JP2013257600A - Zoom lens and image capturing device having the same - Google Patents

Zoom lens and image capturing device having the same Download PDF

Info

Publication number
JP2013257600A
JP2013257600A JP2013208124A JP2013208124A JP2013257600A JP 2013257600 A JP2013257600 A JP 2013257600A JP 2013208124 A JP2013208124 A JP 2013208124A JP 2013208124 A JP2013208124 A JP 2013208124A JP 2013257600 A JP2013257600 A JP 2013257600A
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
refractive power
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013208124A
Other languages
Japanese (ja)
Other versions
JP5606609B2 (en
Inventor
Shinichiro Saito
慎一郎 齋藤
Nobuyuki Miyazawa
伸幸 宮沢
Yuki Kimura
友紀 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013208124A priority Critical patent/JP5606609B2/en
Publication of JP2013257600A publication Critical patent/JP2013257600A/en
Application granted granted Critical
Publication of JP5606609B2 publication Critical patent/JP5606609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens which corrects chromatic aberration, spherical aberration, coma aberration, and the like in good balance and exhibits good optical properties over the entire zoom range.SOLUTION: A zoom lens includes a first lens group having positive refractive power, a second lens group having negative refractive power, and succeeding lens groups including a lens group having positive refractive power, all arranged in order from an object side to an image side. Zooming is performed by moving the lens groups such that the distance between the first lens group and the second lens group becomes longer at a telephoto end than at a wide angle end. The first lens group has at least one negative lens. An Abbe number νd1n and a partial dispersion ratio θgF1n of material of the at least one negative lens, a focal length fT of the zoom lens at the telephoto end, a focal length f1 of the first lens group, and a refractive index Nd1n of the material of the at least one negative lens of the first lens group are each set appropriately.

Description

本発明はズームレンズおよびそれを有する撮像装置に関し、特にスチルカメラ、ビデオカメラ、デジタルスチルカメラ、TVカメラ、そして監視用カメラ等の撮像光学系に好適なものである。   The present invention relates to a zoom lens and an imaging apparatus having the same, and is particularly suitable for an imaging optical system such as a still camera, a video camera, a digital still camera, a TV camera, and a surveillance camera.

近年、デジタルカメラやビデオカメラなどの撮像装置に用いられている撮像素子は高画素化が進んでいる。このような撮像素子を備える撮像装置で用いる撮影レンズには、球面収差、コマ収差などの単色(単波長)収差の補正に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高解像力なズームレンズであることが要求されている。   In recent years, the number of pixels of an image sensor used in an image pickup apparatus such as a digital camera or a video camera has been increased. In addition to correcting monochromatic (single wavelength) aberrations such as spherical aberration and coma, the photographic lens used in an imaging device equipped with such an image sensor also corrects chromatic aberration well so that there is no color blur in the white light source. Therefore, the zoom lens is required to have a high resolution.

この他、撮影領域の拡大のため、高ズーム比(高変倍比)であることが望まれている。特に、高ズーム比で望遠側の焦点距離の長い望遠型のズームレンズでは、高解像力化のため色収差の補正として、1次の色消しに加え、2次スペクトルが良好に補正されていることが望まれている。   In addition, it is desired to have a high zoom ratio (high zoom ratio) in order to enlarge the photographing area. In particular, in a telephoto type zoom lens having a high zoom ratio and a long focal length on the telephoto side, the secondary spectrum is favorably corrected in addition to the primary achromatic color as a correction of chromatic aberration for high resolution. It is desired.

高ズーム比のズームレンズとして、物体側より像側へ順に、正の屈折力の第1レンズ群と負の屈折力の第2レンズ群及び正の屈折力のレンズ群を含む後続レンズ群を配置した、所謂ポジティブリードタイプのズームレンズが知られている。ポジティブリードタイプのズームレンズとして第1レンズ群のレンズの材料に異常分散材料を使用し、色収差(2次スペクトル)を良好に補正した4群以上のレンズ群を有するズームレンズが知られている(特許文献1)。   As a zoom lens having a high zoom ratio, a succeeding lens group including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a lens group having a positive refractive power is arranged in order from the object side to the image side. A so-called positive lead type zoom lens is also known. As a positive lead type zoom lens, there is known a zoom lens having four or more lens groups in which an anomalous dispersion material is used as the lens material of the first lens group and chromatic aberration (secondary spectrum) is corrected well (see FIG. Patent Document 1).

この他、物体側より順に、正、負、正、正の屈折力のレンズ群より成る4群構成のズームレンズにおいて第1レンズ群に低分散で異常分散性を有する材料より成るレンズを用いたズームレンズが知られている(特許文献2、3)。また物体側より順に、正、負、正、負、正の屈折力のレンズ群より成る5群構成のズームレンズにおいて第1レンズ群に異常分散性を有する材料より成るレンズを用いたズームレンズが知られている(特許文献4、5)。また、光学ガラスと比べ、異常分散性を持つエネルギー硬化型透明樹脂より成るレプリカ層を用いて色収差の改善を図ったズームレンズが知られている(特許文献6)。   In addition, in order from the object side, a lens made of a material having low dispersion and anomalous dispersion is used for the first lens group in a zoom lens having a four-group structure including lens groups having positive, negative, positive, and positive refractive powers. Zoom lenses are known (Patent Documents 2 and 3). In addition, in order from the object side, there is a zoom lens using a lens made of a material having anomalous dispersion in the first lens group in a zoom lens having a five-group structure including lens groups having positive, negative, positive, negative, and positive refractive power. Known (Patent Documents 4 and 5). In addition, a zoom lens is known in which chromatic aberration is improved by using a replica layer made of an energy curable transparent resin having anomalous dispersion as compared with optical glass (Patent Document 6).

特開2002−62478号公報Japanese Patent Laid-Open No. 2002-62478 特開2005−345892号公報JP 2005-345892 A 特開2001−194590号公報JP 2001-194590 A 特開2006−349947号公報JP 2006-349947 A 特開2007−298555号公報JP 2007-298555 A 特開2008−191286号公報JP 2008-191286 A

ポジティブリードタイプのズームレンズは全系の小型化を図りつつ、高ズーム比化を図ることが比較的容易である。しかしながらポジティブリードタイプのズームレンズにおいて、高ズーム比化を図ると望遠側のズーム領域において軸上色収差の二次スペクトルが多く発生してくる。前述の4群ズームレンズや5群ズームレンズにおいては、望遠域において第1レンズ群で入射光線高が高くなり、前述の軸上色収差は主にこの第1レンズ群で発生している。   A positive lead type zoom lens is relatively easy to achieve a high zoom ratio while reducing the size of the entire system. However, in a positive lead type zoom lens, when a high zoom ratio is achieved, a secondary spectrum of axial chromatic aberration is often generated in the zoom region on the telephoto side. In the above-described 4-group zoom lens and 5-group zoom lens, the incident light height is high in the first lens group in the telephoto range, and the above-described axial chromatic aberration is mainly generated in the first lens group.

このときの2次スペクトルを軽減するには、望遠端において近軸光線の高さが高くなる第1レンズ群で補正することが重要である。第1レンズ群内でこのときの軸上色収差の二次スペクトルを低減させるには第1レンズ群内のレンズに低分散かつ異常分散性の材料を用いるのが有効である。   In order to reduce the secondary spectrum at this time, it is important to correct with the first lens group in which the height of the paraxial light beam becomes high at the telephoto end. In order to reduce the secondary spectrum of axial chromatic aberration at this time in the first lens group, it is effective to use a low dispersion and anomalous dispersion material for the lenses in the first lens group.

しかしながら一般に低分散でかつ異常分散性を有する光学材料は、蛍石に代表されるように屈折率が低い。ゆえに、所望の2次スペクトルを補正するためにレンズの屈折力を変化させる場合、レンズの曲率を大きく変化させる必要がある。また、前述したポジティブリードタイプのズームレンズの第1レンズ群は望遠端において物体近軸光線の高さが高くなるため、軸上色収差のほか、球面収差、コマ収差が多く発生してくる。   However, in general, an optical material having low dispersion and anomalous dispersion has a low refractive index as represented by fluorite. Therefore, when the refractive power of the lens is changed in order to correct a desired secondary spectrum, it is necessary to greatly change the curvature of the lens. Further, in the first lens group of the positive lead type zoom lens described above, the height of the object paraxial light beam is increased at the telephoto end, so that a large amount of spherical aberration and coma aberration are generated in addition to axial chromatic aberration.

このため、低分散でかつ異常分散性を有する光学材料や屈折率の低い樹脂材料のみ用いたのでは、望遠端において色収差と球面収差、コマ収差等を良好に補正するのが難しい。色収差と球面収差、コマ収差等を良好に補正するには第1レンズ群を構成するレンズのレンズ枚数を増加させれば良い。しかしながら第1レンズ群のレンズ枚数が増加するとレンズ全長が長くなり、全系の小型化を図るのが大変困難になってくる。   For this reason, if only an optical material having low dispersion and anomalous dispersion or a resin material having a low refractive index is used, it is difficult to satisfactorily correct chromatic aberration, spherical aberration, coma and the like at the telephoto end. In order to satisfactorily correct chromatic aberration, spherical aberration, coma and the like, the number of lenses constituting the first lens group may be increased. However, when the number of lenses in the first lens group increases, the total lens length becomes longer, and it becomes very difficult to reduce the size of the entire system.

本発明は、ポジティブリードタイプのズームレンズにおいて、色収差の補正と、球面収差、コマ収差などをバランス良く補正することができ、ズーム全域で良好な光学特性が得られるズームレンズの提供を目的とする。   An object of the present invention is to provide a zoom lens capable of correcting chromatic aberration, spherical aberration, coma, and the like in a positive lead type zoom lens in a well-balanced manner and obtaining good optical characteristics over the entire zoom range. .

本発明のズームレンズは、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力のレンズ群を含む後続レンズ群より構成され、広角端に比べて望遠端において前記第1レンズ群と前記第2レンズ群の間隔が広くなるようにレンズ群を移動させてズーミングを行うズームレンズにおいて、前記第1レンズ群は少なくとも1つの負レンズを有し、前記少なくとも1つの負レンズの材料のアッベ数と部分分散比を各々νd1n、θgF1n、前記ズームレンズの望遠端における焦点距離をfT、前記第1レンズ群の焦点距離をf1、前記第1レンズ群の少なくとも1つの負レンズの材料の屈折率をNd1nとするとき、
−1.68×10-3×νd1n+0.585<θgF1n<3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
5<νd1n<27
0.3<f1/fT≦0.755
1.8<Nd1n<2.4
なる条件を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a subsequent lens group including a lens group having a positive refractive power. In the zoom lens that performs zooming by moving the lens group so that the distance between the first lens group and the second lens group is wider at the telephoto end than at the wide-angle end, the first lens group includes at least one negative lens. The lens has an Abbe number and a partial dispersion ratio of νd1n and θgF1n, respectively, a focal length at the telephoto end of the zoom lens is fT, a focal length of the first lens group is f1, When the refractive index of the material of at least one negative lens of the first lens group is Nd1n,
−1.68 × 10 −3 × νd1n + 0.585 <θgF1n <3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
5 <νd1n <27
0.3 <f1 / fT ≦ 0.755
1.8 <Nd1n <2.4
It is characterized by satisfying the following conditions.

この他、本発明のズームレンズは、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力のレンズ群を含む後続レンズ群より構成され、広角端に比べて望遠端において前記第1レンズ群と前記第2レンズ群の間隔が広くなるようにレンズ群を移動させてズーミングを行うズームレンズにおいて、前記第1レンズ群は少なくとも1つの負レンズを有し、前記少なくとも1つの負レンズの材料のアッベ数と部分分散比を各々νd1n、θgF1n、前記ズームレンズの広角端における焦点距離をfW、前記ズームレンズの望遠端における焦点距離をfT、望遠端でのFナンバーをFnoTとするとき、
−1.68×10-3×νd1n+0.585<θgF1n<3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
5<νd1n<27
3.2<(fT/fW)/FnoT<15.0
なる条件を満足することを特徴としている。
In addition, the zoom lens according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a lens group having a positive refractive power in order from the object side to the image side. In the zoom lens that performs zooming by moving the lens group so that the distance between the first lens group and the second lens group is wider at the telephoto end than at the wide-angle end, the first lens group is at least A negative lens, the Abbe number and partial dispersion ratio of the material of the at least one negative lens are νd1n and θgF1n, respectively, the focal length at the wide angle end of the zoom lens is fW, and the focal length at the telephoto end of the zoom lens Is fT and the F-number at the telephoto end is FnoT.
−1.68 × 10 −3 × νd1n + 0.585 <θgF1n <3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
5 <νd1n <27
3.2 <(fT / fW) / FnoT <15.0
It is characterized by satisfying the following conditions.

本発明によれば、色収差の補正と、球面収差、コマ収差などをバランス良く補正することができ、ズーム全域で良好な光学特性が得られるズームレンズが得られる。   According to the present invention, it is possible to obtain a zoom lens that can correct chromatic aberration and correct spherical aberration, coma, and the like in a well-balanced manner, and that can provide good optical characteristics over the entire zoom range.

実施例1のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens of Example 1 実施例1のズームレンズの収差図Aberration diagram of zoom lens of Example 1 実施例2のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 2 実施例2のズームレンズの収差図Aberration diagram of zoom lens of Example 2 実施例3のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 3 実施例3のズームレンズの収差図Aberration diagram of zoom lens of Example 3 実施例4のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 4 実施例4のズームレンズの収差図Aberration diagram of zoom lens of Example 4 実施例5のズームレンズの広角端におけるレンズ断面図Lens sectional view at the wide-angle end of the zoom lens according to Embodiment 5 実施例5のズームレンズの収差図Aberration diagram of zoom lens of Example 5 実施例6のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 6 実施例6のズームレンズの収差図Aberration diagram of zoom lens of Example 6 実施例7のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens according to the seventh exemplary embodiment 実施例7のズームレンズの収差図Aberration diagram of zoom lens of Example 7 実施例8のズームレンズの広角端におけるレンズ断面図Lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 8 実施例8のズームレンズの収差図Aberration diagrams of the zoom lens of Example 8 アッベ数νdと部分分散比θgFの関係を示す説明図Explanatory drawing which shows the relationship between Abbe number νd and partial dispersion ratio θgF 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明のズームレンズは、物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力のレンズ群を含む後続レンズ群を有している。そしてズーミングに際し各レンズ群の相互間隔が変化する。このとき広角端に比べ望遠端での第1レンズ群と第2レンズ群の間隔が広くなるようにしてズーミングを行っている。そして第1レンズ群は少なくとも1つの負レンズを有している。この少なくとも1つの負レンズは後述する条件式(1)、(2)を満足する材料より成っている。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a subsequent lens group including a lens group having a positive refractive power. ing. The distance between the lens groups changes during zooming. At this time, zooming is performed so that the distance between the first lens unit and the second lens unit at the telephoto end is wider than at the wide-angle end. The first lens group has at least one negative lens. The at least one negative lens is made of a material that satisfies conditional expressions (1) and (2) described later.

図1は、本発明の実施例1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図である。図2(A)、(B)、(C)はそれぞれ実施例1のズームレンズの広角端、中間のズーム位置、望遠端(長焦点距離端)における収差図である。図3は、本発明の実施例2のズームレンズの広角端におけるレンズ断面図である。図4(A)、(B)、(C)はそれぞれ実施例2のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to the first exemplary embodiment of the present invention. FIGS. 2A, 2B, and 2C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end (long focal length end), respectively, of the zoom lens according to the first exemplary embodiment. FIG. 3 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the second embodiment of the present invention. 4A, 4B, and 4C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the second embodiment.

図5は、本発明の実施例3のズームレンズの広角端におけるレンズ断面図である。図6(A)、(B)、(C)はそれぞれ実施例3のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。図7は、本発明の実施例4のズームレンズの広角端におけるレンズ断面図である。図8(A)、(B)、(C)はそれぞれ実施例4のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 6A, 6B, and 6C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the third exemplary embodiment. FIG. 7 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the fourth exemplary embodiment of the present invention. 8A, 8B, and 8C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens according to the fourth exemplary embodiment.

図9は、本発明の実施例5のズームレンズの広角端におけるレンズ断面図である。図10(A)、(B)、(C)はそれぞれ実施例5のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。図11は、本発明の実施例6のズームレンズの広角端におけるレンズ断面図である。図12(A)、(B)、(C)はそれぞれ実施例6のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。   FIG. 9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 5 of the present invention. FIGS. 10A, 10B, and 10C are aberration diagrams of the zoom lens of Example 5 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. FIG. 11 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 6 of the present invention. 12A, 12B, and 12C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end of the zoom lens according to Embodiment 6, respectively.

図13は、本発明の実施例7のズームレンズの広角端におけるレンズ断面図である。図14(A)、(B)、(C)はそれぞれ実施例7のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。図15は、本発明の実施例8のズームレンズの広角端におけるレンズ断面図である。図16(A)、(B)、(C)はそれぞれ実施例8のズームレンズの広角端、中間のズーム位置、望遠端における収差図である。図17は、アッベ数νdと部分分散比θgFとの関係示す説明図である。図18は本発明のズームレンズをビデオカメラ(撮像装置)に適用したときの要部概略図である。   FIG. 13 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 7 of the present invention. FIGS. 14A, 14B, and 14C are aberration diagrams of the zoom lens of Embodiment 7 at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively. FIG. 15 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Example 8 of the present invention. FIGS. 16A, 16B, and 16C are aberration diagrams at the wide-angle end, the intermediate zoom position, and the telephoto end, respectively, of the zoom lens of Example 8. FIGS. FIG. 17 is an explanatory diagram showing the relationship between the Abbe number νd and the partial dispersion ratio θgF. FIG. 18 is a schematic view of the main part when the zoom lens of the present invention is applied to a video camera (imaging device).

図19は本発明のズームレンズをデジタルカメラ(撮像装置)に適用したときの要部概略図である。   FIG. 19 is a schematic view of a main part when the zoom lens of the present invention is applied to a digital camera (imaging device).

各実施例のズームレンズはビデオカメラやデジタルカメラ、銀塩フィルムカメラ、TVカメラなどの撮像装置に用いられる撮影レンズ系である。尚、各実施例のズームレンズは投射装置(プロジェクタ)用の投射光学系として用いることもできる。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。また、レンズ断面図において、iを物体側からのレンズ群の順番とすると、Biは第iレンズ群を示す。LRは2以上のレンズ群を有する後続レンズ群である。   The zoom lens of each embodiment is a photographing lens system used in an imaging apparatus such as a video camera, a digital camera, a silver salt film camera, or a TV camera. In addition, the zoom lens of each embodiment can also be used as a projection optical system for a projection apparatus (projector). In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). In the lens cross-sectional view, if i is the order of the lens group from the object side, Bi indicates the i-th lens group. LR is a subsequent lens group having two or more lens groups.

SPは開口絞りである。Gは光学フィルター、フェースプレート、ローパスフィルター、赤外カットフィルターなどに相当する光学ブロックである。IPは像面である。像面IPは、ビデオカメラやデジタルカメラの撮影光学系としてズームレンズを使用する際には、CCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面に相当する。銀塩フィルムカメラの撮影光学系としてズームレンズを使用する際には、フィルム面に相当する。矢印は広角端から望遠端へのズーミング(変倍)に際して、各レンズ群の移動軌跡を示している。   SP is an aperture stop. G is an optical block corresponding to an optical filter, a face plate, a low-pass filter, an infrared cut filter, or the like. IP is the image plane. The image plane IP corresponds to an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor when a zoom lens is used as a photographing optical system of a video camera or a digital camera. When a zoom lens is used as a photographing optical system of a silver salt film camera, it corresponds to a film surface. Arrows indicate the movement trajectory of each lens unit during zooming (variation) from the wide-angle end to the telephoto end.

収差図において、球面収差は4つの波長(d、g、C、F線)について示している。非点収差はd線(波長587.56nm)とg線(波長435.835nm)について示している。非点収差において、M(d)、S(d)はd線におけるメリディオナル像面とサジタル像面を示している。M(g)、S(g)はg線におけるメリディオナル像面とサジタル像面を示している。倍率色収差はg線によって表している。ωは半画角、FnoはFナンバーである。尚、以下の各実施例において広角端と望遠端は変倍用のレンズ群が機構上、光軸上を移動可能な範囲の両端に位置したときのズーム位置をいう。   In the aberration diagrams, spherical aberration is shown for four wavelengths (d, g, C, and F lines). Astigmatism is shown for d-line (wavelength 587.56 nm) and g-line (wavelength 435.835 nm). In astigmatism, M (d) and S (d) indicate the meridional image surface and the sagittal image surface at the d-line. M (g) and S (g) indicate the meridional image plane and the sagittal image plane in the g-line. Lateral chromatic aberration is represented by the g-line. ω is a half angle of view, and Fno is an F number. In each of the following embodiments, the wide-angle end and the telephoto end refer to zoom positions when the zoom lens group is positioned at both ends of a range in which the zoom lens unit can move on the optical axis.

各実施例はいずれも、物体側から像側へ順に、正の屈折力の第1レンズ群B1、負の屈折力の第2レンズ群B2、そして正の屈折力のレンズ群を含む後続レンズ群LRを有するズームレンズである。そしてズーミングに際しては、矢印で示す如くレンズ群が移動している。特にズーミングに際して第1レンズ群B1と第2レンズ群B2の間隔が変化している。後続レンズ群LRは、実施例1乃至3、7、8では正の屈折力の第3レンズ群B3と、正の屈折力の第4レンズ群B4により構成されている。   In each of the embodiments, in order from the object side to the image side, a first lens unit B1 having a positive refractive power, a second lens unit B2 having a negative refractive power, and a subsequent lens unit including a lens unit having a positive refractive power A zoom lens having LR. During zooming, the lens group moves as indicated by the arrows. In particular, the distance between the first lens unit B1 and the second lens unit B2 changes during zooming. In the first to third, seventh, and eighth embodiments, the subsequent lens unit LR includes a third lens unit B3 having a positive refractive power and a fourth lens unit B4 having a positive refractive power.

実施例4、6では正の屈折力の第3レンズ群B3と、負の屈折力の第4レンズ群B4と、正の屈折力の第5レンズ群B5により構成されている。   In Examples 4 and 6, the lens unit includes a third lens unit B3 having a positive refractive power, a fourth lens unit B4 having a negative refractive power, and a fifth lens unit B5 having a positive refractive power.

実施例5では負の屈折力の第3レンズ群B3と正の屈折力の第4レンズ群B4より構成されている。ただし、各実施例において、後続レンズ群LRを構成するレンズ群の数、そしてレンズ群の屈折力は任意であり、少なくとも2つのレンズ群を有していれば良い。各実施例では、高ズーム比化(高変倍比)を確保し、収差を良好に補正するために、物体側から像側へ順に正、負の屈折力のレンズ群を有するレンズ構成としている。各実施例において、第1レンズ群B1は少なくとも1つの負レンズを有している。そして少なくとも1つの負レンズの材料のアッベ数と部分分散比を各々νd1n、θgF1nとする。   In Example 5, the lens unit includes a third lens unit B3 having a negative refractive power and a fourth lens unit B4 having a positive refractive power. However, in each embodiment, the number of lens groups constituting the subsequent lens group LR and the refractive power of the lens groups are arbitrary, and it is sufficient that at least two lens groups are provided. In each embodiment, in order to ensure a high zoom ratio (high zoom ratio) and correct aberrations satisfactorily, the lens configuration includes lens groups having positive and negative refractive powers in order from the object side to the image side. . In each embodiment, the first lens unit B1 has at least one negative lens. The Abbe number and partial dispersion ratio of at least one negative lens material are νd1n and θgF1n, respectively.

このとき、
−1.68×10-3×νd1n+0.585 < θgF1n
< 3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
‥‥‥(1)
5 < νd1n < 27 ‥‥‥(2)
なる条件を満足している。
At this time,
−1.68 × 10 −3 × νd1n + 0.585 <θgF1n
<3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
(1)
5 <νd1n <27 (2)
Is satisfied.

条件式(1)、(2)は、第1レンズ群B1が1以上の負レンズを有し、このときの少なくとも1つの負レンズを構成する材料のアッベ数νd1と部分
分散比θgF1nを規定したものである。なお、材料のアッベ数νdと部分分散比θgFはフラウンホーファ線のd線、F線、C線、g線における屈折率をNd、NF、NC、Ngとするとき、
νd=(Nd−1)/(NF−NC)
θgF=(Ng−NF)/(NF−NC)
で定義される。
Conditional expressions (1) and (2) define the Abbe number νd1 and the partial dispersion ratio θgF1n of the material constituting the at least one negative lens when the first lens unit B1 has one or more negative lenses. Is. Note that the Abbe number νd and the partial dispersion ratio θgF of the material are Nd, NF, NC, and Ng when the refractive indexes of the Fraunhofer d-line, F-line, C-line, and g-line are Nd, NF, NC, and Ng.
νd = (Nd−1) / (NF−NC)
θgF = (Ng−NF) / (NF−NC)
Defined by

各実施例では、第1レンズ群B1に条件式(1)、(2)を同時に満足する材料で構成された負レンズを少なくとも1つ有するようにしている。これによって一次
の色消しと、二次スペクトルの補正を良好に補正している。
In each embodiment, the first lens unit B1 has at least one negative lens made of a material that satisfies the conditional expressions (1) and (2) at the same time. As a result, the primary achromatic color and the correction of the secondary spectrum are corrected well.

図17は材料の、アッベ数νdと部分分散比θgFの関係したグラフである。図17では横軸にアッベ数νd、縦軸に部分分散比θgFをとっている。図17では条件式(1)、(2)に関する領域を実線で示している。条件式(1)は、第1レンズ群B1中の少なくとも1つの負レンズの材料の部分分散比を規定する条件である。条件式(1)を満足する材料は、異常分散性を有するものである。条件式(1)の範囲外となる材料は、二次スペクトルの低減のために必要な異常分散性が低いものとなるので良くない。   FIG. 17 is a graph relating the Abbe number νd and the partial dispersion ratio θgF of the material. In FIG. 17, the Abbe number νd is taken on the horizontal axis, and the partial dispersion ratio θgF is taken on the vertical axis. In FIG. 17, the area | region regarding conditional expression (1), (2) is shown as the continuous line. Conditional expression (1) is a condition that defines the partial dispersion ratio of the material of at least one negative lens in the first lens unit B1. A material that satisfies the conditional expression (1) has anomalous dispersibility. A material outside the range of conditional expression (1) is not good because the anomalous dispersion necessary for reducing the secondary spectrum is low.

条件式(1)を満足する負レンズのガラス(材料)組成の一成分としては、例えば二酸化テルル(TeO2)を20モル%以上含有した場合、アッベ数νdと部分分散比θgFを所望の値にすることができる。この材料は樹脂などのレプリカ層からなる光学素子と比較した場合、耐環境性、製造の容易性、光学素子の厚さに制約が少なく強い屈折力を持つことが可能となる。吸湿や温度などの耐環境性に優れ、十分な硬度を確保しているため、最も物体側に配設することも可能である。 As one component of the glass (material) composition of the negative lens that satisfies the conditional expression (1), for example, when tellurium dioxide (TeO 2 ) is contained in an amount of 20 mol% or more, the Abbe number νd and the partial dispersion ratio θgF are desired values. Can be. When compared with an optical element made of a replica layer such as a resin, this material has less restrictions on the environment resistance, ease of manufacture, and thickness of the optical element, and can have a strong refractive power. Since it is excellent in environmental resistance such as moisture absorption and temperature and has sufficient hardness, it can be disposed closest to the object side.

更に好ましくは条件式(1)の数値範囲を条件式(1a)の如く設定するのが良い。これによれば硝材の屈折率を高くすることが容易となり、諸収差の補正効果が大きくなり、より好ましい。   More preferably, the numerical range of conditional expression (1) is set as in conditional expression (1a). According to this, it becomes easier to increase the refractive index of the glass material, and the effect of correcting various aberrations is increased, which is more preferable.

−1.68×10-3×νd1n+0.600 < θgF1n
< 3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
‥‥‥(1a)
さらに好ましくは、条件式(1b)の如く設定するのが良い。
−1.68 × 10 −3 × νd1n + 0.600 <θgF1n
<3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
(1a)
More preferably, the conditional expression (1b) is set.

−1.68×10-3×νd1n+0.620 < θgF1n
< 3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
‥‥‥(1b)
さらに好ましくは、条件式(1c)の如く設定するのが良い。
−1.68 × 10 −3 × νd1n + 0.620 <θgF1n
<3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
(1b)
More preferably, the conditional expression (1c) is set.

−1.68×10-3×νd1n+0.620 < θgF1n
< 3.15×10-4×νd1n2−1.86×10-2×νd1n+0.800
‥‥‥(1c)
条件式(2)は、第1レンズ群B1中の少なくとも1つの負レンズの材料のアッベ数を規定する条件である。条件式(2)の上限値を超えてアッベ数が大きくなると、分散が小さくなりすぎ、第1レンズ群B1中の正レンズで発生する一次の色収差を補正することが困難となる。更に好ましくは条件式(2)の数値範囲を、次の条件式(2a)の如く設定するのが良い。これによれば一次の色消し効果が大きくなる。
−1.68 × 10 −3 × νd1n + 0.620 <θgF1n
<3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.800
(1c)
Conditional expression (2) is a condition that defines the Abbe number of the material of at least one negative lens in the first lens unit B1. When the Abbe number increases beyond the upper limit value of conditional expression (2), the dispersion becomes too small, and it becomes difficult to correct primary chromatic aberration generated in the positive lens in the first lens unit B1. More preferably, the numerical range of conditional expression (2) is set as in the following conditional expression (2a). This increases the primary achromatic effect.

10 < νd1n < 27 ‥‥‥(2a)
さらに好ましくは、条件式(2b)の如く設定するのが良い。
10 <νd1n <27 (2a)
More preferably, the conditional expression (2b) is set.

15 < νd1n < 27 ‥‥‥(2b)
さらに好ましくは、条件式(2c)の如く設定するのが良い。
15 <νd1n <27 (2b)
More preferably, the conditional expression (2c) is set.

15 < νd1n < 25 ‥‥‥(2c)
実施例1から6では、物体側から数えて第1レンズが異常分散性を有している。実施例7では、物体側から数えて第1レンズおよび第2レンズが異常分散性を有している。実施例8では、物体側から数えて第1レンズおよび第3レンズが異常分散性を有している。特に各実施例では、物体側から像側へ順に正、負の屈折力のレンズ構成とし、高ズーム比でかつ小型なズームレンズを達成している。
15 <νd1n <25 (2c)
In Examples 1 to 6, the first lens counted from the object side has anomalous dispersion. In Example 7, the first lens and the second lens counted from the object side have anomalous dispersion. In Example 8, the first lens and the third lens counted from the object side have anomalous dispersion. In particular, in each of the embodiments, a lens configuration having positive and negative refractive powers in order from the object side to the image side is used to achieve a small zoom lens with a high zoom ratio.

そして、第1レンズ群の少なくとも1つの負レンズの材料を高分散かつ異常分散性を持つ構成とし、望遠側において2次スペクトルの低減を図っている。また、第1レンズ群の少なくとも1つの負レンズを条件式(1)、(2)を満足することで、広角端において倍率色収差の発生を低減することができ、第2レン
ズ群以降に続くレンズ群の小型化を容易にしている。
The material of at least one negative lens of the first lens group is configured to have high dispersion and anomalous dispersion so as to reduce the secondary spectrum on the telephoto side. Further, by satisfying conditional expressions (1) and (2) for at least one negative lens in the first lens group, it is possible to reduce the occurrence of chromatic aberration of magnification at the wide-angle end, and lenses following the second lens group. The group can be easily downsized.

各実施例において、更に軸上色収差、倍率色収差、球面収差などの諸収差が良好に補正した、高変倍かつ小型なズームレンズを得るには、次の諸条件のうち1以上を満足するのが良い。第1レンズ群B1の少なくとも1つの負レンズの焦点距離をf1n、第1レンズ群B1と第2レンズ群B2の焦点距離を各々f1、f2とする。ズームレンズの広角端と望遠端における焦点距離を各々fW、fTとする。望遠端でのFナンバーをFnoTとする。第1レンズ群B1の少なくとも1つの負レンズの光軸上の厚さをt1n、第2レンズ群B2において光軸上の厚さが最小となるレンズの光軸上の厚さをt2minとする。   In each embodiment, in order to obtain a high zoom ratio and small zoom lens in which various aberrations such as longitudinal chromatic aberration, lateral chromatic aberration, and spherical aberration are corrected well, one or more of the following conditions are satisfied. Is good. The focal length of at least one negative lens of the first lens unit B1 is f1n, and the focal lengths of the first lens unit B1 and the second lens unit B2 are f1 and f2, respectively. The focal lengths at the wide-angle end and the telephoto end of the zoom lens are fW and fT, respectively. The F number at the telephoto end is FnoT. The thickness on the optical axis of at least one negative lens of the first lens group B1 is t1n, and the thickness on the optical axis of the lens having the smallest thickness on the optical axis in the second lens group B2 is t2min.

第1レンズ群B1の少なくとも1つの負レンズの材料のヌープ硬さをHK1n、第2レンズ群B2においてヌープ硬さが最小となるレンズの材料のヌープ硬さをHK2minとする。第1レンズ群B1の少なくとも1つの負レンズの材料の屈折率をNd1nとする。   The Knoop hardness of the material of at least one negative lens in the first lens group B1 is HK1n, and the Knoop hardness of the lens material having the minimum Knoop hardness in the second lens group B2 is HK2min. The refractive index of the material of at least one negative lens of the first lens unit B1 is Nd1n.

このとき、
0.9 < |f1n|/f1 < 70.0 ‥‥‥(3)
5.0 < fT/|f2| < 25.0 ‥‥‥(4)
0.3 < f1/fT < 10.0 ‥‥‥(5)
3.2 < (fT/fW)/FnoT < 15.0‥‥‥(6)
1.65 < Nd1n < 2.50 ‥‥‥(7)
3.0 < f1/|f2| < 10.0 ‥‥‥(8)
0.8 < t1n/t2min < 5.0 ‥‥‥(9)
0.5<HK1n/HK2min ‥‥‥(10)
なる条件のうち1以上を満足すれば良い。
At this time,
0.9 <| f1n | / f1 <70.0 (3)
5.0 <fT / | f2 | <25.0 (4)
0.3 <f1 / fT <10.0 (5)
3.2 <(fT / fW) / FnoT <15.0 (6)
1.65 <Nd1n <2.50 (7)
3.0 <f1 / | f2 | <10.0 (8)
0.8 <t1n / t2min <5.0 (9)
0.5 <HK1n / HK2min (10)
It is sufficient to satisfy one or more of the following conditions.

条件式(3)は、第1レンズ群B1の少なくとも1つの高分散かつ異常分散性を有する負レンズの焦点距離を規定する式である。上限を超えて高分散かつ異常分散性を有する負レンズの焦点距離が長くなりすぎる、すなわち、負レンズの屈折力が弱くなりすぎると、第1レンズ群B1中の一次の色収差補正が不足し、ズーミング時の色収差変動が残り、好ましくない。逆に、第1レンズ群B1において一次の色収差を十分に補正するためには、全系の全長を長くする必要があり、小型化を図るのが困難となる。   Conditional expression (3) defines the focal length of the negative lens having at least one high dispersion and anomalous dispersion in the first lens unit B1. If the focal length of the negative lens having high dispersion and anomalous dispersion exceeding the upper limit becomes too long, that is, if the refractive power of the negative lens becomes too weak, primary chromatic aberration correction in the first lens unit B1 is insufficient, Variation in chromatic aberration during zooming remains, which is not preferable. On the contrary, in order to sufficiently correct the primary chromatic aberration in the first lens unit B1, it is necessary to lengthen the entire length of the entire system, which makes it difficult to reduce the size.

下限を超えて、負レンズの焦点距離が短くなりすぎる、すなわち、負レンズの屈折力が強くなりすぎると、ペッツバール和が負側に大きくなり、像面湾曲が増大してくるので良くない。また、第1レンズ群B1において高次の球面収差や色の球面収差を抑えることが困難になり、好ましくない。   If the lower limit is exceeded and the focal length of the negative lens becomes too short, that is, if the refractive power of the negative lens becomes too strong, the Petzval sum will increase to the negative side and the field curvature will increase. Further, it is difficult to suppress high-order spherical aberration and chromatic spherical aberration in the first lens unit B1, which is not preferable.

条件式(3)の数値範囲を次の条件式(3a)の如く設定するのが良い。これによれば望遠端において球面収差の補正が容易となる。   It is preferable to set the numerical range of conditional expression (3) as in the following conditional expression (3a). This facilitates correction of spherical aberration at the telephoto end.

0.9 < |f1n|/f1 < 10.0 ‥‥‥(3a)
さらに、好ましくは条件式(3b)の如く設定するのが良い。
0.9 <| f1n | / f1 <10.0 (3a)
Furthermore, it is preferable to set as in conditional expression (3b).

1.0 < |f1n|/f1 < 5.0 ‥‥‥(3b)
条件式(4)は、望遠端における全系の焦点距離を第2レンズ群B2の焦点距離で規定するものである。条件式(4)の上限を超えて第2レンズ群B2の焦点距離が小さくなると、高ズーム比化およびレンズ全長の短縮が容易になるが、ペッツバール和が負の方向に大きくなり、像面湾曲が増大してくるので好ましくない。
1.0 <| f1n | / f1 <5.0 (3b)
Conditional expression (4) defines the focal length of the entire system at the telephoto end by the focal length of the second lens unit B2. When the focal length of the second lens unit B2 is reduced beyond the upper limit of conditional expression (4), it is easy to increase the zoom ratio and shorten the total lens length, but the Petzval sum increases in the negative direction, and the field curvature Is unfavorable because it increases.

条件式(4)の下限を超えて第2レンズ群B2の焦点距離が大きくなると、高ズーム比化のために、第2レンズ群B2の移動量を大きくする、または第2レンズ群B2よりも後方の後続レンズ群での変倍作用を大きくする必要がある。第2レンズ群B2の移動量を大きくするとレンズ全長が増大してくるので好ましくない。また、第2レンズ群B2よりも後方の後続レンズ群の変倍作用を大きくすると、レンズ全系の全長が長くなり、レンズ枚数の増加を招き好ましくない。   When the focal length of the second lens unit B2 exceeds the lower limit of the conditional expression (4), the movement amount of the second lens unit B2 is increased or higher than that of the second lens unit B2 in order to increase the zoom ratio. It is necessary to increase the zooming effect in the rear subsequent lens group. Increasing the amount of movement of the second lens unit B2 is not preferable because the total lens length increases. Further, if the zooming action of the succeeding lens unit behind the second lens unit B2 is increased, the total length of the entire lens system becomes longer, which increases the number of lenses, which is not preferable.

条件式(4)の数値範囲を、次の条件式(4a)の如く設定するのが良い。これによればズーム全域での像面湾曲および非点収差を抑えることが容易となるので好ましい。   The numerical range of conditional expression (4) is preferably set as in the following conditional expression (4a). This is preferable because it is easy to suppress field curvature and astigmatism over the entire zoom range.

7.0 < fT/|f2| < 20.0 ‥‥‥(4a)
この他条件式(4)の数値範囲は条件式(4a)の下限値を用いて次の如く設定するのが良い。
7.0 <fT / | f2 | <20.0 (4a)
The numerical value range of the other conditional expression (4) is preferably set as follows using the lower limit value of the conditional expression (4a).

7.0 < fT/|f2| < 25.0 ‥‥‥(4b)
条件式(5)は、望遠端における全系の焦点距離を第1レンズ群B1の焦点距離で規定するものである。
7.0 <fT / | f2 | <25.0 (4b)
Conditional expression (5) defines the focal length of the entire system at the telephoto end by the focal length of the first lens unit B1.

条件式(5)の上限を超えて、第1レンズ群B1の焦点距離が長くなりすぎると、望遠端において球面収差を補正するのが難しくなり、これを第2レンズ群B2よりも後方の後続レンズ群で補正する必要がある。そうすると、後続レンズ群LRのレンズ枚数が増加してくるので良くない。条件式(5)の下限を超えて、第1レンズ群B1の焦点距離が短くなりすぎると、望遠端において色収差が増大してくるので好ましくない。条件式(5)の数値範囲を次の条件式(5a)の如く設定するのが良い。これによれば球面収差の補正と全系の小型化が容易となる。   If the upper limit of conditional expression (5) is exceeded and the focal length of the first lens unit B1 becomes too long, it will be difficult to correct spherical aberration at the telephoto end, and this will follow the rear of the second lens unit B2. It is necessary to correct with the lens group. This is not good because the number of lenses in the subsequent lens group LR increases. If the lower limit of conditional expression (5) is exceeded and the focal length of the first lens unit B1 becomes too short, chromatic aberration increases at the telephoto end, which is not preferable. It is preferable to set the numerical range of conditional expression (5) as in the following conditional expression (5a). This facilitates correction of spherical aberration and downsizing of the entire system.

0.4 < f1/fT < 5.0 ‥‥‥(5a)
この他条件式(5)の上限値は後述する実施例6の値を用いて次の如く設定するのが良い。
0.4 <f1 / fT <5.0 (5a)
In addition, the upper limit value of conditional expression (5) is preferably set as follows using the value of Example 6 described later.

0.3 < f1/fT ≦ 0.755 ‥‥‥(5b)
条件式(6)は広角端と望遠端における全系の焦点距離の比を望遠端におけるFナンバーで規定したものである。
0.3 <f1 / fT ≦ 0.755 (5b)
Conditional expression (6) defines the ratio of the focal lengths of the entire system at the wide-angle end and the telephoto end by the F number at the telephoto end.

条件式(6)の上限を超えて、望遠端でのFナンバーが大きくなりすぎると、望遠端において球面収差および軸上色収差の補正が容易になり、高い結像性能が得られるが、絞りによる像面変動が大きくなるので好ましくない。条件式(6)の下限を超えて、望遠端でのFナンバーが小さくなると、望遠端において球面収差を補正するために第1レンズ群B1のレンズ枚数を増加しなければならない。そうすると第1レンズ群B1の径方向の増大を招く。径方向の増大に伴い、ズーム全域にて軸外光線のフレア成分の増加を招き好ましくない。   If the F number at the telephoto end becomes too large beyond the upper limit of conditional expression (6), spherical aberration and axial chromatic aberration can be easily corrected at the telephoto end, and high imaging performance can be obtained. This is not preferable because the image plane fluctuation increases. If the lower limit of conditional expression (6) is exceeded and the F-number at the telephoto end decreases, the number of lenses in the first lens unit B1 must be increased in order to correct spherical aberration at the telephoto end. This causes an increase in the radial direction of the first lens unit B1. As the radial direction increases, the flare component of off-axis rays increases in the entire zoom range, which is not preferable.

条件式(7)の上限を超えて負レンズの材料が高屈折率になるとレンズ面の曲率半径が大きくなり、諸収差の補正、特に広角端において球面収差の補正効果が困難となる。条件式(7)の下限を超えて負レンズの材料の屈折率が低くなると所定の屈折力を持たせるためにレンズ面の曲率半径が小さくなり非点収差の補正が困難になるので好ましくない。また、全系の小型化が困難となってくる。条件式(7)の数値範囲を次の条件式(7a)の如く設定するのが良い。これによればさらなる全系の小型化が容易になる。   If the upper limit of conditional expression (7) is exceeded and the negative lens material has a high refractive index, the radius of curvature of the lens surface increases, making it difficult to correct various aberrations, particularly to correct spherical aberration at the wide-angle end. If the refractive index of the negative lens material becomes lower than the lower limit of conditional expression (7), it is not preferable because the curvature radius of the lens surface becomes small and correction of astigmatism becomes difficult to give a predetermined refractive power. In addition, it is difficult to reduce the size of the entire system. The numerical range of conditional expression (7) is preferably set as in the following conditional expression (7a). This facilitates further downsizing of the entire system.

1.8 < Nd1n < 2.4 ‥‥‥(7a)
条件式(8)は、第2レンズ群B2の焦点距離を適切に設定し、適正な変倍比を保ち、ペッツバール和の補正を行うものである。条件式(8)の上限を超えると、ズーミングにおける第1レンズ群B1と第2レンズ群B2の収差変動が大きくなり、特に像面湾曲を補正することが困難となってくる。条件式(8)の下限を超えると、高ズーム比化のために、第2レンズ群B2の移動量が大きくなり、レンズ全長および径方向が増大してくるので好ましくない。
1.8 <Nd1n <2.4 (7a)
Conditional expression (8) sets the focal length of the second lens unit B2 appropriately, maintains an appropriate zoom ratio, and corrects the Petzval sum. If the upper limit of conditional expression (8) is exceeded, the aberration fluctuations of the first lens unit B1 and the second lens unit B2 during zooming will increase, and it will be particularly difficult to correct field curvature. Exceeding the lower limit of conditional expression (8) is not preferable because the amount of movement of the second lens unit B2 increases to increase the overall zoom ratio and radial direction in order to increase the zoom ratio.

更に好ましくは、条件式(8)の数値範囲を次の条件式(8a)の如く設定するのが良い。   More preferably, the numerical range of the conditional expression (8) is set as the following conditional expression (8a).

4.0 < f1/|f2| < 7.0 ‥‥‥(8a)
条件式(9)は、第1レンズ群B1の少なくとも1つの負レンズが、色収差の補正を行うとともに、球面収差やコマ収差の補正を良好に行うためのものである。条件式(9)の上限を超えると、レンズ系に対し、第1レンズ群B1の負レンズが大型化してくるので、好ましくない。条件式(9)の下限を超えると、第1レンズ群B1の負レンズの負のパワー(屈折力)を確保することが困難となり、望遠端においての球面収差やコマ収差の補正効果が困難となる。更に好ましくは、条件式(9)の数値範囲を次の条件式(9a)の如く設定するのが良い。
4.0 <f1 / | f2 | <7.0 (8a)
Conditional expression (9) is for at least one negative lens of the first lens unit B1 to correct the chromatic aberration and to correct the spherical aberration and the coma aberration satisfactorily. Exceeding the upper limit of conditional expression (9) is not preferable because the negative lens of the first lens unit B1 becomes larger than the lens system. If the lower limit of conditional expression (9) is exceeded, it will be difficult to ensure the negative power (refractive power) of the negative lens of the first lens unit B1, and it will be difficult to correct spherical aberration and coma at the telephoto end. Become. More preferably, the numerical range of conditional expression (9) is set as in the following conditional expression (9a).

0.9 < t1n/t2min < 4.0 ‥‥‥(9a)
条件式(10)は、外力の加わる環境や、ガラスの自重及び締め付けなどによる変形を規定したものである。条件式(10)においてヌープ硬さとは工業材料の硬さを表す尺度の1つである。ヌープ硬さHKは圧痕表面積で試験荷重を割って算出される。
HK=P/Cp2
ここで、
2 = 圧痕表面積(単位mm2
p = 補正係数 0.070279
P = 加重(単位kgf)
である。条件式(10)の下限を超えると、機械的性質が不十分となり、第1レンズ群B1の少なくとも1つの負レンズが最も被写体側に位置した場合、変形や歪みが生じ、好ましくない。また、後続レンズ群LRは少なくとも1つの非球面形状のレンズを有することが望ましい。
0.9 <t1n / t2min <4.0 (9a)
Conditional expression (10) defines an environment in which an external force is applied and deformation due to the weight of the glass and tightening. In conditional expression (10), Knoop hardness is one of the scales representing the hardness of industrial materials. Knoop hardness HK is calculated by dividing the test load by the indentation surface area.
HK = P / C p L 2
here,
L 2 = indentation surface area (unit: mm 2 )
C p = correction coefficient 0.070279
P = Weight (kgf)
It is. If the lower limit of conditional expression (10) is exceeded, the mechanical properties become insufficient, and when at least one negative lens of the first lens unit B1 is located closest to the subject, deformation or distortion occurs, which is not preferable. Further, it is desirable that the subsequent lens group LR has at least one aspherical lens.

広角端でのFナンバーを比較的小さく、後続レンズ群を簡素なレンズ構成にするために、非球面を有することが望ましい。また、後続レンズ群LRを合成し1つのレンズ系としたとき、該レンズ系の屈折力が正となることが望ましい。後続レンズ群LRを合成したレンズ系の屈折力を正とすることにより、高い光学性能を達成することができる。また、後続レンズ群LRは、正の屈折力の第3レンズ群B3を有する構成とすることが望ましい。   It is desirable to have an aspherical surface in order to make the F number at the wide angle end relatively small and to make the subsequent lens group a simple lens configuration. In addition, when the subsequent lens unit LR is combined into one lens system, it is desirable that the refractive power of the lens system be positive. By making the refractive power of the lens system that combines the subsequent lens groups LR positive, high optical performance can be achieved. Further, it is desirable that the subsequent lens unit LR has a third lens unit B3 having a positive refractive power.

これによれば所望のズーム比を確保しつつ、レンズ全長の短縮およびレンズ系の簡素化を図るのに好ましい。また、第3レンズ群B3に非球面形状の面を含むレンズを採用すれば、口径比が大きくとも良好な結像性能を保つことができるので好ましい。以上のように各実施例によれば、各レンズ群の構成、パワー配置による変倍分担を適切に設定することにより、高ズーム比でありながら、高い結像性能を有すズームレンズを得ている。   This is preferable for shortening the overall lens length and simplifying the lens system while ensuring a desired zoom ratio. In addition, it is preferable to use a lens including an aspherical surface in the third lens unit B3 because good imaging performance can be maintained even if the aperture ratio is large. As described above, according to each embodiment, a zoom lens having high imaging performance while having a high zoom ratio can be obtained by appropriately setting the variable power sharing by the configuration and power arrangement of each lens group. Yes.

次に各実施例のズームレンズのレンズ構成について説明する。図1、図3、図13、図15の実施例1、2、7、8では、広角端から望遠端へのズーミングに際して矢印のように、第2レンズ群B2を像側へ移動させて変倍を行っている。そして変倍に伴う像面変動を第4レンズ群B4を物体側に凸状の軌跡を有するよう移動させて補正している。また、第4レンズ群B4を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。   Next, the lens configuration of the zoom lens of each embodiment will be described. In the first, second, seventh, and eighth embodiments of FIGS. 1, 3, 13, and 15, when zooming from the wide-angle end to the telephoto end, the second lens unit B2 is moved to the image side to change the position as indicated by an arrow. Have done twice. Then, the image plane variation due to zooming is corrected by moving the fourth lens unit B4 to have a convex locus on the object side. In addition, a rear focus type that performs focusing by moving the fourth lens unit B4 on the optical axis is adopted.

第4レンズ群B4に関する実線の曲線4aと点線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの変倍に伴う像面変動を補正するための移動軌跡である。このように第4レンズ群B4を物体側へ凸状の軌跡とすることで第3レンズ群B3と第4レンズ群B4との間の空気の有効利用を図り、レンズ全長の短縮化を効果的に達成している。又、望遠端において無限遠物体から近距離物体に繰り出すことで行っている。   A solid curve 4a and a dotted curve 4b relating to the fourth lens unit B4 are movement trajectories for correcting image plane fluctuations accompanying zooming when focusing on an object at infinity and an object at close distance, respectively. Thus, by making the fourth lens unit B4 a locus convex toward the object side, the air between the third lens unit B3 and the fourth lens unit B4 can be effectively used, and the entire lens length can be shortened effectively. Has been achieved. In addition, this is done by moving from an infinitely distant object to a close object at the telephoto end.

実施例1、2、7、8ではズーミングに際して第1レンズ群B1と第3レンズ群B3を固定にして、全系の可動レンズ群を2つに抑えている。これによればズーミング時のレンズ全長の変化を無くすことができるので好ましい。また、ズーミングの際に結像面(像面)に対して開口絞りSPを固定(不動に)している。これにより開口絞りSPをズーミングの際に移動させるためのアクチュエータを不要として、構成を簡素化している。尚、第1レンズ群B1と第3レンズ群B3、そして開口絞りSPはズーミング及びフォーカスの為には光軸方向に移動しない。但し収差補正上、必要に応じ移動しても良い。   In Examples 1, 2, 7, and 8, the first lens unit B1 and the third lens unit B3 are fixed during zooming, and the total number of movable lens units is limited to two. This is preferable because the change in the overall lens length during zooming can be eliminated. Further, the aperture stop SP is fixed (immobilized) with respect to the image plane (image plane) during zooming. This eliminates the need for an actuator for moving the aperture stop SP during zooming, thus simplifying the configuration. The first lens unit B1, the third lens unit B3, and the aperture stop SP do not move in the optical axis direction for zooming and focusing. However, it may be moved as needed for aberration correction.

図5の実施例3では広角端から望遠端へのズーミングに際して矢印のように第1レンズ群B1は物体側へ、第2レンズ群B2は像側へ移動している。又、第3レンズ群B3は、物体側に非直線的に移動している。そして第4レンズ群L4は物体側に凸状の軌跡で移動して変倍に伴う像面変動を補正している。又、開口絞りSPは物体側に凸状の軌跡を有して移動している。第4レンズ群B4を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。   In Example 3 of FIG. 5, during zooming from the wide-angle end to the telephoto end, the first lens unit B1 moves to the object side and the second lens unit B2 moves to the image side as indicated by the arrows. Further, the third lens unit B3 moves non-linearly toward the object side. The fourth lens unit L4 moves along a convex locus toward the object side to correct image plane fluctuations accompanying zooming. The aperture stop SP moves with a convex locus on the object side. A rear focus type is employed in which the fourth lens unit B4 is moved on the optical axis to perform focusing.

望遠端において無限遠物体から近距離物体へフォーカスを行う場合には矢印4cに示すように第4レンズ群B4を前方に繰り出すことによって行っている。第4レンズ群B4に関する実線の曲線4aと点線の曲線4bは各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに伴う際の像面変動を補正するための移動軌跡を示している。軽量な第4レンズ群B4をフォーカスの為に移動することで迅速なフォーカスを容易にしている。   When focusing from an infinitely distant object to a close object at the telephoto end, the fourth lens unit B4 is moved forward as indicated by an arrow 4c. A solid curve 4a and a dotted curve 4b relating to the fourth lens unit B4 are for correcting image plane fluctuations during zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory is shown. Rapid focusing is facilitated by moving the lightweight fourth lens unit B4 for focusing.

又、このように第4レンズ群B4を物体側へ凸状の軌跡とすることで、第3レンズ群B3と第4レンズ群B4との間の空間の有効利用を図り、レンズ全長の短縮化を効果的に達成している。ズーミングに際し、広角端に比べて望遠端において第1レンズ群B1が物体側に位置し、第2レンズ群B2が像面側に位置し、第3レンズ群B3が物体側に位置する様に移動している。これによりレンズ全長を小型に維持しつつ、大きなズーム比が得られるようにしている。   In addition, by making the fourth lens unit B4 convex toward the object side in this way, the space between the third lens unit B3 and the fourth lens unit B4 is effectively used, and the total lens length is shortened. Has been achieved effectively. During zooming, the first lens unit B1 is positioned on the object side, the second lens unit B2 is positioned on the image plane side, and the third lens unit B3 is positioned on the object side at the telephoto end compared to the wide-angle end. doing. As a result, a large zoom ratio can be obtained while keeping the entire lens length small.

また、開口絞りSPを物体側に凸状の軌跡を有する様に移動させることで中間のズーム位置での周辺光線を確保するために前玉径が増大するのを防止し、前玉径の小型化を図っている。   Further, by moving the aperture stop SP so as to have a convex locus on the object side, it is possible to prevent the front lens diameter from increasing in order to secure peripheral rays at the intermediate zoom position, and to reduce the front lens diameter. We are trying to make it.

図7の実施例4では、広角端から望遠端へのズーミングに際して、矢印に示すように第1レンズ群B1を物体側に移動させるとともに、第2レンズ群B2を像側に移動させて主たる変倍を行っている。第3レンズ群B3と第4レンズ群B4は物体側に移動している。第5レンズ群B5は非線形な軌跡で移動させて変倍に伴う像面位置の変動を補正している。絞りSPは物体側へ独立に移動している。また第5レンズ群B5に関する実線の曲線5aと点線の曲線5bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う像面変動を補正するための移動軌跡を示している。   In Example 4 of FIG. 7, during zooming from the wide-angle end to the telephoto end, the first lens unit B1 is moved to the object side as indicated by the arrow, and the second lens unit B2 is moved to the image side to perform main changes. Have done twice. The third lens unit B3 and the fourth lens unit B4 are moved to the object side. The fifth lens unit B5 is moved along a non-linear trajectory to correct image plane position fluctuations accompanying zooming. The stop SP moves independently to the object side. Further, a solid curve 5a and a dotted curve 5b relating to the fifth lens unit B5 correct image plane fluctuations accompanying zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement locus for this is shown.

このように第5レンズ群B5を物体側に凸状の軌跡を有するように移動させることにより、第4レンズ群B4と第5レンズ群B5の間の空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。   Thus, by moving the fifth lens unit B5 so as to have a convex locus on the object side, the space between the fourth lens unit B4 and the fifth lens unit B5 is effectively used and the total lens length is shortened. Has been achieved effectively.

本実施例において、例えば物体側において無限遠物体から近距離物体へのフォーカスは、同図の直線5cに示すように第5レンズ群B5を前方へ繰り出すことによって行っている。図9の実施例5では、広角端から望遠端のズーミングにおいて、第2レンズ群B2を像側へ移動させて主たる変倍を行っている。そして第3レンズ群B3を物体側に凸状の軌跡を有するように移動させて変倍に伴う像面変動を補正している。又、第1レンズ群B1でフォーカシングを行っている。無限遠物体から近距離物体へフォーカスを行う場合には、矢印Fに示すように第1レンズ群B1を前方(物体側)に繰り出すことで行っている。   In the present embodiment, for example, focusing from an infinitely distant object to a close object on the object side is performed by extending the fifth lens unit B5 forward as indicated by a straight line 5c in FIG. In Example 5 of FIG. 9, in zooming from the wide-angle end to the telephoto end, the second lens unit B2 is moved to the image side to perform main zooming. Then, the third lens unit B3 is moved so as to have a convex locus on the object side, thereby correcting the image plane variation accompanying the zooming. Further, focusing is performed by the first lens unit B1. When focusing from an object at infinity to an object at a short distance, as indicated by an arrow F, the first lens unit B1 is moved forward (object side).

実施例5では、ズーミングに際して第1レンズ群B1と第4レンズ群B4を固定にして、全系の可動レンズ群を2つに抑えている。これによればズーミング時のレンズ全長の変化を無くすことができる。図11の実施例6では、広角端から望遠端へのズーミングに際して矢印のように、各レンズ群を移動させている。具体的には、広角端から望遠端へのズーミングに際し、第1レンズ群B1は物体側へ、第2レンズ群B2は非直線的に像側へ移動している。また第3レンズ群B3は非直線的に物体側へ、第4レンズ群B4は非直線的に像側へ、第5レンズ群B5は非直線的に物体側へ移動している。   In Example 5, the first lens unit B1 and the fourth lens unit B4 are fixed during zooming, and the total number of movable lens units is limited to two. According to this, a change in the total lens length during zooming can be eliminated. In Example 6 of FIG. 11, each lens group is moved as indicated by an arrow during zooming from the wide-angle end to the telephoto end. Specifically, during zooming from the wide-angle end to the telephoto end, the first lens unit B1 moves to the object side, and the second lens unit B2 moves nonlinearly to the image side. The third lens unit B3 is moved non-linearly toward the object side, the fourth lens unit B4 is moved non-linearly toward the image side, and the fifth lens unit B5 is moved non-linearly toward the object side.

開口絞りSPはズーミングに際して第3レンズ群B3と一体に移動しているが、別体にて移動しても、また固定としても良い。一体に移動すると移動/可動で分けられる群数が少なくなり、メカ構造が簡素化しやすくなる。第2レンズ群B2を光軸上移動させてフォーカシングを行うリアフォーカス式を採用している。第2レンズ群B2に関する実線の曲線2aと点線の曲線2bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングに伴う像面変動を補正するための移動軌跡を示している。   The aperture stop SP moves together with the third lens unit B3 during zooming, but may move separately or be fixed. When moved together, the number of groups divided by movement / movability is reduced, and the mechanical structure is easily simplified. A rear focus type in which focusing is performed by moving the second lens unit B2 on the optical axis is adopted. A solid curve 2a and a dotted curve 2b relating to the second lens unit B2 are used to correct image plane variation accompanying zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. The movement trajectory is shown.

実施例6において、例えば望遠端において無限遠物体から近距離物体へフォーカスを行う場合には、矢印2cに示すように第2レンズ群B2を前方に繰り出すことで行っている。実施例3,4,6ではズーミングに際して各レンズ群を移動し、レンズ系の小型化を行っている。また、これによりズーミング時の収差変動を抑えている。   In Example 6, for example, when focusing from an object at infinity to a near object at the telephoto end, the second lens unit B2 is moved forward as indicated by an arrow 2c. In Examples 3, 4, and 6, each lens group is moved during zooming to reduce the size of the lens system. This also suppresses aberration fluctuations during zooming.

次に本発明のズームレンズを撮影光学系として用いたカムコーダーの実施例を図18、デジタルスチルカメラの実施例を図19を用いて説明する。図18において、10はカメラ本体、11は実施例1〜8説明したいずれかのズームレンズによって構成された撮影光学系である。12はカメラ本体に内蔵され、撮影光学系11によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。13は液晶ディスプレイパネル等によって構成され、固体撮像素子12上に形成された被写体像を観察するためのファインダである。   Next, an embodiment of a camcorder using the zoom lens of the present invention as a photographing optical system will be described with reference to FIG. 18, and an embodiment of a digital still camera will be described with reference to FIG. In FIG. 18, reference numeral 10 denotes a camera body, and 11 denotes a photographing optical system constituted by any one of the zoom lenses described in the first to eighth embodiments. Reference numeral 12 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 11 and is built in the camera body. Reference numeral 13 is a finder for observing a subject image formed on the solid-state image sensor 12, which includes a liquid crystal display panel or the like.

図19において、20はカメラ本体、21は実施例1〜8説明したいずれかのズームレンズによって構成された撮影光学系である。22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。   In FIG. 19, reference numeral 20 denotes a camera body, and reference numeral 21 denotes a photographing optical system constituted by any of the zoom lenses described in the first to eighth embodiments. Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body.

次に各実施例に対応する数値実施例を示す。数値実施例において、iは物体側からの面の順番を示す。riは物体側より順に第i番目の面の曲率半径、diは物体側より順に第i番目と第i+1番目間のレンズ厚及び空気間隔である。ndiとνdiは各々物体側より順に第i番目の光学部材の材質の屈折率とアッベ数である。又前述の各条件式と各数値実施例との関係を表−1に示す。非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正としRを近軸曲率半径、Kを円錐定数、A4〜A10を各々非球面係数としたとき   Next, numerical examples corresponding to the respective examples will be shown. In the numerical example, i indicates the order of the surfaces from the object side. ri is the radius of curvature of the i-th surface in order from the object side, and di is the lens thickness and air spacing between the i-th and i + 1-th in order from the object side. ndi and νdi are respectively the refractive index and Abbe number of the material of the i-th optical member in order from the object side. Table 1 shows the relationship between the above-described conditional expressions and numerical examples. The aspherical shape is the X axis in the optical axis direction, the H axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, K is the conic constant, and A4 to A10 are each aspherical coefficients.

なる式で表している。
*は非球面形状を有する面を意味している。「e−x」は10-xを意味している。
It is expressed by the following formula.
* Means a surface having an aspherical shape. “E−x” means 10 −x .

[数値実施例1]
単位 mm

面データ
面番号 r d nd νd θgF
1 43.859 1.15 1.84666 26.8 0.57997
2 20.643 4.65 1.60300 65.4 0.54016
3 -520.777 0.20
4 19.644 3.31 1.69680 55.5 0.54335
5 61.808 (可変)
6 48.145 0.60 1.88300 40.8 0.56672
7 5.099 2.30
8 -22.405 0.60 1.77250 49.6 0.55205
9 12.593 0.50
10 10.103 1.47 1.92286 18.9 0.64952
11 50.485 (可変)
12* 10.014 2.51 1.58313 59.4 0.54230
13 -156.394 1.40
14(絞り) ∞ 2.30
15 35.107 0.60 1.84666 23.8 0.62046
16 9.989 0.15
17* 11.008 1.85 1.58313 59.4 0.54230
18 -94.159 (可変)
19 15.838 1.73 1.80400 46.6 0.55718
20 -18.707 0.55 1.92286 18.9 0.64952
21 -54.476 (可変)
22 ∞ 1.00 1.51633 64.1 0.53524
23 ∞ 1.00
像面 ∞
[Numerical Example 1]
Unit mm

Surface data surface number rd nd νd θgF
1 43.859 1.15 1.84666 26.8 0.57997
2 20.643 4.65 1.60300 65.4 0.54016
3 -520.777 0.20
4 19.644 3.31 1.69680 55.5 0.54335
5 61.808 (variable)
6 48.145 0.60 1.88300 40.8 0.56672
7 5.099 2.30
8 -22.405 0.60 1.77250 49.6 0.55205
9 12.593 0.50
10 10.103 1.47 1.92286 18.9 0.64952
11 50.485 (variable)
12 * 10.014 2.51 1.58313 59.4 0.54230
13 -156.394 1.40
14 (Aperture) ∞ 2.30
15 35.107 0.60 1.84666 23.8 0.62046
16 9.989 0.15
17 * 11.008 1.85 1.58313 59.4 0.54230
18 -94.159 (variable)
19 15.838 1.73 1.80400 46.6 0.55718
20 -18.707 0.55 1.92286 18.9 0.64952
21 -54.476 (variable)
22 ∞ 1.00 1.51633 64.1 0.53524
23 ∞ 1.00
Image plane ∞

非球面データ
第12面
K =-8.85802e-001 A 4= 3.56682e-005 A 6=-3.42001e-007
A 8= 5.21683e-009

第17面
K =-3.29557e-002 A 4=-2.10744e-004

各種データ
ズーム比 14.81
広角 中間 望遠
焦点距離 4.25 22.44 62.97
Fナンバー 1.85 2.76 3.09
画角 27.88 5.73 2.05
像高 2.25 2.25 2.25
レンズ全長 60.67 60.67 60.67
BF 8.43 12.33 5.99

d 5 0.65 14.91 19.41
d11 19.58 5.32 0.82
d18 6.14 2.25 8.59
d21 6.77 10.67 4.33

ズームレンズ群データ
群 始面 焦点距離
1 1 30.27
2 6 -5.70
3 12 16.49
4 19 16.50
5 22 ∞
Aspheric data 12th surface
K = -8.85802e-001 A 4 = 3.56682e-005 A 6 = -3.42001e-007
A 8 = 5.21683e-009

17th page
K = -3.29557e-002 A 4 = -2.10744e-004

Various data Zoom ratio 14.81
Wide angle Medium Telephoto focal length 4.25 22.44 62.97
F number 1.85 2.76 3.09
Angle of view 27.88 5.73 2.05
Image height 2.25 2.25 2.25
Total lens length 60.67 60.67 60.67
BF 8.43 12.33 5.99

d 5 0.65 14.91 19.41
d11 19.58 5.32 0.82
d18 6.14 2.25 8.59
d21 6.77 10.67 4.33

Zoom lens group data group Start surface Focal length
1 1 30.27
2 6 -5.70
3 12 16.49
4 19 16.50
5 22 ∞

[数値実施例2]
単位 mm

面データ
面番号 r d nd νd θgF
1 44.369 1.20 1.84660 23.4 0.59564
2 22.958 4.69 1.60311 60.6 0.54143
3 -264.248 0.20
4 20.207 2.71 1.69680 55.5 0.54335
5 51.401 (可変)
6 27.518 0.80 1.88300 40.8 0.55718
7 6.535 2.28
8 -17.635 0.60 1.80400 46.6 0.55718
9 7.145 0.86
10 9.172 1.50 1.92286 18.9 0.64952
11 39.382 (可変)
12(絞り) ∞ 1.56
13* 6.897 3.03 1.58313 59.4 0.54230
14* -43.010 0.15
15 10.827 0.70 1.84666 23.8 0.62046
16 6.232 (可変)
17 12.586 2.96 1.48749 70.2 0.53001
18 -5.717 0.60 1.80610 33.3 0.58811
19 -9.733 (可変)
20 ∞ 2.00 1.51633 64.1 0.53524
21 ∞ 1.00
像面 ∞
[Numerical Example 2]
Unit mm

Surface data surface number rd nd νd θgF
1 44.369 1.20 1.84660 23.4 0.59564
2 22.958 4.69 1.60311 60.6 0.54143
3 -264.248 0.20
4 20.207 2.71 1.69680 55.5 0.54335
5 51.401 (variable)
6 27.518 0.80 1.88300 40.8 0.55718
7 6.535 2.28
8 -17.635 0.60 1.80400 46.6 0.55718
9 7.145 0.86
10 9.172 1.50 1.92286 18.9 0.64952
11 39.382 (variable)
12 (Aperture) ∞ 1.56
13 * 6.897 3.03 1.58313 59.4 0.54230
14 * -43.010 0.15
15 10.827 0.70 1.84666 23.8 0.62046
16 6.232 (variable)
17 12.586 2.96 1.48749 70.2 0.53001
18 -5.717 0.60 1.80610 33.3 0.58811
19 -9.733 (variable)
20 ∞ 2.00 1.51633 64.1 0.53524
21 ∞ 1.00
Image plane ∞

非球面データ
第13面
K =-5.41383e-001 A 4=-1.52169e-005 A 6=-1.89205e-007
A 8= 9.89850e-009

第14面
K =-3.21918e+001 A 4= 2.03935e-004 A 6=-2.22126e-006

各種データ
ズーム比
19.98
広角 中間 望遠
焦点距離 3.62 9.89 72.39
Fナンバー 1.85 2.20 3.50
画角 28.89 11.43 1.58
像高 2.00 2.00 2.00
レンズ全長 61.21 61.21 61.21
BF 8.96 11.54 5.17

d 5 0.55 10.63 20.72
d11 22.22 12.13 2.05
d16 5.64 3.07 9.43
d19 6.64 9.22 2.85

ズームレンズ群データ
群 始面 焦点距離
1 1 31.40
2 6 -5.43
3 12 17.64
4 17 15.60
5 20 ∞
Aspherical data 13th surface
K = -5.41383e-001 A 4 = -1.52169e-005 A 6 = -1.89205e-007
A 8 = 9.89850e-009

14th page
K = -3.21918e + 001 A 4 = 2.03935e-004 A 6 = -2.22126e-006

Various data Zoom ratio
19.98
Wide angle Medium Telephoto focal length 3.62 9.89 72.39
F number 1.85 2.20 3.50
Angle of view 28.89 11.43 1.58
Image height 2.00 2.00 2.00
Total lens length 61.21 61.21 61.21
BF 8.96 11.54 5.17

d 5 0.55 10.63 20.72
d11 22.22 12.13 2.05
d16 5.64 3.07 9.43
d19 6.64 9.22 2.85

Zoom lens group data group Start surface Focal length
1 1 31.40
2 6 -5.43
3 12 17.64
4 17 15.60
5 20 ∞

[数値実施例3]
単位 mm

面データ
面番号 r d nd νd θgF
1 65.395 1.50 2.10500 17.2 0.60817
2 43.930 4.82 1.49700 81.5 0.53752
3 -104.107 0.20
4 29.151 2.79 1.83481 42.7 0.56362
5 56.294 (可変)
6 41.126 0.90 1.83481 42.7 0.56362
7 12.363 4.73
8 -21.945 0.75 1.60311 60.6 0.54143
9 12.475 1.65
10 15.369 1.69 1.92286 18.9 0.64952
11 31.922 (可変)
12(絞り) ∞ (可変)
13* 9.798 3.34 1.58313 59.4 0.54230
14 81.572 3.98
15 15.028 0.70 2.10500 17.2 0.60817
16 8.998 1.09
17 78.174 1.35 1.84666 23.8 0.62046
18 -100.308 (可変)
19 ∞ (可変)
20 15.407 0.80 1.84666 23.8 0.62046
21 9.670 2.76 1.80400 46.6 0.55718
22 671.415 (可変)
23 ∞ 1.00 1.51633 64.1 0.53524
24 ∞ 1.50
像面 ∞
[Numerical Example 3]
Unit mm

Surface data surface number rd nd νd θgF
1 65.395 1.50 2.10500 17.2 0.60817
2 43.930 4.82 1.49700 81.5 0.53752
3 -104.107 0.20
4 29.151 2.79 1.83481 42.7 0.56362
5 56.294 (variable)
6 41.126 0.90 1.83481 42.7 0.56362
7 12.363 4.73
8 -21.945 0.75 1.60311 60.6 0.54143
9 12.475 1.65
10 15.369 1.69 1.92286 18.9 0.64952
11 31.922 (variable)
12 (Aperture) ∞ (Variable)
13 * 9.798 3.34 1.58313 59.4 0.54230
14 81.572 3.98
15 15.028 0.70 2.10500 17.2 0.60817
16 8.998 1.09
17 78.174 1.35 1.84666 23.8 0.62046
18 -100.308 (variable)
19 ∞ (variable)
20 15.407 0.80 1.84666 23.8 0.62046
21 9.670 2.76 1.80400 46.6 0.55718
22 671.415 (variable)
23 ∞ 1.00 1.51633 64.1 0.53524
24 ∞ 1.50
Image plane ∞

非球面データ
第13面
K =-1.04021e+000 A 4= 1.85956e-004 A 6= 3.69765e-005
A 8= 5.71959e-007 A10=-1.88292e-009
A 3=-8.59213e-005 A 5=-1.01902e-004 A 7=-6.93498e-006

各種データ
ズーム比 11.55
広角 中間 望遠
焦点距離 6.44 20.06 74.41
Fナンバー 2.00 2.90 3.50
画角 29.20 10.18 2.77
像高 3.60 3.60 3.60
レンズ全長 83.06 83.77 86.22
BF 12.26 15.41 8.58

d 5 0.80 15.00 26.46
d11 24.77 8.56 3.00
d12 9.20 6.53 1.45
d18 1.16 2.46 4.31
d19 1.81 2.74 9.36
d22 10.10 13.25 6.42

ズームレンズ群データ
群 始面 焦点距離
1 1 45.10
2 6 -10.48
3 12 ∞
4 13 27.64
5 19 ∞
6 20 20.17
7 23 ∞
Aspherical data 13th surface
K = -1.04021e + 000 A 4 = 1.85956e-004 A 6 = 3.69765e-005
A 8 = 5.71959e-007 A10 = -1.88292e-009
A 3 = -8.59213e-005 A 5 = -1.01902e-004 A 7 = -6.93498e-006

Various data Zoom ratio 11.55
Wide angle Medium Telephoto focal length 6.44 20.06 74.41
F number 2.00 2.90 3.50
Angle of view 29.20 10.18 2.77
Image height 3.60 3.60 3.60
Total lens length 83.06 83.77 86.22
BF 12.26 15.41 8.58

d 5 0.80 15.00 26.46
d11 24.77 8.56 3.00
d12 9.20 6.53 1.45
d18 1.16 2.46 4.31
d19 1.81 2.74 9.36
d22 10.10 13.25 6.42

Zoom lens group data group Start surface Focal length
1 1 45.10
2 6 -10.48
3 12 ∞
4 13 27.64
5 19 ∞
6 20 20.17
7 23 ∞

[数値実施例4]
単位 mm

面データ
面番号 r d nd νd θgF
1 51.857 1.80 1.84660 23.4 0.59564
2 37.555 6.12 1.49700 81.5 0.53752
3 -9361.344 0.20
4 37.906 3.22 1.61272 58.7 0.54485
5 80.273 (可変)
6 47.453 1.00 1.88300 40.8 0.56672
7 8.290 3.81
8 27.180 0.80 1.88300 40.8 0.56672
9 16.395 2.25
10 -29.689 0.70 1.80610 33.3 0.58811
11 26.099 0.20
12 18.379 2.40 1.92286 18.9 0.64952
13 -87.594 (可変)
14(絞り) ∞ (可変)
15* 7.875 3.20 1.58313 59.4 0.54230
16 -34.469 1.63
17 116.346 0.80 1.76182 26.5 0.61353
18 8.090 0.50
19 11.124 0.70 2.00069 25.5 0.61357
20 5.663 2.70 1.69895 30.1 0.60291
21 81.297 (可変)
22 201.701 0.70 1.51633 64.1 0.53524
23 37.807 (可変)
24* 16.564 2.50 1.58313 59.4 0.54230
25 -114.982 (可変)
26 ∞ 1.00 1.51633 64.1 0.53524
27 ∞ 2.00
像面 ∞
[Numerical Example 4]
Unit mm

Surface data surface number rd nd νd θgF
1 51.857 1.80 1.84660 23.4 0.59564
2 37.555 6.12 1.49700 81.5 0.53752
3 -9361.344 0.20
4 37.906 3.22 1.61272 58.7 0.54485
5 80.273 (variable)
6 47.453 1.00 1.88300 40.8 0.56672
7 8.290 3.81
8 27.180 0.80 1.88300 40.8 0.56672
9 16.395 2.25
10 -29.689 0.70 1.80610 33.3 0.58811
11 26.099 0.20
12 18.379 2.40 1.92286 18.9 0.64952
13 -87.594 (variable)
14 (Aperture) ∞ (Variable)
15 * 7.875 3.20 1.58313 59.4 0.54230
16 -34.469 1.63
17 116.346 0.80 1.76182 26.5 0.61353
18 8.090 0.50
19 11.124 0.70 2.00069 25.5 0.61357
20 5.663 2.70 1.69895 30.1 0.60291
21 81.297 (variable)
22 201.701 0.70 1.51633 64.1 0.53524
23 37.807 (variable)
24 * 16.564 2.50 1.58313 59.4 0.54230
25 -114.982 (variable)
26 ∞ 1.00 1.51633 64.1 0.53524
27 ∞ 2.00
Image plane ∞

非球面データ
第15面
K =-1.79527e-001 A 4=-1.55788e-004 A 6=-4.02659e-007
A 8=-9.95380e-008 A10= 2.12024e-009

第24面
K = 3.17692e+000 A 4=-1.15655e-004 A 6=-3.79021e-007
A 8=-2.08695e-008

各種データ
ズーム比 18.56
広角 中間 望遠
焦点距離 5.16 18.34 95.85
Fナンバー 2.85 3.61 5.27
画角 36.88 11.93 2.32
像高 3.88 3.88 3.88
レンズ全長 86.76 92.18 118.76
BF 10.67 17.14 12.33

d 5 0.70 22.07 41.23
d13 27.76 9.82 3.52
d14 8.76 4.72 2.07
d21 1.64 0.95 5.02
d23 2.01 2.24 19.36
d25 8.01 14.48 9.67

ズームレンズ群データ
群 始面 焦点距離
1 1 63.72
2 6 -9.46
3 14 ∞
4 15 19.45
5 22 -90.25
6 24 25.00
7 26 ∞
Aspheric data 15th surface
K = -1.79527e-001 A 4 = -1.55788e-004 A 6 = -4.02659e-007
A 8 = -9.95380e-008 A10 = 2.12024e-009

24th page
K = 3.17692e + 000 A 4 = -1.15655e-004 A 6 = -3.79021e-007
A 8 = -2.08695e-008

Various data Zoom ratio 18.56
Wide angle Medium telephoto focal length 5.16 18.34 95.85
F number 2.85 3.61 5.27
Angle of view 36.88 11.93 2.32
Image height 3.88 3.88 3.88
Total lens length 86.76 92.18 118.76
BF 10.67 17.14 12.33

d 5 0.70 22.07 41.23
d13 27.76 9.82 3.52
d14 8.76 4.72 2.07
d21 1.64 0.95 5.02
d23 2.01 2.24 19.36
d25 8.01 14.48 9.67

Zoom lens group data group Start surface Focal length
1 1 63.72
2 6 -9.46
3 14 ∞
4 15 19.45
5 22 -90.25
6 24 25.00
7 26 ∞

[数値実施例5]
単位 mm

面データ
面番号 r d nd νd θgF
1 1249.461 2.40 1.84660 23.4 0.59564
2 106.525 10.60 1.51633 64.1 0.53524
3 -277.435 0.20
4 132.704 7.80 1.60311 60.6 0.54143
5 -529.319 0.20
6 56.525 6.90 1.67790 55.3 0.54720
7 152.250 (可変)
8 64.335 1.00 1.77250 49.6 0.55205
9 18.382 6.01
10 -23.952 0.90 1.77250 49.6 0.55205
11 17.007 4.63 1.84666 23.8 0.62046
12 144.295 (可変)
13 -26.130 0.90 1.78800 47.4 0.55592
14 36.326 3.84 1.84666 23.8 0.62046
15 -1354.707 (可変)
16(絞り) ∞ 1.60
17 -1002.750 4.60 1.65844 50.9 0.55606
18 -26.453 0.20
19 213.896 2.53 1.48749 70.2 0.53001
20 -215.067 0.20
21 40.643 6.76 1.48749 70.2 0.53001
22 -28.446 1.20 1.83400 37.2 0.57752
23 -2366.634 35.00
24 65.474 4.96 1.48749 70.2 0.53001
25 -64.304 0.20
26 -139.780 1.20 1.83400 37.2 0.57752
27 50.625 6.25 1.48749 70.2 0.53001
28 -34.432 0.20
29 43.063 7.05 1.51742 52.4 0.55643
30 -28.766 1.20 1.80400 46.6 0.55718
31 67.190 0.20
32 44.873 3.72 1.54814 45.8 0.56852
33 -993.699 3.86
34 ∞ 30.00 1.60342 38.0 0.58349
35 ∞ 16.20 1.51633 64.1 0.53524
36 ∞ 6.00
像面 ∞
[Numerical Example 5]
Unit mm

Surface data surface number rd nd νd θgF
1 1249.461 2.40 1.84660 23.4 0.59564
2 106.525 10.60 1.51633 64.1 0.53524
3 -277.435 0.20
4 132.704 7.80 1.60311 60.6 0.54143
5 -529.319 0.20
6 56.525 6.90 1.67790 55.3 0.54720
7 152.250 (variable)
8 64.335 1.00 1.77250 49.6 0.55205
9 18.382 6.01
10 -23.952 0.90 1.77250 49.6 0.55205
11 17.007 4.63 1.84666 23.8 0.62046
12 144.295 (variable)
13 -26.130 0.90 1.78800 47.4 0.55592
14 36.326 3.84 1.84666 23.8 0.62046
15 -1354.707 (variable)
16 (Aperture) ∞ 1.60
17 -1002.750 4.60 1.65844 50.9 0.55606
18 -26.453 0.20
19 213.896 2.53 1.48749 70.2 0.53001
20 -215.067 0.20
21 40.643 6.76 1.48749 70.2 0.53001
22 -28.446 1.20 1.83400 37.2 0.57752
23 -2366.634 35.00
24 65.474 4.96 1.48749 70.2 0.53001
25 -64.304 0.20
26 -139.780 1.20 1.83400 37.2 0.57752
27 50.625 6.25 1.48749 70.2 0.53001
28 -34.432 0.20
29 43.063 7.05 1.51742 52.4 0.55643
30 -28.766 1.20 1.80400 46.6 0.55718
31 67.190 0.20
32 44.873 3.72 1.54814 45.8 0.56852
33 -993.699 3.86
34 ∞ 30.00 1.60342 38.0 0.58349
35 ∞ 16.20 1.51633 64.1 0.53524
36 ∞ 6.00
Image plane ∞

各種データ
ズーム比 15.10
広角 中間 望遠
焦点距離 10.63 25.62 160.48
Fナンバー 2.05 2.20 2.40
画角 25.20 11.04 1.78
像高 5.00 5.00 5.00
レンズ全長 217.41 217.41 217.41
BF 39.25 39.25 39.25

d 7 0.80 25.30 49.80
d12 52.91 25.24 5.29
d15 2.00 5.17 0.62

ズームレンズ群データ
群 始面 焦点距離
1 1 76.67
2 8 -14.23
3 13 -35.91
4 16 46.65
Various data Zoom ratio 15.10
Wide angle Medium telephoto focal length 10.63 25.62 160.48
F number 2.05 2.20 2.40
Angle of view 25.20 11.04 1.78
Image height 5.00 5.00 5.00
Total lens length 217.41 217.41 217.41
BF 39.25 39.25 39.25

d 7 0.80 25.30 49.80
d12 52.91 25.24 5.29
d15 2.00 5.17 0.62

Zoom lens group data group Start surface Focal length
1 1 76.67
2 8 -14.23
3 13 -35.91
4 16 46.65

[数値実施例6]
単位 mm

面データ
面番号 r d nd νd θgF
1 107.999 2.00 1.84660 23.4 0.59564
2 47.046 7.10 1.65160 58.5 0.54261
3 420.921 0.15
4 41.785 4.57 1.77250 49.6 0.55205
5 98.031 (可変)
6 59.864 1.20 1.80610 40.9 0.57012
7 11.552 4.90
8 -59.265 1.10 1.80400 46.6 0.55718
9 27.044 0.12
10 19.461 3.60 1.84666 23.8 0.62046
11 -43.915 0.34
12 -32.736 1.10 1.83481 42.7 0.56362
13 85.194 (可変)
14(絞り) ∞ 0.54
15 25.010 1.10 1.84666 23.8 0.62046
16 14.218 3.50 1.51633 64.1 0.53524
17 -103.599 0.15
18 38.687 2.30 1.71300 53.9 0.54581
19 -45.619 (可変)
20 -32.294 3.10 1.80518 25.4 0.61608
21 -16.435 1.20 1.80400 46.6 0.55718
22 172.236 (可変)
23 49.504 6.90 1.48749 70.2 0.53001
24 -28.249 0.15
25 70.619 5.00 1.60311 60.6 0.54143
26 -41.413 3.29
27* -27.525 1.50 1.84666 23.8 0.62046
28 -336.482 (可変)
像面 ∞
[Numerical Example 6]
Unit mm

Surface data surface number rd nd νd θgF
1 107.999 2.00 1.84660 23.4 0.59564
2 47.046 7.10 1.65160 58.5 0.54261
3 420.921 0.15
4 41.785 4.57 1.77250 49.6 0.55205
5 98.031 (variable)
6 59.864 1.20 1.80610 40.9 0.57012
7 11.552 4.90
8 -59.265 1.10 1.80400 46.6 0.55718
9 27.044 0.12
10 19.461 3.60 1.84666 23.8 0.62046
11 -43.915 0.34
12 -32.736 1.10 1.83481 42.7 0.56362
13 85.194 (variable)
14 (Aperture) ∞ 0.54
15 25.010 1.10 1.84666 23.8 0.62046
16 14.218 3.50 1.51633 64.1 0.53524
17 -103.599 0.15
18 38.687 2.30 1.71300 53.9 0.54581
19 -45.619 (variable)
20 -32.294 3.10 1.80518 25.4 0.61608
21 -16.435 1.20 1.80 400 46.6 0.55718
22 172.236 (variable)
23 49.504 6.90 1.48749 70.2 0.53001
24 -28.249 0.15
25 70.619 5.00 1.60311 60.6 0.54143
26 -41.413 3.29
27 * -27.525 1.50 1.84666 23.8 0.62046
28 -336.482 (variable)
Image plane ∞

非球面データ
第27面
K = 0.00000e+000 A 4=-1.27914e-005 A 6= 2.89752e-009
A 8=-8.58172e-011 A10= 2.69813e-013
A 3= 1.46741e-005

各種データ
ズーム比 4.10
広角 中間 望遠
焦点距離 24.90 57.31 102.02
Fナンバー 3.62 4.91 5.82
画角 40.98 20.68 11.97
像高 21.64 21.64 21.64
レンズ全長 119.84 139.04 151.84
BF 38.50 46.21 51.35

d 5 1.40 19.07 30.10
d13 11.05 4.86 1.49
d19 1.43 8.80 12.79
d22 12.56 5.18 1.19
d28 38.50 46.21 51.35

ズームレンズ群データ
群 始面 焦点距離
1 1 77.07
2 6 -12.85
3 14 21.02
4 20 -33.55
5 23 36.77
Aspheric data 27th surface
K = 0.00000e + 000 A 4 = -1.27914e-005 A 6 = 2.89752e-009
A 8 = -8.58172e-011 A10 = 2.69813e-013
A 3 = 1.46741e-005

Various data Zoom ratio 4.10
Wide angle Medium Telephoto focal length
F number 3.62 4.91 5.82
Angle of view 40.98 20.68 11.97
Image height 21.64 21.64 21.64
Total lens length 119.84 139.04 151.84
BF 38.50 46.21 51.35

d 5 1.40 19.07 30.10
d13 11.05 4.86 1.49
d19 1.43 8.80 12.79
d22 12.56 5.18 1.19
d28 38.50 46.21 51.35

Zoom lens group data group Start surface Focal length
1 1 77.07
2 6 -12.85
3 14 21.02
4 20 -33.55
5 23 36.77

[数値実施例7]
単位 mm

面データ
面番号 r d nd νd θgF
1 42.915 0.80 1.84660 23.4 0.59564
2 23.633 0.50 2.00800 10.2 0.56923
3 23.135 4.54 1.60311 60.6 0.54143
4 -378.880 0.20
5 20.801 2.70 1.69680 55.5 0.54335
6 54.133 (可変)
7 35.062 0.80 1.88300 40.8 0.56672
8 6.518 2.31
9 -21.225 0.50 1.77250 49.6 0.55205
10 7.227 0.88
11 9.085 1.49 1.92286 18.9 0.64952
12 32.295 (可変)
13(絞り) ∞ 1.56
14* 7.193 3.37 1.58313 59.4 0.54230
15* -35.550 0.15
16 11.989 0.70 1.84666 23.8 0.62046
17 6.706 (可変)
18 12.631 3.00 1.48749 70.2 0.53001
19 -5.729 0.60 1.80610 33.3 0.58811
20 -9.788 (可変)
21 ∞ 2.00 1.51633 64.1 0.53524
22 ∞ 1.00
像面 ∞
[Numerical Example 7]
Unit mm

Surface data surface number rd nd νd θgF
1 42.915 0.80 1.84660 23.4 0.59564
2 23.633 0.50 2.00800 10.2 0.56923
3 23.135 4.54 1.60311 60.6 0.54143
4 -378.880 0.20
5 20.801 2.70 1.69680 55.5 0.54335
6 54.133 (variable)
7 35.062 0.80 1.88300 40.8 0.56672
8 6.518 2.31
9 -21.225 0.50 1.77250 49.6 0.55205
10 7.227 0.88
11 9.085 1.49 1.92286 18.9 0.64952
12 32.295 (variable)
13 (Aperture) ∞ 1.56
14 * 7.193 3.37 1.58313 59.4 0.54230
15 * -35.550 0.15
16 11.989 0.70 1.84666 23.8 0.62046
17 6.706 (variable)
18 12.631 3.00 1.48749 70.2 0.53001
19 -5.729 0.60 1.80610 33.3 0.58811
20 -9.788 (variable)
21 ∞ 2.00 1.51633 64.1 0.53524
22 ∞ 1.00
Image plane ∞

非球面データ
第14面
K =-5.68472e-001 A 4=-1.47503e-005 A 6=-3.14527e-007
A 8=-3.33402e-009

第15面
K =-1.97217e+001 A 4= 2.05875e-004 A 6=-2.87688e-006

各種データ
ズーム比 19.94
広角 中間 望遠
焦点距離 3.63 9.85 72.40
Fナンバー 1.85 2.20 3.50
画角 28.85 11.48 1.58
像高 2.00 2.00 2.00
レンズ全長 61.83 61.83 61.83
BF 8.84 11.42 5.19

d 6 0.55 10.80 21.05
d12 22.55 12.30 2.05
d17 5.79 3.21 9.44
d20 6.52 9.10 2.87

ズームレンズ群データ
群 始面 焦点距離
1 1 31.85
2 7 -5.50
3 13 17.64
4 18 15.72
5 21 ∞
Aspheric data 14th surface
K = -5.68472e-001 A 4 = -1.47503e-005 A 6 = -3.14527e-007
A 8 = -3.33402e-009

15th page
K = -1.97217e + 001 A 4 = 2.05875e-004 A 6 = -2.87688e-006

Various data Zoom ratio 19.94
Wide angle Medium telephoto focal length 3.63 9.85 72.40
F number 1.85 2.20 3.50
Angle of view 28.85 11.48 1.58
Image height 2.00 2.00 2.00
Total lens length 61.83 61.83 61.83
BF 8.84 11.42 5.19

d 6 0.55 10.80 21.05
d12 22.55 12.30 2.05
d17 5.79 3.21 9.44
d20 6.52 9.10 2.87

Zoom lens group data group Start surface Focal length
1 1 31.85
2 7 -5.50
3 13 17.64
4 18 15.72
5 21 ∞

[数値実施例8]
単位 mm

面データ
面番号 r d nd νd θgF
1 44.412 1.20 1.84666 23.8 0.62046
2 22.580 4.38 1.60311 60.6 0.56923
3 -2093.893 0.20
4 22.190 0.55 2.00800 10.2 0.56923
5 21.577 2.62 1.76735 49.6 0.56115
6 64.083 (可変)
7 44.076 0.80 1.88300 40.8 0.56672
8 6.320 2.08
9 -24.266 0.50 1.79909 47.1 0.56561
10 7.611 0.80
11 9.198 1.52 1.92286 18.9 0.64952
12 38.947 (可変)
13(絞り) ∞ 1.56
14* 7.024 3.36 1.58313 59.4 0.54230
15* -44.323 0.15
16 11.237 0.70 1.84666 23.8 0.62046
17 6.476 (可変)
18 12.608 3.04 1.48749 70.2 0.53001
19 -5.630 0.60 1.80610 33.3 0.58811
20 -9.706 (可変)
21 ∞ 2.00 1.51633 64.1 0.53524
22 ∞ 1.00
像面 ∞
[Numerical Example 8]
Unit mm

Surface data surface number rd nd νd θgF
1 44.412 1.20 1.84666 23.8 0.62046
2 22.580 4.38 1.60311 60.6 0.56923
3 -2093.893 0.20
4 22.190 0.55 2.00 800 10.2 0.56923
5 21.577 2.62 1.76735 49.6 0.56115
6 64.083 (variable)
7 44.076 0.80 1.88300 40.8 0.56672
8 6.320 2.08
9 -24.266 0.50 1.79909 47.1 0.56561
10 7.611 0.80
11 9.198 1.52 1.92286 18.9 0.64952
12 38.947 (variable)
13 (Aperture) ∞ 1.56
14 * 7.024 3.36 1.58313 59.4 0.54230
15 * -44.323 0.15
16 11.237 0.70 1.84666 23.8 0.62046
17 6.476 (variable)
18 12.608 3.04 1.48749 70.2 0.53001
19 -5.630 0.60 1.80610 33.3 0.58811
20 -9.706 (variable)
21 ∞ 2.00 1.51633 64.1 0.53524
22 ∞ 1.00
Image plane ∞

非球面データ
第14面
K =-5.35812e-001 A 4=-9.25135e-006 A 6=-2.55624e-007
A 8=-3.52289e-009

第15面
K =-4.04570e+001 A 4= 2.09662e-004 A 6=-2.84336e-006

各種データ
ズーム比 19.94
広角 中間 望遠
焦点距離 3.63 9.89 72.40
Fナンバー 1.85 2.20 3.50
画角 28.85 11.43 1.58
像高 2.00 2.00 2.00
レンズ全長 61.88 61.88 61.88
BF 8.83 11.44 5.18

d 6 0.55 10.91 21.28
d12 22.78 12.41 2.05
d17 5.66 3.05 9.31
d20 6.51 9.12 2.86

ズームレンズ群データ
群 始面 焦点距離
1 1 32.02
2 7 -5.55
3 13 17.64
4 18 15.77
5 21 ∞
Aspheric data 14th surface
K = -5.35812e-001 A 4 = -9.25135e-006 A 6 = -2.55624e-007
A 8 = -3.52289e-009

15th page
K = -4.04570e + 001 A 4 = 2.09662e-004 A 6 = -2.84336e-006

Various data Zoom ratio 19.94
Wide angle Medium telephoto focal length 3.63 9.89 72.40
F number 1.85 2.20 3.50
Angle of view 28.85 11.43 1.58
Image height 2.00 2.00 2.00
Total lens length 61.88 61.88 61.88
BF 8.83 11.44 5.18

d 6 0.55 10.91 21.28
d12 22.78 12.41 2.05
d17 5.66 3.05 9.31
d20 6.51 9.12 2.86

Zoom lens group data group Start surface Focal length
1 1 32.02
2 7 -5.55
3 13 17.64
4 18 15.77
5 21 ∞

B1 第1レンズ群、B2 第2レンズ群、B3 第3レンズ群、B4 第4レンズ群、B5 第5レンズ群、SP 開口絞り、G ガラスブロック、IP 像面、d d線、g g線、C C線、F F線、M メリディオナル像面、S サジタル像面 B1 first lens group, B2 second lens group, B3 third lens group, B4 fourth lens group, B5 fifth lens group, SP aperture stop, G glass block, IP image plane, dd line, gg line, CC line, FF line, M meridional image plane, S sagittal image plane

Claims (19)

物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力のレンズ群を含む後続レンズ群より構成され、広角端に比べて望遠端において前記第1レンズ群と前記第2レンズ群の間隔が広くなるようにレンズ群を移動させてズーミングを行うズームレンズにおいて、前記第1レンズ群は少なくとも1つの負レンズを有し、前記少なくとも1つの負レンズの材料のアッベ数と部分分散比を各々νd1n、θgF1n、前記ズームレンズの望遠端における焦点距離をfT、前記第1レンズ群の焦点距離をf1、前記第1レンズ群の少なくとも1つの負レンズの材料の屈折率をNd1nとするとき、
−1.68×10-3×νd1n+0.585<θgF1n<3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
5<νd1n<27
0.3<f1/fT≦0.755
1.8<Nd1n<2.4
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and a subsequent lens group including a lens group having a positive refractive power are formed. In a zoom lens that performs zooming by moving the lens group so that the distance between the first lens group and the second lens group is wide at the end, the first lens group includes at least one negative lens, The Abbe number and partial dispersion ratio of the material of one negative lens are νd1n and θgF1n, the focal length at the telephoto end of the zoom lens is fT, the focal length of the first lens group is f1, and at least one of the first lens group When the refractive index of the material of the two negative lenses is Nd1n,
−1.68 × 10 −3 × νd1n + 0.585 <θgF1n <3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
5 <νd1n <27
0.3 <f1 / fT ≦ 0.755
1.8 <Nd1n <2.4
A zoom lens characterized by satisfying the following conditions:
前記少なくとも1つの負レンズの焦点距離をf1nとするとき、
0.9<|f1n|/f1<70.0
なる条件を満足することを特徴とする請求項1に記載のズームレンズ。
When the focal length of the at least one negative lens is f1n,
0.9 <| f1n | / f1 <70.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記ズームレンズの広角端における焦点距離をfW、望遠端でのFナンバーをFnoTとするとき、
3.2<(fT/fW)/FnoT<15.0
なる条件を満たすことを特徴とする請求項1または2に記載のズームレンズ。
When the focal length at the wide angle end of the zoom lens is fW and the F number at the telephoto end is FnoT,
3.2 <(fT / fW) / FnoT <15.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記第2レンズ群の焦点距離をf2とするとき、
3.0<f1/|f2|<10.0
なる条件を満たすことを特徴とする請求項1乃至3のいずれか1項記載のズームレンズ。
When the focal length of the second lens group is f2,
3.0 <f1 / | f2 | <10.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記少なくとも1つの負レンズの光軸上の厚さをt1n、前記第2レンズ群において光軸上の厚さが最小となるレンズの光軸上の厚さをt2minとするとき、
0.8<t1n/t2min<5.0
なる条件を満たすことを特徴とする請求項1乃至4のいずれか1項記載のズームレンズ。
When the thickness on the optical axis of the at least one negative lens is t1n, and the thickness on the optical axis of the lens with the smallest thickness on the optical axis in the second lens group is t2min,
0.8 <t1n / t2min <5.0
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記少なくとも1つの負レンズの材料のヌープ硬さをHK1n、前記第2レンズ群においてヌープ硬さが最小となるレンズの材料のヌープ硬さをHK2minとするとき、
0.5<HK1n/HK2min
なる条件を満足することを特徴とする請求項1乃至5のいずれか1項のズームレンズ。
When the Knoop hardness of the material of the at least one negative lens is HK1n, and the Knoop hardness of the material of the lens having the smallest Knoop hardness in the second lens group is HK2min.
0.5 <HK1n / HK2min
The zoom lens according to claim 1, wherein the following condition is satisfied.
前記後続レンズ群は、物体側から像側に順に、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群で構成されることを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 7. The subsequent lens group includes a third lens group having a positive refractive power and a fourth lens group having a positive refractive power in order from the object side to the image side. The zoom lens according to item 1. 前記後続レンズ群は、物体側から像側に順に、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群で構成されることを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 7. The subsequent lens group includes a third lens group having a negative refractive power and a fourth lens group having a positive refractive power in order from the object side to the image side. The zoom lens according to item 1. 前記後続レンズ群は、物体側から像側に順に、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群で構成されることを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 The subsequent lens group includes, in order from the object side to the image side, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power. The zoom lens according to any one of claims 1 to 6. 物体側から像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力のレンズ群を含む後続レンズ群より構成され、広角端に比べて望遠端において前記第1レンズ群と前記第2レンズ群の間隔が広くなるようにレンズ群を移動させてズーミングを行うズームレンズにおいて、前記第1レンズ群は少なくとも1つの負レンズを有し、前記少なくとも1つの負レンズの材料のアッベ数と部分分散比を各々νd1n、θgF1n、前記ズームレンズの広角端における焦点距離をfW、前記ズームレンズの望遠端における焦点距離をfT、望遠端でのFナンバーをFnoTとするとき、
−1.68×10-3×νd1n+0.585<θgF1n<3.15×10-4×νd1n2−1.86×10-2×νd1n+0.878
5<νd1n<27
3.2<(fT/fW)/FnoT<15.0
なる条件を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and a subsequent lens group including a lens group having a positive refractive power are formed. In a zoom lens that performs zooming by moving the lens group so that the distance between the first lens group and the second lens group is wide at the end, the first lens group includes at least one negative lens, The Abbe number and partial dispersion ratio of one negative lens material are νd1n and θgF1n, the focal length at the wide-angle end of the zoom lens is fW, the focal length at the telephoto end of the zoom lens is fT, and the F-number at the telephoto end is When FnoT,
−1.68 × 10 −3 × νd1n + 0.585 <θgF1n <3.15 × 10 −4 × νd1n 2 −1.86 × 10 −2 × νd1n + 0.878
5 <νd1n <27
3.2 <(fT / fW) / FnoT <15.0
A zoom lens characterized by satisfying the following conditions:
前記第1レンズ群の焦点距離をf1とするとき、
0.3<f1/fT<10.0
なる条件を満たすことを特徴とする請求項10に記載のズームレンズ。
When the focal length of the first lens group is f1,
0.3 <f1 / fT <10.0
The zoom lens according to claim 10, wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2とするとき、
3.0<f1/|f2|<10.0
なる条件を満たすことを特徴とする請求項10または11に記載のズームレンズ。
When the focal length of the first lens group is f1, and the focal length of the second lens group is f2,
3.0 <f1 / | f2 | <10.0
The zoom lens according to claim 10 or 11, wherein the following condition is satisfied.
前記少なくとも1つの負レンズの光軸上の厚さをt1n、前記第2レンズ群において光軸上の厚さが最小となるレンズの光軸上の厚さをt2minとするとき、
0.8<t1n/t2min<5.0
なる条件を満たすことを特徴とする請求項10乃至12のいずれか1項に記載のズームレンズ。
When the thickness on the optical axis of the at least one negative lens is t1n, and the thickness on the optical axis of the lens with the smallest thickness on the optical axis in the second lens group is t2min,
0.8 <t1n / t2min <5.0
The zoom lens according to claim 10, wherein the following condition is satisfied.
前記少なくとも1つの負レンズの材料のヌープ硬さをHK1n、前記第2レンズ群においてヌープ硬さが最小となるレンズの材料のヌープ硬さをHK2minとするとき、
0.5<HK1n/HK2min
なる条件を満足することを特徴とする請求項10乃至13のいずれか1項のズームレンズ。
When the Knoop hardness of the material of the at least one negative lens is HK1n, and the Knoop hardness of the material of the lens having the smallest Knoop hardness in the second lens group is HK2min.
0.5 <HK1n / HK2min
The zoom lens according to claim 10, wherein the following condition is satisfied.
前記後続レンズ群は、物体側から像側に順に、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群で構成されることを特徴とする請求項10乃至14のいずれか1項に記載のズームレンズ。 15. The subsequent lens group is configured by a third lens group having a positive refractive power and a fourth lens group having a positive refractive power in order from the object side to the image side. The zoom lens according to item 1. 前記後続レンズ群は、物体側から像側に順に、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群で構成されることを特徴とする請求項10乃至14のいずれか1項に記載のズームレンズ。 15. The subsequent lens group includes a third lens group having a negative refractive power and a fourth lens group having a positive refractive power in order from the object side to the image side. The zoom lens according to item 1. 前記後続レンズ群は、物体側から像側に順に、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群で構成されることを特徴とする請求項10乃至14のいずれか1項に記載のズームレンズ。 The subsequent lens group includes, in order from the object side to the image side, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power. The zoom lens according to any one of claims 10 to 14. 光電変換素子に像を形成することを特徴とする請求項1乃至17のいずれか1項に記載のズームレンズ。 The zoom lens according to claim 1, wherein an image is formed on the photoelectric conversion element. 請求項1乃至18のいずれか1項に記載のズームレンズと、該ズームレンズによって形成される像を受光する光電変換素子とを備えることを特徴とする撮像装置。 An image pickup apparatus comprising: the zoom lens according to claim 1; and a photoelectric conversion element that receives an image formed by the zoom lens.
JP2013208124A 2013-10-03 2013-10-03 Zoom lens and imaging apparatus having the same Expired - Fee Related JP5606609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013208124A JP5606609B2 (en) 2013-10-03 2013-10-03 Zoom lens and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208124A JP5606609B2 (en) 2013-10-03 2013-10-03 Zoom lens and imaging apparatus having the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009085555A Division JP5419519B2 (en) 2009-03-31 2009-03-31 Zoom lens and imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2013257600A true JP2013257600A (en) 2013-12-26
JP5606609B2 JP5606609B2 (en) 2014-10-15

Family

ID=49954025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208124A Expired - Fee Related JP5606609B2 (en) 2013-10-03 2013-10-03 Zoom lens and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP5606609B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232613A (en) * 1989-03-07 1990-09-14 Konica Corp Compact zoom lens
JPH0815648A (en) * 1994-06-30 1996-01-19 Canon Inc Variable power optical system having vibration proof function
JP2005157279A (en) * 2003-10-29 2005-06-16 Sony Corp Zoom lens
JP2007093975A (en) * 2005-09-28 2007-04-12 Nikon Corp Zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232613A (en) * 1989-03-07 1990-09-14 Konica Corp Compact zoom lens
JPH0815648A (en) * 1994-06-30 1996-01-19 Canon Inc Variable power optical system having vibration proof function
JP2005157279A (en) * 2003-10-29 2005-06-16 Sony Corp Zoom lens
JP2007093975A (en) * 2005-09-28 2007-04-12 Nikon Corp Zoom lens

Also Published As

Publication number Publication date
JP5606609B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5419519B2 (en) Zoom lens and imaging apparatus having the same
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
JP6251009B2 (en) Zoom lens and imaging apparatus having the same
JP5858827B2 (en) Zoom lens and imaging apparatus having the same
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP5241281B2 (en) Zoom lens and imaging apparatus having the same
JP6153488B2 (en) Zoom lens and imaging apparatus having the same
JP2013190453A5 (en)
JP2014041245A (en) Zoom lens and imaging apparatus having the same
JP2009223008A5 (en)
JP2016045309A (en) Zoom lens and imaging apparatus including the same
JP5893509B2 (en) Zoom lens and imaging apparatus having the same
JP5936439B2 (en) Zoom lens and imaging apparatus having the same
JP2008209866A (en) Zoom lens and imaging apparatus having the same
JP2007148340A (en) Zoom lens
JP5253043B2 (en) Zoom lens and imaging apparatus having the same
JP2014029375A (en) Zoom lens and imaging apparatus including the same
JP2007178825A (en) Zoom lens and imaging device having the same
JP2015022182A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP5656684B2 (en) Zoom lens and imaging apparatus having the same
JP6452404B2 (en) Zoom lens and imaging apparatus having the same
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JP2016014819A (en) Zoom lens and imaging device having the same
JP2018054990A (en) Zoom lens and optical instrument having the same
JP2017215410A (en) Zoom lens and imaging device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R151 Written notification of patent or utility model registration

Ref document number: 5606609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees