JP2013258884A - Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same - Google Patents

Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same Download PDF

Info

Publication number
JP2013258884A
JP2013258884A JP2012142443A JP2012142443A JP2013258884A JP 2013258884 A JP2013258884 A JP 2013258884A JP 2012142443 A JP2012142443 A JP 2012142443A JP 2012142443 A JP2012142443 A JP 2012142443A JP 2013258884 A JP2013258884 A JP 2013258884A
Authority
JP
Japan
Prior art keywords
battery
power
voltage
charging
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012142443A
Other languages
Japanese (ja)
Inventor
Hiromichi Kinoshita
博道 木下
Yoko Kinoshita
葉子 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012142443A priority Critical patent/JP2013258884A/en
Publication of JP2013258884A publication Critical patent/JP2013258884A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system of non-fuel not emitting CO2.SOLUTION: The method of generating power by utilizing power of an electric power company is a battery system for distributing and receiving a large amount of three-phase 200v power of an electric power company by a three-phase six-wire system, and referred to parallel charging. Since electricity consists of a waveform and particles, in principle, pulsation exists even in the DC power of a DC battery. Therefore, not a three-phase power but a six-phase power closer to pulsation facilitates the charging. Charging time is shortened and the battery is used for a longer time.

Description

鉛バッテリーの12vの電圧の蓄電池を22台〜23台直列に接続し直流電圧264v〜276vを形成する。
そのバッテリーが有する電流量は車の普通車用の90アンペアから100アンペアを原則とするが30アンペアから使用できる。
バッテリーの有する電力を30%消費させ、その消費された電力を短い時間で充電し、繰り返し使用できる事を前提とする。
22 to 23 storage batteries of 12v voltage of lead battery are connected in series to form DC voltages 264v to 276v.
The battery has a current amount of 90 to 100 amperes for ordinary cars, but can be used from 30 amperes.
It is assumed that 30% of the battery power is consumed, the consumed power is charged in a short time, and can be used repeatedly.

自動車用の二次電池は車で使用される場合はオルタネーター若しくはダイナモにより充電をしながら使用されている。
それは自動車のエンジンの回転力を利用することにより長時間放置しない限り日常使用されている。
それは自動車のエンジンの回転力を利用することにより長時間放置しない限り日常使用されている。
然しバッテリーを使用しながら充電すると言う技術は一般的には完成されていない。
自動車の場合はガソリンエンジンと言う強力な回転体があるから可能な技術です。
Secondary batteries for automobiles are used while being charged by an alternator or a dynamo when used in a car.
It is used every day unless it is left for a long time by using the rotational force of the engine of a car.
It is used every day unless it is left for a long time by using the rotational force of the engine of a car.
However, the technology of charging while using a battery is not generally completed.
In the case of automobiles, this is possible because there is a powerful rotating body called a gasoline engine.

特許第4397417号  Japanese Patent No. 4397417

二次電池の22台〜24台のセットの並列充電のテストは数限りなく行ったが全て同じ結果になった。
その結果は24台のセットの直流電圧が200vであった場合、そこに300vの同じ型の同じ数のバッテリーが並列に接続されると瞬時に両方のセットが同じ250vになる。
この現象は乾電池に於いては日常に起こっている事なので不思議は無いが全ての電池の電圧は水圧が
Tests of parallel charging of a set of 22 to 24 secondary batteries were performed infinitely, but all gave the same results.
As a result, if the DC voltage of 24 sets is 200v, if 300ns of the same number of batteries of the same type are connected in parallel, both sets will be instantaneously 250v.
This phenomenon occurs in dry batteries on a daily basis, so there is no wonder, but the voltage of all batteries is water pressure.

重ねて行った実験は特許(特許第4397417号 回転機構)を発電機として使用し三相交流200vの電圧を生産し、その電力をインバータのいちじがわに接続し、その直流部門にバッテリーのセットを繋ぎ充電の実験を行った。
その結果電圧は瞬時に回復したが電流の不足分の充電に約30秒を要した。
その時点はバッテリーの電力が電流で、40アンペアで電圧のロスは殆ど無い状態でした。
バッテリーの電圧は264v発電されている三相200vは直流に変換すると280vですから16vの電位差がありました。
その実験で思った通りの結果が出て、それ以降毎日の様に繰り返しているが何の使用も起きません。
In the experiment conducted repeatedly, a patent (Patent No. 4397417 rotation mechanism) was used as a generator to produce a voltage of 200V three-phase AC, and the power was connected to Ichigawa of the inverter. An experiment of charging was performed by connecting the set.
As a result, the voltage recovered instantaneously, but it took about 30 seconds to charge the insufficient current.
At that time, the battery power was current, 40 amps and almost no voltage loss.
The voltage of the battery is 264v, and the three-phase 200v generated by the dc is 280v when converted to direct current, so there was a 16v potential difference.
The result was as expected in the experiment, and since then it has been repeated every day, but no use has occurred.

この充電方法はバッテリー0のセット720セット調達するとそこに存在する直流の電力19,000kw交流に換算すると13,570kwの電力を30%使ってそれを次々と充電していけば1時間で4,000kwの電気が取り出せる。
若し三相で300kwの発電電圧があると300の200vが発生する。
1度に300セットが充電時間を充分とって5分とすると、1時間3,600セットの充電が可能です。
それも毎時間必ず5分ずつ全てのバッテリーに充電出来る。
充電が可能ということは、それだけ電気が使えると言う事になる。
3,600セット×6kw=21600kwが毎時間使える。
世界の電気は全てこれに変わる。
This charging method is to purchase 720 sets of battery 0 and convert it to 19,000 kW of direct current power, and use 30% of 13,570 kW power to charge it one after another and charge it 4 hours per hour. 000kw of electricity can be taken out.
If there is a power generation voltage of 300 kW in three phases, 300 v of 300 is generated.
If 300 sets at a time take enough time to charge for 5 minutes, 3,600 sets can be charged for 1 hour.
It can also charge all batteries every hour for 5 minutes.
The fact that it can be charged means that it can use electricity.
3,600 sets x 6 kW = 21600 kW can be used every hour.
All the electricity in the world changes to this.

システム全体図Overall system diagram

バッテリーが大量に必要となります。
だが、世界で走り回っている自動車の数と年間の生産台数を考えると1番多く使われているのが自動車用のバッテリーです。
このバッテリーの1セットずつをラックに入れ何段にも重ねます。
然し接続されているバッテリーどうしは22個だけでお互い接続はありません。
電気の取り出しは、あくまでも6kwがベースで600kwの場合100個のブレーカーに電力を待機させているだけです。
A large amount of battery is required.
However, considering the number of cars running around the world and the annual production volume, the battery used most often is the car battery.
Put each set of batteries in a rack and stack them in layers.
However, there are only 22 connected batteries, and there is no connection between them.
Electricity is taken out only by having 100 breakers stand by for 6 kW base and 600 kW.

[0005]で説明した21,600kwの1年間の電気を1kw=10円で換算すると18億92,160,000円になります。
それが収入で費用はバッテリーの数は79,200台で1台10,000円として7億9,200万円です。
それが全てです。
半年で投資した資金は、全て戻り後はただの電気が使い放題です。
Converting 21,600 kw of electricity for one year explained in [0005] at 1 kw = 10 yen, it is 1,892,160,000 yen.
That is income and cost is 792 million yen, with 79,200 batteries and 10,000 yen per battery.
That is all.
All the funds invested in half a year can be used just for electricity after returning.

▲1▼ 三相交流200v電源(発電機もしくは商用電源)
▲2▼ 発電機
▲3▼ インバーター次側への入力三相線
▲4▼ インバータ二次側からの三相出力線
▲5▼ インバータから直流でバッテリーへ
▲6▼ 22個の直列つなぎのバッテリー
▲7▼ インバータの接続部分拡大図
(1) Three-phase AC 200v power supply (generator or commercial power supply)
▲ 2 ▼ Generator ▲ 3 ▼ Three-phase input line to the inverter side ▲ 4 ▼ Three-phase output line from the secondary side of the inverter ▲ 5 ▼ From the inverter to DC battery ▲ 6 ▼ 22 series connected batteries ▲ 7 ▼ Enlarged view of the inverter connection

Claims (4)

バッテリーを急速充電する方式です。
三相200v〜210vの電源を利用してバッテリーに充電する。
充電をされる側のバッテリーの電圧は交流で188v、直流電圧264vに設定する。
直流電圧で16vから30vの電位差が生じる。
This is a method to charge the battery quickly.
The battery is charged using a three-phase 200v to 210v power source.
The voltage of the battery on the side to be charged is set to 188v and DC voltage 264v for alternating current.
A potential difference of 16v to 30v occurs at the DC voltage.
三相交流の電気は三本の電線をそれぞれに線間の電圧と許容電流を発生する。
その三本の線は動力用として接続されキルヒホッフの法則通り電力を発生する。
その単相交流より強い電力は直流に変換してもエネルギーの保存の法則より「エネルギーは形を変えてもエネルギーは保存される」の言葉通り強い充電力を発揮する。
尚、直流といえども電気は波形と粒子から成り立っている事が基本であることから、直流にも振動が存在する。
その事により三相の電力の方が、充電力がある。
Three-phase AC electricity generates voltage and allowable current between the three wires.
The three wires are connected for power and generate power according to Kirchhoff's law.
Even if the electric power stronger than the single-phase alternating current is converted into direct current, the charging power is strong according to the phrase “Energy is preserved even if the energy is changed” from the law of conservation of energy.
Note that even with direct current, electricity is basically composed of waveforms and particles, so there is also vibration in direct current.
As a result, the three-phase power has more charging power.
バッテリーは必要以上の電圧で充電すると破損します。
その限度はバッテリーの購入時に充電されている電圧です。
12vの場合は13.5vです。
従って直列に繋いだ時の電圧が297vです。
ですから交流の電圧は210vまでなら安全です。
その範囲の設定が我々の考案です。
The battery will be damaged if charged at a voltage higher than necessary.
The limit is the voltage charged when the battery is purchased.
In the case of 12v, it is 13.5v.
Therefore, the voltage when connected in series is 297v.
Therefore, it is safe if the AC voltage is up to 210V.
It is our idea to set the range.
バッテリーの充電方式の並列充電を考案した。
この充電はバッテリーどうしでは乾電池で行われているが、それは同時に同じ電圧になるので充電する方も減ります。
そのバッテリーの代わりに発電機から発電する電力を提供する。
エネルギーの原則として何かが減らないで何かが増えません。
発電機は発電力の強さはヘルツです。
ヘルツは磁石コイルが磁束を切る回数なのです。
1秒間に60回なら60ヘルツです。
ですからバッテリーにエネルギーを渡してもまた、すぐ発生する。
その数が1秒間に50回あるのです。
だから並列に並んでいると片方が減らなければ充電される方も減りません。
限度内で使用すれば長く使えるのです。
We devised a parallel charging method for battery charging.
This charging is done with dry batteries between batteries, but since it becomes the same voltage at the same time, the number of people who charge is also reduced.
Instead of the battery, it provides the power generated by the generator.
As a principle of energy, something will not increase without anything decreasing.
Generators generate power at hertz.
Hertz is the number of times a magnet coil cuts the magnetic flux.
60 times per second is 60 hertz.
Therefore, even if energy is transferred to the battery, it occurs immediately.
That number is 50 times per second.
So if you are lined up in parallel, if you don't reduce one, you will not be charged.
If it is used within the limits, it can be used for a long time.
JP2012142443A 2012-06-08 2012-06-08 Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same Pending JP2013258884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142443A JP2013258884A (en) 2012-06-08 2012-06-08 Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012142443A JP2013258884A (en) 2012-06-08 2012-06-08 Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same

Publications (1)

Publication Number Publication Date
JP2013258884A true JP2013258884A (en) 2013-12-26

Family

ID=49954832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142443A Pending JP2013258884A (en) 2012-06-08 2012-06-08 Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same

Country Status (1)

Country Link
JP (1) JP2013258884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808145A (en) * 2018-05-31 2018-11-13 深圳市新浦自动化设备有限公司 Soft package lithium battery is melted into air extractor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808145A (en) * 2018-05-31 2018-11-13 深圳市新浦自动化设备有限公司 Soft package lithium battery is melted into air extractor
CN108808145B (en) * 2018-05-31 2021-02-02 深圳市新浦自动化设备有限公司 Soft packet of lithium cell formation air exhaust device

Similar Documents

Publication Publication Date Title
Shi et al. Constant current fast charging of electric vehicles via a DC grid using a dual-inverter drive
Fahem et al. On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles
Giri et al. Comparison of non-isolated schemes for EV charging and their effect on power quality
Nikitha et al. Effect of electrical vehicle charging on power quality
JP2013258884A (en) Power generator with interposed lead acid storage battery, charging mechanism thereof and method for using the same
PH12016501893A1 (en) Power generation device utilizing renewable natural energy
Fathabadi Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine
JP5772357B2 (en) CHARGE SYSTEM, VEHICLE MOUNTING THE SAME, AND CHARGING DEVICE CONTROL METHOD
US8138695B2 (en) Series electric engine power drive with rheostat and battery feedback
Raveendran et al. SmartPark as Shunt Active Filter using modified ICosφ controller
Kebede et al. Energy production in smart cities by utilization of kinetic energy of vehicles over speed breaker
Elakya et al. Efficient Power Electronic Converter for Electric Vehicle Applications with Energy Storage Systems
Osma et al. Design and implementation of a power generation system using an stationary bicycle
CN205753635U (en) A kind of new forms of energy family stand-by power supply circuit
CN105151267B (en) Lithium battery drives floating debris cleaning boat
Manjunatha Design and development of fly-back converter with buck-boost regulator for DC motor used in electric vehicle for the application of renewable energy
AU2021104047A4 (en) Electrical supply re-generator
Pote et al. Rim Alternator for Electric and Hybrid Electric Vehicles
WO2023130507A1 (en) Cyclic power generation apparatus
WO2010079507A2 (en) Power generation
Neuburger et al. A new topology for an unidirectional galvanic isolated combined converter
Torres‐Sánchez et al. A new configuration of 2 electromagnetic power generators for mechanical energy conversion by spinning a ferrite magnet in flat form
Mahadik et al. Innovative Solution for Electric Vehicle Charging: The Hybrid Renewable Energy-Based Charging Station
CN205248882U (en) Can backward trade power station for filling of specific user power supply
Paul et al. Back-up Power Generation using Bicycle