JP2013255586A - Method for operating mri apparatus in imaging cerebral blood flow - Google Patents

Method for operating mri apparatus in imaging cerebral blood flow Download PDF

Info

Publication number
JP2013255586A
JP2013255586A JP2012132134A JP2012132134A JP2013255586A JP 2013255586 A JP2013255586 A JP 2013255586A JP 2012132134 A JP2012132134 A JP 2012132134A JP 2012132134 A JP2012132134 A JP 2012132134A JP 2013255586 A JP2013255586 A JP 2013255586A
Authority
JP
Japan
Prior art keywords
cerebral blood
water
blood flow
imaging
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012132134A
Other languages
Japanese (ja)
Other versions
JP5958898B2 (en
Inventor
Mari Sasaki
真理 佐々木
Tomosuke Kudo
與亮 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate Medical University
Original Assignee
Iwate Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate Medical University filed Critical Iwate Medical University
Priority to JP2012132134A priority Critical patent/JP5958898B2/en
Publication of JP2013255586A publication Critical patent/JP2013255586A/en
Application granted granted Critical
Publication of JP5958898B2 publication Critical patent/JP5958898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating an MRI apparatus which utilizes O-17 water and has high time resolution in imaging a cerebral blood flow.SOLUTION: A method for operating an MRI apparatus includes: a step of obtaining a signal value derived from O-17 water in the cerebral blood flow of a subject by using a Balanced SSFP method as an image pickup sequence; a step of obtaining a change in time of signal value by repeating the step of obtaining a signal value a plurality times; a step of obtaining a time-concentration curve of O-17 water from the change in time of signal value on the basis of the previously obtained relation between the signal value and the concentration value of O-17 water; a step of obtaining a cerebral blood flow (CBF) and/or a cerebral blood volume (CBV) from the time-concentration curve; and a step of forming a map of CBF and/or CBV by integrating the CBF and/or CBV obtained for each of positions of an image pickup matrix.

Description

本発明は、脳血流の撮像におけるMRI装置の作動方法に関する。   The present invention relates to a method for operating an MRI apparatus in imaging of cerebral blood flow.

脳卒中は脳血管の閉塞や破綻により脳組織が死滅する病気であり、日本人の死因の第3位を占めている。特に高齢化社会では後遺症やリハビリ、介護等が大きな社会問題となっているが、適切な予防や急性期治療には正確な脳血流検査が必要である。   Stroke is a disease in which brain tissue is killed by cerebrovascular obstruction or failure, and is the third leading cause of death among Japanese people. Particularly in an aging society, sequelae, rehabilitation, and nursing care are major social problems, but accurate cerebral blood flow tests are necessary for appropriate prevention and acute treatment.

脳血流検査には様々な方法があるが、非侵襲的で患者負担が少なく、定量性に優れ、広く一般臨床で簡便に使用可能な手法は存在しない。核医学検査であるPETやSPECTは放射線被曝があり、検査時間も長く、空間解像度も低い。PETは定量性に優れ、脳血流検査のスタンダードであるが、使用できる施設は限られている。一方、CT・MRI灌流画像は多くの施設で短時間に撮像・解析が行えるため簡便な手法として臨床応用されているが、ガドリニウム(Gd)キレート等の造影剤の静脈内投与が必須であり、造影剤アレルギーによる心肺停止等、造影剤副作用のリスクや腎機能障害等に対する制約が生じる。また、造影剤は血管内トレーサであり、PET等の拡散性トレーサとは挙動が異なる。さらに、CT灌流画像では放射線被曝や撮影範囲が狭い、MRI灌流画像では定量性が低い等の欠点がある。造影剤を使用しない方法として、MRIには血液をRFでラベルするASL(arterial spin labeling)法もあるが、ラベル持続時間や通過時間の問題があり、やはり十分な定量性は期待できない。   There are various methods for cerebral blood flow examination, but there is no method that is non-invasive, has a low patient burden, is excellent in quantitative properties, and can be easily used in general clinical practice. Nuclear medicine examinations such as PET and SPECT are exposed to radiation, have a long examination time, and have a low spatial resolution. PET is excellent in quantitativeness and is a standard for cerebral blood flow test, but the facilities that can be used are limited. On the other hand, CT / MRI perfusion images are clinically applied as a simple method because they can be imaged and analyzed in many facilities in a short time, but intravenous administration of a contrast agent such as gadolinium (Gd) chelate is essential, There are restrictions on the risk of side effects of contrast agents, renal dysfunction, etc., such as cardiopulmonary arrest due to contrast agent allergy. Further, the contrast agent is an intravascular tracer and behaves differently from a diffusive tracer such as PET. Furthermore, CT perfusion images have drawbacks such as radiation exposure and a narrow imaging range, and MRI perfusion images have low quantitativeness. As a method that does not use a contrast agent, MRI also has an ASL (arterial spin labeling) method in which blood is labeled with RF, but there are problems of label duration and transit time, and sufficient quantitativeness cannot be expected.

このような状況下、MRI測定のプローブとして、酸素の非放射性同位体(安定同位体)である17Oを用いることが提案されている。17Oは自然界に0.037%しか存在しないが、17O標識水分子(H 17O、以下、「O−17水」という)は交叉緩和(J結合)に基づくT2短縮効果を持つため、十分な濃度であればMRIで信号変化を捉えることが可能である。また、O−17水は安定同位体であるため放射線被曝がなく、水であるためアレルギー反応もない。本発明者らは、ビーグル犬を用いて3テスラMRIによる基礎実験を行い、独自の解析プログラムを用いて10%濃度O−17水の静脈内投与下の脳脊髄液における水分子動態を可視化することに世界で初めて成功した。また、独自に考案した高コントラスト撮像法を用いることで、脳血流量に対応した脳実質の信号変化を捉えることにも初めて成功した。 Under such circumstances, it has been proposed to use 17 O, which is a non-radioactive isotope (stable isotope) of oxygen, as a probe for MRI measurement. Although 17 O exists in nature only at 0.037%, 17 O-labeled water molecules (H 2 17 O, hereinafter referred to as “O-17 water”) have a T2 shortening effect based on cross relaxation (J bond). If the concentration is sufficient, it is possible to detect a signal change by MRI. O-17 water is a stable isotope, so there is no radiation exposure, and since it is water, there is no allergic reaction. The present inventors conduct basic experiments by 3 Tesla MRI using beagle dogs, and visualize the water molecular dynamics in cerebrospinal fluid under intravenous administration of 10% O-17 water using an original analysis program. It was the first success in the world. In addition, by using a high-contrast imaging method devised uniquely, we succeeded in capturing the changes in the brain parenchyma corresponding to cerebral blood flow for the first time.

また、(特許文献1)には、生体組織中の膜タンパク質の水輸送機能の解析用薬剤であって、該解析用薬剤中の17O水分子又は18O水分子の一方もしくは両方の存在量が、天然水における存在量よりも多いことを特徴とする水輸送機能の解析用薬剤が開示されている。 In addition, (Patent Document 1) discloses a drug for analyzing the water transport function of membrane protein in a biological tissue, and the abundance of one or both of 17 O water molecule and 18 O water molecule in the drug for analysis. However, there is disclosed a drug for analyzing water transport function, characterized in that it is greater than the abundance in natural water.

さらに、(特許文献2)には、有効成分がH 17Oである生体認容性のある水溶液であり、該水溶液のT2緩和度が0.1s−1atom%−1以上であることを特徴とする核磁気共鳴画像診断剤が開示されている。 Further, (Patent Document 2) is a biotolerable aqueous solution in which the active ingredient is H 2 17 O, and the T2 relaxation degree of the aqueous solution is 0.1 s −1 atom% −1 or more. A nuclear magnetic resonance diagnostic agent is disclosed.

しかし、MRIによる脳血流量検査にO−17水を利用することは未だなされていない。上記(特許文献2)では、脳血流検査への応用について示唆されているが、撮像に用いるシーケンスに関してはスピンエコー法T2強調法や各種T1ρ強調法等が選択され得る旨が脳血流検査に限らず一般的な検査方法として述べられているのみであり、実際に脳血流検査を実施し得る撮像シーケンスや撮像条件は何ら開示されていない。O−17水をMRIによる脳血流検査に用いる試みは国内外ともに存在せず、低侵襲性と定量性を両立可能な新機軸の脳血流量検査として極めて有望と考えられるが、脳血流測定に用いるには時間分解能の高い撮像法が必要であり、開発は容易ではない。   However, O-17 water has not been used for cerebral blood flow examination by MRI. The above (Patent Document 2) suggests an application to a cerebral blood flow test. However, a spin echo method T2 enhancement method, various T1ρ enhancement methods, and the like can be selected for a sequence used for imaging. However, it is only described as a general examination method, and an imaging sequence and imaging conditions that can actually perform a cerebral blood flow examination are not disclosed. There is no attempt to use O-17 water for cerebral blood flow examination by MRI both in Japan and overseas, and it is considered very promising as a novel cerebral blood flow examination that can achieve both low invasiveness and quantitativeness. An imaging method with high time resolution is required for measurement, and development is not easy.

特開2008−239566号公報JP 2008-239666 A 特開2003−102698号公報(請求項11)JP 2003-102698 A (Claim 11)

そこで本発明は、上記従来の状況に鑑み、O−17水を利用した、脳血流の撮像における時間分解能の高いMRI装置の作動方法を提供することを目的とする。また、O−17水の血管内濃度が低い場合であっても、信号変化を観察可能なMRI装置の作動方法を提供することを目的とする。   Therefore, in view of the above-described conventional situation, an object of the present invention is to provide an operation method of an MRI apparatus having high time resolution in imaging of cerebral blood flow using O-17 water. It is another object of the present invention to provide a method for operating an MRI apparatus that can observe signal changes even when the O-17 water concentration in the blood vessel is low.

本発明者らが鋭意検討を行った結果、O−17水を投与した被験者の撮像を行う際に、「Balanced SSFP法」と呼ばれる撮像シーケンスを採用し、さらに、その方法を脳血流測定用にチューニングし、空間分解能を低くして時間分解能を高めることによって上記課題を解決できることを見出し、本発明を完成した。すなわち、本発明は以下の発明を包含する。   As a result of intensive studies by the present inventors, an imaging sequence called “Balanced SSFP method” is adopted when imaging a subject administered with O-17 water, and the method is further used for cerebral blood flow measurement. The present invention has been completed by finding that the above problem can be solved by tuning to a low spatial resolution and increasing the temporal resolution. That is, the present invention includes the following inventions.

(1)撮像シーケンスとしてBalanced SSFP法を用い、被験者の脳血流におけるO−17水に由来する信号値を得るステップと、
前記信号値を得るステップを複数回繰り返し、信号値の時間変化を得るステップと、
予め得られた信号値とO−17水濃度値との関係に基づき、前記信号値の時間変化からO−17水の時間濃度曲線を得るステップと、
前記時間濃度曲線から脳血流量(CBF)及び/又は脳血液量(CBV)を求めるステップと、
撮像マトリクスの各位置について求めた前記脳血流量(CBF)及び/又は脳血液量(CBV)を統合して、脳血流量(CBF)及び/又は脳血液量(CBV)のマップを作成するステップと、を含む脳血流の撮像におけるMRI装置の作動方法。
(2)撮像マトリクスを、64〜512×48〜512とする上記(1)に記載のMRI装置の作動方法。
(3)繰り返し時間TRを2.0ms〜20.0msとし、且つエコー時間TEを1.0ms〜10.0msとし、フリップ角FAを30°〜90°とする上記(1)又は(2)に記載のMRI装置の作動方法。
(1) Using the Balanced SSFP method as an imaging sequence, obtaining a signal value derived from O-17 water in the subject's cerebral blood flow;
Repeating the step of obtaining the signal value a plurality of times to obtain a time change of the signal value;
Obtaining a time concentration curve of O-17 water from the time change of the signal value based on the relationship between the signal value obtained in advance and the O-17 water concentration value;
Determining cerebral blood flow (CBF) and / or cerebral blood volume (CBV) from the time concentration curve;
Integrating the cerebral blood flow (CBF) and / or cerebral blood volume (CBV) obtained for each position of the imaging matrix to create a map of cerebral blood flow (CBF) and / or cerebral blood volume (CBV) And a method of operating the MRI apparatus in imaging cerebral blood flow.
(2) The operation method of the MRI apparatus according to (1), wherein the imaging matrix is 64 to 512 × 48 to 512.
(3) In the above (1) or (2), the repetition time TR is set to 2.0 ms to 20.0 ms, the echo time TE is set to 1.0 ms to 10.0 ms, and the flip angle FA is set to 30 ° to 90 °. A method of operating the described MRI apparatus.

本発明の方法によって、高い時間分解能での脳血流検査が可能となり、1回当たりの撮像時間が短く、且つ十分な信号変化を得ることができる。また、O−17水の血管内濃度が、静脈内投与により低い濃度となる場合であっても、信号変化を十分に捉えることができる。さらに、17Oの共鳴周波数を用いたMRI撮像では特殊なハードウェアが必要であるが、本発明では一般に普及しているMRI装置を用いて、プロトンの共鳴周波数での撮像が可能である。 According to the method of the present invention, a cerebral blood flow test can be performed with a high temporal resolution, and the imaging time per time is short, and a sufficient signal change can be obtained. Moreover, even if the O-17 water intravascular concentration is lowered by intravenous administration, the signal change can be sufficiently captured. Furthermore, special hardware is required for MRI imaging using a resonance frequency of 17 O, but in the present invention, imaging at a resonance frequency of protons is possible using a MRI apparatus that is generally used.

MRI測定により得られた信号値とO−17水濃度値との関係を示すグラフである。It is a graph which shows the relationship between the signal value obtained by MRI measurement, and O-17 water concentration value. 撮像マトリクスの一つの位置におけるO−17水の時間濃度曲線を示すグラフである。It is a graph which shows the time density | concentration curve of O-17 water in one position of an imaging matrix. 時間濃度曲線における最大濃度(脳血液量CBVを反映する)のマップである。It is a map of the maximum density (reflecting cerebral blood volume CBV) in a time density curve. 時間濃度曲線におけるカーブ下面積(脳血液量CBVを反映する)のマップである。It is a map of the area under a curve (reflecting cerebral blood volume CBV) in a time concentration curve. 時間濃度曲線における最大傾斜(脳血流量CBFを反映する)のマップである。It is a map of the maximum inclination (reflecting cerebral blood flow volume CBF) in a time concentration curve.

以下、本発明を詳細に説明する。
本発明に係るMRI装置の作動方法は、撮像シーケンスとしてBalanced SSFP法を用い、被験者の脳血流におけるO−17水に由来する信号値を得るステップと、その信号値を得るステップを複数回繰り返し、信号値の時間変化を得るステップと、予め得られた信号値とO−17水濃度値との関係に基づき、信号値の時間変化からO−17水の時間濃度曲線を得るステップと、その時間濃度曲線から脳血流量(CBF)及び/又は脳血液量(CBV)を求めるステップと、を含むことを特徴とする。
Hereinafter, the present invention will be described in detail.
The operation method of the MRI apparatus according to the present invention uses the Balanced SSFP method as an imaging sequence, and repeats a step of obtaining a signal value derived from O-17 water in the subject's cerebral blood flow and a step of obtaining the signal value a plurality of times. Obtaining a time variation curve of the signal value, obtaining a time concentration curve of O-17 water from the time variation of the signal value based on the relationship between the signal value obtained in advance and the O-17 water concentration value; Obtaining a cerebral blood flow (CBF) and / or a cerebral blood volume (CBV) from a time concentration curve.

O−17水は、天然の状態よりも高濃度のH 17Oを含有する水である。H 17Oの濃度は特に限定されるものではないが、高濃度である方が好ましく、例えば10重量%以上であることが好ましい。このようなO−17水は、適宜方法を用いて製造することができ、一例として、予め17Oを含む原料酸素を低温蒸留することにより17Oを濃縮した後、濃縮物に水素を添加してこれらを反応させることにより得ることができる(特開2000−218134号公報を参照)。 O-17 water is water containing a higher concentration of H 2 17 O than in the natural state. The concentration of H 2 17 O is not particularly limited, but is preferably a high concentration, for example, 10% by weight or more. Such O-17 water can be produced by a method as appropriate. For example, after 17 O is concentrated by low-temperature distillation of raw material oxygen containing 17 O in advance, hydrogen is added to the concentrate. These can be obtained by reacting them (see JP 2000-218134 A).

被験者に投与するO−17水には、本発明の効果を損なわない範囲で、その他の成分を含有させても良い。具体的には、ブドウ糖、塩化ナトリウム、塩化カリウム、D−ソルビトール、D−マンニトール、グリセリン等の等張化剤、ベンジルアルコール、フェネチルアルコール、ソルビン酸、パラヒドロキシ安息香酸エステル、デヒドロ酢酸、クロロブタノール等の防腐剤、アスコルビン酸、α−トコフェノール、亜硫酸塩、アスコルビン酸等の抗酸化剤、リン酸塩、炭酸塩、酢酸塩、クエン酸塩等の緩衝剤、マンニトール等の高張液等を挙げることができる。その他の成分の含有量は、O−17水中、合計して10重量%未満とすることが好ましい。O−17水の組成の具体例として、例えば、H 17Oを10〜50重量%含有し、さらに0.1〜0.2mol/lのナトリウムイオンを加え、pHを4.5〜8.0に調製したO−17水が挙げられる。 The O-17 water to be administered to the subject may contain other components as long as the effects of the present invention are not impaired. Specifically, isotonic agents such as glucose, sodium chloride, potassium chloride, D-sorbitol, D-mannitol, glycerin, benzyl alcohol, phenethyl alcohol, sorbic acid, parahydroxybenzoic acid ester, dehydroacetic acid, chlorobutanol, etc. Preservatives, ascorbic acid, α-tocophenol, sulfite, ascorbic acid and other antioxidants, phosphates, carbonates, acetates, citrates and other buffers, mannitol and other hypertonic solutions Can do. The content of other components is preferably less than 10% by weight in total in O-17 water. As a specific example of the composition of O-17 water, for example, it contains 10 to 50% by weight of H 2 17 O, and further 0.1 to 0.2 mol / l sodium ion is added, and the pH is 4.5 to 8. O-17 water prepared to 0 is mentioned.

O−17水は、安定同位体であるため被爆がなく、水であるためアレルギー反応もない。このO−17水は、種々の方法により被験者に投与することができるが、血中濃度を簡便且つ速やかに上昇させるためには、静脈内投与することが好ましい。静脈内投与の場合、17Oの血管内濃度は通常低くなるが、本発明によれば十分な信号変化を検出可能である。具体的には、例えば、インジェクターにより肘静脈から注入することができる。インジェクターにより静注されたO−17水は、心臓、肺を経由して、脳動脈へ流れ込む。そして、脳動脈から、脳組織内の毛細血管を経て、脳静脈へと流れ出ていく。O−17水の投与量は、適宜設定することができ、例えば、成人一人当たり10ml〜100mlのO−17水を、3ml/秒以上の速度で急速大量投与することができる。 Since O-17 water is a stable isotope, there is no exposure, and since it is water, there is no allergic reaction. This O-17 water can be administered to a subject by various methods, but it is preferably administered intravenously in order to increase the blood concentration conveniently and quickly. For intravenous administration, the intravascular concentration of 17 O is usually low, but sufficient signal changes can be detected according to the present invention. Specifically, for example, it can inject | pour from an elbow vein with an injector. The O-17 water intravenously injected by the injector flows into the cerebral artery via the heart and lungs. Then, it flows out from the cerebral artery to the cerebral vein through the capillaries in the brain tissue. The dosage of O-17 water can be set as appropriate. For example, 10 to 100 ml of O-17 water per adult can be rapidly and rapidly administered at a rate of 3 ml / second or more.

本発明では、MRI装置の撮像シーケンスとして、Balanced SSFP法を用いる。Balanced SSFP法は、定常状態を利用した高速グラディエント・エコー法の一つである。この撮像シーケンスでは、短い間隔でRFパルスを印加するため、十分な縦磁化の回復が得られず二つの現象が起こる。一つは、各繰り返し時間TR内における縦磁化の減少量と回復量がつり合うことによる定常状態であり、もう一つは、残留する横磁化とRFパルスによるエコー(スピンエコーとスティミュレイトエコー)の形成である。これらの信号は、RFパルスが等間隔に連続する場合に複雑に重なり合う。通常、このエコー信号とFID(自由誘導減衰)を同時に収集することはないが、Balanced SSFP法では、スライス選択用の傾斜磁場や読み取り傾斜磁場においても補正が加えられ、重なり合う信号を同時に収集することになる。したがって、得られる信号は、従来の高速グラディエント・エコー法よりも格段に強く、対象となる血液のT2値を大きく反映したものとなる。Balanced SSFP法には2D撮像と3D撮像があるが、十分な撮像範囲を薄いスライス厚でカバーするためには3D撮像が望ましい。   In the present invention, the Balanced SSFP method is used as the imaging sequence of the MRI apparatus. The Balanced SSFP method is one of fast gradient echo methods using a steady state. In this imaging sequence, RF pulses are applied at short intervals, so that sufficient recovery of longitudinal magnetization cannot be obtained, and two phenomena occur. One is a steady state by balancing the amount of decrease and recovery of longitudinal magnetization within each repetition time TR, and the other is an echo (spin echo and stimulated echo) due to residual transverse magnetization and RF pulses. Formation. These signals overlap in a complex manner when the RF pulses continue at regular intervals. Normally, this echo signal and FID (free induction decay) are not collected at the same time, but in the Balanced SSFP method, correction is applied to the gradient magnetic field for slice selection and the read gradient magnetic field, and overlapping signals are collected simultaneously. become. Therefore, the obtained signal is much stronger than the conventional high-speed gradient echo method, and greatly reflects the T2 value of the target blood. The Balanced SSFP method includes 2D imaging and 3D imaging, but 3D imaging is desirable in order to cover a sufficient imaging range with a thin slice thickness.

Balanced SSFP法による信号強度は、組織のT1及びT2の比に依存する。したがって、T2/T1が比較的大きな値をとる脳脊髄液は高信号を呈し、見かけ上、T2強調像に類似したコントラストを示すことになる。信号強度には、フリップ角FAも影響し、画質を決める大きな因子になり得るが、血液のT1及びT2値を用いたシミュレーションにより、高いコントラストを得るために必要なフリップ角FAを算出することができる。好ましいフリップ角FAは30°〜90°である。   The signal intensity according to the Balanced SSFP method depends on the ratio of T1 and T2 of the tissue. Therefore, cerebrospinal fluid in which T2 / T1 takes a relatively large value exhibits a high signal and apparently shows a contrast similar to a T2-weighted image. The signal strength is also affected by the flip angle FA, which can be a major factor in determining the image quality, but it is possible to calculate the flip angle FA necessary to obtain high contrast by simulation using the T1 and T2 values of blood. it can. A preferred flip angle FA is 30 ° to 90 °.

Balanced SSFP法は、従来の条件をそのまま適用すると、1つの撮像に数分を要し、脳血流測定で要求される時間分解能としては不十分である場合がある。その場合は、脳血流測定用に条件の最適化を行うことができる。具体的には、空間分解能を低くして時間分解能を高めるために、撮像マトリクスを小さくする。例えば、64〜512×48〜512まで小さくすることが好ましい。特に好ましくは、64〜128×64〜128である。また、繰り返し時間TR及びエコー時間TEを極限まで低くすることにより、例えば1時相当たり3秒という高い時間分解能を実現することができる。最適なTR及びTEの範囲としては、特に限定されるものではないが、TRを2.0ms〜20.0msとし、TEを1.0ms〜10.0msとすることが好ましい。特に好ましくは、TRが2.0ms〜3.0msであり、TEが1.0ms〜2.0msである。   The Balanced SSFP method requires several minutes for one imaging if the conventional conditions are applied as they are, and may not be sufficient as the time resolution required for cerebral blood flow measurement. In that case, the conditions can be optimized for cerebral blood flow measurement. Specifically, the imaging matrix is reduced in order to reduce the spatial resolution and increase the temporal resolution. For example, it is preferable to reduce the size to 64 to 512 × 48 to 512. Particularly preferably, it is 64 to 128 × 64 to 128. Further, by reducing the repetition time TR and the echo time TE to the limit, for example, a high time resolution of 3 seconds per time phase can be realized. The optimum ranges of TR and TE are not particularly limited, but it is preferable that TR is 2.0 ms to 20.0 ms and TE is 1.0 ms to 10.0 ms. Particularly preferably, TR is 2.0 ms to 3.0 ms and TE is 1.0 ms to 2.0 ms.

TR及びTEを上記の範囲に設定して撮像を行うと、スポイリング技術を用いないこのシーケンスにおいて、繰り返し時間TR内に生じるオフレゾナンス・スピンの位相のずれが蓄積され続け、位相差による信号の打ち消し合いによって、バンディングアーチファクトと呼ばれる黒い帯を画像上に生じさせる。このバンディングアーチファクトは、ラジオ波(RF波)の位相を変調することで撮像範囲内から移動させることが可能である。例えば、RF波の位相を0°から360°まで変調することで、撮像範囲内の関心領域から任意の場所に移動させることが可能である。   When TR and TE are set within the above range, the phase shift of the off-resonance spin that occurs within the repetition time TR continues to accumulate in this sequence that does not use the spoiling technique, and the signal is canceled due to the phase difference. By matching, a black band called a banding artifact is generated on the image. This banding artifact can be moved from within the imaging range by modulating the phase of a radio wave (RF wave). For example, by modulating the phase of the RF wave from 0 ° to 360 °, it is possible to move from the region of interest within the imaging range to an arbitrary location.

上記のように、例えば1時相当たり3秒という高速度での撮像を複数回、連続的に繰り返すことにより、脳血流におけるO−17水に由来する信号値の時間変化が得られる。ここで、予め得られた信号値とO−17水濃度値との相関関係に基づき、信号値をO−17水の濃度に変換し、信号値の時間変化からO−17水の時間濃度曲線を得ることができる。この時間濃度曲線から、撮像マトリクスの各位置(一つの画素)における脳血流量(CBF、mL/100g/min)及び脳血液量(CBV、mL/100g)を求めることができる。具体的には、時間濃度曲線の最大傾斜が脳血流量(CBF)、最大濃度及びカーブ下面積が脳血液量(CBV)に対応する。最大傾斜法に基づくCBF値の算出は、各画素の時間濃度曲線における傾きの最大値を動脈の最大濃度で除することで求められる。CBV値は、各画素の時間濃度曲線における最大濃度を動脈又は静脈の最大濃度で除するか、あるいは各画素の時間濃度曲線におけるカーブ下面積を動脈又は静脈のカーブ下面積で除することで求められる。   As described above, for example, by continuously repeating the imaging at a high speed of 3 seconds per time phase a plurality of times, the time change of the signal value derived from the O-17 water in the cerebral blood flow can be obtained. Here, based on the correlation between the signal value obtained in advance and the O-17 water concentration value, the signal value is converted into the O-17 water concentration, and the time concentration curve of the O-17 water from the time change of the signal value. Can be obtained. From this time density curve, the cerebral blood flow (CBF, mL / 100 g / min) and the cerebral blood volume (CBV, mL / 100 g) at each position (one pixel) of the imaging matrix can be obtained. Specifically, the maximum slope of the time concentration curve corresponds to cerebral blood flow (CBF), and the maximum concentration and the area under the curve correspond to cerebral blood volume (CBV). The calculation of the CBF value based on the maximum gradient method is obtained by dividing the maximum value of the gradient in the time density curve of each pixel by the maximum density of the artery. The CBV value is obtained by dividing the maximum density in the time density curve of each pixel by the maximum density of the artery or vein, or by dividing the area under the curve in the time density curve of each pixel by the area under the curve of the artery or vein. It is done.

そして、撮像マトリクスの各画素における時間濃度曲線から得られる最大傾斜、最大濃度及びカーブ下面積の情報を統合して、脳全体の最大傾斜、最大濃度及びカーブ下面積のマップ、すなわち、脳血流量(CBF)及び脳血液量(CBV)のマップを作成することができる。本発明においては、CBF及びCBVのマップの両方を作成しても良いし、いずれか一方を作成しても良い。脳血流量及び脳血液量の値は、カラールックアップテーブルで変換することで色情報に変換して画像化する。画像化する際には脳脊髄液の高濃度画素が目立つため、一定濃度以上の画素をマスクすることで視認しやすいマップを作成する。   Then, by integrating information on the maximum slope, maximum density and area under the curve obtained from the time density curve in each pixel of the imaging matrix, a map of the maximum slope, maximum density and area under the curve of the entire brain, that is, cerebral blood flow A map of (CBF) and cerebral blood volume (CBV) can be created. In the present invention, both CBF and CBV maps may be created, or one of them may be created. The values of cerebral blood flow and cerebral blood volume are converted into color information by conversion using a color look-up table and imaged. Since high-density pixels of cerebrospinal fluid are conspicuous when imaging, a map that is easy to visually recognize is created by masking pixels with a certain density or higher.

次に、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
まず、異なる濃度(0.037重量%〜1.566重量%)の9種類のO−17水を調製し、これらのO−17水のファントムの撮像を行った。撮像条件は以下の通りである。測定の結果得られたO−17水濃度と信号強度(対数比)との関係を図1に示す。この回帰直線を利用することにより、信号値からO−17水濃度に変換することができる。
(ファントム撮像条件)
3.0T(GEHC、Sigma Excite HD)
QD head coil
FOV:180×120mm
撮像マトリクス:160×160
スライス厚:3mm
スライス数:40スライス
フリップ角:50°
TR:2.97ms
TE:1.04ms
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
Example 1
First, nine types of O-17 water having different concentrations (0.037 wt% to 1.566 wt%) were prepared, and imaging of these O-17 water phantoms was performed. Imaging conditions are as follows. FIG. 1 shows the relationship between the O-17 water concentration and the signal intensity (logarithmic ratio) obtained as a result of the measurement. By using this regression line, the signal value can be converted into O-17 water concentration.
(Phantom imaging conditions)
3.0T (GEHC, Sigma Excite HD)
QD head coil
FOV: 180x120mm
Imaging matrix: 160 × 160
Slice thickness: 3mm
Number of slices: 40 slices Flip angle: 50 °
TR: 2.97ms
TE: 1.04ms

次に、8頭のビーグル犬(メス)について撮像を行った。
月齢:10.6±3.9ヶ月(6〜19ヶ月)
体重:10.5±1.3kg(9.1〜11.9kg)
前投薬:
メデトミジン(10μg/kg)
ミダゾラム(0.3mg/kg)
ブトルファノール(0.2mg/kg)
静脈麻酔:
1%プロポフォール(4〜6mg/kgボーラス投与+1.2mg/kg/h点滴投与)
Next, imaging was performed on eight beagle dogs (female).
Age: 10.6 ± 3.9 months (6-19 months)
Body weight: 10.5 ± 1.3 kg (9.1 to 11.9 kg)
Premedication:
Medetomidine (10 μg / kg)
Midazolam (0.3mg / kg)
Butorphanol (0.2mg / kg)
Intravenous anesthesia:
1% propofol (4-6 mg / kg bolus administration + 1.2 mg / kg / h infusion)

撮像は、Balanced SSFP法に基づき、空間分解能を低くして時間分解能を高めるために、撮像マトリクスを64×60まで落とし、TR及びTEを極限まで低くして行った。3D法にて12スライスの同時撮像を行い、1時相当たり3秒の撮像を120回繰り返し、合計で6分間の撮像を行った。撮像条件を以下にまとめて示す。
(ビーグル犬撮像条件)
MRI
3.0T(GEHC、Sigma Excite HD)
QD head coil
FOV:240×120mm
撮像マトリクス:64×60
スライス厚:8mm
スライス数:12スライス
FA:60°
TR:2.6ms
TE:1.22ms
BW:20.83
スキャン継続時間:3秒×120回(6分)
Based on the Balanced SSFP method, the imaging was performed by reducing the imaging matrix to 64 × 60 and reducing TR and TE to the minimum in order to reduce the spatial resolution and increase the temporal resolution. Simultaneous imaging of 12 slices was performed by the 3D method, imaging for 3 seconds per hour phase was repeated 120 times, and imaging was performed for a total of 6 minutes. The imaging conditions are summarized below.
(Beagle dog imaging conditions)
MRI
3.0T (GEHC, Sigma Excite HD)
QD head coil
FOV: 240x120mm
Imaging matrix: 64 × 60
Slice thickness: 8mm
Number of slices: 12 slices FA: 60 °
TR: 2.6 ms
TE: 1.22ms
BW: 20.83
Scan duration: 3 seconds x 120 times (6 minutes)

撮像開始から25時相目、約75秒後に10重量%濃度O−17水を静注した。O−17水は、蒸留精製を行い、食塩を0.9w/v%加えて生理食塩水としたものを用いた。投与量は、1.0ml/kgである。一つの画素について得られたO−17水の時間濃度曲線を図2に示す。図2において、(a)の曲線がO−17水の時間濃度曲線を表している。(b)の曲線は画像全体の信号曲線であり、ここでは無視できる。また、(c)の直線はO−17水の自然界の濃度であり、信号安定点である。撮像開始後30秒程度は信号が安定しないことが分かる。なお、O−17水の注入前にもO−17水が存在するように見えるが、誤差の範囲である。   About 25 seconds after the start of imaging, about 75 seconds, 10 wt% O-17 water was intravenously injected. O-17 water was distilled and purified, and 0.9 w / v% sodium chloride was used as physiological saline. The dose is 1.0 ml / kg. The time concentration curve of O-17 water obtained for one pixel is shown in FIG. In FIG. 2, the curve of (a) represents the time concentration curve of O-17 water. The curve (b) is a signal curve of the entire image and can be ignored here. The straight line (c) represents the natural concentration of O-17 water and is a signal stable point. It can be seen that the signal is not stable for about 30 seconds after the start of imaging. In addition, although it seems that O-17 water exists before injection | pouring of O-17 water, it is the range of an error.

得られた時間濃度曲線から、最大濃度、最大傾斜及びカーブ下面積を算出した。最大傾斜が脳血流量(CBF)の半定量値、最大濃度及びカーブ下面積が脳血液量(CBV)の半定量値に対応する。撮像マトリクスの各位置について求めた最大濃度、最大傾斜及びカーブ下面積を統合してマップを作成した。図3〜5は、それぞれ12スライスのうち8スライスを抜粋したものであり、図3が最大濃度のマップであり、脳血液量(CBV)を反映している。また、図4はカーブ下面積のマップであり、脳血液量(CBV)を反映している。さらに、図5は最大傾斜のマップであり、脳血流量(CBF)を反映している。図3〜5に示すように、高い時間分解能で、ビーグル犬の脳血流量(CBF)及び脳血液量(CBV)の情報を得ることができた。   From the obtained time concentration curve, the maximum concentration, the maximum slope and the area under the curve were calculated. The maximum slope corresponds to the semi-quantitative value of cerebral blood flow (CBF), and the maximum concentration and the area under the curve correspond to the semi-quantitative value of cerebral blood volume (CBV). A map was created by integrating the maximum density, maximum slope and area under the curve obtained for each position of the imaging matrix. 3 to 5 are excerpts of 8 out of 12 slices, respectively, and FIG. 3 is a map of maximum concentration, which reflects cerebral blood volume (CBV). FIG. 4 is a map of the area under the curve and reflects the cerebral blood volume (CBV). Further, FIG. 5 is a map of maximum slope, which reflects cerebral blood flow (CBF). As shown in FIGS. 3 to 5, information on cerebral blood flow (CBF) and cerebral blood volume (CBV) of beagle dogs could be obtained with high temporal resolution.

本発明により、多くの施設で脳血流検査が簡便に施行可能となり、国内で大きな社会問題となっている脳卒中の予防や治療戦略に大きな役割を果たすことができる。また、本発明により得られる高解像度の脳血流画像により、大脳皮質の小領域や脳幹の小さな神経核の血流変化等を捉えることが可能になり、今まで未知であった脳機能の解明、アルツハイマー病等の認知症、うつ病や統合失調症等の精神疾患等の病態解明や早期発見につながる可能性がある。   According to the present invention, a cerebral blood flow test can be easily performed in many facilities, and can play a major role in the prevention and treatment strategies of stroke, which has become a major social problem in Japan. In addition, the high-resolution cerebral blood flow image obtained by the present invention makes it possible to capture changes in blood flow in small areas of the cerebral cortex and small nerve nuclei in the brain stem, etc. It may lead to the elucidation and early detection of disease states such as dementia such as Alzheimer's disease, mental disorders such as depression and schizophrenia.

さらに、現時点では高濃度のO−17水は高価であるが、本発明の脳血流検査としての臨床的意義が実証されれば、精製技術の向上や大量生産プラントの開発等の国内産業振興にもつながることが期待される。   Furthermore, at present, high-concentration O-17 water is expensive, but if the clinical significance of the present invention as a cerebral blood flow test is demonstrated, domestic industry promotion such as improvement of purification technology and development of mass production plants will be performed. It is expected to lead to.

Claims (3)

撮像シーケンスとしてBalanced SSFP法を用い、被験者の脳血流におけるO−17水に由来する信号値を得るステップと、
前記信号値を得るステップを複数回繰り返し、信号値の時間変化を得るステップと、
予め得られた信号値とO−17水濃度値との関係に基づき、前記信号値の時間変化からO−17水の時間濃度曲線を得るステップと、
前記時間濃度曲線から脳血流量(CBF)及び/又は脳血液量(CBV)を求めるステップと、
撮像マトリクスの各位置について求めた前記脳血流量(CBF)及び/又は脳血液量(CBV)を統合して、脳血流量(CBF)及び/又は脳血液量(CBV)のマップを作成するステップと、を含む脳血流の撮像におけるMRI装置の作動方法。
Using the Balanced SSFP method as an imaging sequence, obtaining a signal value derived from O-17 water in the subject's cerebral blood flow;
Repeating the step of obtaining the signal value a plurality of times to obtain a time change of the signal value;
Obtaining a time concentration curve of O-17 water from the time change of the signal value based on the relationship between the signal value obtained in advance and the O-17 water concentration value;
Determining cerebral blood flow (CBF) and / or cerebral blood volume (CBV) from the time concentration curve;
Integrating the cerebral blood flow (CBF) and / or cerebral blood volume (CBV) obtained for each position of the imaging matrix to create a map of cerebral blood flow (CBF) and / or cerebral blood volume (CBV) And a method of operating the MRI apparatus in imaging cerebral blood flow.
撮像マトリクスを、64〜512×48〜512とする請求項1に記載のMRI装置の作動方法。   The operation method of the MRI apparatus according to claim 1, wherein the imaging matrix is 64 to 512 × 48 to 512. 繰り返し時間TRを2.0ms〜20.0msとし、且つエコー時間TEを1.0ms〜10.0msとし、フリップ角FAを30°〜90°とする請求項1又は2に記載のMRI装置の作動方法。
The operation of the MRI apparatus according to claim 1 or 2, wherein the repetition time TR is set to 2.0 ms to 20.0 ms, the echo time TE is set to 1.0 ms to 10.0 ms, and the flip angle FA is set to 30 ° to 90 °. Method.
JP2012132134A 2012-06-11 2012-06-11 Method for operating MRI apparatus in imaging of cerebral blood flow Active JP5958898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132134A JP5958898B2 (en) 2012-06-11 2012-06-11 Method for operating MRI apparatus in imaging of cerebral blood flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132134A JP5958898B2 (en) 2012-06-11 2012-06-11 Method for operating MRI apparatus in imaging of cerebral blood flow

Publications (2)

Publication Number Publication Date
JP2013255586A true JP2013255586A (en) 2013-12-26
JP5958898B2 JP5958898B2 (en) 2016-08-02

Family

ID=49952579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132134A Active JP5958898B2 (en) 2012-06-11 2012-06-11 Method for operating MRI apparatus in imaging of cerebral blood flow

Country Status (1)

Country Link
JP (1) JP5958898B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177465A1 (en) 2020-03-06 2021-09-10 国立大学法人高知大学 Nuclear magnetic resonance measurement method and nuclear magnetic resonance apparatus
WO2022092192A1 (en) 2020-10-28 2022-05-05 国立大学法人北海道大学 Contrast agent for detecting cartilage damage, and method and program for detecting cartilage damage using said contrast agent
US11992305B2 (en) 2020-08-31 2024-05-28 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus that deforms a morphology image to coincide with a function image, image processing apparatus, and image processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266501A (en) * 1995-03-31 1996-10-15 Shimadzu Corp Living body measuring system
JPH107592A (en) * 1997-01-31 1998-01-13 Puradeiipu Gaputei Measuring method of interstitial oxygen-17 by magnetosonograph
JP2007313303A (en) * 2006-04-25 2007-12-06 Toshiba Corp Magnetic resonance imaging system and photographing condition setting method therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266501A (en) * 1995-03-31 1996-10-15 Shimadzu Corp Living body measuring system
JPH107592A (en) * 1997-01-31 1998-01-13 Puradeiipu Gaputei Measuring method of interstitial oxygen-17 by magnetosonograph
JP2007313303A (en) * 2006-04-25 2007-12-06 Toshiba Corp Magnetic resonance imaging system and photographing condition setting method therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177465A1 (en) 2020-03-06 2021-09-10 国立大学法人高知大学 Nuclear magnetic resonance measurement method and nuclear magnetic resonance apparatus
US11992305B2 (en) 2020-08-31 2024-05-28 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus that deforms a morphology image to coincide with a function image, image processing apparatus, and image processing method
WO2022092192A1 (en) 2020-10-28 2022-05-05 国立大学法人北海道大学 Contrast agent for detecting cartilage damage, and method and program for detecting cartilage damage using said contrast agent

Also Published As

Publication number Publication date
JP5958898B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
Lin et al. Non‐contrast MR imaging of blood‐brain barrier permeability to water
Dickie et al. Measuring water exchange across the blood-brain barrier using MRI
Shiroishi et al. Principles of T2*‐weighted dynamic susceptibility contrast MRI technique in brain tumor imaging
Nikolaou et al. Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography—preliminary experience
Winter et al. Quantification of renal perfusion: Comparison of arterial spin labeling and dynamic contrast‐enhanced MRI
Liss et al. Imaging of intrarenal haemodynamics and oxygen metabolism
Priest et al. Non‐contrast‐enhanced vascular magnetic resonance imaging using flow‐dependent preparation with subtraction
Jiang et al. Measurement of murine single‐kidney glomerular filtration rate using dynamic contrast‐enhanced MRI
Kuo et al. Vascular magnetic resonance angiography techniques
Shimada et al. Non-contrast-enhanced hepatic MR angiography with true steady-state free-precession and time spatial labeling inversion pulse: optimization of the technique and preliminary results
Nöth et al. Cerebral vascular response to hypercapnia: determination with perfusion MRI at 1.5 and 3.0 Tesla using a pulsed arterial spin labeling technique
Shimizu et al. Arterial transit time-corrected renal blood flow measurement with pulsed continuous arterial spin labeling MR imaging
RU2297179C2 (en) Mrv method including application of hyperpolarized contrast agent
Yeh et al. Perfusion status of the stroke-like lesion at the hyperacute stage in MELAS
JP5958898B2 (en) Method for operating MRI apparatus in imaging of cerebral blood flow
van Laar et al. Effect of cerebrovascular risk factors on regional cerebral blood flow
Zheng et al. Dynamic estimation of the myocardial oxygen extraction ratio during dipyridamole stress by MRI: a preliminary study in canines
Greer et al. Non-contrast quantitative pulmonary perfusion using flow alternating inversion recovery at 3 T: A preliminary study
Lavin et al. Quantitative MRI of endothelial permeability and (Dys) function in atherosclerosis
Alsop Arterial spin labeling: its time is now
TWI400091B (en) The use of polyethylene glycol magnetic resonance contrast agent and magnetic resonance imaging method
Okayama et al. Novel application of black-blood echo-planar imaging to the assessment of myocardial infarction
Lin Non-contrast assessment of blood-brain barrier permeability to water using magnetic resonance imaging
Bluemke Magnetic resonance imaging of oxygen nano-carriers for the treatment of hypoxic tumours
Madhuranthakam et al. Arterial Spin Labeled MRI for Quantitative Non-Contrast Perfusion Measurement of the Kidneys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5958898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250