JP2013521261A - Preparation of ethylenically unsaturated carboxylates by carboxylation of alkenes. - Google Patents

Preparation of ethylenically unsaturated carboxylates by carboxylation of alkenes. Download PDF

Info

Publication number
JP2013521261A
JP2013521261A JP2012555432A JP2012555432A JP2013521261A JP 2013521261 A JP2013521261 A JP 2013521261A JP 2012555432 A JP2012555432 A JP 2012555432A JP 2012555432 A JP2012555432 A JP 2012555432A JP 2013521261 A JP2013521261 A JP 2013521261A
Authority
JP
Japan
Prior art keywords
ethylenically unsaturated
carboxylic acid
unsaturated carboxylic
auxiliary base
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012555432A
Other languages
Japanese (ja)
Inventor
リムバッハ,ミヒャエル
ミラー,ジェレミー
シュンク,シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2013521261A publication Critical patent/JP2013521261A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof
    • C07B41/10Salts, halides or anhydrides of carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本発明は、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩又はアルカリ土類金属塩の製造方法であって、a)アルケンと二酸化炭素とカルボキシル化触媒をアルケン/二酸化炭素/カルボキシル化触媒付加物に変換する工程と、b)該付加物を助剤塩基で分解してカルボキシル化触媒を放出し、α,β−エチレン性不飽和カルボン酸の助剤塩基塩を与える工程と、c)該α,β−エチレン性不飽和カルボン酸の助剤塩基塩を、アルカリ金属塩基またはアルカリ土類金属塩基と反応させて助剤塩基を放出し、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を与える工程とからなる製造方法に関する。例えば吸水性樹脂の製造には、α,β−エチレン性不飽和カルボン酸の塩、特にアクリル酸ナトリウムが多量に必要である。
【選択図】なし
The present invention relates to a method for producing an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid, and a) an alkene, carbon dioxide and a carboxylation catalyst are converted into an alkene / carbon dioxide / carboxylation catalyst. Converting to an adduct; b) decomposing the adduct with an auxiliary base to release a carboxylation catalyst to give an auxiliary base salt of an α, β-ethylenically unsaturated carboxylic acid; c) The α, β-ethylenically unsaturated carboxylic acid auxiliary base salt is reacted with an alkali metal base or alkaline earth metal base to release the auxiliary base, and the α, β-ethylenically unsaturated carboxylic acid alkali The present invention relates to a production method comprising a step of providing a metal salt or an alkaline earth metal salt. For example, the production of a water-absorbing resin requires a large amount of an α, β-ethylenically unsaturated carboxylic acid salt, particularly sodium acrylate.
[Selection figure] None

Description

本発明は、アルケンの直接カルボキシル化によりα,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を製造する方法、特にエテンの直接カルボキシル化によりアクリル酸のアルカリ金属塩またはアルカリ土類金属塩を製造する方法に関する。   The present invention relates to a process for producing an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid by direct carboxylation of an alkene, in particular an alkali metal salt or alkali of acrylic acid by direct carboxylation of ethene. The present invention relates to a method for producing an earth metal salt.

エチレンへのCO2の直接付加(スキーム1)は、熱力学的な制限(AG=34.5kJ/mol)があるため、また好ましくない平衡(室温でほぼ完全に反応物側にある(K293=7×10-7))のため工業的に魅力がない。 The direct addition of CO 2 to ethylene (Scheme 1) is due to thermodynamic limitations (AG = 34.5 kJ / mol) and is also unfavorable equilibration (almost completely on the reactant side at room temperature (K 293 = 7 × 10 -7 )), so it is not industrially attractive.

Figure 2013521261
Figure 2013521261

山本らは、0℃を越える温度で3級ホスフィン化合物配位子の存在下でのアクリル酸の、ビス(1,5−シクロオクタジエン)ニッケルなどの均一性なNi(0)種との反応で、「Hoberg錯体」として知られる安定な5員のニッケララクトン環Aが得られることを示した(スキーム2)(J. Am. Chem. Soc. 1980、102、7448)。0℃未満の温度では、同じ反応で、ラクトンAと非環式π錯体Bの等モル混合物が得られる。Aの熱的切断による遊離アクリル酸の生成は起こらなかった。Buntineらによる理論化学的研究(Organometallics 2007, 26, 6784)では、中間体ニッケララクトンAの安定性が、アクリル酸反応生成物と較べて−40kcal/mol-1増加していることが示されている。 Yamamoto et al., Reaction of acrylic acid with homogeneous Ni (0) species such as bis (1,5-cyclooctadiene) nickel in the presence of a tertiary phosphine compound ligand at temperatures above 0 ° C. Showed that a stable five-membered nickelalactone ring A known as “Hoberg complex” was obtained (Scheme 2) (J. Am. Chem. Soc. 1980, 102, 7448). At temperatures below 0 ° C., an equimolar mixture of lactone A and acyclic π complex B is obtained in the same reaction. Formation of free acrylic acid by thermal cleavage of A did not occur. A theoretical chemical study by Buntine et al. (Organometallics 2007, 26, 6784) showed that the stability of the intermediate nickelalactone A was increased by -40 kcal / mol -1 compared to the acrylic acid reaction product. ing.

Hobergが発見したように(J. Organomet Chem. 1983、C51)、CO2とエチレンの直接結合により同じニッケララクトンAが生成する。塩基性の2,2’−ビピリジン配位子とNi(0)種を用いて、他のアルケンまたはアルキン(例えばノルボルネン)やこれらに由来する環状ニッケル化合物に同じ反応が観測されている。これらは安定な固体として単離でき(J. Organomet. Chem. 1982、C28)、このことは、これらの化合物が極めて大きな安定性をもつこと示している。 As discovered by Hoberg (J. Organomet Chem. 1983, C51), the same nickel lactone A is formed by the direct coupling of CO 2 and ethylene. Using a basic 2,2′-bipyridine ligand and Ni (0) species, the same reaction has been observed for other alkenes or alkynes (eg, norbornene) and cyclic nickel compounds derived therefrom. They can be isolated as stable solids (J. Organomet. Chem. 1982, C28), indicating that these compounds are extremely stable.

Figure 2013521261
Figure 2013521261

環状化合物Aの場合、このような安定なニッケララクトンを鉱酸水溶液で処理するとプロピオン酸を与え、アクリル酸を与えない。このことは、アクリル酸とその誘導体の生成に必要な錯体Aからのβハイドライドの脱離が阻害されていることを示す。従って、この反応の他の触媒は、今まで知られていない。   In the case of the cyclic compound A, when such a stable nickelalactone is treated with a mineral acid aqueous solution, propionic acid is given and acrylic acid is not given. This indicates that the elimination of β hydride from complex A necessary for the production of acrylic acid and its derivatives is inhibited. Thus, no other catalyst for this reaction is known to date.

US2007/219391US2007 / 219391

本発明の目的は、CO2とアルケンとの反応を利用する、α,β−エチレン性不飽和カルボン酸誘導体の工業生産に好適な方法を指定することである。 The object of the present invention is to designate a method suitable for industrial production of α, β-ethylenically unsaturated carboxylic acid derivatives utilizing the reaction of CO 2 with alkenes.

塩基の形の助剤を併用することでCO2とアルケンの反応の平衡を生成物側にシフトできることが明らかとなった。α,β−エチレン性不飽和カルボン酸の塩の形成は、熱力学的に好ましい反応のようである。α,β−エチレン性不飽和カルボン酸の塩、特にアクリル酸ナトリウムは、例えば吸水性樹脂(超吸水性樹脂と呼ばれる)の製造に多量に求められている。 It became clear that the equilibrium of the reaction of CO 2 and alkene can be shifted to the product side by using the auxiliary in the form of base. The formation of a salt of an α, β-ethylenically unsaturated carboxylic acid appears to be a thermodynamically favorable reaction. A salt of an α, β-ethylenically unsaturated carboxylic acid, particularly sodium acrylate, is demanded in large quantities, for example, in the production of a water absorbent resin (referred to as a super water absorbent resin).

本発明は、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の製造方法であって、
a)アルケンと二酸化炭素とカルボキシル化触媒を変換して、アルケン/二酸化炭素/カルボキシル化触媒付加物とし、
b)この付加物を助剤塩基で分解してカルボキシル化触媒を遊離させ、α,β−エチレン性不飽和カルボン酸の助剤塩基塩とし、
c)このα,β−エチレン性不飽和カルボン酸の助剤塩基塩をアルカリ金属塩基またはアルカリ土類金属塩基と反応させて助剤塩基を遊離させ、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を与えることを特徴とする製造方法を提供する。
The present invention is a method for producing an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid,
a) Converting alkene, carbon dioxide and carboxylation catalyst into alkene / carbon dioxide / carboxylation catalyst adduct,
b) The adduct is decomposed with an auxiliary base to liberate a carboxylation catalyst to form an auxiliary base salt of an α, β-ethylenically unsaturated carboxylic acid,
c) The α, β-ethylenically unsaturated carboxylic acid auxiliary base salt is reacted with an alkali metal base or alkaline earth metal base to liberate the auxiliary base, and the α, β-ethylenically unsaturated carboxylic acid Provided is a production method characterized by providing an alkali metal salt or an alkaline earth metal salt.

本発明の方法の工程a)とb)は、逐次で実施可能であるが、カルボキシル化反応器中で助剤塩基の存在下でアルケンと二酸化炭素とカルボキシル化触媒を接触させて同時に実施することが好ましい。   Steps a) and b) of the process according to the invention can be carried out sequentially, but simultaneously in the presence of an auxiliary base in the carboxylation reactor by contacting the alkene, carbon dioxide and the carboxylation catalyst. Is preferred.

なお、「アルケン/二酸化炭素/カルボキシル化触媒付加物」は、広い意味で解釈すべきであり、冒頭に述べた「Hoberg錯体」に似た構造の化合物または構造不明の化合物をも含んでいる。この用語は、単離可能な化合物と不安定中間体とを含んでいる。   The “alkene / carbon dioxide / carboxylation catalyst adduct” should be interpreted in a broad sense, and includes a compound having a structure similar to the “Hoberg complex” described at the beginning or a compound of unknown structure. The term includes isolatable compounds and labile intermediates.

好適なアルケンは、少なくとも2個の炭素原子、例えば2〜8個の炭素原子、または2〜6個の炭素原子と、少なくとも一個のエチレン性不飽和二重結合をもつ。この二重結合は末端位置にあることが好ましい。このアルケンはジエンであってもよく、その場合には、少なくとも一個の炭素−炭素二重結合が末端にあり、他の二重結合が炭素骨格のどこかにある。好適なアルケンは、例えばエテンやプロペン、イソブテン、ピペリレンである。カルボキシル化に用いるアルケンは、カルボキシル化条件下では通常ガス状または液体である。   Suitable alkenes have at least 2 carbon atoms, such as 2-8 carbon atoms, or 2-6 carbon atoms, and at least one ethylenically unsaturated double bond. This double bond is preferably in the terminal position. The alkene may be a diene, in which case at least one carbon-carbon double bond is terminated and the other double bond is somewhere in the carbon skeleton. Suitable alkenes are, for example, ethene, propene, isobutene, piperylene. Alkenes used for carboxylation are usually gaseous or liquid under carboxylation conditions.

ある好ましい実施様態においては、このアルケンがエテンである。本発明の方法により、アルリル酸のアルカリ金属塩またはアルカリ土類金属塩、特にアクリル酸ナトリウムの濃厚水溶液を、高純度かつ高収量で得ることができる。もう一つの実施様態においては、本発明の方法で、例えばピペリレンとKOHからソルビン酸カリウムを得ることができる。   In one preferred embodiment, the alkene is ethene. By the method of the present invention, a concentrated aqueous solution of an alkali metal salt or alkaline earth metal salt of allylic acid, particularly sodium acrylate, can be obtained with high purity and high yield. In another embodiment, potassium sorbate can be obtained, for example, from piperylene and KOH by the method of the present invention.

本反応で使用される二酸化炭素は、ガス状、液体状または超臨界状で使用できる。工業用規模で入手可能な二酸化炭素含有混合ガスも、もし一酸化炭素を実質的に含まないなら使用することもできる。   Carbon dioxide used in this reaction can be used in a gaseous, liquid or supercritical state. Carbon dioxide-containing gas mixtures available on an industrial scale can also be used if they are substantially free of carbon monoxide.

二酸化炭素とアルケンは、窒素または希ガスなどの不活性ガスを含んでいてもよい。しかしながら、その含量は、反応器中の二酸化炭素とアルケンの総量に対して10モル%未満であることが好ましい。   Carbon dioxide and alkene may contain an inert gas such as nitrogen or a noble gas. However, the content is preferably less than 10 mol% with respect to the total amount of carbon dioxide and alkene in the reactor.

反応器供給物中の二酸化炭素とアルケンのモル比は、通常0.1〜10であり、好ましくは0.5〜3である。   The molar ratio of carbon dioxide and alkene in the reactor feed is usually 0.1 to 10, preferably 0.5 to 3.

助剤塩基は、有機助剤塩基であっても無機助剤塩基であってもよい。適当な助剤塩基は、アニオン性の塩基(一般的には、無機または有機アンモニウムイオンまたはアルカリ金属またはアルカリ土類金属との塩の形)であるか、中性の塩基である。無機のアニオン性塩基には、炭酸塩、リン酸塩、硝酸塩、またはハロゲン化物が含まれる。有機のアニオン性塩基の例としては、フェノキシド、カルボキシレート、有機分子単位のスルフェート、スルホネート、ホスフェート、ホスホネートがあげられる。   The auxiliary base may be an organic auxiliary base or an inorganic auxiliary base. Suitable auxiliary bases are anionic bases (generally in the form of salts with inorganic or organic ammonium ions or alkali metals or alkaline earth metals) or neutral bases. Inorganic anionic bases include carbonates, phosphates, nitrates, or halides. Examples of organic anionic bases include phenoxide, carboxylate, organic molecular sulfate, sulfonate, phosphate, and phosphonate.

有機の中性塩基には、一級アミン、二級アミンまたは三級アミン、またエーテル、エステル、イミン、アミド、カルボニル化合物、カルボキシレートまたは一酸化炭素が含まれる。   Organic neutral bases include primary amines, secondary amines or tertiary amines, as well as ethers, esters, imines, amides, carbonyl compounds, carboxylates or carbon monoxide.

この助剤塩基は、一級アミン、二級アミンまたは三級アミンであることが好ましい。助剤塩基は第三級アミンであることが最も好ましい。好適な第三級アミンは、一般式(I)をもつ:
NR123 (I)、
This auxiliary base is preferably a primary amine, a secondary amine or a tertiary amine. Most preferably, the auxiliary base is a tertiary amine. Suitable tertiary amines have the general formula (I):
NR 1 R 2 R 3 (I),

式中、R1〜R3基は、同一であっても異なっていてもよく、それぞれ独立して非分岐状または分岐状の、非環式または環状の、脂肪族、芳香脂肪族または芳香族基で、いずれの場合も1〜16個の炭素原子、好ましくは1〜12個の炭素原子を有し、個々の炭素原子はそれぞれ独立して−O−基と>N−基から選ばれるヘテロ原子で置換されていてもよく、二個の基または全ての三個の基が相互に結合して、それぞれ少なくとも4個の原子を含む鎖を形成していてもよい。 In the formula, the R 1 to R 3 groups may be the same or different and are each independently unbranched or branched, acyclic or cyclic, aliphatic, araliphatic or aromatic. Each having 1 to 16 carbon atoms, preferably 1 to 12 carbon atoms, each of which is independently a hetero selected from the group -O- and> N- It may be substituted with atoms, and two groups or all three groups may be bonded together to form a chain containing at least 4 atoms each.

好適なアミンの例としては、以下のものがあげられる。
−トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デシルアミン、トリ−n−ウンデシルアミン、トリ−n−ドデシルアミン、トリ−n−トリデシルアミン、トリ−n−テトラデシルアミン、トリ−n−ペンタデシルアミン、トリ−n−ヘキサデシルアミン、トリ(2−エチルヘキシル)アミン
−ジメチルデシルアミン、ジメチルドデシルアミン、ジメチルテトラデシルアミン、エチルジ(2−プロピル)アミン、ジオクチルメチルアミン、ジヘキシルメチルアミン
−トリシクロペンチルアミン、トリシクロヘキシルアミン、トリシクロヘプチルアミン、トリシクロオクチルアミン、これらの、一個以上のメチル、エチル、1−プロピル、2−プロピル、1−ブチル、2−ブチルまたは2−メチル−2−プロピル基で置換された誘導体
−ジメチルシクロヘキシルアミン、メチルジシクロヘキシルアミン、ジエチルシクロヘキシルアミン、エチルジシクロヘキシルアミン、ジメチルシクロペンチルアミン、メチルジシクロペンチルアミン
−トリフェニルアミン、メチルジフェニルアミン、エチルジフェニルアミン、プロピルジフェニルアミン、ブチルジフェニルアミン、2−エチルヘキシルジフェニルアミン、ジメチルフェニルアミン、ジエチルフェニルアミン、ジプロピルフェニルアミン、ジブチルフェニルアミン、ビス−(2−エチルヘキシル)フェニラミン、トリベンジルアミン、メチルジベンジルアミン、エチルジベンジルアミン、またこれらの、一個以上のメチル、エチル、1−プロピル、2−プロピル、1−ブチル、2−ブチルまたは2−メチル−2−プロピル基で置換された誘導体
− N−C1−〜−C12−アルキルピペリジン、N,N’−ジ−C1−〜−C12−アルキルピペラジンs、N−C1−〜−C12−アルキルピロリジン、N−C1−〜−C12−アルキルイミダゾール、またこれらの、一個以上のメチル、エチル、1−プロピル、2−プロピル、1−ブチル、2−ブチルまたは2−メチル−2−プロピル基で置換された誘導体
−1,8−ジアザビシクロ[5.4.0]ウンデス−7−エン(DBU)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、N−メチル−8−アザビシクロ[3.2.1]オクタン(トロパン)、N−メチル−9−アザビシクロ[3.3.1]ノナン(グラナタン)、1−アザビシクロ[2.2.2]オクタン(キヌクリジン)。
Examples of suitable amines include:
-Tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri- n-decylamine, tri-n-undecylamine, tri-n-dodecylamine, tri-n-tridecylamine, tri-n-tetradecylamine, tri-n-pentadecylamine, tri-n-hexadecylamine , Tri (2-ethylhexyl) amine
-Dimethyldecylamine, dimethyldodecylamine, dimethyltetradecylamine, ethyldi (2-propyl) amine, dioctylmethylamine, dihexylmethylamine
-Tricyclopentylamine, tricyclohexylamine, tricycloheptylamine, tricyclooctylamine, one or more of these: methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl or 2-methyl-2 -Derivatives substituted with propyl groups
-Dimethylcyclohexylamine, methyldicyclohexylamine, diethylcyclohexylamine, ethyldicyclohexylamine, dimethylcyclopentylamine, methyldicyclopentylamine
-Triphenylamine, methyldiphenylamine, ethyldiphenylamine, propyldiphenylamine, butyldiphenylamine, 2-ethylhexyldiphenylamine, dimethylphenylamine, diethylphenylamine, dipropylphenylamine, dibutylphenylamine, bis- (2-ethylhexyl) phenylamine, tribendi Substituted with one or more methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl or 2-methyl-2-propyl groups. Derivatives
- N-C 1 -~-C 12 - alkyl piperidine, N, N'-di -C 1 -~-C 12 - alkyl piperazine s, N-C 1 -~- C 12 - alkyl pyrrolidine, N-C 1 -~-C 12 - alkyl imidazole, also these, one or more methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, substituted derivatives of 2-butyl or 2-methyl-2-propyl group
-1,8-diazabicyclo [5.4.0] undes-7-ene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), N-methyl-8-azabicyclo [3.2 .1] Octane (tropane), N-methyl-9-azabicyclo [3.3.1] nonane (grantan), 1-azabicyclo [2.2.2] octane (quinuclidine).

もちろん本発明の方法において、異なる塩基の混合物、特に異なる第三級アミン(I)の混合物を使用することもできる。   Of course, in the process of the invention, it is also possible to use mixtures of different bases, in particular mixtures of different tertiary amines (I).

1〜R3基のうちの少なくとも一つが、α−炭素原子上に2個の水素原子を持つことが好ましい。 It is preferable that at least one of R 1 to R 3 groups has two hydrogen atoms on the α-carbon atom.

本発明の方法で使用される三級アミンは、最も好ましくは一般式(I)のアミンであって、R1〜R3基がそれぞれ独立してC1−〜C12−アルキルとC5−〜C8−シクロアルキル、ベンジル、フェニルからなる群から選ばれるものである。 The tertiary amine used in the process of the present invention is most preferably an amine of the general formula (I), wherein the R 1 to R 3 groups are each independently C 1- to C 12 -alkyl and C 5- ˜C 8 -cycloalkyl, selected from the group consisting of benzyl and phenyl.

本発明の方法で用いられる助剤塩基、好ましくは第三級アミンの量は、一般的には反応器中の全体の液状反応混合物に対して5〜95重量%、好ましくは20〜60重量%である。   The amount of auxiliary base, preferably tertiary amine, used in the process of the invention is generally from 5 to 95% by weight, preferably from 20 to 60% by weight, based on the total liquid reaction mixture in the reactor. It is.

一般に、このカルボキシル化触媒は、活性金属として、少なくとも一種の、元素周期律表の4族元素(好ましくは、Ti、Zr)と、6族元素(好ましくは、Cr、Mo、W)、7族元素(好ましくは、Re)、8族元素(好ましくは、Fe、Ru)、9族元素(好ましくは、Co、Rh)、10族元素(好ましくは、Ni、Pd)を含む。ニッケルとコバルト、鉄、ロジウム、ルテニウム、パラジウム、レニウム、タングステンが好ましい。ニッケルとコバルト、鉄、ロジウム、ルテニウムが特に好ましい。   In general, this carboxylation catalyst has at least one group 4 element (preferably Ti, Zr), group 6 element (preferably Cr, Mo, W), group 7 as an active metal. It contains an element (preferably Re), a group 8 element (preferably Fe, Ru), a group 9 element (preferably Co, Rh), and a group 10 element (preferably Ni, Pd). Nickel and cobalt, iron, rhodium, ruthenium, palladium, rhenium and tungsten are preferred. Nickel and cobalt, iron, rhodium and ruthenium are particularly preferred.

これらの活性金属の役割は、CO2とアルケンを活性化させて、CO2とアルケンの間にC−C結合を形成することである。この活性化は、一箇所以上の活性点で行われる。この“Hoberg”類似錯体の形成後に、本発明で使用される助剤塩基の存在下で、これを、α,β−エチレン性不飽和カルボン酸の助剤塩基塩として除くことができる。 The role of these active metals, the CO 2 and alkene activated, is to form a C-C bond between the CO 2 and alkene. This activation is performed at one or more active points. After the formation of this “Hoberg” -like complex, it can be removed as an auxiliary base salt of an α, β-ethylenically unsaturated carboxylic acid in the presence of the auxiliary base used in the present invention.

ある実施様態においては、用いるカルボキシル化触媒が不均一触媒である。不均一カルボキシル化触媒は、担持触媒の形で存在していても、非坦持触媒の形で存在していてもよい。担持触媒は、触媒支持体と一種以上の活性金属と、必要なら一種以上の添加物を含んでいる。   In some embodiments, the carboxylation catalyst used is a heterogeneous catalyst. The heterogeneous carboxylation catalyst may be present in the form of a supported catalyst or in the form of a non-supported catalyst. The supported catalyst includes a catalyst support, one or more active metals, and, if necessary, one or more additives.

活性金属と支持体材料と添加物の総量に対する活性金属の重量比は、好ましくは0.01〜40重量%であり、より好ましくは0.1〜30重量%、最も好ましくは0.5〜10重量%である。   The weight ratio of active metal to the total amount of active metal, support material and additives is preferably 0.01 to 40% by weight, more preferably 0.1 to 30% by weight, most preferably 0.5 to 10%. % By weight.

活性金属と支持体材料と添加物の総量に対する添加物の重量比は、好ましくは0.001〜20重量%であり、より好ましくは0.01〜10重量%、最も好ましくは0.1〜5重量%である。   The weight ratio of additive to the total amount of active metal, support material and additive is preferably 0.001 to 20% by weight, more preferably 0.01 to 10% by weight, most preferably 0.1 to 5%. % By weight.

典型的な担持触媒の製造方法は、インシピエント・ウェットネス法などの含浸プロセス、平衡吸着などの吸着プロセス、沈澱プロセス、活性金属前駆体と支持体材料の研磨などの機械的プロセス、他の当業界の熟練者には既知のプロセスである。   Typical supported catalyst manufacturing methods include impregnation processes such as the incipient wetness method, adsorption processes such as equilibrium adsorption, precipitation processes, mechanical processes such as polishing of active metal precursors and support materials, and other industries. This is a process known to those skilled in the art.

好適な無機添加物には、マグネシウムやカルシウム、ストロンチウム、バリウム、ランタン、ランタノイド、マンガン、銅、銀、亜鉛、ホウ素、アルミニウム、ケイ素、スズ、鉛、リン、アンチモン、ビスマス、硫黄、セレンが含まれる。好適な有機添加物には、カルボン酸、カルボン酸の塩、PVP(ポリビニルピロリドン)やPEG(ポリエチレングリコール)、PVA(ポリビニルアルコール)などのポリマー、アミン、ジアミン、トリアミン、イミンが含まれる。   Suitable inorganic additives include magnesium, calcium, strontium, barium, lanthanum, lanthanoid, manganese, copper, silver, zinc, boron, aluminum, silicon, tin, lead, phosphorus, antimony, bismuth, sulfur, selenium . Suitable organic additives include carboxylic acids, salts of carboxylic acids, polymers such as PVP (polyvinyl pyrrolidone), PEG (polyethylene glycol), PVA (polyvinyl alcohol), amines, diamines, triamines, imines.

好適な支持体材料には、酸化亜鉛、酸化ジルコニウム、酸化セリウム、酸化セリウムジルコニウム、シリカ、アルミナ、シリカ−アルミナ、ゼオライト、層状ケイ酸塩、ハイドロタルサイト、酸化マグネシウム、二酸化チタン、酸化タングステン、酸化カルシウム、酸化鉄(例えば、マグネタイト)、酸化ニッケル、酸化コバルトなどの耐火性酸化物、典型元素及び遷移族元素のリン酸塩、炭化物、窒化物、ナフィオンまたは官能化ポリスチレンなどの有機ポリマー、金属シートまたはメッシュなどの金属製支持体材料、MOF(金属有機骨組材料)または上記材料の複合材が含まれる。   Suitable support materials include zinc oxide, zirconium oxide, cerium oxide, cerium zirconium oxide, silica, alumina, silica-alumina, zeolite, layered silicate, hydrotalcite, magnesium oxide, titanium dioxide, tungsten oxide, oxidation Refractory oxides such as calcium, iron oxide (eg magnetite), nickel oxide, cobalt oxide, phosphates of typical and transition group elements, carbides, nitrides, organic polymers such as Nafion or functionalized polystyrene, metal sheets Or a metal support material such as a mesh, MOF (metal organic framework material) or a composite of the above materials.

酸化亜鉛や酸化ジルコニウム、酸化セリウム、酸化セリウムジルコニウム、シリカ、アルミナ、シリカ−アルミナ、ゼオライト、層状ケイ酸塩、ハイドロタルサイト、酸化マグネシウム、二酸化チタン、酸化タングステン、酸化カルシウム、マグネタイトなどの酸化鉄、酸化ニッケルまたは酸化コバルトなどの耐火性酸化物が好ましい。   Zinc oxide, zirconium oxide, cerium oxide, cerium oxide, silica, alumina, silica-alumina, zeolite, layered silicate, hydrotalcite, magnesium oxide, titanium dioxide, tungsten oxide, calcium oxide, magnetite and other iron oxides, Refractory oxides such as nickel oxide or cobalt oxide are preferred.

これらの支持体材料は、例えば粉末や顆粒、錠剤の形状で、あるいは他の当業界の熟練者には既知の形状で使用できる。   These support materials can be used, for example, in the form of powders, granules, tablets, or other forms known to those skilled in the art.

本発明では非坦持触媒を使用することもできる。これらの材料は、例えば沈澱プロセスで、あるいは当業界の熟練者には既知の他のプロセスで製造できる。これらの触媒は、金属状及び/又は酸化物状で存在することが好ましい。   In the present invention, a non-supported catalyst can also be used. These materials can be made, for example, by precipitation processes or other processes known to those skilled in the art. These catalysts are preferably present in the form of metal and / or oxide.

本発明の方法で不均一触媒を使用する場合、この触媒がカルボキシル化反応器中に残留していることが好ましい。この触媒は、例えば反応器内に固定化された固定床触媒の形で存在して、あるいは懸濁触媒の場合には、適当なふるい又は適当なフィルターにより反応器内に保持されて残留する。   If a heterogeneous catalyst is used in the process of the present invention, it is preferred that this catalyst remains in the carboxylation reactor. This catalyst is present, for example, in the form of a fixed bed catalyst fixed in the reactor, or in the case of a suspension catalyst, it remains retained in the reactor by means of a suitable sieve or a suitable filter.

好ましい実施様態においては、用いるカルボキシル化触媒が均一触媒である。均一触媒は、一般的には金属の錯体である。均一触媒の場合、活性金属は、錯体型化合物の形で反応混合物中に均一に溶解して存在する。   In a preferred embodiment, the carboxylation catalyst used is a homogeneous catalyst. The homogeneous catalyst is generally a metal complex. In the case of a homogeneous catalyst, the active metal is present in the reaction mixture in a homogeneous form in the form of a complex compound.

均一カルボキシル化触媒は、少なくとも一個のホスフィン配位子を持っていることが適当である。これらのホスフィン配位子は、一座配位でも、二座、多座配位であってもよく、即ちこれら配位子が、一個、二個、あるいはそれ以上の、例えば三個の三級の三価燐原子を持っていてもよい。これらの燐原子は、1〜18個の炭素原子をもつ、非分岐状または分岐状の、非環式または環状の脂肪族基であってもよい。   Suitably the homogeneous carboxylation catalyst has at least one phosphine ligand. These phosphine ligands may be monodentate, bidentate or multidentate, i.e. the ligand is one, two or more, e.g. three tertiary. It may have a trivalent phosphorus atom. These phosphorus atoms may be unbranched or branched, acyclic or cyclic aliphatic groups having 1 to 18 carbon atoms.

好適な単座ホスフィン配位子は、例えば式(II)をもつ。
PR456 (II)
Suitable monodentate phosphine ligands have, for example, formula (II).
PR 4 R 5 R 6 (II)

式中、R4とR5とR6は、それぞれ独立してC1−C12−アルキル、C3−C12−シクロアルキル、アリール、アリール−C1−C4−アルキルである。なお、シクロアルキルとアリール、アリール−C1−C4−アルキルのアリール基は、無置換であっても、1個、2個、3個または4個の同一または異なる置換基(例えば、Cl、Br、I、F、C1−C8−アルキルまたはC1−C4−アルコキシ)を持っていてもよい。 In the formula, R 4 , R 5 and R 6 are each independently C 1 -C 12 -alkyl, C 3 -C 12 -cycloalkyl, aryl, aryl-C 1 -C 4 -alkyl. Note that the aryl group of cycloalkyl and aryl or aryl-C 1 -C 4 -alkyl may be one, two, three or four identical or different substituents (eg, Cl, Br, I, F, C 1 -C 8 -alkyl or C 1 -C 4 -alkoxy).

適当なR4とR5とR6基は、例えば、メチルやエチル、1−プロピル、2−プロピル、1−ブチル、2−ブチル、1−(2−メチル)プロピル、2−(2−メチル)プロピル、1−ペンチル、1−(2−メチル)ペンチル、1−ヘキシル、1−(2−エチル)ヘキシル、1−ヘプチル、1−(2−プロピル)ヘプチル、1−オクチル、1−ノニル、1−デシル、1−ウンデシル、1−ドデシルなどのC1−C12−アルキル基;無置換またはC1−C4−アルキル基(例えばシクロペンチル、メチルシクロペンチル、シクロヘキシル、メチルシクロヘキシル、シクロヘプチル、シクロオクチル、ノルボルニル)を有していてよいC3−C10−シクロアルキル基;無置換または塩素とC1−C8−アルキル、C1−C8−アルコキシから選ばれる一個または二個の置換基を有していてよいアリール基(例えば、フェニルやナフチル、トリル、キシリル、クロロフェニルまたはアニシル)である。 Suitable R 4 , R 5 and R 6 groups are, for example, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 1- (2-methyl) propyl, 2- (2-methyl ) Propyl, 1-pentyl, 1- (2-methyl) pentyl, 1-hexyl, 1- (2-ethyl) hexyl, 1-heptyl, 1- (2-propyl) heptyl, 1-octyl, 1-nonyl, C 1 -C 12 -alkyl groups such as 1-decyl, 1-undecyl, 1-dodecyl; unsubstituted or C 1 -C 4 -alkyl groups (eg cyclopentyl, methylcyclopentyl, cyclohexyl, methylcyclohexyl, cycloheptyl, cyclooctyl) may have a norbornyl) C 3 -C 10 - cycloalkyl radical; an unsubstituted or chlorine and C 1 -C 8 - alkyl, C 1 -C 8 - selected from alkoxy It is one or two may have a substituent aryl group (e.g., phenyl or naphthyl, tolyl, xylyl, chlorophenyl or anisyl).

好適な式(II)のホスフィン配位子の例としては、トリ−n−プロピルホスフィン、トリ−n−ブチルホスフィン、トリ−tert−ブチルホスフィンまたはトリオクチルホスフィンなどのトリアルキルホスフィンや、トリシクロヘキシルホスフィンまたはトリシクロドデシルホスフィンなどのトリシクロアルキルホスフィン、トリフェニルフォスフィン、トリトリルホスフィン、トリアニシルホスフィン、トリナフチルホスフィンまたはジ(クロロフェニル)フェニルホスフィンなどのトリアリールホスフィン、ジエチルフェニルホスフィンまたはジブチルフェニルホスフィンなどのジアルキルアリールホスフィンがあげられる。R4とR5とR6は、好ましくは同定義のものである。 Examples of suitable phosphine ligands of formula (II) include trialkyl phosphines such as tri-n-propylphosphine, tri-n-butylphosphine, tri-tert-butylphosphine or trioctylphosphine, and tricyclohexylphosphine. Or tricycloalkylphosphine such as tricyclododecylphosphine, triphenylphosphine, tolylylphosphine, trianisylphosphine, trinaphthylphosphine or triarylphosphine such as di (chlorophenyl) phenylphosphine, diethylphenylphosphine or dibutylphenylphosphine And dialkylarylphosphine. R 4 , R 5 and R 6 are preferably as defined.

好適な二座ホスフィン配位子は、例えば式(III)をもつ。
78P−A−PR910 (III)
Suitable bidentate phosphine ligands have, for example, formula (III).
R 7 R 8 PA-PR 9 R 10 (III)

式中、AはC1−C4−アルキレンであり、R7とR8とR9とR10は、それぞれ独立して、R4とR5とR6に定義されたものと同じである。 In which A is C 1 -C 4 -alkylene and R 7 , R 8 , R 9 and R 10 are each independently the same as defined for R 4 , R 5 and R 6. .

二座ホスフィンの例としては、1,2−ビス(ジシクロヘキシルホスフィノ)エタンや、1,2−ビス(ジシクロヘキシルホスフィノ)メタン、1,2−ビス(ジメチルホスフィノ)エタン、1,2−ビス(ジメチルホスフィノ)メタン、1,2−ビス(ジ−tert−ブチルホスフィノ)メタンまたは1,2−ビス(ジイソプロピルホスフィノ)プロパンがあげられる。   Examples of bidentate phosphines include 1,2-bis (dicyclohexylphosphino) ethane, 1,2-bis (dicyclohexylphosphino) methane, 1,2-bis (dimethylphosphino) ethane, and 1,2-bis. (Dimethylphosphino) methane, 1,2-bis (di-tert-butylphosphino) methane or 1,2-bis (diisopropylphosphino) propane.

この有機金属錯体は、一個以上の、例えば2個、3個または4個の上述の、少なくとも一種の非分岐または分岐状の、非環状または環状の脂肪族基をもつホスフィン基を含んでいてもよい。   The organometallic complex may contain one or more, for example 2, 3 or 4 phosphine groups having at least one unbranched or branched, acyclic or cyclic aliphatic group as described above. Good.

また、少なくとも1当量の助剤塩基が、上記均一錯体の金属上の配位子として機能してもよい。   Also, at least one equivalent of the auxiliary base may function as a ligand on the metal of the homogeneous complex.

あるいは、このカルボキシル化触媒が、少なくとも一種のN−複素環式カルベン配位子を有していてもよい。なお、一般式(IV)または(V)のN−複素環式カルベンが金属上の配位子として機能する:   Alternatively, the carboxylation catalyst may have at least one N-heterocyclic carbene ligand. Note that the N-heterocyclic carbene of the general formula (IV) or (V) functions as a ligand on the metal:

Figure 2013521261
Figure 2013521261

式中、R11とR12は、それぞれアルキルまたはアリールであり、R13とR14とR15とR16は、それぞれ独立して、水素、アルキルまたはアリールであるか、R13〜R16基の二つが飽和5〜7員環を形成し、他の二つの基が、それぞれ独立して水素またはメチルであり、R17とR18は、それぞれ独立して水素、アルキルまたはアリールであるか、R17とR18が、それに結合する炭素原子とともに、1個または2個の芳香族環をもつ縮合環である。 In the formula, R 11 and R 12 are each alkyl or aryl, and R 13 and R 14 , R 15 and R 16 are each independently hydrogen, alkyl or aryl, or R 13 to R 16 groups. Each form a saturated 5- to 7-membered ring, the other two groups are each independently hydrogen or methyl, and R 17 and R 18 are each independently hydrogen, alkyl or aryl, R 17 and R 18 are fused rings having one or two aromatic rings with the carbon atom bonded to them.

上述の配位子に加えて、この触媒は、ハライド、アミン、カルボキシレート、アセチルアセトネート、アリール−またはアルキルスルホネート、水素化物、CO、オレフィン、ジエン、シクロオレフィン、ニトリル、芳香族及び複素芳香族エーテル、PF3、ホスホール、ホスファベンゼンと単座、二座および多座のホスフィナイト、ホスホナイト、ホスホラミダイト、ホスフィット配位子から選ばれる少なくとも一種の他の配位子を持っていてもよい。 In addition to the ligands described above, this catalyst can be used for halides, amines, carboxylates, acetylacetonates, aryl- or alkylsulfonates, hydrides, CO, olefins, dienes, cycloolefins, nitriles, aromatic and heteroaromatics. It may have ether, PF 3 , phosphole, phosphabenzene and at least one other ligand selected from monodentate, bidentate and multidentate phosphinites, phosphonites, phosphoramidites and phosphite ligands.

これらの均一触媒は、直接活性な形で得ることもできるし、従来から使用されている標準的な錯体、例えば[M(p−シメン)Cl22、[M(ベンゼン)Cl2n、[M(COD)(アリル)]、[MCl3×H2O]、[M(アセチルアセトネート)3]、あるいは[M(DMSO)4Cl2](なお、Mは、周期律表の第4、6、7、8、9族または10族の元素である)から、反応条件下のみにおいて、相当する配位子を添加して得ることもできる。 These homogeneous catalysts can be obtained directly in active form, or standard complexes conventionally used, such as [M (p-cymene) Cl 2 ] 2 , [M (benzene) Cl 2 ] n. , [M (COD) (allyl)], [MCl 3 × H 2 O], [M (acetylacetonate) 3 ], or [M (DMSO) 4 Cl 2 ] (where M is the periodic table) It can also be obtained by adding a corresponding ligand only under the reaction conditions from the elements of Group 4, 6, 7, 8, 9 or 10.

均一触媒を使用する場合、有機金属錯体中の上記金属錯体の使用量は、一般的には、反応器中の全液体反応混合物に対して0.1〜5000重量ppmであり、好ましくは1〜800重量ppmで、より好ましくは5〜500重量ppmである。   When a homogeneous catalyst is used, the amount of the metal complex used in the organometallic complex is generally 0.1 to 5000 ppm by weight, preferably 1 to 5000 ppm based on the total liquid reaction mixture in the reactor. 800 ppm by weight, more preferably 5 to 500 ppm by weight.

用いるカルボキシル化反応器は、原理的には、特定の温度と特定の圧力下で気液反応または液液反応を行うのに適当なすべての反応器である。液−液反応系用に適当な標準的な反応器が、例えば、K. D. Henkel, 「反応器の形式とその工業利用」、ウルマン工業化学辞典 2005, Wiley VCH Verlag GmbH & Co KGaA, DOI: 10.1002/14356007.b04_087, 3.3章、「気液反応用の反応器」に具体的に記載されている。例えば、攪拌槽反応器や円管状反応器、気泡塔反応器があげられる。   The carboxylation reactors used are in principle all reactors suitable for carrying out a gas-liquid reaction or a liquid-liquid reaction at a specific temperature and a specific pressure. Standard reactors suitable for liquid-liquid reaction systems are described, for example, in K.K. D. Henkel, “Reactor type and its industrial use”, Ullmann Industrial Chemistry Dictionary 2005, Wiley VCH Verlag GmbH & Co KGaA, DOI: 10.1002 / 143356007. b04 — 087, Chapter 3.3, “Reactor for gas-liquid reaction”. Examples thereof include a stirred tank reactor, a tubular reactor, and a bubble column reactor.

このカルボキシル化は、回分的に行っても連続的に行ってもよい。回分的に行う場合、反応器に所望の液体の供給原料、あるいは必要なら固体の供給原料と助剤を入れ、次いで二酸化炭素とアルケンを所望圧力と所望温度となるまで注入する。反応終了後、反応器は通常、放圧される。   This carboxylation may be carried out batchwise or continuously. If batchwise, the reactor is charged with the desired liquid feed or, if necessary, solid feed and auxiliaries, and then carbon dioxide and alkene are injected to the desired pressure and temperature. After the reaction is complete, the reactor is usually depressurized.

連続的に行う場合、供給原料と、二酸化炭素とアルケンを含む助剤とを、連続的に添加する。用いる不均一カルボキシル化触媒は、いずれも反応器中に固定されて存在していることが好ましい。従って、液相は反応器から連続的に除かれ、反応器内の液体レベルは、平均的に一定に保たれる。   When performed continuously, the feedstock and the auxiliary comprising carbon dioxide and alkene are added continuously. Any heterogeneous carboxylation catalyst used is preferably present in a fixed state in the reactor. Thus, the liquid phase is continuously removed from the reactor and the liquid level in the reactor is kept constant on average.

工程a)とb)は、液相で行うか、圧力が1〜150bar、好ましくは圧力が1〜100bar、より好ましくは圧力が1〜60barの超臨界相で行うことが好ましい。本発明の方法の工程a)とb)は、温度が−20℃〜300℃で、好ましくは温度が20℃〜250℃、より好ましくは温度が40℃〜200℃で行うことが好ましい。   Steps a) and b) are preferably carried out in the liquid phase or in a supercritical phase with a pressure of 1 to 150 bar, preferably a pressure of 1 to 100 bar, more preferably a pressure of 1 to 60 bar. Steps a) and b) of the method of the present invention are preferably performed at a temperature of -20 ° C to 300 ° C, preferably at a temperature of 20 ° C to 250 ° C, more preferably at a temperature of 40 ° C to 200 ° C.

反応物と、カルボキシル化触媒と助剤塩基とを含む媒体とをよく混合するために、適当な装置を用いることができる。このような装置は、一台以上の攪拌器を備えた、邪魔板を持つか持たない機械攪拌装置であっても、充填気泡塔または非充填気泡塔、スタチックミキサーを持つか持たない充填流動管または非充填流動管、あるいはこれらの加工工程に適した、当業界の熟練者には既知の他の有用な装置であってもよい。邪魔板と遅延構造の利用は、本発明の方法に明確に含まれている。   An appropriate apparatus can be used to mix the reactants with the medium containing the carboxylation catalyst and the auxiliary base. Such a device is equipped with one or more stirrers, with or without a baffle plate, even with a packed bubble column or unfilled bubble column, with or without a static mixer It may be a tube or unfilled flow tube, or other useful device known to those skilled in the art suitable for these processing steps. The use of baffles and delay structures is clearly included in the method of the present invention.

反応媒体に、CO2とアルケン反応物を共に供給してもよいし、空間的に分離して供給してもよい。このような空間的な分離は、例えば攪拌槽中に、単純に2個以上の別々の供給口を設けることで達成できる。一個以上のタンクを使用する場合には、例えば異なるタンク中に異なる媒体を供給してもよい。本発明の方法では、CO2とアルケン反応物とを、時間的に分離して添加することも可能である。このような時間的な分離は、例えば、攪拌槽中への反応物の供給を別々に行うことで行われる。流動管またはこれに類似の装置を使用する場合、このような供給は、例えば流動管中の異なる位置で行うことができる。このような添加位置の変更は、反応物を滞留時間の関数として添加する巧妙な方法である。 The reaction medium may be supplied with both CO 2 and the alkene reactant, or may be supplied separated spatially. Such spatial separation can be achieved, for example, by simply providing two or more separate supply ports in a stirring tank. If more than one tank is used, different media may be supplied, for example, in different tanks. In the method of the present invention, CO 2 and the alkene reactant can be added separately in time. Such temporal separation is performed, for example, by separately supplying the reactants into the stirring tank. If a flow tube or similar device is used, such feeding can be performed at different locations in the flow tube, for example. Such a change in addition position is a clever method of adding the reactants as a function of residence time.

工程a)とb)においては、一種以上の非混和性の液相を、あるいは難混和性の液相を使用することができる。超臨界媒体とイオン性液体の利用とこのような状態の形成を促進する条件の確立は、明らかに本方法に含まれる。相間移動触媒の利用及び/又は界面活性剤の使用は、明らかに本発明の方法に含まれる。   In steps a) and b) one or more immiscible liquid phases or poorly miscible liquid phases can be used. The use of supercritical media and ionic liquids and the establishment of conditions that promote the formation of such states are clearly included in the method. The use of phase transfer catalysts and / or the use of surfactants is clearly included in the process of the present invention.

ある好ましい実施様態においては、工程b)で生成されるα,β−エチレン性不飽和カルボン酸の助剤塩基塩が、反応媒体から除去される。この助剤塩基塩の除去は、α,β−エチレン性不飽和カルボン酸の助剤塩基塩が濃縮された第一の液相と助剤塩基が濃縮された第二の液相への液−液相分離を含むことが好ましい。   In one preferred embodiment, the auxiliary base salt of the α, β-ethylenically unsaturated carboxylic acid produced in step b) is removed from the reaction medium. The removal of the auxiliary base salt is carried out by dividing the liquid into the first liquid phase in which the auxiliary base salt of α, β-ethylenically unsaturated carboxylic acid is concentrated and the second liquid phase in which the auxiliary base is concentrated. It is preferable to include liquid phase separation.

均一カルボキシル化触媒を使用する場合、これが助剤塩基とともに第二液相中で濃縮されるように選択することが好ましい。なお、「濃縮」は、均一触媒の分配係数Pが>1であることを意味するものとする。この分配係数は、好ましくは≧10であり、より好ましくは≧20である。   If a homogeneous carboxylation catalyst is used, it is preferably chosen such that it is concentrated in the second liquid phase with the auxiliary base. Note that “concentration” means that the distribution coefficient P of the homogeneous catalyst is> 1. This distribution coefficient is preferably ≧ 10, more preferably ≧ 20.

Figure 2013521261
Figure 2013521261

この均一触媒は、通常、計画プロセス条件下での所望の均一触媒の分配係数を試験的に求める簡単な試験で選択される。   This homogeneous catalyst is usually selected in a simple test that experimentally determines the desired homogeneous catalyst partition coefficient under the planned process conditions.

この液−液相分離は、α,β−エチレン性不飽和カルボン酸の助剤塩基塩が良く溶解し、助剤塩基が濃縮される第二液相に非混和性であるか難混和性である極性溶媒をさらに使用することで促進される。
この極性溶媒が第一液相中に濃縮した形で存在するように、この極性溶媒を選択するか、助剤塩基にマッチさせることが必要である。なお、「濃縮」とは、両方の液相中の極性溶媒の総量に対して第一液相中の極性溶媒の重量比が>50%であることを意味するものとする。この重量比は、好ましくは>90%であり、より好ましくは>95%、最も好ましくは>97%である。この極性溶媒は、一般的には、プロセス条件下における二つの液相中での極性溶媒の分配を試験的に測定できる簡単な試験で選択される。
This liquid-liquid phase separation is either immiscible or poorly miscible in the second liquid phase in which the auxiliary base salt of the α, β-ethylenically unsaturated carboxylic acid is well dissolved and the auxiliary base is concentrated. This is facilitated by the further use of certain polar solvents.
It is necessary to select the polar solvent or match it to the auxiliary base so that the polar solvent is present in concentrated form in the first liquid phase. Note that “concentration” means that the weight ratio of the polar solvent in the first liquid phase is> 50% with respect to the total amount of the polar solvent in both liquid phases. This weight ratio is preferably> 90%, more preferably> 95%, most preferably> 97%. This polar solvent is generally selected in a simple test that can experimentally measure the partitioning of the polar solvent in the two liquid phases under process conditions.

極性溶媒として好適な物質の種類は、ジオールとそのカルボン酸エステル、ポリオールとそのカルボン酸エステル、スルホン、スルホキシド、鎖状または環状アミド、上記の種類の物質の混合物である。   The types of substances suitable as polar solvents are diols and their carboxylic esters, polyols and their carboxylic esters, sulfones, sulfoxides, linear or cyclic amides, and mixtures of the above types of substances.

好適なジオールとポリオールの例としては、エチレングリコールやジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、1,4−ブタンジオール、ジプロピレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、グリセロールがあげられる。   Examples of suitable diols and polyols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, dipropylene glycol 1,5-pentanediol, 1,6-hexanediol, and glycerol.

好適なスルホキシドの例としては、ジアルキルスルホキシドがあげられ、好ましくはC1−〜C6−ジアルキルスルホキシド、特にジメチルスルホキシドがあげられる。 Examples of suitable sulfoxides include dialkyl sulfoxides, preferably C 1- to C 6 -dialkyl sulfoxides, particularly dimethyl sulfoxide.

好適な鎖状または環状アミドの例としては、ホルムアミドやN−メチルホルムアミド、N,N’−ジメチルホルムアミド、N−メチルピロリドン、アセトアミド、N−メチルカプロラクタムがあげられる。   Examples of suitable chain or cyclic amides include formamide, N-methylformamide, N, N'-dimethylformamide, N-methylpyrrolidone, acetamide, and N-methylcaprolactam.

必要なら、この極性溶媒に非混和性あるいは難混和性の溶媒を使用することも可能である。好適な溶媒は、原理的には、(i)アルケンのカルボキシル化に対して化学的に不活性なもの、(ii)助剤塩基と、均一触媒を使用する場合には均一触媒がよく溶解するもの、(iii)α,β−エチレン性不飽和カルボン酸の助剤塩基塩がよく溶解するもの、(iv)極性溶媒に非混和性または難混和性であるものである。したがって原理的には、有用な溶媒は化学的に不活性な非極性溶剤であり、例えば脂肪族、芳香族または芳香脂肪族炭化水素、具体的にはオクタンや高級アルカン、トルエン、キシレンである。本発明の方法のすべての加工段階において助剤塩基自体が液状で存在する場合、極性溶媒に非混和性または難混和性の溶媒の使用は不必要である。   If necessary, it is possible to use an immiscible or poorly miscible solvent for this polar solvent. Suitable solvents are in principle (i) those which are chemically inert to the alkene carboxylation, (ii) auxiliary bases, and homogeneous catalysts dissolve well when using homogeneous catalysts. (Iii) those in which the base salt of an α, β-ethylenically unsaturated carboxylic acid is well dissolved, and (iv) those that are immiscible or poorly miscible in a polar solvent. Thus, in principle, useful solvents are chemically inert non-polar solvents, such as aliphatic, aromatic or araliphatic hydrocarbons, specifically octane, higher alkanes, toluene, xylene. If the auxiliary base itself is present in liquid form at all processing steps of the process of the invention, it is not necessary to use a solvent that is immiscible or poorly miscible with the polar solvent.

均一カルボキシル化触媒を使用する場合、助剤塩基と、必要なら極性溶媒及び/又はそれに非混和性または難混和性の溶媒をうまく選択することで、例えば、カルボキシル化触媒を第二液相中に濃縮させることができる。例えば、このカルボキシル化触媒を、α,β−不飽和酸の助剤塩基塩から相分離により分離し、さらに後処理工程なしに反応器に循環させることができる。α,β−不飽和酸から形成された助剤塩基塩から触媒が速やかに除かれるため、二酸化炭素とアルケンへの分解をともなう逆反応が抑制される。また、二つの液相が形成されるため、触媒の保持または除去により、触媒の損失が減少し、このため活性金属の損失が減少する。第一液相を除くには、単にカルボキシル化反応器から第一液相を取り出し、第二液相をカルボキシル化反応器内に残す方法をとってもよい。あるいは、液−液混合流をカルボキシル化反応器から抜き出して、液−液相分離をカルボキシル化反応器の外部の適当な装置で行うこともできる。これらの二つの液相は、一般的には重量的相分離で分離される。この目的のために適当な例は、例えば、E. Muller et al., 「液液抽出」、ウルマン工業化学辞典, 2005, Wiley−VCH Verlag GmbH & Co. KGaA, DOI:10.1002/14356007.b03_06、第3章、「装置」に記載の標準的な装置と標準的な方法である。一般に、α,β−エチレン性不飽和カルボン酸の助剤塩基塩が濃縮された第一液相が重く、下相を形成する。次いで、第二液相をカルボキシル化反応器に再循環することができる。   When using a homogeneous carboxylation catalyst, for example, the carboxylation catalyst can be brought into the second liquid phase by successfully selecting an auxiliary base and, if necessary, a polar solvent and / or an immiscible or poorly miscible solvent. It can be concentrated. For example, the carboxylation catalyst can be separated from the auxiliary base salt of α, β-unsaturated acid by phase separation and further recycled to the reactor without a post-treatment step. Since the catalyst is quickly removed from the auxiliary base salt formed from the α, β-unsaturated acid, the reverse reaction accompanying decomposition into carbon dioxide and alkene is suppressed. Also, since two liquid phases are formed, catalyst retention or removal reduces catalyst loss, and thus reduces active metal loss. In order to remove the first liquid phase, a method of simply taking out the first liquid phase from the carboxylation reactor and leaving the second liquid phase in the carboxylation reactor may be employed. Alternatively, the liquid-liquid mixed stream can be withdrawn from the carboxylation reactor and the liquid-liquid phase separation can be carried out in a suitable apparatus outside the carboxylation reactor. These two liquid phases are generally separated by gravimetric phase separation. Examples suitable for this purpose are e.g. Muller et al. "Liquid-liquid extraction", Ullmann Industrial Chemical Dictionary, 2005, Wiley-VCH Verlag GmbH & Co. KGaA, DOI: 10.1002 / 14356007. Standard equipment and standard methods described in b03 — 06, Chapter 3, “Apparatus”. In general, the first liquid phase enriched with the auxiliary base salt of α, β-ethylenically unsaturated carboxylic acid is heavy and forms the lower phase. The second liquid phase can then be recycled to the carboxylation reactor.

工程c)では、このα,β−エチレン性不飽和カルボン酸の助剤塩基塩が、アルカリ金属塩基またはアルカリ土類金属塩基と反応させられて助剤塩基を放出し、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を与える。好適なアルカリ金属塩基またはアルカリ土類金属塩基は、特にアルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、重炭酸塩または酸化物である。適当なアルカリ金属及びアルカリ土類金属の水酸化物は、例えば、水酸化ナトリウムや水酸化カリウム、水酸化マグネシウム、水酸化カルシウムである。好適なアルカリ金属及びアルカリ土類金属の炭酸塩は、例えば、炭酸リチウムや炭酸ナトリウム、炭酸カリウム、炭酸カルシウムである。好適なアルカリ金属の重炭酸塩は、例えば、重炭酸ナトリウムまたは重炭酸カリウムである。好適なアルカリ金属及びアルカリ土類金属の酸化物は、例えば、酸化リチウムや酸化ナトリウム、酸化カルシウム、酸化マグネシウムである。水酸化ナトリウムが特に好ましい。   In step c), the auxiliary base salt of the α, β-ethylenically unsaturated carboxylic acid is reacted with an alkali metal base or alkaline earth metal base to release the auxiliary base, and α, β-ethylenic An alkali metal salt or an alkaline earth metal salt of an unsaturated carboxylic acid is provided. Suitable alkali metal bases or alkaline earth metal bases are in particular alkali metal or alkaline earth metal hydroxides, carbonates, bicarbonates or oxides. Suitable alkali metal and alkaline earth metal hydroxides are, for example, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide. Suitable alkali metal and alkaline earth metal carbonates are, for example, lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate. Suitable alkali metal bicarbonates are, for example, sodium bicarbonate or potassium bicarbonate. Suitable alkali metal and alkaline earth metal oxides are, for example, lithium oxide, sodium oxide, calcium oxide, and magnesium oxide. Sodium hydroxide is particularly preferred.

このアルカリ金属またはアルカリ土類金属の塩基は、α,β−エチレン性不飽和カルボン酸の助剤塩基塩とアルカリ金属またはアルカリ土類金属の塩基との間の塩基交換を可能とするのに好適な条件で加えられる。本発明の方法の工程c)は、液相中で行うか、圧力が1〜150barの、好ましくは圧力が1〜100bar、より好ましくは1〜60barの超臨界相中で行うことが好ましい。本発明の方法の工程c)は、温度が−20℃〜300℃で、好ましくは温度が20℃〜250℃、より好ましくは温度が40℃〜200℃で行うことが好ましい。工程c)の反応条件は、工程a)とb)の反応条件と同じであっても異なっていてもよい。   This alkali metal or alkaline earth metal base is suitable for allowing base exchange between an auxiliary base salt of an α, β-ethylenically unsaturated carboxylic acid and an alkali metal or alkaline earth metal base. Added under various conditions. Step c) of the process according to the invention is preferably carried out in the liquid phase or in a supercritical phase at a pressure of 1 to 150 bar, preferably a pressure of 1 to 100 bar, more preferably 1 to 60 bar. Step c) of the method of the present invention is preferably carried out at a temperature of -20 ° C to 300 ° C, preferably at a temperature of 20 ° C to 250 ° C, more preferably at a temperature of 40 ° C to 200 ° C. The reaction conditions in step c) may be the same as or different from the reaction conditions in steps a) and b).

工程c)では、一種以上の非混和性または難混和性の液相を使用することができる。通常、このような非混和性または難混和性の液相は、有機相と水相である。超臨界媒体及びイオン性液体の使用とこのような状態の形成を促進する条件の確立は、明らかに本方法に含まれる。   In step c) one or more immiscible or poorly miscible liquid phases can be used. Usually, such immiscible or poorly miscible liquid phases are an organic phase and an aqueous phase. The use of supercritical media and ionic liquids and the establishment of conditions that facilitate the formation of such states are clearly included in the method.

α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を助剤塩基から、これらを二つの異なる相に分離させて、分離することが好ましい。従って、例えば、高極性の水相中にあるα,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩と有機相中にある助剤塩基を分離することができる。分離を助ける効果の利用、例えばイオン性液体または超臨界媒体の相変化の利用は、明らかに本方法に含まれる。相分離に好ましい影響を与える圧力または温度の変化は、明らかに本方法に含まれる。   It is preferred to separate the alkali metal salt or alkaline earth metal salt of the α, β-ethylenically unsaturated carboxylic acid from the auxiliary base by separating them into two different phases. Thus, for example, an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid in a highly polar aqueous phase can be separated from an auxiliary base in the organic phase. The use of effects that aid in separation, such as the use of phase changes in ionic liquids or supercritical media, is clearly included in the method. Changes in pressure or temperature that positively affect phase separation are clearly included in the method.

放出される助剤塩基は、工程b)に再循環される。本方法に好適な条件下でこの再循環が行われる。   The auxiliary base released is recycled to step b). This recycling takes place under conditions suitable for the process.

除去される第一液相をアルカリ金属塩基またはアルカリ土類金属塩基の水溶液で処理して、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の水溶液と助剤塩基を含む有機相とを得ることが好ましい。   The first liquid phase to be removed is treated with an aqueous solution of an alkali metal base or an alkaline earth metal base, and an aqueous solution of an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid and an auxiliary base It is preferable to obtain an organic phase containing

第一液相は、一般的には、アルカリ金属塩基またはアルカリ土類金属塩基の溶液に非混和性または難混和性であり、処理は液−液抽出の形で適当に行われる。液−液抽出は、この目的に適当なすべての装置で、例えば攪拌容器、抽出器または濾過器で実施できる。α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を含む水溶液と、助剤塩基を含む有機相とが得られる。   The first liquid phase is generally immiscible or poorly miscible with the alkali metal base or alkaline earth metal base solution, and the treatment is suitably performed in the form of a liquid-liquid extraction. Liquid-liquid extraction can be carried out in all devices suitable for this purpose, for example in stirred vessels, extractors or filters. An aqueous solution containing an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid and an organic phase containing an auxiliary base are obtained.

放出された助剤塩基は、カルボキシル化反応器に再循環される。プロセス設計が単純であるため、本発明の方法を実施する必要がある製造プラントでは、先行技術と較べると、必要とする空間が小さく、使用する装置の数が少ない。資本コストが少なく、エネルギー需要が小さい。   The released auxiliary base is recycled to the carboxylation reactor. Due to the simple process design, a manufacturing plant that needs to implement the method of the present invention requires less space and uses fewer devices than the prior art. Capital cost is low and energy demand is small.

もう一つの実施様態においては、工程c)において、反応媒体(前もってα,β−エチレン性不飽和カルボン酸の助剤塩基塩が除去されていない)をアルカリ金属塩基またはアルカリ土類金属塩基の水溶液で抽出して、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の水溶液を得ることができる。抽出は、工程a)とb)と同時にカルボキシル化反応器内で直接行うことができる。このために、アルカリ金属塩基またはアルカリ土類金属塩基の溶液をカルボキシル化反応器に投入し、カルボキシル化反応器内で反応媒体をアルカリ金属塩基またはアルカリ土類金属塩基の溶液で抽出して、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の水溶液をカルボキシル化反応器から除くことができる。   In another embodiment, in step c), the reaction medium (in which the α, β-ethylenically unsaturated carboxylic acid auxiliary base salt has not been previously removed) is treated with an aqueous solution of an alkali metal base or alkaline earth metal base. To obtain an aqueous solution of an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid. The extraction can be carried out directly in the carboxylation reactor simultaneously with steps a) and b). For this purpose, an alkali metal base or alkaline earth metal base solution is introduced into the carboxylation reactor, the reaction medium is extracted with the alkali metal base or alkaline earth metal base solution in the carboxylation reactor, and α An aqueous solution of an alkali metal salt or alkaline earth metal salt of a β-ethylenically unsaturated carboxylic acid can be removed from the carboxylation reactor.

Claims (15)

α,β−エチレン性不飽和カルボン酸のアルカリ金属塩又はアルカリ土類金属塩の製造方法であって、
a)アルケンと二酸化炭素とカルボキシル化触媒をアルケン/二酸化炭素/カルボキシル化触媒付加物に変換する工程と、
b)該付加物を助剤塩基で分解してカルボキシル化触媒を放出し、α,β−エチレン性不飽和カルボン酸の助剤塩基塩を与える工程と、
c)該α,β−エチレン性不飽和カルボン酸の助剤塩基塩を、アルカリ金属塩基またはアルカリ土類金属塩基と反応させて助剤塩基を放出し、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩を与える工程とを含む製造方法。
A method for producing an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid, comprising:
a) converting the alkene, carbon dioxide and carboxylation catalyst into an alkene / carbon dioxide / carboxylation catalyst adduct;
b) decomposing the adduct with an auxiliary base to release a carboxylation catalyst to give an auxiliary base salt of an α, β-ethylenically unsaturated carboxylic acid;
c) The α, β-ethylenically unsaturated carboxylic acid auxiliary base salt is reacted with an alkali metal base or alkaline earth metal base to release the auxiliary base, and the α, β-ethylenically unsaturated carboxylic acid is released. A step of providing an alkali metal salt or an alkaline earth metal salt.
工程b)で形成されるα,β−エチレン性不飽和カルボン酸の助剤塩基塩が反応媒体から除去される請求項1に記載の方法。   The process according to claim 1, wherein the auxiliary base salt of α, β-ethylenically unsaturated carboxylic acid formed in step b) is removed from the reaction medium. 上記の除去が、α,β−エチレン性不飽和カルボン酸の助剤塩基塩が濃縮された第一液相と助剤塩基が濃縮された第二液相への液−液相分離を含む請求項2に記載の方法。   Claim wherein the removal comprises a liquid-liquid phase separation into a first liquid phase enriched in an auxiliary base salt of an α, β-ethylenically unsaturated carboxylic acid and a second liquid phase enriched in an auxiliary base. Item 3. The method according to Item 2. 工程c)において、上記の除去された第一液相を、アルカリ金属塩基またはアルカリ土類金属塩基の水溶液で処理して、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の水溶液と助剤塩基を含む有機相を得る請求項3に記載の方法。   In step c), the removed first liquid phase is treated with an aqueous solution of an alkali metal base or alkaline earth metal base to obtain an alkali metal salt or alkaline earth of an α, β-ethylenically unsaturated carboxylic acid. The process according to claim 3, wherein an organic phase comprising an aqueous solution of a metal salt and an auxiliary base is obtained. 工程c)において、上記反応媒体を、アルカリ金属塩基またはアルカリ土類金属塩基の水溶液で抽出して、α,β−エチレン性不飽和カルボン酸のアルカリ金属塩またはアルカリ土類金属塩の水溶液を得る請求項1に記載の方法。   In step c), the reaction medium is extracted with an aqueous solution of an alkali metal base or alkaline earth metal base to obtain an aqueous solution of an alkali metal salt or alkaline earth metal salt of an α, β-ethylenically unsaturated carboxylic acid. The method of claim 1. 上記助剤塩基が第三級アミンである請求項1〜5のいずれか一項に記載の方法。   The method according to any one of claims 1 to 5, wherein the auxiliary base is a tertiary amine. 上記第三級アミンが一般式(I)をもつ:

NR123 (I)

(式中、R1〜R3基は、同一であっても異なっていてもよく、それぞれ独立して非分岐状または分岐状の、非環式または環状の、脂肪族、芳香脂肪族または芳香族基で、いずれの場合も1から16個の炭素原子を有し、個々の炭素原子はそれぞれ独立して−O−基と>N−基から選ばれるヘテロ基で置換されていてもよく、2個または全ての3個の基が相互に結合してそれぞれ少なくとも4個の原子を含む鎖を形成していてもよい)請求項6に記載の方法。
The tertiary amine has the general formula (I):

NR 1 R 2 R 3 (I)

Wherein R 1 to R 3 groups may be the same or different and are each independently unbranched or branched, acyclic or cyclic, aliphatic, araliphatic or aromatic. Each group having 1 to 16 carbon atoms, each of which may be independently substituted with a hetero group selected from the group -O- and> N-, The process according to claim 6, wherein two or all three groups may be bonded together to form a chain each containing at least 4 atoms.
上記カルボキシル化触媒が、元素周期律表の4、6、7、8、9、10族の少なくとも一種の元素を含む請求項1〜7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, wherein the carboxylation catalyst contains at least one element of Groups 4, 6, 7, 8, 9, and 10 of the Periodic Table of Elements. 上記カルボキシル化触媒が、Ni0錯体を含む請求項8に記載の方法。 The method of claim 8, wherein the carboxylation catalyst comprises a Ni 0 complex. 用いるカルボキシル化触媒が不均一触媒である請求項1〜9のいずれか一項に記載の方法。   The method according to claim 1, wherein the carboxylation catalyst used is a heterogeneous catalyst. 用いるカルボキシル化触媒が均一触媒である請求項1〜9のいずれか一項に記載の方法。   The method according to any one of claims 1 to 9, wherein the carboxylation catalyst used is a homogeneous catalyst. 用いるカルボキシル化触媒が均一触媒であり、上記カルボキシル化触媒が第二液相中で濃縮される請求項3〜9のいずれか一項に記載の方法。   The process according to any one of claims 3 to 9, wherein the carboxylation catalyst used is a homogeneous catalyst and the carboxylation catalyst is concentrated in the second liquid phase. 上記カルボキシル化触媒が少なくとも一個のホスフィン配位子を含む請求項1〜12のいずれか一項に記載の方法。   The method according to any one of claims 1 to 12, wherein the carboxylation catalyst comprises at least one phosphine ligand. 上記カルボキシル化触媒が少なくとも一個のN−複素環式カルベン配位子を含む請求項1〜12のいずれか一項に記載の方法。   13. A process according to any one of claims 1 to 12, wherein the carboxylation catalyst comprises at least one N-heterocyclic carbene ligand. 上記アルケンがエテンであり、上記α,β−エチレン性不飽和カルボン酸がアクリル酸である請求項1〜14のいずれか一項に記載の方法。   The method according to claim 1, wherein the alkene is ethene and the α, β-ethylenically unsaturated carboxylic acid is acrylic acid.
JP2012555432A 2010-03-03 2011-03-03 Preparation of ethylenically unsaturated carboxylates by carboxylation of alkenes. Pending JP2013521261A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10155387 2010-03-03
EP10155387.3 2010-03-03
PCT/EP2011/053229 WO2011107559A2 (en) 2010-03-03 2011-03-03 Production of ethylenically unsaturated carboxylic acid salts by the carboxylation of alkenes

Publications (1)

Publication Number Publication Date
JP2013521261A true JP2013521261A (en) 2013-06-10

Family

ID=44118867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012555432A Pending JP2013521261A (en) 2010-03-03 2011-03-03 Preparation of ethylenically unsaturated carboxylates by carboxylation of alkenes.

Country Status (5)

Country Link
EP (1) EP2542516A2 (en)
JP (1) JP2013521261A (en)
CN (1) CN102884025A (en)
CA (1) CA2791834A1 (en)
WO (1) WO2011107559A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523127A (en) * 2014-05-16 2017-08-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing unsaturated carboxylates
KR20180134377A (en) * 2016-04-11 2018-12-18 바스프 에스이 Method for producing unsaturated carboxylic acid salt
WO2019116483A1 (en) * 2017-12-14 2019-06-20 三菱重工エンジニアリング株式会社 Acrylic acid production plant and acrylic acid production method
JP2019156790A (en) * 2018-03-15 2019-09-19 積水化学工業株式会社 SYNTHESIS METHOD OF α,β-UNSATURATED CARBOXYLIC ACID
WO2019188507A1 (en) * 2018-03-28 2019-10-03 積水化学工業株式会社 METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLATE

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933262B2 (en) 2011-05-24 2015-01-13 Basf Se Process for preparing polyisocyanates from biomass
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
US8697909B2 (en) 2011-12-29 2014-04-15 Basf Se Preparation of α,β-ethylenically unsaturated carboxylic salts by catalytic carboxylation of alkenes
EP2797869A4 (en) * 2011-12-29 2015-08-05 Basf Se PREPARATION OF alpha,beta-ETHYLENICALLY UNSATURATED CARBOXYLIC SALTS BY CATALYTIC CARBOXYLATION OF ALKENES
DE102013210840A1 (en) 2013-06-11 2014-12-11 Evonik Industries Ag Synthesis of α, β-unsaturated carboxylic acids (meth) acrylates from olefins and CO2
CN104418719B (en) * 2013-08-30 2016-04-13 中国石油化工股份有限公司 A kind of synthesis of conjugated carboxylic alkeneacid
CN104415791B (en) * 2013-08-30 2018-06-19 中国石油化工股份有限公司 A kind of preparation method of the molybdenum base metal complex catalysts of acrylic acid synthesizing
DE102014203951A1 (en) 2014-03-05 2015-09-10 Evonik Degussa Gmbh Synthesis of alpha, beta-unsaturated carboxylic acids (meth) acrylates from olefins
US9758461B2 (en) 2014-05-16 2017-09-12 Basf Se Process for preparing an unsaturated carboxylic acid salt using an aryloxide
WO2015173307A1 (en) 2014-05-16 2015-11-19 Basf Se Preparing an unsaturated carboxylic acid salt from an alkene and carbon dioxide using a heterogeneous alkalinity reservoir
WO2015173296A1 (en) * 2014-05-16 2015-11-19 Basf Se Preparing an unsaturated carboxylic acid salt from an alkene and carbon dioxide using a heterogeneous base
WO2015173295A1 (en) * 2014-05-16 2015-11-19 Basf Se Preparing an unsaturated carboxylic acid salt from an alkene and carbon dioxide using a covalently immobilized transition metal complex
US9725393B2 (en) 2014-10-08 2017-08-08 Chevron Phillips Chemical Company Lp Methods for the production of α,β-unsaturated carboxylic acids and salts thereof
US9416087B2 (en) 2014-10-08 2016-08-16 Chevron Phillips Chemical Company Lp Methods for the production of α,β-unsaturated carboxylic acids and salts thereof
WO2017106176A2 (en) 2015-12-15 2017-06-22 Chevron Phillips Chemical Company Lp FORMATION OF α,β-UNSATURATED CARBOXYLIC ACIDS AND SALTS THEREOF FROM METALALACTONES AND ANIONIC POLYELECTROLYTES
US10544080B2 (en) 2017-06-14 2020-01-28 Chevron Phillips Chemical Company Lp Continuous process for the conversion of olefins and carbon dioxide to acrylates via solution phase reactor
US10550061B2 (en) 2017-06-14 2020-02-04 Chevron Phillips Chemical Company Lp Sulfur oxoacid-substituted and phosphorus oxoacid-substituted polyaromatic resins and salts thereof as promoters in acrylate production from coupling reactions of olefins and carbon dioxide
US11174213B2 (en) 2018-10-12 2021-11-16 Chevron Phillips Chemical Company, Lp Effects of catalyst concentration and solid activator on nickel-mediated olefin/carbon dioxide coupling to acrylates
EP4326412A1 (en) * 2021-04-22 2024-02-28 Basf Se Extraction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3432082A1 (en) * 1984-08-31 1986-03-06 Eduard Dr. Barthell Process for the preparation of aqueous solutions of alkali metal acrylate
DE10221203A1 (en) * 2002-05-13 2003-07-10 Basf Ag Production of neutralized acrylic acid solution suitable for superabsorber production, e.g. for hygiene articles, involves dissolution of crude acrylic acid in aqueous alkali and extraction of impurities with solvent
DE10330217B3 (en) * 2003-07-03 2004-12-09 Sasol Germany Gmbh Production of metal salts of short-chain unsaturated carboxylic acids, e.g. useful in coatings and rubber materials, comprises reacting a metal alkoxide with an alkenoic acid or maleic acid in the presence of oxygen
US7687661B2 (en) * 2006-03-15 2010-03-30 Battelle Memorial Institute Method for conversion of β-hydroxy carbonyl compounds

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014049345; ORGANOMETALLICS V26, 2007, P6784-6792 *
JPN6014049348; JOURNAL OF AMERICAN CHEMICAL SOCIETY V102, 1980, P7448-7456 *
JPN6014049351; Christian Bruckmeier: 'Formation of Methyl Acrylate from CO2 and Ethylene via Methylation of Nickelalactones' ORGANOMETALLICS 29 (10), 20100419, P2199-2202 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523127A (en) * 2014-05-16 2017-08-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing unsaturated carboxylates
KR20180134377A (en) * 2016-04-11 2018-12-18 바스프 에스이 Method for producing unsaturated carboxylic acid salt
JP2019511530A (en) * 2016-04-11 2019-04-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing unsaturated carboxylic acid salt
KR102346316B1 (en) 2016-04-11 2022-01-03 바스프 에스이 Process for the preparation of unsaturated carboxylic acid salts
WO2019116483A1 (en) * 2017-12-14 2019-06-20 三菱重工エンジニアリング株式会社 Acrylic acid production plant and acrylic acid production method
JP2019156790A (en) * 2018-03-15 2019-09-19 積水化学工業株式会社 SYNTHESIS METHOD OF α,β-UNSATURATED CARBOXYLIC ACID
JP7065654B2 (en) 2018-03-15 2022-05-12 積水化学工業株式会社 Method for synthesizing α, β-unsaturated carboxylic acid
WO2019188507A1 (en) * 2018-03-28 2019-10-03 積水化学工業株式会社 METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLATE
JPWO2019188507A1 (en) * 2018-03-28 2021-03-18 積水化学工業株式会社 Method for producing α, β-unsaturated carboxylate

Also Published As

Publication number Publication date
WO2011107559A2 (en) 2011-09-09
CA2791834A1 (en) 2011-09-09
EP2542516A2 (en) 2013-01-09
CN102884025A (en) 2013-01-16
WO2011107559A3 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP2013521261A (en) Preparation of ethylenically unsaturated carboxylates by carboxylation of alkenes.
US8642803B2 (en) Preparation of ethylenically unsaturated carboxylic salts by carboxylation of alkenes
JP6122030B2 (en) Preparation of α, β-ethylenically unsaturated carboxylates by catalytic carboxylation of alkenes
JP6635948B2 (en) Method for preparing unsaturated carboxylate
CN106458824B (en) Method for preparing unsaturated carboxylic acid salt using aryl oxide
US8697909B2 (en) Preparation of α,β-ethylenically unsaturated carboxylic salts by catalytic carboxylation of alkenes
US10138196B2 (en) Process for preparing an unsaturated carboxylic acid salt
CN108884010B (en) Process for preparing unsaturated carboxylic acid salts
WO2015173307A1 (en) Preparing an unsaturated carboxylic acid salt from an alkene and carbon dioxide using a heterogeneous alkalinity reservoir
WO2015173295A1 (en) Preparing an unsaturated carboxylic acid salt from an alkene and carbon dioxide using a covalently immobilized transition metal complex
JP5566534B2 (en) Method for producing formic acid by reaction of carbon dioxide with hydrogen
EP4121407B1 (en) Catalytic process for preparing an alpha, beta-ethylenically unsaturated carboxylic acid salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150320

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160212