェアにより(又は、後述される図6のマイクロコントローラ615又は他のコントローラにより)実行される。
様々な実施例において、一つ以上の修正処置が、必要に応じて、実行のために利用可能である。修正処置は、最高の優先順位から最低の優先順位までランクを付けられ、ここで、最高の優先順位の修正処置は、非対称の波形を上手く処理するため最もできそうであると前もって決定された修正処置である。修正処置の各々の実行のために実行されるべき対応するステップとともに、順位がメモリに保存される。例えば、図6を参照して後述されるように、メモリは、フェーズ角度検出回路210に含まれるマイクロコントローラ若しくは他のコントローラ及び/又はフェーズ角度検出回路210の内部メモリ若しくは外部メモリである。最高の優先順位の修正処置は、例えば、充分な最小負荷まで調光器204の負荷を増大するための半導体照明負荷240と並列な抵抗ブリーダー回路での切り替えを含む。抵抗ブリーダー回路は、例えば、付加電流を選択的に流すためにスイッチ(例えば、トランジスタ)と直列に接続される抵抗を含む。実行が当業者にとって明らかである一つ以上の付加的な修正処置が、抵抗ブリーダー回路修正処置より低く優先されてもよい。加えて、同じ修正処置の一つ以上の変形例が優先されてもよい。例えば、抵抗ブリーダー回路の実行は、適当な値が見つかるまで、抵抗値を逐次増大しながら繰り返されてもよい。
図5を参照すると、修正処置がすでに能動的に適所にあるかどうかが、ブロックS481において決定される。修正処置が適所にないとき(ブロックS481:いいえ)、最高の優先順位の修正処置が、ブロックS482で実行され、プロセスは図4のブロックS470へ戻り、ここで、現在の半周期レベルは以前の半周期レベルとして保存される。その後、前記プロセスは、現在の半周期レベルとしてフェーズ角度を再び決定するためブロックS430へ戻り、ブロックS450及びブロックS460において以前の半周期レベルとの次の比較は、ブロックS482で実行される修正処置が成功しているかどうかを示す。実際には、その処置の成功に関する決定をする前に修正処置が効果をなすため修正処置を実行した後に、一つ以上の半周期が評価される。
再び図5を参照すると、修正処置がすでに適所にあると決定されるとき(ブロックS481:はい)、ブロックS483において試みられてもよい残りの修正処置があるかどうかが決定される。少なくとも一つの残りの修正処置があるとき(ブロックS483:はい)、次の最高の優先順位の修正処置がブロックS485において実行され、上述のように、プロセスは図4のブロックS470へ戻る。
修正処置がないとき(ブロックS483:いいえ)、電力コンバータ220は、半導体照明負荷240からのフリッカ光出力又は不適当な動作の他の悪影響を排除するために、ブロックS486においてシャットダウンされる。その後、プロセスは、図4のブロックS470へ戻り、ここで、電力コンバータ220がシャットダウンされる場合であっても、監視プロセスは繰り返される。図4及び図5に示されていないが、様々な実施例において、現在の半周期レベルと以前の半周期レベルとの間の後続の比較が、差ΔDimが閾値ΔThresholdより低く低下することを示す場合(調光レベルの他の調整、例えば、スライダ204aの手動動作に応じて発生する)、電力コンバータ220は再びオンにされる。
様々な実施例において、照明システム200が電源オンされるたびに、電力コンバータ220はオンであり、修正処置は適所にない。換言すれば、照明システム200が電源オフのとき、照明システム200の以前の動作で起動された何れの修正処置も中断される。同様に、フリッカが利用可能な修正処置を用いて修正できないという決定、結果的に電力コンバータ220がシャットダウンされる決定は、照明システム200の後続の動作へ順送りされない。もちろん、代わりの実施例では、本教示の要旨を逸脱しない範囲で、電力コンバータ220をシャットダウンするための修正処置又は決定が順送りされるか、さもなければ後続の動作に関して考慮されてもよい。例えば、特定の修正処置が半導体照明負荷240による光出力のフリッカを適切に処置するために見つけられる場合、利用可能な修正処置の優先順位の順位付けは、成功した修正処置が最高の優先順位を持つように再び順序づけられる。
更に、図4は、プロセスが照明システム200の動作全体にわたって連続的に起こる実施例を表す。しかしながら、代わりの実施例では、図4のプロセスは、初期の開始期間の間だけ発生し、この期間の間、現在の半周期レベルと以前の半周期レベルとの間の差ΔDimが、決定され、フェーズ角度の検出値に基づいて、差の閾値ΔThresholdと比較される。比較に応じて修正処置が識別されず、実行されない場合(すなわち、入力メイン電圧信号の波形が対称である)、プロセスは終了し、照明システム200は、現在の半周期レベルと以前の半周期レベルとの間の差ΔDimの更なる分析なしに調光器204に応じて動作する。同様に、修正処置が識別され、(すなわち、非対称の入力メイン電圧信号の波形に応じて)上手く実行される場合、プロセスは終了し、照明システム200は、現在の半周期レベルと以前の半周期レベルとの間の差ΔDimの更なる分析なしに修正処置を使用している調光器204に応じて動作する。このように、抵抗ブリーダー回路の切り替えのような修正処置は、他のチェックを行うために付加的な処理電力を費やすことなしに、動作の残りに対する課題を修正するために実行される。
図6は、典型的な実施例によるフェーズ角度検出回路、電力コンバータ及び半導体照明器具を含む調光照明システムのための制御回路を示す回路図である。例示的構成に従って、様々な典型的な部品に関して詳細が提供されるが、図6の通常の部品は図2のものと同様である。もちろん、他の構成も、本教示の要旨を逸脱しない範囲で実行されてもよい。
図6を参照すると、制御回路600は、整流回路605及びフェーズ角度検出回路610(点線ボックス)を含む。整流回路205に関して上述されたように、整流回路605は、(調光された)整流されてない電圧を受信するためにDim hot及びDim neutralにより示されるように電圧メインと整流回路605との間に接続された調光器に接続されている。示された構成において、整流回路605は、整流電圧ノードN2とグランド(接地点)との間に接続される4つのダイオードD601―D604を含む。整流電圧ノードN2は、整流電圧Urectを受信し、整流回路605と並列に接続された入力フィルタリングキャパシタC615を通じてグランドに接続されている。
フェーズ角度検出回路610は、整流電圧Urectに基づいてフェーズ角度検出プロセスを実施する。調光器により設定される調光のレベルに対応するフェーズ角度は、整流電圧Urectの信号波形に存在するフェーズチョッピングの程度に基づいて検出される。電力コンバータ620は、様々な実施例において、制御ライン629を介してフェーズ角度検出回路610により供給される電力制御信号及び整流電圧Urect(RMS入力電圧)に基づいて、直列に接続される代表的なLED641及び642を含むLED負荷640の動作を制御する。これによって、フェーズ角度検出回路610が、電力コンバータ620からLED負荷640へ送られる電力を選択的に調整可能にする。電力制御信号は、例えば、PWM信号又は他のデジタル信号でもよい。様々な実施例において、電力コンバータ620は、例えば参照によりここに組み込まれるLysによる米国特許第7,256,554号に説明されるような、オープンループ又はフィードフォワード形式で動作する。
示される典型的な実施例において、フェーズ角度検出回路610は、調光フェーズ角度を決定するために整流電圧Urectの波形を使用するマイクロコントローラ615を含む。マイクロコントローラ615は、第1のダイオードD611と第2のダイオードD612との間に接続されたデジタル入力部618を含む。第1のダイオードD611はデジタル入力部618に接続されたアノードと電圧源Vccに接続されたカソードとを持ち、第2のダイオード612はグランドに接続されたアノードとデジタル入力部618に接続されたカソードとを持つ。マイクロコントローラ615は、また、デジタル出力部619を含む。
様々な実施例において、マイクロコントローラ615は、例えばMicrochipTechnology社から入手可能なPIC12F683であり、電力コンバータ620は、ST Microelectronics社から入手可能なL6562であるが、本教示の要旨を逸脱しない範囲で、他のタイプのマイクロコントローラ、電力コンバータ又は他のプロセッサ及び/又はコントローラが含まれてもよい。例えば、マイクロコントローラ615の機能は、上述されたように、第1のダイオードD611と第2のダイオードD612との間のデジタル入力部を受信するために接続される、一つ以上のプロセッサ及び/又はコントローラにより実行され、これらは、様々な機能を実施するために(例えば、メモリに保存された)ソフトウェア又はファームウェアを使用してプログラムされるか、又は、幾つかの機能を実施する専用ハードウェアと他の機能を実施するプロセッサ(例えば、一つ以上のプログラムされたマイクロプロセッサ及び関連する回路)との組合せとして実行されてもよい。様々な実施例において使用されるコントローラ部品の例は、制限されるわけではないが、上述のような従来のマイクロプロセッサ、マイクロコントローラ、ASIC及びFPGAを含む。
フェーズ角度検出回路610は、更に、第1のキャパシタC613及び第2のキャパシタC614、並びに典型的に第1の抵抗R611及び第2の抵抗R612により示される抵抗のような様々な受動電子部品を含む。第1のキャパシタC613は、マイクロコントローラ615のデジタル入力部618と検出ノードN1との間に接続される。第2のキャパシタC614は、検出ノードN1とグランドとの間に接続される。第1の抵抗R611及び第2の抵抗R612は、整流電圧ノードN2と検出ノードN1との間に直列に接続される。示された実施例において、例えば、第1のキャパシタC613は約560pFの値を持ち、第2のキャパシタC614は10pFの値を持つ。また、例えば、第1の抵抗R611は約1Mオームの値を持ち、第2の抵抗R612は約1Mオームの値を持つ。しかしながら、第1のキャパシタC613及び第2のキャパシタC614並びに第1の抵抗R611及び第2の抵抗R612のそれぞれの値は、当業者には明らかなように、任意の特定の状況に対して固有の利点を提供するため又は様々な実行のアプリケーション特有の設計要件を満たすために変わってもよい。
整流電圧Urectは、マイクロコントローラ615のデジタル入力部618に交流結合される。第1の抵抗R611及び第2の抵抗R612は、デジタル入力部618への電流を制限する。整流電圧Urectの信号波形が高くなるとき、第1のキャパシタC613は、第1の抵抗R611及び第2の抵抗R612を通って立ち上がりエッジで充電される。例えば、第1のキャパシタC613が充電されている間、第1のダイオードD611は1ダイオード電圧降下分だけ電圧源Vccより上にデジタル入力部618をクランプする。信号波形がゼロでない限り、第1のキャパシタC613は充電されたままである。整流電圧Urectの信号波形の立ち下がりエッジで、第1のキャパシタC613は第2のキャパシタC614を通って放電され、デジタル入力部618は第2のダイオードD612によりグランドより1ダイオード電圧降下分低くクランプされる。後縁部調光器が用いられるとき、信号波形の立ち下がりエッジは波形のチョッピング部分の始まりに対応する。信号波形がゼロである限り、第1のキャパシタC613は放電されたままである。従って、デジタル入力部618の結果として生じる論理レベルデジタルパルスは、チョッピングされた整流電圧Urectの動きを密接にフォローし、これらの例が図7A乃至図7Cに示される。
特に、図7A乃至図7Cは、典型的な実施例によるデジタル入力部618でのサンプル波形及び対応するデジタルパルスを示す。各図の一番上の波形は、チョッピングされた整流電圧Urectを示し、ここで、チョップの量は調光レベルを反映する。例えば、波形は、調光器の出力部に現れる全170V(又は、EUに対して340V)ピークの整流された正弦波の部分を示す。下の方形波は、マイクロコントローラ615のデジタル入力部618で見られる対応するデジタルパルスを示す。特に、各デジタルパルスの長さは、チョッピングされた波形に対応し、よって、調光器オン時間(例えば、調光器の内部スイッチが「オン」の時間量)に等しい。デジタル入力部618を介してデジタルパルスを受信することにより、マイクロコントローラ615は、調光器が設定されたレベルを決定可能である。
図7Aは、波形の隣に示されるディマースライダの一番上の位置により示される調光器がおよそその最も高い設定であるときの整流電圧Urect及び対応するデジタルパルスのサンプル波形を示す。図7Bは、波形の隣に示されるディマースライダの中間の位置により示される調光器が中程度の設定であるときの整流電圧Urect及び対応するデジタルパルスのサンプル波形を示す。図7Cは、波形の隣に示されるディマースライダの一番下の位置により示される調光器がおよそその最も低い設定であるときの整流電圧Urect及び対応するデジタルパルスのサンプル波形を示す。
図8は、典型的な実施例による調光器のフェーズ角度を検出するプロセスを示す流れ図である。プロセスは、図6に示されるマイクロコントローラ615により実行されるファームウェア及び/又はソフトウェアにより、又は、更に一般的に、例えばプロセッサ又はコントローラにより、例えば図2に示されるフェーズ角度検出器210により実行される。
図8のブロックS821において、入力信号のデジタルパルスの立ち上がりエッジ(例えば、図7A乃至図7Cの下の波形の立ち上がりエッジにより示される)は、例えば、第1のキャパシタC613の初期充電により検出される。マイクロコントローラ615のデジタル入力部618のサンプリングは、例えば、ブロックS822で始まる。示された実施例において、信号は、メイン半周期のちょうど下に等しい所定時間の間、デジタル的にサンプリングされる。信号がサンプリングされるたびに、サンプルが高レベル(例えば、デジタル「1」)又は低レベル(例えば、デジタル「0」)を持つかどうかがブロックS823で決定される。示された実施例において、サンプルがデジタル「1」であるかどうかを決定するために、ブロックS823で比較がなされる。サンプルがデジタル「1」(ブロックS823:はい)であるとき、カウンタはブロックS824でインクリメントされ、サンプルがデジタル「1」でない(ブロックS823:いいえ)とき、小さな遅延がブロックS825で挿入される。サンプルがデジタル「1」又はデジタル「0」であると決定されるかどうかにかかわらず、(例えば、マイクロコントローラ615の)クロックサイクルの数が等しいように、遅延が挿入される。
ブロックS826において、全体のメイン半周期がサンプリングされたかどうかが決定される。メイン半周期が完了していないとき(ブロックS826:いいえ)、プロセスは、デジタル入力部618で再び信号をサンプリングするためにブロックS822へ戻る。メイン半周期が完了したとき(ブロックS826:はい)、サンプリングが止まり、ブロックS824で累算されたカウンタ値がブロックS827でフェーズ角度の現在の値として識別され、カウンタはゼロへリセットされる。カウンタ値はメモリに保存され、この例は上述されている。マイクロコントローラ615は、その後、再びサンプリングを開始するため次の立ち上がりエッジを待つ。例えば、マイクロコントローラ615がメイン半周期の間、255個のサンプルをとると仮定される。調光レベル又はフェーズ角度が(例えば、図7Aに示されるように)その範囲の一番上近くのスライダにより設定されるとき、カウンタは図8のブロックS824で約255までインクリメントされる。調光レベルが(例えば、図7Cに示されるように)その範囲の下部近くのスライダにより設定されるとき、カウンタはブロックS824でわずか約10又は20までインクリメントされる。調光レベルが(例えば、図7Bに示されるように)その範囲の中央のどこかに設定されるとき、カウンタはブロックS824で約128までインクリメントされる。カウンタの値は、このように、マイクロコントローラ615に調光器が設定されたレベル又は調光器のフェーズ角度の正確な指標を与える。様々な実施例において、フェーズ角度の値は、例えば、カウンタ値の予め定められた機能を用いてマイクロコントローラ615により計算され、ここで、当該機能は、当業者に明らかなように、任意の特定の状況に対する固有の利点を提供するか又は様々な実行のアプリケーション特有の設計要件を満たすために変わってもよい。
再び図6を参照して、マイクロコントローラ615は、また、LED負荷640がフリッカ光を出力させる調光器(図示せず)及び/又は電力コンバータ620の不適当な動作を検出し、図4及び図5に関して上述されたように、修正処置を識別し実行するように構成される。図示の例では、制御回路600は、代表的な抵抗ブリーダー回路650を含み、これは、説明のために最高の優先順位の修正処置であるとする。抵抗ブリーダー回路650は、トランジスタ651として示されるスイッチと直列に接続された抵抗652を含む。トランジスタ651は、例えば、MOSFET又はGaAsFETのようなFETとして示されるが、本教示の要旨を逸脱しない範囲で、当業者の視野内の他のタイプのFET及び/又は他のタイプのトランジスタが組み込まれてもよい。
トランジスタ651のゲートは、制御ライン659を介してマイクロコントローラ615と接続されている。よって、マイクロコントローラ615は、抵抗ブリーダー回路650で(例えば、図5のブロックS482に従って)切り替わるためトランジスタ651を選択的にオンにし、例えば、次に優先順位が高い修正処置を(例えば、図5のブロックS485に従って)実行するために抵抗ブリーダー回路650を切替えるためにトランジスタ651を選択的にオフにできる。トランジスタ651がオンにされるとき、抵抗R652の抵抗は、付加的電流を流し、調光器の負荷を増大させるためにLED負荷640と並列に接続されている。また、上述のように、抵抗ブリーダー回路650の実行を含む修正処置が成功していないとき、マイクロコントローラ615は、例えば、制御ライン629を介して電力コンバータ620をシャットダウンするように構成される。加えて、マイクロコントローラ615は、制御ライン629を介して電力制御信号を使用して、少なくとも部分的に検出フェーズ角度に基づいて電力コンバータ620の動作ポイントを動的に調整するために一つ以上の付加的な制御アルゴリズムを実行するように構成される。
一般に、ドライバ(例えば、電力コンバータ)とフェーズチョッピング調光器との間の不適合性のため半導体照明器具による光出力でフリッカが起こらないことを確実にすることが意図される。様々な実施例によると、プロセスは、不適当な動作を検出し、不適当な動作を修正することを試みて、不適当な動作が試みた修正により解決されない場合、半導体照明器具による光出力を(例えば、電力コンバータをシャットダウンすることにより)シャットオフする。従って、フリッカが排除でき、電力コンバータは、潜在的不適合性により制限されることなく、様々な異なる調光器で働くことが可能である。
様々な実施例において、フェーズ角度検出回路210及び/又はマイクロコントローラ615の機能は、例えば、ハードウェア、ファームウェア又はソフトウェアアーキテクチャの任意の組合せから作られる一つ以上の処理回路により実行され、様々な機能を実施できる実行可能なソフトウェア/ファームウェア実行コードを格納するための自身のメモリ(例えば、不揮発性メモリ)を含んでもよい。例えば、当該機能は、ASIC、FPGA等を使用して実行される。
例えば、入力メイン電圧信号の非対称の正及び負の半周期により示される不適当な調光器動作を検出し修正することは、光フリッカを除去するか、又はさもなければ様々なフェーズチョッピング調光器との互換性を増大させることが望ましい半導体照明(例えば、LED)負荷を持つ任意の調光可能な電力コンバータで使用できる。様々な実施例によるフェーズ角度検出回路は、様々なLEDベースの光源で実行される。更に、これは、様々な製品をより調光器フレンドリーにするための様々な製品に対する「スマートな」改良の基礎的要素として使用されてもよい。
本明細書において幾つかの発明の実施の形態が説明及び図示されたが、当業者であれば、本明細書において述べられた機能を実行する及び/又は結果及び/又は利点の1つ以上を得るための種々の他の手段及び/又は構成を容易に構想するであろう。また、そのような変形例及び/又は変更例のそれぞれは、本明細書において述べられた発明の実施の形態の範囲内にあると見なされる。より一般的には、当業者であれば、本明細書において述べられた全てのパラメータ、寸法、材料及び構成は例示的であるように意図されており、本発明の教示が使用される具体的な用途に依存することを容易に理解するであろう。
当業者は、日常の実験のみを用いて、本明細書において述べられた具体的な発明の実施の形態の多くの均等物を認識する又は確認することができるであろう。従って、上記実施の形態は単に例として与えられており、添付の特許請求の範囲及びその均等物の範囲内では、発明の実施の形態は、具体的に説明され、特許請求の範囲に記載されたやり方以外のやり方で実施され得ることを理解されたい。この開示の発明の実施の形態は、本明細書において述べられた個々の特徴、システム、物品、材料、キット及び/又は方法に向けられている。加えて、特徴、システム、物品、材料、キット及び/又は方法が相互に矛盾していない場合、斯様な特徴、システム、物品、材料、キット及び/又は方法の2つ以上の組合せは本開示の発明の範囲内に含まれる。
本明細書において定義され、使用される場合、全ての定義は、辞書を超える定義、参照することにより組み込まれる文書内の定義及び/又は定義された用語の通常の意味を支配すると理解されたい。
明細書及び請求項で使用される不定冠詞「a」及び「an」は、明らかに反対が示されない限り、「少なくとも一つ」を意味すると理解されるべきである。明細書及び特許請求の範囲において本願で用いられる場合、一つ以上の要素のリストに関連する「少なくとも1つ」という表現は、要素のリスト内の要素の任意の一つ以上から選択された少なくとも1つの要素を意味すると理解されるべきであり、要素のリスト内に明確に列挙されたありとあらゆる要素の少なくとも1つを必ずしも含むものではなく、要素のリストにおける要素の任意の組み合わせを排除するものではない。この定義は、明確に特定されたこれらの要素に関係があろうとなかろうと、「少なくとも1つ」という表現が指す要素のリスト内において明確に特定された要素以外に要素がオプションで存在することも可能にする。従って、非限定的な例として、「A及びBの少なくとも1つ」(又は、同等に「A又はBの少なくとも1つ」、同等に「A及び/又はBの少なくとも1つ」)は、一実施の形態では、Bは存在しない(オプションでB以外の要素を含む)状態での少なくとも1つの、オプションで1つよりも多く含むAを意味し、他の形態では、Aは存在しない(オプションでA以外の要素を含む)状態での少なくとも1つの、オプションで1つよりも多く含むBを意味し、更に他の実施の形態では、少なくとも1つの、オプションで1つよりも多く含むA及び少なくとも1つの、オプションで1つよりも多く含むB(オプションで他の要素を含む)を意味する等である。
明らかに反対の示されない限り、複数のステップ又は行為を含むとここにクレームされた何れの方法においても、当該方法のステップ又は行為の順番は、当該方法のステップ又は行為が列挙される順番に必ずしも限られているわけではないことも理解されるべきである。また、請求項内の参照符号は、非限定的であって、請求の範囲に何ら影響を持つべきではない。
特許請求の範囲及び上記明細書では、「有する」、「含む(including)」、「担持する」、「持つ」、「含む(containing)」、「伴う」、「保持する」、「によって構成される」等のような全ての移行句は、非制限的である、すなわち、含むが限定されるものではないことを意味すると理解されるべきである。「から成る」及び「から本質的に成る」という移行句のみが、それぞれ、排他的又は半排他的な移行句である。

Claims (20)

  1. 半導体照明負荷を駆動する電力コンバータに接続された調光器のフェーズ角度の第1及び第2の値を決定するステップであって、第1及び第2の値は入力メイン電圧信号の連続的な半周期に対応する当該ステップと、第1の値と第2の値との間の差を決定するステップと、前記入力メイン電圧信号の非対称波形を示している、前記差が差の閾値より大きいとき、選択された修正処置を実行するステップとを有する、半導体照明負荷を含む照明システムの不適当な動作を検出し修正する方法。
  2. 選択された修正処置を実行するステップが、修正処置がすでにアクティブであるかどうかを決定するステップと、すでにアクティブである修正処置がないと決定されるとき、最高の優先順位の修正処置を、選択された修正処置として実行するステップとを有する、請求項1に記載の方法。
  3. 選択された修正処置を実行するステップが、修正処置がすでにアクティブであると決定されるとき、少なくとも一つの他の修正処置が利用できるかどうかを決定するステップを更に有する、請求項2に記載の方法。
  4. 選択された修正処置を実行するステップが、前記少なくとも一つの他の修正処置が利用できると決定されるとき、次の最高の優先順位の修正処置を、選択された修正処置として実行するステップを更に有する、請求項3に記載の方法。
  5. 前記少なくとも一つの他の修正処置が利用できないと決定されるとき、前記電力コンバータをシャットダウンするステップを更に有する、請求項3に記載の方法。
  6. 前記調光器のフェーズ角度の第3及び第4の値を決定するステップであって、第3及び第4の値は、前記入力メイン電圧信号の連続的な半周期に対応する当該ステップと、第3の値と第4の値との間の差を決定するステップと、前記入力メイン電圧信号の対称形の波形を示している、第3の値と第4の値との間の差が差の閾値より少ないと決定されるとき、前記電力コンバータを活性化させるステップとを更に有する、請求項5に記載の方法。
  7. フェーズ角度の第1及び第2の値を決定するステップが、前記入力メイン電圧信号の波形に対応するデジタルパルスをサンプリングするステップと、前記調光器の調光レベルに対応する長さである、サンプリングされたデジタルパルスの長さを決定するステップとを有する、請求項1に記載の方法。
  8. 修正処置が半導体照明負荷と並列の抵抗ブリーダー回路の切り替えステップを有する、請求項1に記載の方法。
  9. 第1の値と第2の値との間の差を決定するステップが、以前の半周期レベルとして第1の値を保存するステップと、現在の半周期レベルとして第2の値を保存するステップと、保存された現在の半周期レベルと以前の半周期レベルとの減算を行うステップとを有する、請求項1に記載の方法。
  10. 前記差が差の閾値より大きいとき、選択された修正処置を実行するステップが前記半導体照明負荷による光出力のフリッカを除去する、請求項1に記載の方法。
  11. 電圧メイン部に接続され、半導体照明負荷による光出力を調節可能に調光する調光器と、前記電圧メイン部から生じている整流された入力電圧信号に応じて前記半導体照明負荷を駆動する電力コンバータと、前記入力電圧信号の連続的な半周期を持つ前記調光器のフェーズ角度を検出し、連続的な半周期間の差を決定し、前記入力電圧信号の非対称波形を示している、前記差が差の閾値より大きいとき、修正処置を実行するためのフェーズ角度検出回路とを有する、半導体照明負荷へ送られる電力を制御するためのシステム。
  12. 前記電力コンバータが開ループ又はフィードフォワード形式で動作する、請求項11に記載のシステム。
  13. 前記フェーズ角度検出回路が、前記入力電圧信号の波形に対応するデジタルパルスをサンプリングし、サンプリングされたデジタルパルスの長さに基づいて連続的な半周期を測定することによりフェーズ角度を検出する、請求項11に記載のシステム。
  14. 前記フェーズ角度検出回路が連続的な半周期にそれぞれ対応するサンプリングされたデジタルパルスの長さを減算することにより連続的な半周期間の差を決定する、請求項13に記載のシステム。
  15. 前記フェーズ角度検出回路が、デジタル入力部を持つプロセッサと、前記デジタル入力部と電圧源との間に接続された第1のダイオードと、前記デジタル入力部とグランドとの間に接続された第2のダイオードと、前記デジタル入力部と検出ノードとの間に接続された第1のキャパシタと、前記検出ノードとグランドとの間に接続された第2のキャパシタと、前記検出ノードと整流された入力電圧を受信する整流電圧ノードとの間に接続された抵抗とを有し、前記プロセッサは、前記デジタル入力部で前記入力電圧信号の波形に対応するデジタルパルスをサンプリングし、サンプリングされたデジタルパルスの長さに基づいて連続的な半周期を測定する、請求項11に記載のシステム。
  16. 前記フェーズ角度検出回路が、最優先の順位を持つ修正処置を選択する、請求項11に記載のシステム。
  17. 選択された修正処置が実行されるが、連続的な半周期間の差が前記差の閾値より大きいままであるとき、前記フェーズ角度検出回路が、前記電力コンバータをシャットダウンする、請求項16に記載のシステム。
  18. 入力電圧信号の半周期を測定することにより調光器フェーズ角度を検出するステップと、半周期の差を決定するために連続的な半周期を比較するステップと、前記半周期の差を予め定められた差の閾値と比較するステップであって前記半周期の差が前記差の閾値より少ないと前記入力電圧信号の波形が対称であることを示し、前記半周期の差が前記差の閾値より大きいと前記入力電圧信号の波形が非対称であることを示す当該ステップと、前記半周期の差が前記差の閾値より大きいとき、修正処置を実行するステップとを有する、フェーズチョッピング調光器に応じて電力コンバータにより駆動されるLED光源による光出力からのフリッカを排除する方法。
  19. 前記修正処置を実行した後、前記半周期の差を前記予め定められた差の閾値と比較するステップと、前記半周期の差が前記差の閾値より大きく、他の修正処置が実行のために利用可能であるとき、他の修正処置を実行するステップとを更に有する、請求項18に記載の方法。
  20. 前記半周期の差が前記差の閾値より大きく、他の修正処置が実行のために利用可能でないとき、前記電力コンバータをシャットダウンするステップを更に有する、請求項19に記載の方法。
JP2013510696A 2010-05-17 2011-04-26 不適当な調光器動作を検出し修正するための方法及び装置 Active JP5785611B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34528310P 2010-05-17 2010-05-17
US61/345,283 2010-05-17
PCT/IB2011/051806 WO2011145009A1 (en) 2010-05-17 2011-04-26 Method and apparatus for detecting and correcting improper dimmer operation

Publications (2)

Publication Number Publication Date
JP2013527574A true JP2013527574A (ja) 2013-06-27
JP5785611B2 JP5785611B2 (ja) 2015-09-30

Family

ID=44120307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013510696A Active JP5785611B2 (ja) 2010-05-17 2011-04-26 不適当な調光器動作を検出し修正するための方法及び装置

Country Status (11)

Country Link
US (1) US9572215B2 (ja)
EP (2) EP3410826B1 (ja)
JP (1) JP5785611B2 (ja)
KR (1) KR20130080013A (ja)
CN (1) CN102907175B (ja)
BR (1) BR112012029146A2 (ja)
CA (1) CA2799631A1 (ja)
ES (1) ES2832736T3 (ja)
RU (1) RU2557670C2 (ja)
TW (1) TW201215222A (ja)
WO (1) WO2011145009A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9326346B2 (en) 2009-01-13 2016-04-26 Terralux, Inc. Method and device for remote sensing and control of LED lights
US8358085B2 (en) 2009-01-13 2013-01-22 Terralux, Inc. Method and device for remote sensing and control of LED lights
WO2012087268A2 (en) 2009-11-17 2012-06-28 Terralux, Inc. Led power-supply detection and control
US20120139442A1 (en) * 2010-12-07 2012-06-07 Astec International Limited Mains Dimmable LED Driver Circuits
US20130049631A1 (en) * 2011-08-23 2013-02-28 Scott A. Riesebosch Led lamp with variable dummy load
US8896231B2 (en) 2011-12-16 2014-11-25 Terralux, Inc. Systems and methods of applying bleed circuits in LED lamps
WO2013090700A2 (en) 2011-12-16 2013-06-20 Terralux, Inc. Transformer voltage detection in dimmable lighting systems
AT13358U1 (de) * 2012-04-13 2013-11-15 Tridonic Gmbh & Co Kg Ansteuerung von Leuchtmitteln über eine AC-Versorgungsspannung
US9655202B2 (en) 2012-07-03 2017-05-16 Philips Lighting Holding B.V. Systems and methods for low-power lamp compatibility with a leading-edge dimmer and a magnetic transformer
WO2014188228A1 (en) * 2013-05-22 2014-11-27 Lau Chun To Power up restrike for led dimmer
US9265119B2 (en) 2013-06-17 2016-02-16 Terralux, Inc. Systems and methods for providing thermal fold-back to LED lights
US9996096B2 (en) * 2014-03-28 2018-06-12 Pass & Seymour, Inc. Power control device with calibration features
EP3609298A1 (en) * 2014-11-04 2020-02-12 Signify Holding B.V. Led lighting system
CN107683631B (zh) * 2015-06-08 2021-06-01 松下知识产权经营株式会社 调光装置
JP6562352B2 (ja) 2015-09-10 2019-08-21 パナソニックIpマネジメント株式会社 調光装置
KR101921226B1 (ko) * 2017-02-14 2019-02-13 (주)이젝스 전원 공급 장치 및 그 방법
US10123393B1 (en) 2017-08-01 2018-11-06 Kleverness Incorporated Power supply for a two-wire smart switch and lighting loads thereof
US10201064B1 (en) 2017-08-01 2019-02-05 Kleverness Incorporated Power supply for a two-wire smart dimmer and lighting loads thereof
US10201059B1 (en) 2017-08-01 2019-02-05 Kleverness Incorporated Method for analyzing operating parameters for lighting technologies
CN109587866B (zh) 2017-09-28 2021-06-18 朗德万斯公司 用于led照明模块的电子驱动器和led灯
CN107979888B (zh) * 2017-11-03 2023-11-17 杰华特微电子股份有限公司 Led调光电路和方法
CN108024416B (zh) * 2017-12-21 2024-02-23 杭州必易微电子有限公司 Led电流纹波消除电路
US20200008277A1 (en) * 2018-06-29 2020-01-02 Markus Zeigler Switchable stabilization load at low dimming levels
RU194528U1 (ru) * 2019-10-17 2019-12-13 Акционерное общество "Федеральный центр науки и высоких технологий "Специальное научно-производственное объединение "Элерон" (АО "ФЦНИВТ "СНПО "Элерон") Импульсный источник питания для светодиодных светильников

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127792A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 調光装置
WO2009054011A1 (en) * 2007-10-25 2009-04-30 Osram Gesellschaft mit beschränkter Haftung A method of soldering components on circuit boards and corresponding circuit board
WO2009094329A1 (en) * 2008-01-23 2009-07-30 Cree Led Lighting Solutions, Inc. Dimming signal generation and methods of generating dimming signals

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239255A (en) * 1991-02-20 1993-08-24 Bayview Technology Group Phase-controlled power modulation system
US5559395A (en) * 1995-03-31 1996-09-24 Philips Electronics North America Corporation Electronic ballast with interface circuitry for phase angle dimming control
US5847450A (en) 1996-05-24 1998-12-08 Microchip Technology Incorporated Microcontroller having an n-bit data bus width with less than n I/O pins
US6016038A (en) 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6091205A (en) * 1997-10-02 2000-07-18 Lutron Electronics Co., Inc. Phase controlled dimming system with active filter for preventing flickering and undesired intensity changes
CA2730210C (en) * 2004-03-15 2015-05-05 Philips Solid-State Lighting Solutions, Inc. Power control methods and apparatus
JP2007538378A (ja) * 2004-05-19 2007-12-27 ゲーケン・グループ・コーポレーション Led照明コンバータ用の動的緩衝
US7375871B2 (en) * 2004-11-03 2008-05-20 Leviton Manufacturing Co., Inc. Electrochromic glass control device
US7242150B2 (en) * 2005-05-12 2007-07-10 Lutron Electronics Co., Inc. Dimmer having a power supply monitoring circuit
RU2298217C1 (ru) * 2006-01-10 2007-04-27 Общество с ограниченной ответственностью "Центр Новых Технологий "НУР" Фазовый регулятор мощности
US7656103B2 (en) * 2006-01-20 2010-02-02 Exclara, Inc. Impedance matching circuit for current regulation of solid state lighting
US7667408B2 (en) * 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US8018171B1 (en) * 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US7804256B2 (en) * 2007-03-12 2010-09-28 Cirrus Logic, Inc. Power control system for current regulated light sources
US7868561B2 (en) * 2007-10-31 2011-01-11 Lutron Electronics Co., Inc. Two-wire dimmer circuit for a screw-in compact fluorescent lamp
US8154221B2 (en) 2007-12-21 2012-04-10 Cypress Semiconductor Corporation Controlling a light emitting diode fixture
US20090160627A1 (en) * 2007-12-21 2009-06-25 Cypress Semiconductor Corporation Power line communicaton for electrical fixture control
WO2009101544A2 (en) 2008-02-12 2009-08-20 Philips Intellectual Property & Standards Gmbh Control circuit of a dimmer assembly for dimming an energy-saving lamp
US8102167B2 (en) * 2008-03-25 2012-01-24 Microsemi Corporation Phase-cut dimming circuit
US8212491B2 (en) * 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US8093826B1 (en) * 2008-08-26 2012-01-10 National Semiconductor Corporation Current mode switcher having novel switch mode control topology and related method
US8922133B2 (en) * 2009-04-24 2014-12-30 Lutron Electronics Co., Inc. Smart electronic switch for low-power loads
US9066394B2 (en) 2009-09-28 2015-06-23 Koninklijke Philips N.V. Method and apparatus providing deep dimming of solid state lighting systems
US8664881B2 (en) * 2009-11-25 2014-03-04 Lutron Electronics Co., Inc. Two-wire dimmer switch for low-power loads
US8729814B2 (en) * 2009-11-25 2014-05-20 Lutron Electronics Co., Inc. Two-wire analog FET-based dimmer switch
US8102683B2 (en) * 2010-02-09 2012-01-24 Power Integrations, Inc. Phase angle measurement of a dimming circuit for a switching power supply
WO2011121511A1 (en) 2010-04-01 2011-10-06 Koninklijke Philips Electronics N.V. Apparatus and method for forming a concentration image of the concentration of magnetic particles arranged in a field of view field of the invention
US8242766B2 (en) * 2010-04-20 2012-08-14 Power Integrations, Inc. Dimming control for a switching power supply
US8441213B2 (en) * 2010-06-29 2013-05-14 Active-Semi, Inc. Bidirectional phase cut modulation over AC power conductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127792A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd 調光装置
WO2009054011A1 (en) * 2007-10-25 2009-04-30 Osram Gesellschaft mit beschränkter Haftung A method of soldering components on circuit boards and corresponding circuit board
WO2009094329A1 (en) * 2008-01-23 2009-07-30 Cree Led Lighting Solutions, Inc. Dimming signal generation and methods of generating dimming signals

Also Published As

Publication number Publication date
US20130057180A1 (en) 2013-03-07
JP5785611B2 (ja) 2015-09-30
TW201215222A (en) 2012-04-01
ES2832736T3 (es) 2021-06-11
CN102907175B (zh) 2016-01-13
EP3410826B1 (en) 2020-09-02
EP2572556A1 (en) 2013-03-27
EP2572556B1 (en) 2018-09-19
EP3410826A1 (en) 2018-12-05
BR112012029146A2 (pt) 2016-08-09
US9572215B2 (en) 2017-02-14
CN102907175A (zh) 2013-01-30
KR20130080013A (ko) 2013-07-11
RU2012154312A (ru) 2014-06-27
RU2557670C2 (ru) 2015-07-27
CA2799631A1 (en) 2011-11-24
WO2011145009A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5785611B2 (ja) 不適当な調光器動作を検出し修正するための方法及び装置
JP5829676B2 (ja) 最大及び最小の調光器設定に基づいて半導体照明負荷の光出力範囲を調整するための方法及び装置
JP5773394B2 (ja) ソリッドステート照明システムの深調光を提供する方法及び装置
JP5837036B2 (ja) ソリッドステート形照明器具の調光範囲を拡大する方法及び装置
JP5759491B2 (ja) 半導体式照明器具の調光範囲を広げる方法及び装置
US10015860B2 (en) Method and apparatus for detecting presence of dimmer and controlling power delivered to solid state lighting load
KR20120091263A (ko) 고체 조명 시스템용의 선택적으로 활성화되는 고속 시동/블리더 회로
US9681507B2 (en) Switched-mode converter control for lighting applications
JP2013511803A (ja) ディマーフェーズ角度を検出し、半導体照明器具のための汎用入力電圧を選択的に決定するための方法及び装置
JP2016521446A (ja) 位相カット調光信号の位相カット角のデジタル検出のための方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150724

R150 Certificate of patent or registration of utility model

Ref document number: 5785611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250