JP2013256572A - Resin composition, and cured product thereof - Google Patents

Resin composition, and cured product thereof Download PDF

Info

Publication number
JP2013256572A
JP2013256572A JP2012132668A JP2012132668A JP2013256572A JP 2013256572 A JP2013256572 A JP 2013256572A JP 2012132668 A JP2012132668 A JP 2012132668A JP 2012132668 A JP2012132668 A JP 2012132668A JP 2013256572 A JP2013256572 A JP 2013256572A
Authority
JP
Japan
Prior art keywords
cured product
resin composition
resin
glyoxal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012132668A
Other languages
Japanese (ja)
Other versions
JP5937431B2 (en
Inventor
Kazuya Takemura
一也 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012132668A priority Critical patent/JP5937431B2/en
Priority to CN201380030561.XA priority patent/CN104364291B/en
Priority to PCT/JP2013/003559 priority patent/WO2013187025A1/en
Priority to TW102120465A priority patent/TWI502015B/en
Publication of JP2013256572A publication Critical patent/JP2013256572A/en
Application granted granted Critical
Publication of JP5937431B2 publication Critical patent/JP5937431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a resin composition useful for applications whose qualities are managed by AOI, and excellent in UV absorption property; and a cured product thereof.SOLUTION: A resin composition and a cured product thereof include (A) a substituted phenol glyoxal resin obtained by reacting cresols and/or xylenols with glyoxal in the presence of an acid catalyst, (B) biphenyltetracarboxylic acids, and (C) an epoxy resin.

Description

本発明は、紫外線(UV)吸収特性に優れた樹脂組成物およびその硬化物に関する。   The present invention relates to a resin composition excellent in ultraviolet (UV) absorption characteristics and a cured product thereof.

フェノール類とグリオキサール(ジアルデヒド)とから得られるフェノールグリオキサール樹脂は、UV吸収特性を有することから、高信頼性半導体封止用材料などの絶縁材料、積層板(プリント配線板)、炭素繊維強化プラスチック(CFRP)などの各種電気・電子材料、成型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料などの広範な用途に使用されるエポキシ樹脂組成物のブレンド成分またはエポキシ変性材料として有用である。特に、フェノールグリオキサール樹脂は、近年の光特性に基づく自動光学検査(AOI)により品質管理される実装済みプリント回路基板などの積層体の構成材料として有用である。   Phenol glyoxal resin obtained from phenols and glyoxal (dialdehyde) has UV absorption characteristics, so insulating materials such as highly reliable semiconductor sealing materials, laminated boards (printed wiring boards), carbon fiber reinforced plastics (CFRP) and other various electric / electronic materials, molding materials, casting materials, laminate materials, paints, adhesives, resists, blended components of epoxy resin compositions used in a wide range of applications such as optical materials, or epoxy-modified materials Useful as. In particular, the phenol glyoxal resin is useful as a constituent material of a laminated body such as a mounted printed circuit board whose quality is controlled by automatic optical inspection (AOI) based on recent optical characteristics.

たとえば、AOI適用性のエポキシ樹脂組成物の例として、特定条件下で製造したフェノールグリオキサール樹脂(蛍光フェノール−グリオキサール縮合生成物)と、特定エポキシ価のエポキシ樹脂およびその硬化剤とを含む組成物が開示されている。ここでは、該硬化剤として、芳香族アミン、ポリアミドアミン、ポリアミド、ジシアンジアミド、フェノールノボラック樹脂およびメラミン−ホルムアルデヒド樹脂などが例示される(特許文献1参照)。   For example, as an example of an epoxy resin composition applicable to AOI, there is a composition containing a phenol glyoxal resin (fluorescent phenol-glyoxal condensation product) produced under specific conditions, an epoxy resin having a specific epoxy value, and a curing agent thereof. It is disclosed. Here, examples of the curing agent include aromatic amine, polyamidoamine, polyamide, dicyandiamide, phenol novolac resin, and melamine-formaldehyde resin (see Patent Document 1).

特表2002−542389号公報Special Table 2002-542389

上記AOIでは、一般に、約450nm〜約650nmの波長(特に約442nmの励起波長)における蛍光および/または約350nm〜約365nmの波長におけるUV吸光度の測定が行われる。AOI適用性として従来公知のエポキシ組成物についてもさらに優れたUV吸収特性が要求される。
このような課題を解決し得るものとして、以下のような本発明を提供する。
The AOI generally measures fluorescence at a wavelength of about 450 nm to about 650 nm (especially an excitation wavelength of about 442 nm) and / or UV absorbance at a wavelength of about 350 nm to about 365 nm. As for AOI applicability, a conventionally well-known epoxy composition is required to have further excellent UV absorption characteristics.
The present invention as described below is provided as a solution to such a problem.

本発明では、
(A)クレゾール類および/またはキシレノール類とグリオキサールとを酸触媒下で反応して得られる置換フェノールグリオキサール樹脂、
(B)ビフェニルテトラカルボン酸およびその酸無水物からなる群より選ばれる少なくとも1種、および
(C)エポキシ樹脂
を含む樹脂組成物を提供する。
In the present invention,
(A) a substituted phenol glyoxal resin obtained by reacting cresols and / or xylenols with glyoxal in the presence of an acid catalyst,
(B) Provided is a resin composition comprising at least one selected from the group consisting of biphenyltetracarboxylic acid and acid anhydrides thereof, and (C) an epoxy resin.

上記少なくとも1種の(B)は、好ましくは下記に示される化合物(1)〜(4)からなる群より選ばれる。
The at least one (B) is preferably selected from the group consisting of compounds (1) to (4) shown below.

本発明に係る樹脂組成物は、通常、前記(A)を0.5〜30質量%、前記(B)を0.5〜30質量%、前記(C)を98〜40質量%含む。   The resin composition according to the present invention usually contains 0.5 to 30% by mass of (A), 0.5 to 30% by mass of (B), and 98 to 40% by mass of (C).

本発明に係る樹脂組成物は、さらに(D)エポキシ樹脂硬化剤を0.5〜50質量%含むことが好ましい。   The resin composition according to the present invention preferably further contains (D) 0.5 to 50% by mass of an epoxy resin curing agent.

本願では、上記のような樹脂組成物の硬化物も提供する。   In this application, the hardened | cured material of the above resin compositions is also provided.

本発明に係る樹脂組成物の硬化物は、高いUV吸収強度および高い蛍光強度を示す。このような本発明の樹脂組成物およびその硬化物から得られる製品は、AOIにおける、正確性向上、検査時間短縮をもたらすことができ、このため、特にAOIで品質管理される基板などの用途に有用である。   The cured product of the resin composition according to the present invention exhibits high UV absorption intensity and high fluorescence intensity. Such a resin composition of the present invention and a product obtained from the cured product thereof can improve the accuracy and shorten the inspection time in AOI. For this reason, particularly for applications such as substrates that are quality controlled by AOI. Useful.

以下、本発明について、より詳細に説明する。
本発明に係る(A)置換フェノールグリオキサール樹脂は、クレゾール類および/またはキシレノール類(以下、これらを置換フェノールと称することもある)と、グリオキサールとを酸触媒下で反応して得られる。
クレゾール類としては、p−クレゾール、m−クレゾールおよびo−クレゾールが挙げられ、キシレノール類としては、2,6−キシレノール、3,5−キシレノール、2,3−キシレノール、2,5−キシレノール、2,4―キシレノールおよび3,4−キシレノールなどが挙げられる。
本発明では、置換フェノールとして、これらから選ばれる少なくとも1種を用いることができ、クレゾール類の1種または2種以上、キシレノール類に1種または2種以上、およびこれらの適宜混合物を用いることができる。
これらの中でも、UV吸収特性が優れる点から、p−クレゾール、p−クレゾールと他のクレゾール類との混合物、またはキシレノール類の混合物を好適に用いることができる。
Hereinafter, the present invention will be described in more detail.
The (A) substituted phenol glyoxal resin according to the present invention is obtained by reacting cresols and / or xylenols (hereinafter sometimes referred to as substituted phenols) and glyoxal in the presence of an acid catalyst.
Examples of cresols include p-cresol, m-cresol and o-cresol. Examples of xylenols include 2,6-xylenol, 3,5-xylenol, 2,3-xylenol, 2,5-xylenol, 2 , 4-xylenol, 3,4-xylenol and the like.
In the present invention, as the substituted phenol, at least one selected from these can be used, and one or more cresols, one or two or more xylenols, and an appropriate mixture thereof can be used. it can.
Among these, p-cresol, a mixture of p-cresol and other cresols, or a mixture of xylenols can be suitably used because of excellent UV absorption characteristics.

グリオキサール(ジアルデヒド)は、種々の形態で用いることができ、たとえば、比較的高純度のモノマーグリオキサール、重合したグリオキサール、グリオキサールの水溶液などを用いることができる。これらの中でも、入手の容易さから、40%程度のグリオキサールの水溶液が好ましい。   Glyoxal (dialdehyde) can be used in various forms, for example, relatively high-purity monomer glyoxal, polymerized glyoxal, an aqueous solution of glyoxal, and the like. Among these, an aqueous solution of about 40% glyoxal is preferable because it is easily available.

酸触媒としては、通常、硫酸、p−トルエンスルホン酸およびシュウ酸などが挙げられ、中でも反応性が優れる点でp−トルエンスルホン酸が好ましい。   Examples of the acid catalyst usually include sulfuric acid, p-toluenesulfonic acid, oxalic acid, and the like. Among them, p-toluenesulfonic acid is preferable because of excellent reactivity.

上記酸触媒の存在下に行われる置換フェノールとグリオキサールとの反応は、たとえばグリオキサールに対し過剰モル数の置換フェノールを、溶媒存在または不存在下に混合し、通常、加熱下に実施することができる。より具体的には、通常、40℃〜250℃、好ましくは60℃〜200℃の温度で、たとえば、1時間〜12時間、好ましくは3時間〜9時間加熱することができる。   The reaction between the substituted phenol and glyoxal carried out in the presence of the acid catalyst can be carried out, for example, by mixing a molar excess of substituted phenol with glyoxal in the presence or absence of a solvent, and usually under heating. . More specifically, it can be heated usually at a temperature of 40 ° C. to 250 ° C., preferably 60 ° C. to 200 ° C., for example, for 1 hour to 12 hours, preferably 3 hours to 9 hours.

反応終了後、触媒を中和する。中和に用いるアルカリ性化合物は、特に限定されないが、通常、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウムを用いることができ、中でも、水酸化ナトリウム、炭酸水素ナトリウムが好ましい。アルカリ性化合物は、水溶液で用いることもできる。   After completion of the reaction, the catalyst is neutralized. The alkaline compound used for neutralization is not particularly limited, but sodium hydroxide, potassium hydroxide, and sodium hydrogen carbonate can usually be used, and sodium hydroxide and sodium hydrogen carbonate are particularly preferable. The alkaline compound can also be used in an aqueous solution.

次いで、得られた反応物は、たとえばアセトンなどに溶かしてろ過分離する。ここで、置換フェノールグリオキサール樹脂は可溶物(ろ液)として回収される。なお、不溶物は結晶性のテトラキスフェノール類(モノマー)である。
過剰の置換フェノールおよび使用した溶媒を、常圧蒸留、減圧蒸留、水蒸気蒸留などにより除去し、置換フェノールグリオキサール樹脂を得る。
Next, the obtained reaction product is dissolved in, for example, acetone and separated by filtration. Here, the substituted phenol glyoxal resin is recovered as a soluble matter (filtrate). The insoluble material is crystalline tetrakisphenols (monomer).
Excess substituted phenol and the solvent used are removed by atmospheric distillation, vacuum distillation, steam distillation or the like to obtain a substituted phenol glyoxal resin.

本発明の樹脂組成物中に含まれる(B)ビフェニルテトラカルボン酸およびその酸無水物(以下、これらをビフェニルテトラカルボン酸類とも称す)は、ビフェニルテトラカルボン酸骨格を有するものであればよいが、通常、1のフェニル環上に隣接し合うジカルボン酸を有する、すなわち酸無水物を形成しうる態様が好ましい。この場合、4つのカルボン酸で、3種の異性体が存在し、すなわちビフェニル結合位1,1’−に対し、2,3,2',3’−体、2,3,3',4’−体および3,4,3',4’−体である。また、環上に、アルキル、アルコキシ、ハロゲンなどの置換基を有していてもよい。このようなビフェニルテトラカルボン酸類は、市販品として入手可能であり、またたとえば特開2006−290836号公報に開示される製造方法に準じて製造することもできる。
ビフェニルテトラカルボン酸類は、これらのどの異性体でもよく、また2種以上の組み合わせでもよい。
The (B) biphenyltetracarboxylic acid and acid anhydrides thereof (hereinafter also referred to as biphenyltetracarboxylic acids) contained in the resin composition of the present invention may be those having a biphenyltetracarboxylic acid skeleton, Usually, an embodiment having an adjacent dicarboxylic acid on one phenyl ring, that is, capable of forming an acid anhydride is preferred. In this case, three isomers exist with four carboxylic acids, ie, 2,3,2 ′, 3′-form, 2,3,3 ′, 4 with respect to biphenyl bond position 1,1′-. '-Body and 3,4,3', 4'-body. Moreover, you may have substituents, such as an alkyl, an alkoxy, a halogen, on the ring. Such biphenyltetracarboxylic acids are available as commercial products, and can also be produced according to the production method disclosed in, for example, JP-A-2006-290836.
Biphenyltetracarboxylic acids may be any of these isomers or a combination of two or more.

上記のうちでも、前記に化学式で示した化合物、すなわち化合物(1)として示す3,3’,4,4’−ビフェニルテトラカルボン酸および化合物(3)として示すその酸無水物、化合物(2)として示す2,3,3’,4’−ビフェニルテトラカルボン酸および化合物(4)として示すその酸無水物、これらの混合物ならびにこれらに前記置換基を有するものを好ましく用いることができる。
これらの中でも、エポキシ樹脂との反応性が良好で硬化速度が速いビフェニルテトラカルボン酸無水物(化合物(3)および化合物(4))が特に好ましい。
Among the above, the compound represented by the above chemical formula, ie, 3,3 ′, 4,4′-biphenyltetracarboxylic acid shown as compound (1) and its acid anhydride shown as compound (3), compound (2) 2,3,3 ′, 4′-biphenyltetracarboxylic acid shown as above and its acid anhydride shown as compound (4), mixtures thereof, and those having the above substituents can be preferably used.
Among these, biphenyltetracarboxylic anhydrides (compound (3) and compound (4)) that have good reactivity with the epoxy resin and have a fast curing rate are particularly preferable.

本発明で用いられる(C)エポキシ樹脂は、通常の熱硬化性エポキシ樹脂であれば、いかなるものを用いても良い。具体的には、ビスフェノールAのグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールFのグリシジルエーテル、ジシクロペンタジエン/フェノール縮合物のグリシジルエーテル、フェノール/サリチルアルデヒド縮合物のグリシジルエーテル、3,4−エポキシシクロヘキサンカルボン酸3,4−エポキシシクロヘキシルメチルおよびこれらの臭素化物のグリシジルエーテルなどを好ましく用いることができる。
これらの中でも、ビスフェノールAのグリシジルエーテル、フェノールノボラック樹脂のグリシジルエーテル、3,4−エポキシシクロヘキサンカルボン酸3,4−エポキシシクロヘキシルメチルなどが好ましく用いられる。
The (C) epoxy resin used in the present invention may be any one as long as it is a normal thermosetting epoxy resin. Specifically, glycidyl ether of bisphenol A, glycidyl ether of phenol novolac resin, glycidyl ether of cresol novolac resin, glycidyl ether of bisphenol F, glycidyl ether of dicyclopentadiene / phenol condensate, glycidyl of phenol / salicylaldehyde condensate Ether, 3,4-epoxycyclohexanecarboxylic acid 3,4-epoxycyclohexylmethyl, and glycidyl ethers of these brominated compounds can be preferably used.
Among these, glycidyl ether of bisphenol A, glycidyl ether of phenol novolac resin, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, and the like are preferably used.

本発明に係る樹脂組成物は、好ましくは(D)エポキシ樹脂硬化剤を含む。(D)硬化剤は、通常のエポキシ樹脂に用いられる硬化剤であれば、いかなるものでも用いることができる。たとえば、脂肪族アミン化合物、芳香族アミン化合物、フェノールノボラック樹脂、イミダゾール化合物、(B)以外の酸無水物化合物などが挙げられる。
具体的には、脂肪族アミン化合物としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられ、芳香族アミン化合物としては、メタフェニレンジアミン、ジアミノジフェニルメタンなどが挙げられ、イミダゾール化合物としては、2−メチルイミダゾールなどが挙げられ、酸無水化合物としては、無水フタル酸、4−メチルシクロヘキサンー1,2−ジカルボン酸無水物などが挙げられ、これの例示した化合物を好適に用いることができる。
The resin composition according to the present invention preferably contains (D) an epoxy resin curing agent. (D) Any curing agent can be used as long as it is a curing agent used for ordinary epoxy resins. Examples include aliphatic amine compounds, aromatic amine compounds, phenol novolac resins, imidazole compounds, and acid anhydride compounds other than (B).
Specifically, examples of the aliphatic amine compound include diethylenetriamine and triethylenetetramine, examples of the aromatic amine compound include metaphenylenediamine and diaminodiphenylmethane, and examples of the imidazole compound include 2-methylimidazole. Examples of the acid anhydride compound include phthalic anhydride, 4-methylcyclohexane-1,2-dicarboxylic acid anhydride, and the compounds exemplified here can be preferably used.

本発明における各成分の配合量は、特に限定されないが、好ましくは、(A)置換フェノールグリオキサール樹脂0.5〜30質量%であり、このような範囲であれば樹脂組成物の硬化物は強度低下なく、かつ優れたUV吸収強度を発揮することができるが、より好ましくは1〜15質量%、さらに好ましくは3〜15質量%である。
(B)ビフェニルテトラカルボン酸類の配合量は、好ましくは0.5〜30質量%であり、このような範囲であれば硬化物の強度低下がないが、より好ましくは1〜15質量%、さらに好ましくは5〜15質量%である。
(C)エポキシ樹脂の配合量は、多すぎるとUV吸収特性が低下し、少なすぎると硬化物の強度が低下するため、好ましくは98〜40質量%であり、より好ましくは97〜70質量%、さらに好ましくは91〜70質量%である。
Although the compounding quantity of each component in this invention is not specifically limited, Preferably, it is 0.5-30 mass% of (A) substituted phenol glyoxal resin, and if it is such a range, the hardened | cured material of a resin composition is intensity | strength. Although it does not decrease and can exhibit excellent UV absorption intensity, it is more preferably 1 to 15% by mass, and further preferably 3 to 15% by mass.
The blending amount of (B) biphenyltetracarboxylic acid is preferably 0.5 to 30% by mass, and within such a range, there is no decrease in the strength of the cured product, but more preferably 1 to 15% by mass, Preferably it is 5-15 mass%.
(C) If the compounding amount of the epoxy resin is too large, the UV absorption property is lowered, and if it is too little, the strength of the cured product is lowered, so that it is preferably 98 to 40% by mass, more preferably 97 to 70% by mass. More preferably, it is 91-70 mass%.

また、各成分の配合割合は上記範囲内であれば特に問題ないが、好ましくは(C)エポキシ樹脂のエポキシ当量と、硬化剤の酸価、アミン価、水酸基当量が等しくなるように(D)エポキシ樹脂硬化剤を通常0.5〜50質量%の量で配合することができ、より好ましくは1〜50質量%、さらに好ましくは3〜15質量%の量で配合することができる。   Further, the blending ratio of each component is not particularly limited as long as it is within the above range, but preferably (C) the epoxy equivalent of the epoxy resin and the acid value, amine value, and hydroxyl equivalent of the curing agent are equal (D). An epoxy resin hardening | curing agent can be normally mix | blended in the quantity of 0.5-50 mass%, More preferably, it can be mix | blended in the quantity of 1-50 mass%, More preferably, it is 3-15 mass%.

本発明の樹脂組成物には、その特性を損なわない範囲で、種々の添加剤を添加することができる。これらの添加剤としては、難燃剤、硬化促進剤、酸化防止剤、可塑剤、無機化合物、などがあげられる。難燃剤としては、臭素化ビフェニルなどの臭素化合物、リン系化合物、三酸化アンチモンなどのアンチモン化合物などを好適に用いることができる。また、硬化促進剤は、トリフェニルフォスフィンなどのリン化合物、フェノール化合物、メチルイミダゾール、フェニルイミダゾールなどのイミダゾール類、アミド化合物などを好適に用いることができる。また、酸化防止剤には、ヒンダードフェノール系化合物、リン系化合物などが好適に用いられる。   Various additives can be added to the resin composition of the present invention as long as the characteristics are not impaired. Examples of these additives include flame retardants, curing accelerators, antioxidants, plasticizers, and inorganic compounds. As the flame retardant, bromine compounds such as brominated biphenyl, phosphorus compounds, antimony compounds such as antimony trioxide, and the like can be preferably used. As the curing accelerator, phosphorus compounds such as triphenylphosphine, phenol compounds, imidazoles such as methylimidazole and phenylimidazole, amide compounds, and the like can be preferably used. Moreover, a hindered phenol type compound, a phosphorus type compound, etc. are used suitably for antioxidant.

本発明の樹脂組成物の製造方法は、特に限定されない。たとえば、(A)置換フェノールグリオキサール樹脂、(B)ビフェニルテトラカルボン酸類、(C)エポキシ樹脂および必要に応じて(D)エポキシ樹脂硬化剤を予め予備混合した後、50℃〜150℃、好ましくは70℃〜120℃に加熱溶融して、溶融ブレンドする方法、アセトンなどの溶剤に各原料を溶解して、溶剤を蒸留除去する方法などを好適に適用することができる。これらの方法のなかでも予備混合した後、溶融ブレンドする方法が簡便であり、好ましい。   The method for producing the resin composition of the present invention is not particularly limited. For example, (A) a substituted phenol glyoxal resin, (B) biphenyltetracarboxylic acid, (C) an epoxy resin, and (D) an epoxy resin curing agent, if necessary, premixed beforehand, and then 50 ° C to 150 ° C, preferably A method of melting by heating at 70 ° C. to 120 ° C. and melt blending, a method of dissolving each raw material in a solvent such as acetone, and distilling off the solvent can be suitably applied. Among these methods, a method of pre-mixing and then melt blending is simple and preferable.

本発明の樹脂組成物は、加熱硬化性により硬化物が得られる。熱硬化時の温度および硬化時間などは、特に制限されないが、好ましくは120℃〜250℃、より好ましくは135〜170℃であり、硬化時間は、1分〜60分、好ましくは5分〜30分である。
この硬化物は、電子部材として優れた性能を有し、かつAOI検査において優れたUV吸収特性を示し、そのため基板などの品質検査における正確性向上、検査時間短縮をもたらすことができる。
As for the resin composition of this invention, hardened | cured material is obtained by thermosetting. The temperature during curing and the curing time are not particularly limited, but are preferably 120 to 250 ° C, more preferably 135 to 170 ° C, and the curing time is 1 to 60 minutes, preferably 5 to 30 minutes. Minutes.
This cured product has excellent performance as an electronic member, and exhibits excellent UV absorption characteristics in AOI inspection, and therefore can improve accuracy in quality inspection of substrates and shorten inspection time.

以下、本発明のより具体的な実施例を示すが、以下に示す実施例は本願を説明するためのものであって、本発明の範囲はこれら実施例に限定されるものではない。
(実施例1)
<置換フェノールグリオキサール樹脂の合成>
温度計および冷却管を装備した1リットルのセパラブルフラスコに、p−クレゾール216g(和光純薬工業(株)製)、40%グリオキサール水溶液(和光純薬工業(株)製)36.3g、p−トルエンスルホン酸(和光純薬工業(株)製)1gをいれ、窒素気流下で100℃に昇温して、2時間反応させた。その後、水分を蒸留除去して、更に200℃に昇温させ、3時間反応させた。
反応終了後、反応液を冷却して、触媒を水酸化ナトリウム水溶液で中和し、アセトンを200ml加えて、ろ過した。ろ液は、更に、エバポレータでアセトンを除き、固体の樹脂状生成物(置換フェノールグリオキサール樹脂)188.1gを得た。
Hereinafter, although the more concrete Example of this invention is shown, the Example shown below is for demonstrating this application, Comprising: The scope of the present invention is not limited to these Examples.
Example 1
<Synthesis of substituted phenol glyoxal resin>
In a 1-liter separable flask equipped with a thermometer and a condenser, p-cresol 216 g (manufactured by Wako Pure Chemical Industries, Ltd.), 40% glyoxal aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 36.3 g, p -1 g of toluene sulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the temperature was raised to 100 ° C. under a nitrogen stream and reacted for 2 hours. Thereafter, the water was distilled off, and the temperature was further raised to 200 ° C. to react for 3 hours.
After completion of the reaction, the reaction solution was cooled, the catalyst was neutralized with an aqueous sodium hydroxide solution, 200 ml of acetone was added and filtered. Further, acetone was removed from the filtrate by an evaporator to obtain 188.1 g of a solid resinous product (substituted phenol glyoxal resin).

<硬化>
この樹脂状生成物15g、式(3)のビフェニルテトラカルボン酸無水物(JFEケミカル(株)製)15g、3,4−エポキシシクロヘキサンカルボン酸3,4−エポキシシクロヘキシルメチル(和光純薬工業(株)製)63g、4−メチルシクロヘキサンー1,2−ジカルボン酸無水物(和光純薬工業(株)製)84g、およびトリフェニルホスフィン(和光純薬工業(株)製)0.2gをブレンドし、ホットプレート上で140℃で5分加熱して、溶融ブレンドし、硬化物を得た。
<Curing>
15 g of this resinous product, 15 g of biphenyltetracarboxylic anhydride of the formula (3) (manufactured by JFE Chemical Co., Ltd.), 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Wako Pure Chemical Industries, Ltd.) )) 63 g, 4-methylcyclohexane-1,2-dicarboxylic anhydride (Wako Pure Chemical Industries, Ltd.) 84 g, and triphenylphosphine (Wako Pure Chemical Industries, Ltd.) 0.2 g were blended. Then, it was heated on a hot plate at 140 ° C. for 5 minutes, and melt blended to obtain a cured product.

<測定>
上記で得られた硬化物0.5gをテトラヒドロフラン99.5gに溶解して、UVスペクトル及び蛍光スペクトルを測定した。結果を表1に示す。
UV吸収強度は、波長350nmおよび365nmにおける吸光度を島津製UV1650PCを用いて測定した。
蛍光強度は、励起波長442nmにおける最大カウント数を島津製RF5300PCを用いて測定した。
<Measurement>
0.5 g of the cured product obtained above was dissolved in 99.5 g of tetrahydrofuran, and UV spectrum and fluorescence spectrum were measured. The results are shown in Table 1.
The UV absorption intensity was determined by measuring the absorbance at wavelengths of 350 nm and 365 nm using a UV1650PC manufactured by Shimadzu.
For the fluorescence intensity, the maximum count at an excitation wavelength of 442 nm was measured using an RF5300PC manufactured by Shimadzu.

(実施例2)
樹脂状生成物の使用量を5g、ビフェニルテトラカルボン酸無水物の使用量を5gに変えた以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Example 2)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that the amount of the resinous product used was changed to 5 g and the amount of the biphenyltetracarboxylic anhydride used was changed to 5 g.
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(実施例3)
樹脂状生成物の使用量を20g、ビフェニルテトラカルボン酸無水物の使用量を20gに変えた以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Example 3)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that the amount of resinous product used was changed to 20 g and the amount of biphenyltetracarboxylic anhydride used was changed to 20 g.
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(実施例4)
p−クレゾールに代えてo−クレゾール(和光純薬工業(株)製)を用いた以外は、実施例1の<置換フェノールグリオキサール樹脂の合成>と同様にして樹脂状生成物を合成し、次いで実施例1と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
Example 4
A resinous product was synthesized in the same manner as in <Synthesis of substituted phenol glyoxal resin> in Example 1, except that o-cresol (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of p-cresol. A cured product was obtained in the same manner as in Example 1.
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(実施例5)
ビフェニルテトラカルボン酸無水物を式(4)のビフェニルテトラカルボン酸無水物(JFEケミカル(株)製)に代えた以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Example 5)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that the biphenyltetracarboxylic anhydride was replaced with the biphenyltetracarboxylic anhydride of formula (4) (manufactured by JFE Chemical Co., Ltd.).
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(実施例6)
ビフェニルテトラカルボン酸無水物を式(1)のビフェニルテトラカルボン酸(JFEケミカル(株)製)に代えた以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Example 6)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that biphenyltetracarboxylic acid anhydride was replaced with biphenyltetracarboxylic acid of formula (1) (manufactured by JFE Chemical Co., Ltd.).
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(実施例7)
ビフェニルテトラカルボン酸無水物を式(2)のビフェニルテトラカルボン酸(JFEケミカル(株)製)に代えた以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Example 7)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that biphenyltetracarboxylic acid anhydride was replaced with biphenyltetracarboxylic acid of formula (2) (manufactured by JFE Chemical Co., Ltd.).
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(比較例1)
p−クレゾールに代えてフェノールを用いた以外は、実施例1の<置換フェノールグリオキサール樹脂の合成>と同様にして樹脂状生成物を合成し、次いで実施例1と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Comparative Example 1)
A resinous product was synthesized in the same manner as in <Synthesis of substituted phenol glyoxal resin> in Example 1 except that phenol was used instead of p-cresol, and then a cured product was obtained in the same manner as in Example 1. .
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(比較例2)
ビフェニルテトラカルボン酸無水物を用いなかった以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Comparative Example 2)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that biphenyltetracarboxylic anhydride was not used.
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(比較例3)
実施例1の<硬化>において、樹脂状生成物およびビフェニルテトラカルボン酸無水物を用いなかった以外は同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Comparative Example 3)
A cured product was obtained in the same manner as in Example 1 except that the resinous product and the biphenyltetracarboxylic anhydride were not used.
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

(比較例4)
ビフェニルテトラカルボン酸無水物に代えてノボラック型フェノール樹脂(群栄化学製)を用いた以外は、実施例1の<硬化>と同様にして硬化物を得た。
この硬化物について実施例1と同様に測定したUV吸収強度および蛍光強度を表1に示す。
(Comparative Example 4)
A cured product was obtained in the same manner as in <Curing> in Example 1 except that a novolak type phenol resin (manufactured by Gunei Chemical Co., Ltd.) was used instead of biphenyltetracarboxylic anhydride.
Table 1 shows the UV absorption intensity and fluorescence intensity measured for this cured product in the same manner as in Example 1.

上記のとおり、本発明実施例で得られる硬化物は、比較例の硬化物に比べ、UV吸収強度および蛍光強度ともに優れていた。このような本発明の樹脂組成物は、特にAOIで品質管理される基板などの用途に有用で、該品質検査における、正確性向上、検査時間短縮をもたらすことができる。   As described above, the cured product obtained in the examples of the present invention was superior in both UV absorption intensity and fluorescence intensity as compared with the cured product of the comparative example. Such a resin composition of the present invention is particularly useful for applications such as a substrate whose quality is controlled by AOI, and can improve accuracy and shorten inspection time in the quality inspection.

Claims (5)

(A)クレゾール類および/またはキシレノール類とグリオキサールとを酸触媒下で反応して得られる置換フェノールグリオキサール樹脂、
(B)ビフェニルテトラカルボン酸およびその酸無水物からなる群より選ばれる少なくとも1種、および
(C)エポキシ樹脂
を含む樹脂組成物。
(A) a substituted phenol glyoxal resin obtained by reacting cresols and / or xylenols with glyoxal in the presence of an acid catalyst,
(B) A resin composition comprising at least one selected from the group consisting of biphenyltetracarboxylic acid and acid anhydrides thereof, and (C) an epoxy resin.
前記少なくとも1種の(B)が、下記に示される化合物(1)〜(4)からなる群より選ばれる請求項1に記載の樹脂組成物。
The resin composition according to claim 1, wherein the at least one (B) is selected from the group consisting of compounds (1) to (4) shown below.
前記(A)を0.5〜30質量%、前記(B)を0.5〜30質量%、前記(C)を98〜40質量%含む請求項1または2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, comprising 0.5 to 30% by mass of (A), 0.5 to 30% by mass of (B), and 98 to 40% by mass of (C). さらに(D)エポキシ樹脂硬化剤を0.5〜50質量%含む請求項1〜3のいずれかにに記載の樹脂組成物。   Furthermore, (D) The resin composition in any one of Claims 1-3 which contains 0.5-50 mass% of epoxy resin hardening | curing agents. 請求項1〜4のいずれかに記載の樹脂組成物の硬化物。   Hardened | cured material of the resin composition in any one of Claims 1-4.
JP2012132668A 2012-06-12 2012-06-12 Resin composition and cured product thereof Active JP5937431B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012132668A JP5937431B2 (en) 2012-06-12 2012-06-12 Resin composition and cured product thereof
CN201380030561.XA CN104364291B (en) 2012-06-12 2013-06-06 Resin combination and its solidfied material
PCT/JP2013/003559 WO2013187025A1 (en) 2012-06-12 2013-06-06 Resin composition and cured product thereof
TW102120465A TWI502015B (en) 2012-06-12 2013-06-10 Resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132668A JP5937431B2 (en) 2012-06-12 2012-06-12 Resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2013256572A true JP2013256572A (en) 2013-12-26
JP5937431B2 JP5937431B2 (en) 2016-06-22

Family

ID=49757871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132668A Active JP5937431B2 (en) 2012-06-12 2012-06-12 Resin composition and cured product thereof

Country Status (4)

Country Link
JP (1) JP5937431B2 (en)
CN (1) CN104364291B (en)
TW (1) TWI502015B (en)
WO (1) WO2013187025A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138325B2 (en) * 2016-05-12 2018-11-27 Chang Chun Plastics Co., Ltd. Polyphenolic condensates and epoxy resins thereof
WO2020175272A1 (en) * 2019-02-26 2020-09-03 富士フイルム株式会社 Adhesive agent for endoscope and cured product thereof, and endoscope and manufacturing method therefor
CN111333796A (en) * 2020-04-01 2020-06-26 山东莱芜润达新材料有限公司 Preparation method of tetraphenol ethane phenolic resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211623A (en) * 1998-12-08 2000-08-02 Elanac Gmbh Method for improving flame resistance of polyethylene- containing hollow container
JP2003510394A (en) * 1999-09-17 2003-03-18 エス・ア・ジェ・ウ・エム・ソシエテ・アノニム Extrudable thermoplastic materials and fiber micromodules made from such materials
JP2004231844A (en) * 2003-01-31 2004-08-19 Japan Polyolefins Co Ltd Polyethylene resin composition
JP2006290944A (en) * 2005-04-06 2006-10-26 Nippon Polyethylene Kk Polyolefin resin material for container cover and container cover made thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239248B1 (en) * 1998-09-22 2001-05-29 Borden Chemical, Inc. Phenol-novolacs with improved optical properties
US6379800B1 (en) * 2000-06-05 2002-04-30 Borden Chemical, Inc. Glyoxal-phenolic condensates with enhanced fluorescence
EP1290054B1 (en) * 2000-06-05 2007-02-21 Hexion Specialty Chemicals, Inc. Glyoxal-phenolic condensates with enhanced fluorescence
WO2011083554A1 (en) * 2010-01-05 2011-07-14 日本化薬株式会社 Polyamide or polyimide resin compositions that contain phosphine oxide, and cured products thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211623A (en) * 1998-12-08 2000-08-02 Elanac Gmbh Method for improving flame resistance of polyethylene- containing hollow container
JP2003510394A (en) * 1999-09-17 2003-03-18 エス・ア・ジェ・ウ・エム・ソシエテ・アノニム Extrudable thermoplastic materials and fiber micromodules made from such materials
JP2004231844A (en) * 2003-01-31 2004-08-19 Japan Polyolefins Co Ltd Polyethylene resin composition
JP2006290944A (en) * 2005-04-06 2006-10-26 Nippon Polyethylene Kk Polyolefin resin material for container cover and container cover made thereof

Also Published As

Publication number Publication date
TW201406854A (en) 2014-02-16
JP5937431B2 (en) 2016-06-22
WO2013187025A1 (en) 2013-12-19
CN104364291B (en) 2017-03-08
TWI502015B (en) 2015-10-01
CN104364291A (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5637419B1 (en) Epoxy compound, epoxy resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2009242560A (en) Epoxy resin composition and cured product of the same
JP5664817B2 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2008001882A (en) New phenol-aldehyde resin and production method thereof and use thereof
TW201815878A (en) Curable composition and cured product thereof
JP5937431B2 (en) Resin composition and cured product thereof
JP5570380B2 (en) Epoxy resin composition and cured product
JP5682805B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
WO2013157061A1 (en) Epoxy resin composition and cured product
JP6024121B2 (en) Cyanate ester resin, curable resin composition, cured product thereof, semiconductor sealing material, prepreg, circuit board, and build-up film
JP5609790B2 (en) Cyanate resin and curable resin composition containing the same
JP2011001483A (en) Epoxy resin composition, cured product thereof, and semiconductor device
TWI593716B (en) Epoxy compound, epoxy resin and manufacturing method thereof, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP6900949B2 (en) Epoxy resin, curable resin composition and its cured product
JP5024605B2 (en) Curable resin composition, cured product thereof, novel phenolic resin, and production method thereof
JP5682804B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP6403003B2 (en) Cyanate ester compound, cyanate ester resin, curable composition, cured product thereof, build-up film, semiconductor sealing material, prepreg, circuit board, and method for producing cyanate ester resin
JP2013108025A (en) Curable resin composition, cured product thereof, cyanate ester resin, semiconductor sealing material, prepreg, circuit board, and buildup film
JP6113454B2 (en) Epoxy resin composition and cured product
JP5035602B2 (en) Epoxy resin composition and novel phenol resin
JP5035604B2 (en) Epoxy resin composition, cured product thereof, and novel epoxy resin
JP5024604B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin and production method thereof
TW202130733A (en) Epoxy resin composition, prepreg, laminate, printed circuit board, and cured product
JP2014108976A (en) Epoxy resin composition and cured article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150