JP2013521042A - 脳深部刺激療法用の設定を決定する方法およびシステム - Google Patents

脳深部刺激療法用の設定を決定する方法およびシステム Download PDF

Info

Publication number
JP2013521042A
JP2013521042A JP2012555524A JP2012555524A JP2013521042A JP 2013521042 A JP2013521042 A JP 2013521042A JP 2012555524 A JP2012555524 A JP 2012555524A JP 2012555524 A JP2012555524 A JP 2012555524A JP 2013521042 A JP2013521042 A JP 2013521042A
Authority
JP
Japan
Prior art keywords
stimulation
field
electrodes
probe
brain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012555524A
Other languages
English (en)
Inventor
トーダー エミル
セシール フランソワ マルテンス ヒュベルト
マーセル ジョセ デクレ ミシェル
フランシスカス パウルス マリア ブゼラール
ジェリット ブランケン ピーター
ジェームス アンダーソン デイビット
Original Assignee
サピエンス ステアリング ブレイン スティムレーション ベー ヴィ
ニューロネクサス テクノロジーズ,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サピエンス ステアリング ブレイン スティムレーション ベー ヴィ, ニューロネクサス テクノロジーズ,インク. filed Critical サピエンス ステアリング ブレイン スティムレーション ベー ヴィ
Publication of JP2013521042A publication Critical patent/JP2013521042A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0534Electrodes for deep brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/36182Direction of the electrical field, e.g. with sleeve around stimulating electrode
    • A61N1/36185Selection of the electrode configuration

Landscapes

  • Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurosurgery (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Psychiatry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

脳刺激プローブ用の刺激設定と、対応するVフィールドとの関係を決定する、方法および制御システムが提供される。脳刺激プローブは、多数の刺激電極を含む。Vフィールドは、刺激電極を囲む脳組織内の電場である。本方法は、n個の刺激電極に試験電流を連続して加えるステップであって、nは、2と脳刺激プローブに属する刺激電極の数との間の数であるステップと、n個の刺激電極のうちの1つの電極における各試験電流に対して、m個の刺激電極において結果として生じる励起電圧を測定するステップであって、mは、2と脳刺激プローブに属する刺激電極の数との間の数であるステップと、刺激設定および測定された励起電圧から、(m*n)結合行列を導き出すステップであって、結合行列内の要素(q,p)は、刺激電極のうちの2つの電極間の電気インピーダンスの量を反映するステップと、結合行列を用いて、刺激設定と、対応するVフィールドとの関係を決定するステップとを含む。

Description

本発明は、脳刺激プローブ用の刺激設定と、対応するVフィールド(V場)との関係を決定する方法に関し、脳刺激プローブは多数の刺激電極を含み、Vフィールドは、刺激電極を囲む脳組織内の電位分布である。
本発明は、さらにこのような関係を決定するコンピュータプログラム製品および制御システムに関する。
脳深部刺激療法(DBS:deep brain stimulation)は、医療デバイスの埋め込みを伴う外科治療であり、脳の特定の部分に電気パルスを送る。好適なDBSプローブは、標的部位内の種々の位置に刺激電気パルスを供給する複数の電極を含む。例えば、このプローブは、64または128個の電極を含むことができる。選択された脳領域内のDBSは、別のやり方では難治性となる、慢性痛、パーキンソン病、振顫およびジストニアなどの運動障害ならびに情動障害に対して、著しい治療有効性をもたらしている。DBS手術は、標的構造を電気的に刺激することを目指し、一方で近隣の特定の神経構造を刺激することによって引き起こされる有害な副作用を最小化する。それを可能にするために、特定の刺激設定が、脳組織内に発生する電場に与える影響を知ることが重要である。同様に、最適な刺激量を得るために、どんな刺激設定が当てはまるかを知ることが望ましい。
非特許文献1において、視床下核のDBSによって直接に活性化された軸索組織の量の量的理解を深める方法が開示されている。この方法は、有限要素コンピュータモデル(FEM)を用いて、人の拡散テンソル磁気共鳴データ(MRI/DTI)から導き出された組織伝導度特性を有する媒体内のDBSの影響に取り組む。
Mclntyre他、「Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus(視床下核の脳深部刺激療法によって発生する電場および電気刺激の影響)」、Clin Neurophys、第115号、第589〜595頁(2004年)。
患者の脳の伝導度地図を得るためには、MRI/DTIシステムが必要となることが、非特許文献1の方法の不利な点である。さらに加えて、DTIは、電気伝導度を直接には測定せずに、代わりに(DTIによって測定された)水拡散と電気伝導度との理論上の関係を仮定することによって電気伝導度を見積もる。
その上に、実用的なスキャン時間に対するDTIの解像度は、約2mm、すなわち高解像度DBSプローブの典型的な電極ピッチの4倍、に制限される。組織伝導度が、時間とともに、例えばプローブのカプセル化に起因して変化すること、およびこの既知の方法が、伝導度地図を規則的に更新する必要があることも問題である。規則的にDTIスキャンを実行することは、この目的のためには非実用的である。
以上の点を考慮して、上述したような脳刺激プローブ用の刺激設定を決定する、さらに実用的なまたはさらに正確な方法を提供することが、本発明の目的である。
本発明の第1の態様によれば、脳刺激プローブ用の刺激設定と、対応するVフィールドとの関係を決定する方法において、脳刺激プローブは多数の刺激電極を含み、Vフィールドは刺激電極を囲む脳組織内の電位分布である方法であって、n個の刺激電極に試験電流を連続して加えるステップであって、nは、2と脳刺激プローブに属する刺激電極の数との間の数であるステップと、n個の刺激電極のうちの1つの電極における各試験電流に対して、m個の刺激電極において結果として生じる励起電圧を測定するステップであって、mは、2と脳刺激プローブに属する刺激電極の数との間の数であるステップと、刺激設定および測定された励起電圧から、(m*n)結合行列を導き出すステップであって、結合行列内の要素Zq,pは、刺激電極のうちの2つの電極間の電気インピーダンスの量を反映するステップと、結合行列を用いて、刺激設定と、対応するVフィールドとの関係を決定するステップとを含む、脳刺激プローブ用の刺激設定と、対応するVフィールドとの関係を決定する方法、を提供することによってこの目的が達成される。
電極に近接した脳組織の電気的特性、典型的にはインピーダンスは、試験電流を加えて励起電圧を測定することによって決定される。結合行列は、決定された電気的特性を含む。結合行列内の要素Zq,pは、例えば電極q上の電圧Vと電極pに注入される試験電流Iとの寄与比率を表すことができる。これらのインピーダンス値Zq,pは、刺激プローブ(例えば電極サイズ、形状および材料)および周囲系(例えば脳組織)の特性に依存する。被刺激電極(刺激される電極)それ自体における励起電圧も、測定することができることに留意されたい。このような測定は、(m*n)結合行列内の対角要素を決定して、被刺激電極と刺激プローブの接地電極との間のインピーダンスを反映することになる。接地電極または戻り電極は、プローブのケーシングによって形成することができる。
代替策としては、インピーダンス行列Zは、アドミタンス行列の数学的逆変換によって発生することができる。アドミタンス行列の要素は、特定の電極上に非ゼロの試験電圧を印加し、同時に他のすべての電極上にゼロ電圧を印加することによって決定することができる。次いでアドミタンス行列の要素は、前記電圧を引き起こす必要がある電極において、電流を測定することによって得られる。
結合行列に記憶された情報および電場に関するいくらかの理論的知識を用いて、刺激設定と脳組織内の対応するVフィールドとの関係が決定される。このような関係は、例えば単極の単位電流励起に対する期待Vフィールドを記述するルックアップテーブルの形式で、提供してもよい。この関係に基づいておよび線形システムと仮定して(線形システムでは、ネットワーク理論から知られている重ね合わせの原理を適用することができる)、加えられた刺激電流の起こりうる任意の組み合わせに対する期待Vフィールド(I)を計算することが可能であり、および逆もまた同様に、標的Vフィールドを得るのに必要な、刺激電流の組み合わせを計算することが可能である。
脳組織内に結果として生じるVフィールドは、例えば、刺激プローブの各電極において、期待電流I=(I、I、I、...、I)または期待電位V=(V、V、V、...、V)の知識を用いて決定することができる。同様に、脳組織内に標的Vフィールドを得るために、どんな電流Iまたは電極電位Vが必要となるかを計算することができる。電極電位Vまたは電流Iと刺激設定との関係は、結合行列から導き出すことができる。
本発明による方法の主な利点は、本方法が、解剖学的画像から電気的特性を導き出すための撮像デバイスを必要としないことである。
本発明によれば、脳組織の電気的特性は、インピーダンス測定から導き出され、どんな電気的特性も、解剖学的画像を分析することによって間接的に決定しなくてよい。どんな撮像装置も、刺激設定と、対応するVフィールドとの関係を決定するのに必要でないという事実は、時間とともにこの関係を更新することをはるかに容易にする。この関係を更新することは、例えば、組織伝導度が、プローブのカプセル化に起因して変化することがあるので、必要となる場合がある。その上に、本発明による方法は、所要の刺激設定および/または期待Vフィールドのさらに正確な見積もりを提供するのに用いることができる。DTIのような周知の撮像技術の解像度は、刺激プローブの典型的な電極ピッチの約4倍であり、一方で本発明による方法は、別々の刺激電極に近接した脳組織の電気的特性に関する詳細な情報を提供する。
本発明の第2の態様によれば、刺激電極に試験電流を加える手段と、刺激電極において励起電圧を測定する手段と、本発明による方法を実行するように構成されるプロセッサとを含む制御システムが提供される。
本発明のこれらおよび他の態様は、本明細書で以下に説明される実施形態から明らかであり、これらの実施形態を参照して説明されることになる。
図1は、複数の刺激電極を有する刺激プローブを模式的に示す。 図2は、本発明による制御システムのブロック図を示す。 図3は、脳刺激プローブ用の刺激設定と、対応するVフィールドとの関係を決定する方法のフローチャートを示す。 図4は、期待Vフィールドを決定する方法のフローチャートを示す。 図5は、標的Vフィールドを得るのに必要な刺激設定を決定する方法のフローチャートを示す。
図1は、複数の刺激電極11を有する脳刺激プローブ10を模式的に示す。これは概略図にすぎず、使用される実際の刺激プローブ10は、かなり異なる場合がある。本発明による方法およびシステムにおいて用いられる刺激プローブ10にとって重要なことは、このプローブが、プローブ表面の少なくとも一部分に分布する複数の刺激電極11を有することである。例えば、64または128個の電極のアレイが用いられる。
図2は、図1の脳刺激プローブ10を制御する制御システム20を模式的に示す。刺激プローブ10は、パルス発生器21を経由してプロセッサ23に結合される。プロセッサ23は、刺激プローブ10が適切に機能することを可能にするために、刺激電極11に適用する刺激設定を決定して制御する。パルス発生器21は、プロセッサ23からの命令に従って、個々の刺激電極11に、電気信号、例えば電流、を供給する。プロセッサ23もまた、刺激プローブ10の機能状態に関する情報およびこのプローブの環境とのやり取りに関する情報を得るために、刺激電極11からのデータおよび信号を受けることができる。電極11において、電流を受ける電極11の近傍のまたはさらに離れたところの励起電圧を測定するインピーダンス記録手段または電圧計22が提供される。プロセッサ23は、さらに、例えば本発明によるシステム20および方法を制御するための、例えば患者データおよびソフトウェアを記憶するメモリ24に結合される。制御システム20は、他のシステムとデータをやり取りしまたは共有することができるローカルまたは広域ネットワーク(例えばインターネット)に結合することができる。
一実施形態では、刺激を発生させる独立した電流源の数(例えば4)は、電極の数(例えば64)を下回る。単一電流源の出力は、同時にいくつかの電極に分配することができる。この共通源の電流は、個々の電極の組織インピーダンスおよび個々の位置へのリードインピーダンスと依存状態にある電極に分布する。刺激設定は、パルス発生器がどの電極に接続されるかを表す接続設定と組み合わされた電流発生器の電流値として定義することができる。電極の電流源に対する刺激設定を理解しておよび結合行列を用いて、(すべての電極上の)刺激電流Iを計算することができる。
さらに加えて、ユーザがシステム20を構成するまたは使用するのを支援することができる情報を示すディスプレイ26を、プロセッサ23に結合することができる。システム20は、さらに加えて、マウス25もしくは他のタイプのポインタデバイスおよび/またはキーボードなどの、ユーザ入力手段を含むことができる。ディスプレイ26は、ユーザがシステム20を構成して制御することを可能にするグラフィカル・ユーザ・インターフェースを提供するのにも用いることができる。そのためには、ディスプレイ26はさらにタッチスクリーンの機能性を有してもよい。
図3は、脳刺激プローブ10用の刺激設定と、対応するVフィールドとの関係を決定する方法のフローチャートを示す。本方法は、励起ステップ31で開始し、同ステップでは、各刺激電極11または選択された刺激電極11のサブグループを、パルス発生器21を用いて既知の試験電流Itestで連続して励起する。応答記録ステップ32では、刺激電極11のうちの1つの電極に試験パルスが加えられると、インピーダンス記録手段または電圧計22は、前記電極11において励起電圧を測定し、他の刺激電極11において応答電圧を測定する。この応答は、電極pにおける励起に起因した、刺激電極qにおける電極電圧Vq,pとして記録することができ、または測定されたインピーダンス値Zq,pとして記録することができる。この測定は、すべての刺激電極11に対して、または選択された、例えば近接した、m個の刺激電極11に対して、実行することができる。最初の刺激電極11を励起し、m個の電極11上の応答を測定した後、次の刺激電極11を試験することができる。n個の電極が励起されてm個の電極上の電圧が記録されると、最初の2つのステップ31、32が、少なくともn回実行される。任意選択で、いくつかのまたはすべての刺激電極11が、2回以上、場合によっては種々の試験電流Itestで試験される。応答記録ステップ32の結果は、プローブ10とプローブ10を囲む組織とを組み合わせた電気的特性についてのm*n回の測定となる。行列発生ステップ33では、この情報は、m*n結合行列35を形成するように処理することができる。
実際には、試験される電極の数nは、しばしば記録する電極の数mに等しいことになる。この結合行列35は、不均質の異方性組織伝導度の影響を取り込み、すなわち同行列の要素は、種々の位置間の電気的組織インピーダンスの量を反映する。例えば、結合行列35内の登録(q、p)は、電極q上の電圧と電極pに注入される電流との比を保持することができる。好ましい実施形態では、被刺激電極それ自体における励起電圧も測定される。このような測定は、(m*n)結合行列内の対角要素を決定して、被刺激電極と刺激プローブの接地電極との間のインピーダンスを反映することになる。接地電極または戻り電極は、プローブのケーシングによって形成することができる。
結合行列35を用いて、各電極11における期待電極電圧Vのパターンを、刺激電流Iの特定のパターンに応じて決定することが可能である。同様に、電極電圧Vの所望のパターンを得るのに必要な刺激電流Iの所要のパターンを決定することが可能である。
プローブ10の適切な動作にとって、どんな刺激電流Iによってどんな電極電位Vが引き起こされるかを知り、逆もまた同様に知るためには、これはまだ十分ではないことがある。図3のステップ34では、結合行列35は、刺激電流の所与のパターンに対する脳組織内の期待電位分布(Vフィールド)を計算するのに用いられ、または所望のVフィールドを得るのに必要な刺激パターンを計算するのに用いられる。個々の電極電位Vまたは電流IからVフィールドを計算することは、例えば有限要素モデリング(FEM)または他の数値技法を用いて行うことができる。Vフィールドは、同種組織の伝導度の仮定下で計算することができるが、しかしこれは、結合行列35から利用可能な測定データによって補正されることが好ましい。個々の電極電位Vまたは電流IとVフィールドとの関係36、37も、脳組織の組成に依存する。結合行列35は、この組成に関する情報を含み、それゆえにVフィールドと電極電位Vまたは電流Iとの関係のさらに正確な決定を提供するのに用いることができる。
図4および図5は、図3内のステップ34を実現する方法の典型的なフローチャートを示す。これらの方法では、結合行列35、および個々の電極電流IとVフィールドとの関係に関する知識は、所要の刺激設定または期待Vフィールドを決定するのに用いられる。図4は、期待Vフィールドを決定する方法を示し、図5は、標的Vフィールドを得るのに必要な刺激設定を決定する方法を示す。
図4では、刺激設定から成る特定の1セットに対して、期待Vフィールドがどのように計算されるかが示される。最初に、例えばパルス発生器の電流設定、およびn個の電極11をパルス発生器に電気的に結合する接続設定の形式で、刺激設定が提供される(ステップ41)。次いで、結合行列35が用いられて、電極11において結果として生じる電流I、I、...、I、...、Iを決定する(ステップ42)。電極11における電極電流I、I、...、I、...、Iが分かると、電極電流I=I、I、...、I、...、IとVフィールドとの関係36が用いられて、結果として生じるVフィールドを計算する(ステップ43)。結合行列35は、図3を参照して上述したように測定を用いて得られることに留意されたい。埋め込まれたプローブ10用の結合行列は、少なくとも1回決定しなければならない。しかしながら、結合行列35は、例えば脳組織内に時間とともに生じる可能性がある変化を考慮に入れるために、周期的に更新されることが好ましい。電極電流IとVフィールドとの関係36は、同種組織の伝導度の仮定下で1回計算することができるが、しかしこれは、結合行列35から利用可能な測定データによって補正されることが好ましい。関係36は、結合行列35といっしょに更新することができる。
図5では、標的Vフィールドを得るのに必要な刺激設定が、どのように決定されるかが示される。最初に、例えば脳内の刺激すべき標的構造の位置座標から成る1セットの形式で、標的Vフィールドのディスクリプション(description)が提供される(ステップ51)。代替策としては(またはさらに加えて)、刺激を回避すべき神経構造の位置を記述する座標が提供される。次いでVフィールドと個々の電極電流Iとの関係37が用いられて、所望のVフィールドを得るのに必要な電極電流Iを計算する(ステップ52)。次いで結合行列35を用いると、これらの所要の電極電流Iを得るための刺激設定が決定される(ステップ53)。
本発明は、コンピュータプログラム、詳しくは本発明を実行に移すのに適合した担体上または担体内のコンピュータプログラム、にも及ぶことを理解されたい。プログラムは、ソースコード、オブジェクトコード、コード中間ソースおよび部分的にコンパイルされた形式などのオブジェクトコードの形式、または本発明による方法の実装用に適している任意の他の形式でもよい。このようなプログラムは、多くの異なるアーキテクチャ設計を有することができることも理解されたい。例えば、本発明による方法またはシステムの機能性を実装するプログラムコードは、1つ以上のサブルーチン内へ細分化することができる。これらのサブルーチン間で機能性を分配する多くの異なるやり方が、当業者には明らかになることになる。サブルーチンは、1つの実行可能なファイルにいっしょに記憶されて、内蔵式のプログラムを形成することができる。このような実行可能なファイルは、コンピュータ実行可能な命令、例えばプロセッサ命令および/またはインタープリタ命令(例えばJava(登録商標)インタープリタ命令)を含むことができる。代替策としては、1つ以上のまたはすべてのサブルーチンは、少なくとも1つの外部ライブラリファイルに記憶して、静的にまたは動的に、例えば実行時に、メインプログラムとリンクすることができる。メインプログラムは、サブルーチンのうちの少なくとも1つに対する少なくとも1つの呼び出しを含有する。サブルーチンは、互いに関数呼び出しを含むこともできる。コンピュータプログラム製品に関する一実施形態は、説明された方法のうちの少なくとも1つの方法に属する複数の処理ステップのそれぞれに対応するコンピュータ実行可能な命令を含む。これらの命令は、サブルーチン内へ細分化することができ、および/または静的にもしくは動的にリンクすることができる1つ以上のファイルに記憶することができる。コンピュータプログラム製品に関する別の実施形態は、説明されたシステムおよび/または製品のうちの少なくとも1つのシステムまたは製品に属する複数の手段のそれぞれに対応するコンピュータ実行可能な命令を含む。これらの命令は、サブルーチン内へ細分化することができ、および/または静的にもしくは動的にリンクすることができる1つ以上のファイルに記憶することができる。
コンピュータプログラムの担体は、プログラムを保持することができる任意の構成要素またはデバイスとすることができる。例えば、担体は、ROM、例えばCD−ROMもしくは半導体ROM、または磁気記録媒体、例えばフロッピディスクもしくはハードディスク、などの記憶媒体を含むことができる。さらに担体は、電気もしくは光ケーブルを経由してまたは無線もしくは他の手段で、伝達することができる電気もしくは光信号などの伝達可能担体とすることができる。プログラムがこのような信号内に具体化されると、担体は、このようなケーブルまたは他のデバイスもしくは手段で構成することができる。代替策としては、担体は、関係のある方法を実行するのに適合している、または関係のある方法の実行に用いられる、プログラムが埋め込まれた集積回路とすることができる。
上述した実施形態は、本発明を限定するというよりも説明するものであり、当業者は、添付の請求項の範囲から逸脱せずに、多くの代替の実施形態を設計することができることに留意されたい。請求項において括弧間に置かれたどのような参照符号も、請求項を限定するようには解釈されないものとする。動詞「を含む」およびその活用形の用法は、請求項内に述べられたもの以外のエレメントまたはステップの存在を除外しない。エレメントの直前の冠詞「a」または「an」は、複数の当該のエレメントの存在を除外しない。本発明は、いくつかの別個のエレメントを含むハードウェアを用いて、および適切にプログラミングされたコンピュータを用いて、実装することができる。いくつかの手段を列挙するデバイス請求項において、これらの手段のいくつかは、1つのかつ同一のハードウェア品によって具体化してもよい。いくつかの方策が互いに異なる従属項に記載されているという単なる事実は、これらの方策の組み合わせを有利に用いることができないことを指し示すものではない。

Claims (6)

  1. 脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する方法において、前記脳刺激プローブ(10)は多数の刺激電極(11)を含み、前記Vフィールドは前記刺激電極(11)を囲む脳組織内の電位分布である方法であって、
    n個の刺激電極(11)に試験電流を連続して加えるステップであって、nは、2と前記脳刺激プローブ(10)に属する刺激電極(11)の数との間の数であるステップと、
    前記n個の刺激電極(11)のうちの1つの電極における各試験電流に対して、m個の刺激電極において結果として生じる励起電圧を測定するステップであって、mは、2と前記脳刺激プローブ(10)に属する刺激電極(11)の数との間の数であるステップと、
    前記刺激設定および前記測定された励起電圧から、(m*n)結合行列を導き出すステップであって、該結合行列内の要素Zq,pは、前記刺激電極(11)のうちの2つの電極間の電気インピーダンスの量を反映するステップと、
    前記結合行列を用いて、前記刺激設定と前記対応するVフィールドとの前記関係を決定するステップとを含む、脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する方法。
  2. 特定の電極(11)上に非ゼロの試験電圧を印加し、同時に他のすべての電極(11)上にゼロ電圧を印加するステップと、
    前記印加電圧を引き起こす必要がある前記電極(11)において、結果として生じる電流を測定するステップと、
    アドミタンス行列を決定するステップであって、該アドミタンス行列の要素は、前記測定された、結果として生じる電流を反映するステップと、
    前記アドミタンス行列の数学的逆変換によって、前記結合行列を発生させるステップとをさらに含む、請求項1に記載の、脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する方法。
  3. 刺激設定から成る所定の1セットを受けるステップと、
    前記刺激設定と前記対応するVフィールドとの前記関係を用いて、刺激設定から成る前記所定の1セットに対応する前記Vフィールドを決定するステップとをさらに含む、請求項1に記載の、脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する方法。
  4. 標的Vフィールドのディスクリプションを受けるステップと、
    前記刺激設定と前記対応するVフィールドとの前記関係を用いて、前記標的Vフィールドを得るのに必要な刺激設定から成る1セットを決定するステップとをさらに含む、請求項1に記載の、脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する方法。
  5. プロセッサに請求項1に記載の方法を実行させるように動作する、脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定するコンピュータプログラム製品。
  6. 脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する制御システム(20)において、前記脳刺激プローブ(10)は多数の刺激電極(11)を含み、前記Vフィールドは前記刺激電極(11)を囲む脳組織内の電位分布である、制御システム(20)であって、
    前記刺激電極に試験電流を加える手段(21)と、
    前記加えられた試験電流から結果として生じる励起電圧を測定する手段(22)と、
    プロセッサ(23)であって、
    前記試験電流を加える手段(21)に、n個の刺激電極(11)に試験電流を連続して加えるように命令し、nは、2と前記脳刺激プローブ(10)に属する刺激電極(11)の数との間の数であり、
    前記励起電圧を測定する手段(22)に、m個の刺激電極(11)において各試験電流によって引き起こされた励起電圧を測定するように命令し、mは、2と前記脳刺激プローブ(10)に属する刺激電極(11)の数との間の数であり、
    前記刺激設定および前記測定された励起電圧から、(m*n)結合行列を導き出し、該結合行列内の要素Zq,pは、前記刺激電極(11)のうちの2つの電極間の電気インピーダンスの量を反映し、
    前記結合行列を用いて、前記刺激設定と前記対応するVフィールドとの前記関係を決定するように構成されるプロセッサ(23)とを含む、
    脳刺激プローブ(10)用の刺激設定と、対応するVフィールドとの関係を決定する制御システム(20)。
JP2012555524A 2010-03-01 2011-02-25 脳深部刺激療法用の設定を決定する方法およびシステム Withdrawn JP2013521042A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30907410P 2010-03-01 2010-03-01
US61/309,074 2010-03-01
PCT/IB2011/050809 WO2011107917A1 (en) 2010-03-01 2011-02-25 Method and system for determining settings for deep brain stimulation

Publications (1)

Publication Number Publication Date
JP2013521042A true JP2013521042A (ja) 2013-06-10

Family

ID=43993162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012555524A Withdrawn JP2013521042A (ja) 2010-03-01 2011-02-25 脳深部刺激療法用の設定を決定する方法およびシステム

Country Status (8)

Country Link
US (4) US8929992B2 (ja)
EP (1) EP2542303B1 (ja)
JP (1) JP2013521042A (ja)
KR (1) KR20130004487A (ja)
CN (1) CN102834141B (ja)
BR (1) BR112012021907A2 (ja)
RU (1) RU2012141558A (ja)
WO (1) WO2011107917A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536376A1 (en) 2008-07-30 2019-09-11 Ecole Polytechnique Fédérale de Lausanne Apparatus for optimized stimulation of a neurological target
WO2010055421A1 (en) 2008-11-12 2010-05-20 Aleva Neurotherapeutics, S.A. Microfabricated neurostimulation device
AU2010326613B2 (en) 2009-12-01 2015-09-17 Ecole Polytechnique Federale De Lausanne Microfabricated surface neurostimulation device and methods of making and using the same
US8929992B2 (en) 2010-03-01 2015-01-06 Sapiens Steering Brain Stimulation B.V. Method and system for determining settings for deep brain stimulation
JP5927176B2 (ja) 2010-04-01 2016-06-01 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ (イーピーエフエル) 神経組織と相互作用するためのデバイス、ならびにそれを作製および使用する方法
EP2727624A1 (en) 2012-11-02 2014-05-07 Sapiens Steering Brain Stimulation B.V. An interface means, especially an interface means for a medical device
DE102013218371B4 (de) 2013-09-13 2019-01-03 Siemens Healthcare Gmbh Verfahren zur Messung von HF-Anregungspulsen
WO2015173787A1 (en) 2014-05-16 2015-11-19 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
US9925376B2 (en) 2014-08-27 2018-03-27 Aleva Neurotherapeutics Treatment of autoimmune diseases with deep brain stimulation
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
US10426362B2 (en) 2014-11-10 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Deep-brain probe and method for recording and stimulating brain activity
US9498628B2 (en) 2014-11-21 2016-11-22 Medtronic, Inc. Electrode selection for electrical stimulation therapy
US10045738B2 (en) 2014-11-25 2018-08-14 Medtronic Bakken Research Center B.V. Tissue resistance measurement
CN104888346B (zh) * 2014-12-21 2020-10-13 徐志强 对昏迷大脑进行神经刺激的方法及装置
KR101623310B1 (ko) * 2015-06-18 2016-05-20 경희대학교 산학협력단 자기공명을 이용한 전기 물성 촬영 장치 및 그 방법
US10786674B2 (en) 2016-03-08 2020-09-29 Medtronic, Inc. Medical therapy target definition
WO2017180482A1 (en) 2016-04-11 2017-10-19 Paradromics, Inc. Neural-interface probe and methods of packaging the same
US9713722B1 (en) 2016-04-29 2017-07-25 Medtronic Bakken Research Center B.V. Alternative electrode configurations for reduced power consumption
WO2018183967A1 (en) 2017-03-30 2018-10-04 Paradromics, Inc. Patterned microwire bundles and methods of producing the same
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
IL145700A0 (en) * 2001-09-30 2002-06-30 Younis Imad Electrode system for neural applications
JP4283467B2 (ja) * 2001-11-12 2009-06-24 株式会社日立製作所 生体計測用プローブ及びそれを用いた生体光計測装置
US8825166B2 (en) * 2005-01-21 2014-09-02 John Sasha John Multiple-symptom medical treatment with roving-based neurostimulation
DK1909890T3 (da) * 2005-07-01 2010-05-03 Imec Organ til funktionel genskabelse af et beskadiget nervesystem
US8620436B2 (en) * 2005-07-08 2013-12-31 Boston Scientific Neuromodulation Corporation Current generation architecture for an implantable stimulator device having coarse and fine current control
US7769472B2 (en) * 2005-07-29 2010-08-03 Medtronic, Inc. Electrical stimulation lead with conformable array of electrodes
WO2010011721A1 (en) * 2008-07-24 2010-01-28 Boston Scientific Neuromodulation Corporation System and method for maintaining a distribution of currents in an electrode array using independent voltage sources
US8929992B2 (en) 2010-03-01 2015-01-06 Sapiens Steering Brain Stimulation B.V. Method and system for determining settings for deep brain stimulation

Also Published As

Publication number Publication date
CN102834141B (zh) 2015-11-25
BR112012021907A2 (pt) 2017-07-18
US20150088230A1 (en) 2015-03-26
KR20130004487A (ko) 2013-01-10
US8929992B2 (en) 2015-01-06
US10758727B2 (en) 2020-09-01
US11524162B2 (en) 2022-12-13
EP2542303B1 (en) 2017-04-05
US20170281947A1 (en) 2017-10-05
EP2542303A1 (en) 2013-01-09
US9717912B2 (en) 2017-08-01
RU2012141558A (ru) 2014-04-10
WO2011107917A1 (en) 2011-09-09
CN102834141A (zh) 2012-12-19
US20130030500A1 (en) 2013-01-31
US20200353261A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US11524162B2 (en) Method and system for determining settings for deep brain stimulation
Miocinovic et al. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation
Gunalan et al. Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation
Caulfield et al. Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling
Chaturvedi et al. Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions
Howell et al. Role of soft-tissue heterogeneity in computational models of deep brain stimulation
US9055974B2 (en) Implantable medical devices storing graphics processing data
US11331495B2 (en) Stimulation field modelling in an implantable stimulator device
US9259181B2 (en) Visualizing tissue activated by electrical stimulation
Kuncel et al. A method to estimate the spatial extent of activation in thalamic deep brain stimulation
Lempka et al. Characterization of the stimulus waveforms generated by implantable pulse generators for deep brain stimulation
Hayden et al. Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis
Hanekom et al. Three-dimensional models of cochlear implants: a review of their development and how they could support management and maintenance of cochlear implant performance
Davids et al. Optimizing selective stimulation of peripheral nerves with arrays of coils or surface electrodes using a linear peripheral nerve stimulation metric
Joucla et al. Extracellular neural microstimulation may activate much larger regions than expected by simulations: a combined experimental and modeling study
Hemm et al. Co-registration of stereotactic MRI and isofieldlines during deep brain stimulation
Alonso et al. Influence of Virchow-Robin spaces on the electric field distribution in subthalamic nucleus deep brain stimulation
Evans et al. The impact of brain lesions on tDCS-induced electric fields
Caulfield et al. Transcranial electrical stimulation motor threshold combined with reverse-calculated electric field modeling can determine individualized tDCS dosage
US20220179022A1 (en) Method for designing electromagnetic coils with explicit peripheral nerve stimulation constraint based on an oracle penalty
Gomez-Tames et al. Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans
Potratz et al. Challenges in bio-electromagnetic modeling
Sakaie et al. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation
Kumbhare 3D Functional Modeling of DBS Efficacy and Development of Analytical Tools to Explore Functional STN

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513