JP2013257425A - Semiconductor optical filter - Google Patents

Semiconductor optical filter Download PDF

Info

Publication number
JP2013257425A
JP2013257425A JP2012133097A JP2012133097A JP2013257425A JP 2013257425 A JP2013257425 A JP 2013257425A JP 2012133097 A JP2012133097 A JP 2012133097A JP 2012133097 A JP2012133097 A JP 2012133097A JP 2013257425 A JP2013257425 A JP 2013257425A
Authority
JP
Japan
Prior art keywords
waveguide
semiconductor
slab waveguide
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012133097A
Other languages
Japanese (ja)
Other versions
JP5881063B2 (en
Inventor
Takashi Tadokoro
貴志 田所
Hiroshi Yasaka
洋 八坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2012133097A priority Critical patent/JP5881063B2/en
Publication of JP2013257425A publication Critical patent/JP2013257425A/en
Application granted granted Critical
Publication of JP5881063B2 publication Critical patent/JP5881063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor optical filter which can inclinedly change a refraction index in a direction perpendicular to a traveling direction of a light wave in a region of an input slab waveguide, and has the function of varying a wavelength capable of being output from each port of an output waveguide.SOLUTION: A semiconductor optical filter includes a substrate containing a semiconductor as material, an input optical waveguide, an input slab waveguide, an array waveguide, an output slab waveguide, and an output optical waveguide. The input slab waveguide is made so that the central axis of the input slab waveguide in a traveling direction of the light wave coincides with [001] axis of semiconductor crystal, and includes a voltage application electrode for applying an electric field to the input slab waveguide in a crystal growth axis [100] direction.

Description

本発明は、半導体光フィルタに関し、より詳細には、光通信分野および光計測分野における光信号を、光信号の波長に応じて透過し、あるいは反射するために用いられる半導体光フィルタに関する。   The present invention relates to a semiconductor optical filter, and more particularly to a semiconductor optical filter used to transmit or reflect an optical signal in the optical communication field and the optical measurement field according to the wavelength of the optical signal.

従来、光通信システムの大容量化、長距離化に向けて、波長分割多重(Wavelength Division Multiplexing; WDM)通信システムの研究開発が盛んに行われ、商用システムに適用されるに至っている。本システムでは、1本の光ファイバで波長の異なる複数の光信号を伝送する構成となっている。このため、異なる波長を有する複数の信号光を1つの出力(WDM信号)に束ねるための光合波器と、1つに束ねられたWDM信号を、WDM信号の波長に応じて分波するための光分波器が必要不可欠である。このような光合分波器には、非特許文献1の報告にあるようなアレー導波路回折格子(Arrayed Waveguide Grating; AWG)フィルタが用いられている。   2. Description of the Related Art Conventionally, wavelength division multiplexing (WDM) communication systems have been actively researched and applied to commercial systems in order to increase the capacity and distance of optical communication systems. In this system, a plurality of optical signals having different wavelengths are transmitted by one optical fiber. For this reason, an optical multiplexer for bundling a plurality of signal lights having different wavelengths into one output (WDM signal) and a WDM signal bundled into one are separated according to the wavelength of the WDM signal. An optical demultiplexer is indispensable. In such an optical multiplexer / demultiplexer, an arrayed waveguide grating (AWG) filter as reported in Non-Patent Document 1 is used.

図1にAWGフィルタの構造を示す。本フィルタは石英ガラス(二酸化ケイ素;SiO2)を堆積したSi基板1上に形成されている。Si基板1上において、入力光導波路2の出射端に入力スラブ導波路3の入力端が接続され、入力スラブ導波路3の出力端にアレー導波路4の入射端が接続されている。また、アレー導波路4の出射端に出力スラブ導波路5の入力端が接続され、出力スラブ導波路5の出力端に出力光導波路6の入射端が接続されている。 Fig. 1 shows the structure of the AWG filter. This filter is formed on a Si substrate 1 on which quartz glass (silicon dioxide; SiO 2 ) is deposited. On the Si substrate 1, the input end of the input slab waveguide 3 is connected to the output end of the input optical waveguide 2, and the incident end of the array waveguide 4 is connected to the output end of the input slab waveguide 3. The input end of the output slab waveguide 5 is connected to the output end of the array waveguide 4, and the incident end of the output optical waveguide 6 is connected to the output end of the output slab waveguide 5.

入力光導波路2に入力した信号光は、入力スラブ導波路3、アレー導波路4、出力スラブ導波路5、出力光導波路6の順に伝搬される。   The signal light input to the input optical waveguide 2 is propagated in the order of the input slab waveguide 3, the array waveguide 4, the output slab waveguide 5, and the output optical waveguide 6.

ここで、入力光導波路2に入力した信号光は入力スラブ導波路3内でフレネル・キルヒホッフの回折公式 (1) に従って回折し、アレー導波路4へ導かれる。   Here, the signal light input to the input optical waveguide 2 is diffracted in the input slab waveguide 3 according to the Fresnel Kirchhoff diffraction formula (1) and guided to the array waveguide 4.

ここにg(x0,0)は入力光導波路2の出射端での伝搬光モード形状を表す。 Here, g (x 0 , 0) represents the propagation light mode shape at the output end of the input optical waveguide 2.

図2に、図1における入力スラブ導波路3内の信号光の伝搬の様子を示す。入力導波路2からの出力光が入力スラブ導波路3内で回折し、アレー導波路4へ導かれている様子が分かる。本図では分かり易くするために光強度は光の進行方向で規格化してピーク強度が同じになるようにして示している。   FIG. 2 shows a state of propagation of signal light in the input slab waveguide 3 in FIG. It can be seen that the output light from the input waveguide 2 is diffracted in the input slab waveguide 3 and guided to the array waveguide 4. In this figure, for easy understanding, the light intensity is normalized in the traveling direction of light so that the peak intensity is the same.

図3に、図1における出力スラブ導波路5を伝搬する信号光の強度分布を示す。アレー導波路4は、隣接導波路が一定の長さだけ異なるように設計されている。アレー導波路4により一定の遅延を受けた光波群は出力スラブ導波路5内で干渉し、図3に示すように、アレー導波路4により一定の遅延を受けた光波群のそれぞれの信号光波長によって出力スラブ導波路5の出力端の一点に集光する。この一点に集光した光波を出力光導波路6で取り出すことでフィルタ機能(分波機能)を実現している。   FIG. 3 shows the intensity distribution of the signal light propagating through the output slab waveguide 5 in FIG. The array waveguide 4 is designed so that adjacent waveguides differ by a certain length. The light wave groups that have received a certain delay by the array waveguide 4 interfere in the output slab waveguide 5, and as shown in FIG. Thus, the light is condensed at one point on the output end of the output slab waveguide 5. The filter function (demultiplexing function) is realized by taking out the light wave collected at one point through the output optical waveguide 6.

また、非特許文献2の報告にあるように、コンパクトで半導体光集積回路への集積が可能な半導体AWGフィルタが開発されている。本素子においては、図1に示す素子構造において基板1に半導体のInPを用いている。半導体AWGフィルタにおいては、材料の屈折率が温度により変化するため、基板に半導体のInPを用いる半導体AWGフィルタのフィルタ特性には温度依存性がある。この特性を用いて、素子温度の調整で透過波長の微調整を行うことができる。   Further, as reported in Non-Patent Document 2, a compact semiconductor AWG filter that can be integrated into a semiconductor optical integrated circuit has been developed. In this element, semiconductor InP is used for the substrate 1 in the element structure shown in FIG. In the semiconductor AWG filter, since the refractive index of the material changes with temperature, the filter characteristics of the semiconductor AWG filter using semiconductor InP for the substrate are temperature dependent. Using this characteristic, the transmission wavelength can be finely adjusted by adjusting the element temperature.

Meint K. Smit, Associate Member, IEEE, and Cor van Dam, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 236-250, 1996年6月Meint K. Smit, Associate Member, IEEE, and Cor van Dam, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 236-250, June 1996 M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni and Y. Shibata, Electronics Letters, vol. 33, no. 21, pp. 1786-1787, 1997年10月9日M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni and Y. Shibata, Electronics Letters, vol. 33, no. 21, pp. 1786-1787, October 9, 1997

しかしながら、半導体AWGフィルタはチップサイズが5mm×5mm 程度有り、チップ全体の温度を調整することで特性の調整をするためには、大きな消費電力を費やす必要があった。また、素子温度を変えて特性調整をすると、透過特性のチャンネル間波長間隔も変化してしまい、WDMシステムへの適用に大きな問題となっていた。半導体AWGフィルタの製造初期透過特性の微調整や出力導波路の各ポートから出力可能な波長の可変機能を実現するための機構の付加が望まれていた。   However, the semiconductor AWG filter has a chip size of about 5 mm × 5 mm, and it is necessary to spend a large amount of power to adjust the characteristics by adjusting the temperature of the entire chip. Further, when the characteristics are adjusted by changing the element temperature, the inter-channel wavelength interval of the transmission characteristics is also changed, which is a big problem for application to the WDM system. It has been desired to add a mechanism for finely adjusting the initial transmission characteristics of the semiconductor AWG filter and realizing a variable function of the wavelength that can be output from each port of the output waveguide.

本発明は、このような目的を達成するために、請求項1に記載の発明は、基板と、入力光導波路と、入力スラブ導波路と、アレー導波路と、出力スラブ導波路と、出力光導波路とを備えた半導体光フィルタであって、前記入力スラブ導波路は、前記入力スラブ導波路の前記光波の進行方向の中心軸が半導体結晶の[001]軸に一致するように作製され、前記入力スラブ導波路に対して結晶成長軸[100]方向に電界を印加するための電圧印加電極を備えたことを特徴とする。   In order to achieve the above object, the present invention provides a substrate, an input optical waveguide, an input slab waveguide, an array waveguide, an output slab waveguide, and an output optical waveguide. A semiconductor optical filter including a waveguide, wherein the input slab waveguide is fabricated such that a central axis of the light wave traveling direction of the input slab waveguide coincides with a [001] axis of a semiconductor crystal, A voltage application electrode for applying an electric field in the direction of the crystal growth axis [100] with respect to the input slab waveguide is provided.

請求項2に記載の発明は、請求項1に記載の半導体光フィルタであって、前記基板は、InP、並びに閃亜鉛鉱構造を有するGaAs系材料、またはLiNbO3の少なくともいずれか一つを素材として含んだ基板であることを特徴とする。 The invention according to claim 2 is the semiconductor optical filter according to claim 1, wherein the substrate is made of at least one of InP, a GaAs-based material having a zinc blende structure, or LiNbO 3. It is the board | substrate included as.

これにより、電極へ電圧を印加することで入力スラブ導波路の領域の光波の進行方向と垂直な方向の屈折率を傾斜的に変えることができるようにし、アレー導波路へ結合する光波の位相に傾斜を加えることで、出力導波路の各ポートから出力可能な波長の可変機能を有する半導体光フィルタを実現する。   This makes it possible to change the refractive index in the direction perpendicular to the traveling direction of the light wave in the region of the input slab waveguide by applying a voltage to the electrode, and to change the phase of the light wave coupled to the array waveguide. By adding an inclination, a semiconductor optical filter having a variable function of a wavelength that can be output from each port of the output waveguide is realized.

以上説明したように、本発明により電圧を印加することで出力導波路の各ポートから出力可能な透過波長を掃引でき、透過波長の可変機能を有する半導体光フィルタを提供することが可能となる。   As described above, by applying a voltage according to the present invention, it is possible to sweep the transmission wavelength that can be output from each port of the output waveguide, and it is possible to provide a semiconductor optical filter having a transmission wavelength variable function.

アレー導波路回折格子(AWG)フィルタの構造の図例である。It is an example of a structure of an array waveguide diffraction grating (AWG) filter. 図1における入力スラブ導波路を伝搬する信号光の強度分布を示すブロック図である。It is a block diagram which shows intensity distribution of the signal light which propagates the input slab waveguide in FIG. 図1における出力スラブ導波路を伝搬する信号光の強度分布を示すブロック図である。It is a block diagram which shows intensity distribution of the signal light which propagates the output slab waveguide in FIG. 本発明の第1の実施例による半導体光フィルタの構造図である。1 is a structural diagram of a semiconductor optical filter according to a first embodiment of the present invention. 図4における半導体入力スラブ導波路の結晶軸と光波の伝搬方向を示す図である。It is a figure which shows the crystal | crystallization axis | shaft of the semiconductor input slab waveguide in FIG. 4, and the propagation direction of a light wave. 屈折率変動量のz軸([001]軸)となす角θに対する依存性を示す図である。It is a figure which shows the dependence with respect to angle (theta) which makes the z-axis ([001] axis | shaft) of refractive index fluctuation amount. 図4における半導体入力スラブ導波路に電界を印加していない場合の、半導体出力スラブ導波路を伝搬する信号光の強度分布を示す図である。It is a figure which shows intensity distribution of the signal light which propagates a semiconductor output slab waveguide when the electric field is not applied to the semiconductor input slab waveguide in FIG. 図4における半導体入力スラブ導波路に電界を印加した場合の、半導体出力スラブ導波路を伝搬する信号光の強度分布を示す図である。It is a figure which shows intensity distribution of the signal light which propagates a semiconductor output slab waveguide at the time of applying an electric field to the semiconductor input slab waveguide in FIG.

以下、図面を参照しながら本発明の実施例について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図4に本発明の第1の実施例を示す。本発明第1の実施例による半導体光フィルタは、InP基板11上に作製されている。InP基板11上において、半導体入力光導波路12の出射端に半導体入力スラブ導波路13の入力端が接続され、半導体入力スラブ導波路13の出力端に半導体アレー導波路14の入射端が接続されている。また、電圧印加用電極10は、半導体入力スラブ導波路13上に形成されている。そして、半導体アレー導波路14の出射端に半導体出力スラブ導波路15の入力端が接続され、半導体出力スラブ導波路15の出力端に半導体出力光導波路16の入射端が接続されている。   FIG. 4 shows a first embodiment of the present invention. The semiconductor optical filter according to the first embodiment of the present invention is fabricated on the InP substrate 11. On the InP substrate 11, the input end of the semiconductor input slab waveguide 13 is connected to the output end of the semiconductor input optical waveguide 12, and the incident end of the semiconductor array waveguide 14 is connected to the output end of the semiconductor input slab waveguide 13. Yes. The voltage application electrode 10 is formed on the semiconductor input slab waveguide 13. The input end of the semiconductor output slab waveguide 15 is connected to the output end of the semiconductor array waveguide 14, and the incident end of the semiconductor output optical waveguide 16 is connected to the output end of the semiconductor output slab waveguide 15.

半導体入力光導波路12に入力した信号光は、半導体入力スラブ導波路13、半導体アレー導波路14、半導体出力スラブ導波路15、半導体出力光導波路16の順に伝搬される。   The signal light input to the semiconductor input optical waveguide 12 is propagated in the order of the semiconductor input slab waveguide 13, the semiconductor array waveguide 14, the semiconductor output slab waveguide 15, and the semiconductor output optical waveguide 16.

例として、n-InP基板上に、厚みが1μmのn-InPバッファー層、厚みが100nmで組成波長が1.2μmのn-InGaAsP光閉じ込め層、厚みが200nmで組成波長が1.3μmのInGaAs層、厚みが100nmで組成波長が1.2μmのp-InGaAsP光閉じ込め層、厚みが500nmのp-InPバッファー層、厚みが50nmのInGaAsコンタクト層を順次結晶成長し、個々の部分を構成する光導波路以外の部分を表面から1.4μmだけエッチングし、ハイメサ導波路構造を有する素子を作製している。   As an example, an n-InP buffer layer having a thickness of 1 μm on an n-InP substrate, an n-InGaAsP optical confinement layer having a thickness of 100 nm and a composition wavelength of 1.2 μm, an InGaAs layer having a thickness of 200 nm and a composition wavelength of 1.3 μm, A p-InGaAsP optical confinement layer with a thickness of 100 nm and a composition wavelength of 1.2 μm, a p-InP buffer layer with a thickness of 500 nm, and an InGaAs contact layer with a thickness of 50 nm are grown in order, except for the optical waveguide that constitutes each part. The element is etched by 1.4 μm from the surface to produce an element having a high mesa waveguide structure.

図5に、図4における半導体入力スラブ導波路13の結晶軸と光波の伝搬方向を示す。半導体入力スラブ導波路13は、光波進行方向の中心軸が結晶軸の[001]方向となるように作製されている。また、半導体入力スラブ導波路13上には電圧印加用電極10が形成されており、この電極で結晶軸[100]方向に電界を印加できるようにしている。   FIG. 5 shows the crystal axis of the semiconductor input slab waveguide 13 in FIG. 4 and the light wave propagation direction. The semiconductor input slab waveguide 13 is fabricated such that the central axis in the light wave traveling direction is the [001] direction of the crystal axis. A voltage applying electrode 10 is formed on the semiconductor input slab waveguide 13 so that an electric field can be applied in the direction of the crystal axis [100] with this electrode.

InPはIII-V族半導体で、閃亜鉛鉱構造を有し圧電性結晶であるため、電界印加でポッケルス効果による屈折率変化が期待できる。閃亜鉛鉱構造結晶の逆誘電率テンソルbij、ポッケルス定数γijkは以下のように表される。 InP is a group III-V semiconductor, which has a zinc blende structure and is a piezoelectric crystal. Therefore, a refractive index change due to the Pockels effect can be expected when an electric field is applied. The inverse permittivity tensor b ij and Pockels constant γ ijk of the zinc blende structure crystal are expressed as follows.

ここに、ポッケルス定数の添字の「4」は「23」あるいは「32」を示す。InPのポッケルス定数は、 γ41〜-2.0×10-12 [m/V] 程度の値を有する。 Here, the subscript “4” of the Pockels constant indicates “23” or “32”. The Pockels constant of InP has a value of about γ 41 to −2.0 × 10 −12 [m / V].

今、[100]軸を x軸、[010]軸を y軸、[001]軸を z軸と表し、[100]軸に電界 Ex を印加した場合を考えると、本結晶の屈折率楕円体は以下のように表される。 Now consider the case where the [100] axis is the x axis, the [010] axis is the y axis, the [001] axis is the z axis, and the electric field E x is applied to the [100] axis. The body is represented as follows:

yz平面で軸を45度回転し、新しいy'軸を[011]軸方向に、およびz'軸を Rotate the axis 45 degrees in the yz plane, with the new y 'axis in the [011] axis direction and the z' axis

軸方向にとる。すると(4)式は以下のように変換できる。 Take in the axial direction. Then, equation (4) can be converted as follows.

これより、 y' 軸方向へ伝搬する光の屈折率 ny' 及び z' 軸方向へ伝搬する光の屈折率 nz' が以下のように導かれる。 Accordingly, the refractive index n y ′ of light propagating in the y′-axis direction and the refractive index n z ′ of light propagating in the z′-axis direction are derived as follows.

ポッケルス効果による屈折率変動が小さいとすると両屈折率は以下のように表される。 If the refractive index variation due to the Pockels effect is small, both refractive indexes are expressed as follows.

つまりy' 方向に進む光波の感じる屈折率は [100]方向への電界印加で In other words, the refractive index felt by the light wave traveling in the y 'direction is

だけ減少し、z'方向に進む光波の感じる屈折率は [100]方向への電界印加で The refractive index perceived by light waves traveling in the z 'direction is reduced by applying an electric field in the [100] direction.

だけ増加することとなる。図5に示すように光波の伝搬する方向の、z軸([001]軸)となす角をθとすると(y軸[010]に向く方向を正とする)、半導体入力スラブ導波路13を回折して伝搬する光波の感じる屈折率は以下のようになる。 Will only increase. As shown in FIG. 5, when the angle between the light wave propagation direction and the z axis ([001] axis) is θ (the direction toward the y axis [010] is positive), the semiconductor input slab waveguide 13 is The refractive index felt by the light wave diffracted and propagated is as follows.

また、屈折率変動量Δn は以下のように表される。 The refractive index variation Δn is expressed as follows.

図6に、(11)式で示した屈折率変動量Δnのz軸([001]軸)となす角θに対する依存性を示す。この屈折率変動量Δnは、-45°≦θ≦45°の範囲ではz軸([001]軸)となす角θにほぼ比例して変化することがわかる。   FIG. 6 shows the dependence of the refractive index fluctuation amount Δn expressed by the equation (11) on the angle θ formed with the z axis ([001] axis). It can be seen that the refractive index fluctuation amount Δn changes substantially in proportion to the angle θ formed with the z axis ([001] axis) in the range of −45 ° ≦ θ ≦ 45 °.

図7に、図4における半導体入力スラブ導波路13に電界を印加していない場合の、半導体出力スラブ導波路15を伝搬する信号光の強度分布を示し、図8に、図4における半導体入力スラブ導波路13に電界を印加した場合の、半導体出力スラブ導波路15を伝搬する信号光の強度分布を示す。   7 shows the intensity distribution of the signal light propagating through the semiconductor output slab waveguide 15 when no electric field is applied to the semiconductor input slab waveguide 13 in FIG. 4, and FIG. 8 shows the semiconductor input slab waveguide in FIG. The intensity distribution of signal light propagating through the semiconductor output slab waveguide 15 when an electric field is applied to the waveguide 13 is shown.

図6に示す特性により、半導体入力スラブ導波路13上に付与した電圧印加用電極10へ電圧を印加し、半導体入力スラブ導波路13の[100]軸方向へ電界を印加することで、中心軸[001]から角度θだけずれた位置を伝搬する光波に対して(11)式で与えられる屈折率変化を付与でき、半導体アレー導波路14へ結合する光波の位相を導波路位置に対してほぼ線形に変化させることができる。また、半導体アレー導波路14へ結合する光波の位相変化量は印加する電界 Ex に比例することから、電圧印加用電極10へ印加する電圧を調整することで、半導体アレー導波路14のそれぞれの導波路へ結合する光波の位相変化量を調整することができる。この位相変化で半導体アレー導波路14の出力位置での位相を制御し、半導体出力スラブ導波路15内での干渉の様子を変化させることができ、図7に示した電圧無印加時の信号光の強度分布に比べ、図8に示すように電圧印加用電極10へ10Vの電圧を印加することで半導体出力導波路16のポートで4ポート分だけ焦点位置をずらすことができる。このずれは波長にして1.6nmの掃引幅に対応している。 By applying a voltage to the voltage application electrode 10 provided on the semiconductor input slab waveguide 13 and applying an electric field in the [100] axis direction of the semiconductor input slab waveguide 13 according to the characteristics shown in FIG. The refractive index change given by the equation (11) can be given to the light wave propagating from the position shifted by the angle θ from [001], and the phase of the light wave coupled to the semiconductor array waveguide 14 is almost the same as the waveguide position. It can be changed linearly. Further, since the phase change amount of the light wave coupled to the semiconductor array waveguide 14 is proportional to the applied electric field E x , by adjusting the voltage applied to the voltage application electrode 10, each of the semiconductor array waveguides 14 is adjusted. The amount of phase change of the light wave coupled to the waveguide can be adjusted. This phase change can control the phase at the output position of the semiconductor array waveguide 14 to change the state of interference in the semiconductor output slab waveguide 15, and the signal light when no voltage is applied as shown in FIG. 8, the focal position can be shifted by 4 ports at the port of the semiconductor output waveguide 16 by applying a voltage of 10 V to the voltage application electrode 10 as shown in FIG. This shift corresponds to a sweep width of 1.6 nm in wavelength.

以上説明したように、本発明の第1の実施例による半導体光フィルタによって、電圧印加用電極に電圧を印加することにより半導体入力スラブ導波路13の領域の光波の進行方向と垂直な方向の屈折率を傾斜的に変化させ、半導体入力スラブ導波路13の領域の光波の屈折率変動量Δnは、角θにほぼ比例して、ほぼ線形に変化させることができる。これにより、半導体出力スラブ導波路15へ入射される光波群の位相変化量を調整して、半導体出力導波路16の各ポートから出力する波長を可変することができる半導体AWGフィルタが実現できる。   As described above, the semiconductor optical filter according to the first embodiment of the present invention applies a voltage to the voltage application electrode, thereby refraction in the direction perpendicular to the traveling direction of the light wave in the region of the semiconductor input slab waveguide 13. The refractive index fluctuation amount Δn of the light wave in the region of the semiconductor input slab waveguide 13 can be changed substantially linearly in proportion to the angle θ by changing the rate in a sloped manner. Thereby, a semiconductor AWG filter capable of adjusting the phase change amount of the light wave group incident on the semiconductor output slab waveguide 15 and changing the wavelength output from each port of the semiconductor output waveguide 16 can be realized.

本実施例ではInPを用いた例を示したが、同じIII-V族半導体で閃亜鉛鉱構造を有するGaAs系材料を用いても同じ効果を得ることができることは言うまでもない。また、誘電体材料であるLiNbO3においても入力スラブ導波路を作製する軸方向を適切に設定することで同じ効果を得られることは言うまでもない。 In the present embodiment, an example using InP is shown, but it goes without saying that the same effect can be obtained even when a GaAs-based material having the same III-V semiconductor and having a zinc blende structure is used. Needless to say, the same effect can be obtained even in LiNbO 3 that is a dielectric material by appropriately setting the axial direction in which the input slab waveguide is manufactured.

1 基板
2 入力光導波路
3 入力スラブ導波路
4 アレー導波路
5 出力スラブ導波路
6 出力光導波路
10 電圧印加用電極
11 InP基板
12 半導体入力光導波路
13 半導体入力スラブ導波路
14 半導体アレー導波路
15 半導体出力スラブ導波路
16 半導体出力光導波路
DESCRIPTION OF SYMBOLS 1 Substrate 2 Input optical waveguide 3 Input slab waveguide 4 Array waveguide 5 Output slab waveguide 6 Output optical waveguide 10 Voltage application electrode 11 InP substrate 12 Semiconductor input optical waveguide 13 Semiconductor input slab waveguide 14 Semiconductor array waveguide 15 Semiconductor Output slab waveguide 16 Semiconductor output optical waveguide

Claims (2)

基板と、入力光導波路と、入力スラブ導波路と、アレー導波路と、出力スラブ導波路と、出力光導波路とを備えた半導体光フィルタであって、
前記入力スラブ導波路は、
前記入力スラブ導波路の前記光波の進行方向の中心軸が半導体結晶の[001]軸に一致するように作製され、前記入力スラブ導波路に対して結晶成長軸[100]方向に電界を印加するための電圧印加電極を備えたことを特徴とする半導体光フィルタ。
A semiconductor optical filter comprising a substrate, an input optical waveguide, an input slab waveguide, an array waveguide, an output slab waveguide, and an output optical waveguide,
The input slab waveguide is
The input slab waveguide is fabricated so that the central axis in the light wave traveling direction coincides with the [001] axis of the semiconductor crystal, and an electric field is applied to the input slab waveguide in the direction of the crystal growth axis [100]. A semiconductor optical filter comprising a voltage application electrode for the purpose.
前記基板は、InP、並びに閃亜鉛鉱構造を有するGaAs系材料、またはLiNbO3の少なくともいずれか一つを素材として含んだ基板であることを特徴とする請求項1に記載の半導体光フィルタ。 2. The semiconductor optical filter according to claim 1, wherein the substrate is a substrate containing at least one of InP, a GaAs-based material having a zinc blende structure, and LiNbO 3 as a material.
JP2012133097A 2012-06-12 2012-06-12 Semiconductor optical filter Expired - Fee Related JP5881063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133097A JP5881063B2 (en) 2012-06-12 2012-06-12 Semiconductor optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133097A JP5881063B2 (en) 2012-06-12 2012-06-12 Semiconductor optical filter

Publications (2)

Publication Number Publication Date
JP2013257425A true JP2013257425A (en) 2013-12-26
JP5881063B2 JP5881063B2 (en) 2016-03-09

Family

ID=49953909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133097A Expired - Fee Related JP5881063B2 (en) 2012-06-12 2012-06-12 Semiconductor optical filter

Country Status (1)

Country Link
JP (1) JP5881063B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260120A (en) * 1986-05-07 1987-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor external light modulator
JPH05508718A (en) * 1990-04-11 1993-12-02 ユニバーシティ オブ オタワ optical interconnect equipment
JPH0992933A (en) * 1995-09-21 1997-04-04 Nec Corp Wavelength changeable semiconductor laser
US5937113A (en) * 1998-04-17 1999-08-10 National Research Council Of Canada Optical grating-based device having a slab waveguide polarization compensating region
JP2006171706A (en) * 2004-12-14 2006-06-29 Korea Electronics Telecommun Tunable demultiplexer and tunable laser with light deflector
JP2007134480A (en) * 2005-11-10 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Tunable light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260120A (en) * 1986-05-07 1987-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor external light modulator
JPH05508718A (en) * 1990-04-11 1993-12-02 ユニバーシティ オブ オタワ optical interconnect equipment
JPH0992933A (en) * 1995-09-21 1997-04-04 Nec Corp Wavelength changeable semiconductor laser
US5937113A (en) * 1998-04-17 1999-08-10 National Research Council Of Canada Optical grating-based device having a slab waveguide polarization compensating region
JP2006171706A (en) * 2004-12-14 2006-06-29 Korea Electronics Telecommun Tunable demultiplexer and tunable laser with light deflector
JP2007134480A (en) * 2005-11-10 2007-05-31 Nippon Telegr & Teleph Corp <Ntt> Tunable light source

Also Published As

Publication number Publication date
JP5881063B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
Pathak et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator
Ortmann et al. Ultra-low-power tuning in hybrid barium titanate–silicon nitride electro-optic devices on silicon
US8369666B2 (en) Optical wavelength multiplexing/ de-multiplexing circuit
US8923660B2 (en) System and method for an optical phase shifter
JP4102792B2 (en) Waveguide type optical interferometer
Kaminow Optical integrated circuits: A personal perspective
CN211454021U (en) Optical waveguide element
JP2005010805A6 (en) Waveguide type optical interferometer
Brunetti et al. Design of a large bandwidth 2× 2 interferometric switching cell based on a sub-wavelength grating
AU2016236834C1 (en) High index-contrast photonic devices and applications thereof
US10142032B2 (en) Temperature insensitive delay line interferometer
Butt et al. Miniaturized design of a 1× 2 plasmonic demultiplexer based on metal–insulator-metal waveguide for telecommunication wavelengths
US10527795B2 (en) Optical dispersion compensator on silicon
Minz et al. Numerical design and analysis of a 3-channel grating assisted mode-division (de) multiplexer
JP2012042849A (en) Optical waveguide device
JP5881063B2 (en) Semiconductor optical filter
CN114415289B (en) Low-loss wide-bandwidth wavelength multiplexing/de-multiplexing device based on silicon nitride platform
Zou et al. Uniform polarization-dispersion compensation of all channels in highly birefringent silicon nanowire-based arrayed waveguide grating
WO2012039142A1 (en) Optical waveguide circuit
Dai et al. Theoretical investigation for reducing polarization sensitivity in Si-nanowire-based arrayed-waveguide grating (de) multiplexer with polarization-beam-splitters and reflectors
JP2014228640A (en) Optical filter
KR100905658B1 (en) Nonlinear optical silicon waveguides with refractive index control of polymer cladding and Method for manufacturing the same
Ogawa et al. Broadband variable chromatic dispersion in photonic-band electro-optic waveguide
US11372157B2 (en) Integrated optical multiplexer / demultiplexer with thermal compensation
JP2011232458A (en) Phase control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5881063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees