JP2013255481A - Biomarker for predicting disturbance of circadian rhythm - Google Patents

Biomarker for predicting disturbance of circadian rhythm Download PDF

Info

Publication number
JP2013255481A
JP2013255481A JP2012144660A JP2012144660A JP2013255481A JP 2013255481 A JP2013255481 A JP 2013255481A JP 2012144660 A JP2012144660 A JP 2012144660A JP 2012144660 A JP2012144660 A JP 2012144660A JP 2013255481 A JP2013255481 A JP 2013255481A
Authority
JP
Japan
Prior art keywords
circadian rhythm
hspa1a
sleep disorder
gene
rhythm sleep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012144660A
Other languages
Japanese (ja)
Other versions
JP5963192B2 (en
Inventor
Katsutaka Oishi
勝隆 大石
Reki Miyazaki
歴 宮崎
Nanako Ito
奈々子 伊藤
Yukiori Yamamoto
幸織 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012144660A priority Critical patent/JP5963192B2/en
Publication of JP2013255481A publication Critical patent/JP2013255481A/en
Application granted granted Critical
Publication of JP5963192B2 publication Critical patent/JP5963192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting a circadian rhythm sleep disorder or circadian rhythm disturbance, particularly a marker for accurately and easily diagnosing the circadian rhythm sleep disorder.SOLUTION: A marker for diagnosing a circadian rhythm sleep disorder includes HSPA1a protein or an HSPA1a gene. Specifically, a method is provided for diagnosing the circadian rhythm sleep disorder or circadian rhythm disturbance by measuring the increase amount of the expression amount of the HSPA1a or its gene in a subject's blood, and a method is provided for screening a substance for improving the circadian rhythm sleep disorder or circadian rhythm disturbance by measuring the increase control amount of the expression amount of the HSPA1a or its gene in the blood of a circadian rhythm sleep disorder model mouse or a stress sleep disorder mouse dosed with a test substance.

Description

本発明は、概日リズム睡眠障害などの概日リズムの乱れを予測するための方法及びそのためのマーカーに関する。詳細には、睡眠障害の検出手段、睡眠障害の検出方法及び検出キット、並びに睡眠障害治療剤のスクリーニング方法に関する。   The present invention relates to a method for predicting circadian rhythm disturbance such as circadian rhythm sleep disorder and a marker therefor. Specifically, the present invention relates to a sleep disorder detection means, a sleep disorder detection method and detection kit, and a sleep disorder therapeutic agent screening method.

現在、日本人の5人に1人は睡眠に関して何らかの問題を抱えているとされ、特に高齢者においては、3人に1人が睡眠について悩みを抱えているとされる。
睡眠障害としては、睡眠時無呼吸症などの睡眠時に発生する呼吸障害が原因となる睡眠呼吸障害も含まれるが、体内時計がその発症にかかわるとされる概日リズム睡眠障害(サーカディアンリズム睡眠障害)については、原因の特定や予測が難しく、客観的な診断にも困難な状況があった。概日リズム睡眠障害には、時差ぼけや夜勤・交代勤務(シフトワーク)などが原因の外因性急性症候群と、睡眠相後退症候群(DSPS)や、睡眠相前進症候群(ASPS)、非24時間睡眠覚醒障害、不規則型睡眠覚醒パターンなどの内因性慢性症候群に分類することができる。
概日リズム睡眠障害の原因としては、睡眠相前進症候群において、一部家族性の遺伝的原因が報告されているが、その多くは、夜勤や交代勤務、時差ぼけ、不規則な食生活、精神的ストレスなどの生活習慣が関与しているものと考えられる。
睡眠障害の診断は、本人や家族による問診が中心となっており、その確定的な診断には、脳波計測も必要となり、睡眠障害を客観的に診断するための簡便なツールの開発が待ち望まれている。
従来、断眠を行った実験動物での遺伝子発現量増加が観察されたトランスサイレチンやインスリン様成長因子、プロスタグランジンD合成酵素、HSP70、BACE1などが睡眠障害マーカーとなる可能性が報告されている(特許文献1)。しかしながら、これらの遺伝子の発現量の増加は、実験動物であるラットに強制的な手法によって断眠実験を行った結果認められた現象であるため、慢性的な精神的ストレスの結果として発症するヒトの睡眠障害や、ヒトの概日リズム睡眠障害に外挿することは困難である。さらに、これらの遺伝子発現の誘導は、脳内において認められた現象であって、血液中などでの発現は確認されておらず、ヒトを対象とした臨床的応用の可能性については不明である。
哺乳類における体内時計の中枢は、脳内視床下部の視交叉上核に存在していて、この神経核を電気的に破壊すると、行動リズムや睡眠・覚醒リズムなど、ほとんど全ての概日リズムが消失する。その一方で、概日リズムを刻む体内時計は、脳内のみならず心臓や肝臓、腎臓、脂肪、末梢血白血球などのほぼ全身の組織に存在していることが明らかとなっている(非特許文献2)。これらの末梢組織に存在する体内時計は、視床下部の視交叉上核に存在する中枢時計と区別して、末梢時計と呼ばれている。
様々な組織においてDNAマイクロアレイを用いた網羅的な発現遺伝子解析を行った結果、それぞれの組織において数%から数十%の遺伝子が日周発現していることが判明し、これら多数の遺伝子が組織特異的な生理機能の概日リズム形成に関与していると考えられている(非特許文献3)。このことは、遺伝子の発現量を比較検討する場合には、体内時刻、すなわち個体からのサンプリング時刻を考慮に入れる必要があることを示すものでもある。
体内時刻を調べるためには、遺伝子の発現量を利用する方法(非特許文献4)や、血液中の代謝産物量を利用する方法(非特許文献5)などが考えられる。
このように、概日リズムを刻む体内時計の研究は進んできたものの、概日リズムの乱れを予測するまでは至っておらず、依然として、概日リズム睡眠障害を正確かつ簡便に診断することは困難であった。
At present, one out of every five Japanese people is said to have some problems with sleep, and in particular elderly people, one in three people are said to have trouble with sleep.
Sleep disorders include sleep disordered breathing caused by respiratory disorders such as sleep apnea, but circadian rhythm sleep disorder (circadian rhythm sleep disorder) that is related to the onset of the circadian clock. ), It was difficult to identify and predict the cause and difficult to make an objective diagnosis. For circadian rhythm sleep disorder, exogenous acute syndrome caused by jet lag, night shift, shift work, etc., sleep phase regression syndrome (DSPS), sleep phase advance syndrome (ASPS), non-24-hour sleep It can be classified into intrinsic chronic syndromes such as arousal disorder and irregular sleep-wake pattern.
As a cause of circadian rhythm sleep disorders, some familial genetic causes have been reported in advanced sleep phase syndrome, but most of them are night shifts, shift work, jet lag, irregular diet, mental It is thought that lifestyle habits such as social stress are involved.
Diagnosis of sleep disorders is centered on interviews by the person and family, and definitive diagnosis also requires electroencephalogram measurement, and the development of a simple tool for objectively diagnosing sleep disorders is awaited. ing.
In the past, transthyretin, insulin-like growth factor, prostaglandin D synthase, HSP70, and BACE1 that have been observed to increase gene expression in experimental animals that have fallen asleep have been reported as possible sleep disorder markers. (Patent Document 1). However, the increase in the expression level of these genes is a phenomenon observed as a result of a sleep deprivation experiment conducted by a forced technique in rats, which are experimental animals, and therefore humans who develop as a result of chronic mental stress. It is difficult to extrapolate to other sleep disorders and human circadian rhythm sleep disorders. Furthermore, the induction of these gene expressions is a phenomenon observed in the brain, and its expression in blood has not been confirmed, and the possibility of clinical application in humans is unknown. .
The center of the circadian clock in mammals exists in the suprachiasmatic nucleus of the hypothalamus in the brain, and when this nerve nucleus is electrically destroyed, almost all circadian rhythms such as behavioral rhythm, sleep / wake rhythm, etc. disappear. To do. On the other hand, it is clear that circadian rhythmic biological clocks exist not only in the brain but also in almost whole body tissues such as heart, liver, kidney, fat, and peripheral blood leukocytes (non-patented). Reference 2). The body clocks present in these peripheral tissues are called peripheral clocks to distinguish them from the central clocks present in the suprachiasmatic nucleus of the hypothalamus.
As a result of exhaustive gene expression analysis using DNA microarrays in various tissues, it was found that several to several tens of% of genes were expressed daily in each tissue. It is considered to be involved in circadian rhythm formation of specific physiological functions (Non-patent Document 3). This also indicates that when comparing gene expression levels, it is necessary to take into account the body time, that is, the sampling time from the individual.
In order to examine the body time, a method using the expression level of a gene (Non-patent Document 4), a method using the amount of a metabolite in blood (Non-Patent Document 5), and the like can be considered.
Thus, although research on the circadian rhythmic biological clock has progressed, it has not yet been predicted that circadian rhythm is disturbed, and it is still difficult to accurately and easily diagnose circadian rhythm sleep disorders. Met.

特開2007−75071号公報JP 2007-75071 A

Lavie L,Dyugovskaya L,Golan-Shany O,Lavie P.,(2010) J Sleep Res. 19: 139-47.Lavie L, Dyugovskaya L, Golan-Shany O, Lavie P., (2010) J Sleep Res. 19: 139-47. 「末梢時計」、時間生物学事典、pp.158-159、朝倉書店、2008年Peripheral Clock, Time Biology Encyclopedia, pp.158-159, Asakura Shoten, 2008 Gachon,F. et al.: Chromosoma,113,103-112,2004.Gachon, F. et al .: Chromosoma, 113, 103-112, 2004. Ueda HR. et al.,Proc Natl Acad Sci U S A.2004;101:11227-32.Ueda HR. Et al., Proc Natl Acad Sci U S A.2004; 101: 11227-32. Minami Y. et al.,Proc Natl Acad Sci U S A.2009;106: 9890-5.Minami Y. et al., Proc Natl Acad Sci U S A. 2009; 106: 9890-5. Oishi K.,(2009) Neuro Endocrinol Lett. 30: 458-61Oishi K., (2009) Neuro Endocrinol Lett. 30: 458-61 Miyazaki K,Itoh N,Ohyama S,Ohkura N,Oishi K (2011) Neurosci Res,71S: e172-e173. doi:10.1016/j.neures.2011.07.746Miyazaki K, Itoh N, Ohyama S, Ohkura N, Oishi K (2011) Neurosci Res, 71S: e172-e173. Doi: 10.1016 / j.neures.2011.07.746 Maret S,Dorsaz S,Gurcel L,Pradervand S,Petit B,Pfister C,Hagenbuchle O,O'Hara BF,Franken P,Tafti M,(2007) Proc NatlAcad Sci U S A. 104: 20090-5Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O'Hara BF, Franken P, Tafti M, (2007) Proc NatlAcad Sci U S A. 104: 20090-5

本発明は、概日リズム睡眠障害などの体内時計の乱れに起因する生体リズムの乱れを予測するための方法を提供すること、特に、概日リズム睡眠障害を正確かつ簡便に診断するためのマーカーを提供することを目的とするものである。   The present invention provides a method for predicting disturbance of biological rhythm caused by disturbance of a biological clock such as circadian rhythm sleep disorder, and in particular, a marker for accurately and easily diagnosing circadian rhythm sleep disorder Is intended to provide.

そこで、本発明者らは、本発明者らが以前に開発した、6時間周期の明暗サイクル(明期3時間:暗期3時間)下で飼育することで行動の概日リズムを消失させた概日リズム睡眠障害モデルマウス(非特許文献6)を用い、その肝臓組織中の遺伝子発現量の変化をDNAマイクロアレイを用いて網羅的に検索した。
そうしてみると、肝臓内でHSP70ファミリー内のHSPA1a遺伝子発現量が、正常マウスと比較して顕著に高まっていることが観察された。HSPA1aは、体内時計遺伝子とは直接的には関係のない、熱ショックタンパク質(HSP)の1種である。従来、睡眠時無呼吸症などの睡眠呼吸障害の患者の末梢血単核球において増加しているという報告(非特許文献1)があるが、睡眠呼吸障害は発症に体内時計が関与している概日リズム睡眠障害とは、発症機構においても共通性はない。また、体内時計に関連して、HSPA1a遺伝子の発現量増加が観察されたこともはじめてである。
ところで、本発明者らは、以前、通常の飼育ケージを用い、物理的な遮蔽によりマウスが回転輪から降りられないように制限する飼育方法を2週間続けることにより、ストレス性睡眠障害マウスを創出している(非特許文献7)。このストレス性睡眠障害マウスは、行動リズムの乱れと共に睡眠リズムの乱れが観察され、一般的な睡眠障害に外挿できるリズム障害を示す優れたストレス性睡眠障害モデル動物であるといえる。また、このマウスが示す活動期(夜間)の活動量の極端な減少から、現在では、慢性疲労症候群モデル動物としても位置づけられている。
そこで、本発明者らは、当該ストレス性睡眠障害モデルマウスの大脳、視床下部、精巣周りの脂肪組織、心臓、肝臓、末梢全血(白血球を含む)中のHSPA1a遺伝子の発現量を、定量PCR法により調べたところ、脂肪組織以外の全てで対照マウスに比べ、単に顕著に増加しているだけでなく、明暗サイクルに呼応した発現リズムを持って増加していることが確認できた(図4)。体内時計に関連した睡眠障害が大脳以外の他の臓器内での遺伝子発現量の増加、特に末梢血中の遺伝子発現量の増加として観測できることは、概日リズム睡眠障害の簡便な診断にとって極めて大きな意味を持つ。
以上の知見を得たことで、HSPA1a及びその遺伝子からなる概日リズム睡眠障害診断用マーカーに関する本発明を完成した。
Therefore, the present inventors eliminated the circadian rhythm of behavior by breeding under a 6-hour light-dark cycle (light period 3 hours: dark period 3 hours), which was previously developed by the present inventors. Circadian rhythm sleep disorder model mice (Non-patent Document 6) were used, and changes in gene expression levels in the liver tissues were comprehensively searched using a DNA microarray.
As a result, it was observed that the expression level of the HSPA1a gene in the HSP70 family was significantly increased in the liver compared to normal mice. HSPA1a is a type of heat shock protein (HSP) that is not directly related to the circadian clock gene. Conventionally, there is a report (Non-Patent Document 1) that the peripheral blood mononuclear cells of patients with sleep disordered breathing such as sleep apnea are increased, but the body clock is involved in the onset of sleep disordered breathing. The circadian rhythm sleep disorder is not common in the onset mechanism. It is also the first time that an increase in the expression level of the HSPA1a gene has been observed in relation to the circadian clock.
By the way, the present inventors previously created a stress sleep disorder mouse by using a normal breeding cage and continuing a breeding method that restricts the mouse from getting off the rotating wheel by physical shielding for two weeks. (Non-Patent Document 7). This stress sleep disorder mouse can be said to be an excellent stress sleep disorder model animal that exhibits a rhythm disorder that can be extrapolated to a general sleep disorder. In addition, because of the extreme decrease in activity during the active period (nighttime) shown by this mouse, it is now positioned as a model animal for chronic fatigue syndrome.
Therefore, the present inventors quantitatively determined the expression level of the HSPA1a gene in the cerebrum, hypothalamus, adipose tissue around the testis, heart, liver, and peripheral whole blood (including leukocytes) of the stress sleep disorder model mouse. When examined by the method, it was confirmed that all but the adipose tissue were not only significantly increased compared to the control mice but also increased with an expression rhythm corresponding to the light-dark cycle (FIG. 4). ). The fact that sleep disorders related to the circadian clock can be observed as an increase in gene expression in other organs other than the cerebrum, especially an increase in gene expression in peripheral blood, is extremely important for simple diagnosis of circadian rhythm sleep disorders. Meaningful.
By obtaining the above knowledge, the present invention relating to a circadian rhythm sleep disorder diagnostic marker comprising HSPA1a and its gene was completed.

すなわち、本発明は以下の発明を含むものである。
〔1〕 HSPA1a又はその遺伝子からなる概日リズム睡眠障害マーカー。
〔2〕 HSPA1a又はその遺伝子を概日リズム睡眠障害マーカーとして用いることを特徴とする、概日リズム睡眠障害又は概日リズムの乱れを判定する方法であって、下記(1)〜(3)の工程を含む方法;
(1)被験哺乳動物由来の試料中のHSPA1aタンパク発現量又はその遺伝子転写レベルを測定する工程、
(2)あらかじめ測定しておいた健常哺乳動物由来の試料中のHSPA1aタンパク発現量又はその遺伝子転写レベルと比較する工程、
(3)工程(1)での測定値が、工程(2)での測定値を、有意差をもって上回っている場合に、被験哺乳動物において概日リズム睡眠障害又は概日リズムの乱れがあると判定する工程。
〔3〕 前記試料が、白血球又は白血球を含む血液である、前記〔2〕に記載の方法。
〔4〕 HSPA1a発現量を定量的に測定可能な抗HSPA1a抗体又はHSPA1a遺伝子転写レベルを定量的に測定可能なHSPA1a遺伝子増幅用プライマーセットを含むことを特徴とする、概日リズム睡眠障害診断剤。
〔5〕 HSPA1a発現量を定量的に測定可能な抗HSPA1a抗体又はHSPA1a遺伝子転写レベルを定量的に測定可能なHSPA1a遺伝子増幅用プライマーセットを含むことを特徴とする、概日リズム睡眠障害又は概日リズムの乱れの判定用キット。
〔6〕 HSPA1a又はその遺伝子を概日リズム睡眠障害マーカーとして用いることを特徴とする、概日リズム睡眠障害又は概日リズムの乱れの改善物質のスクリーニング方法であって、下記(1)〜(4)の工程を含む方法;
(1)概日リズム睡眠障害モデルマウス又はストレス性睡眠障害モデルマウスを用意する工程、
(2)前記いずれかのモデルマウスを2群に分け、一方には被検物質を投与し、他方には投与せずに、両者を一定期間飼育後、両者から試料を採取する工程、
(3)両試料中のHSPA1aタンパク質発現量又はその遺伝子の転写レベルを測定し、両者を比較する工程、
(4)被検物質を投与した群の測定値が、投与しない群の測定値を有意差をもって下回っていた場合に、被検物質を、概日リズム睡眠障害又は概日リズムの乱れの改善物質であると評価する工程。
〔7〕 前記試料が、白血球又は白血球を含む血液である、前記〔6〕に記載の方法。
That is, the present invention includes the following inventions.
[1] A circadian rhythm sleep disorder marker comprising HSPA1a or a gene thereof.
[2] A method for determining circadian rhythm sleep disorder or disturbance of circadian rhythm, characterized by using HSPA1a or a gene thereof as a circadian rhythm sleep disorder marker, comprising the following (1) to (3): A method comprising steps;
(1) a step of measuring the expression level of HSPA1a protein in a sample derived from a test mammal or the gene transcription level thereof,
(2) a step of comparing the expression level of HSPA1a protein in a sample derived from a healthy mammal or a gene transcription level thereof measured in advance,
(3) When the measured value in step (1) exceeds the measured value in step (2) with a significant difference, circadian rhythm sleep disorder or circadian rhythm disturbance in the test mammal A step of determining.
[3] The method according to [2], wherein the sample is white blood cells or blood containing white blood cells.
[4] A diagnostic agent for circadian rhythm sleep disorder, comprising an anti-HSPA1a antibody capable of quantitatively measuring the expression level of HSPA1a or a primer set for amplification of HSPA1a gene capable of quantitatively measuring the transcription level of HSPA1a gene.
[5] An anti-HSPA1a antibody capable of quantitatively measuring HSPA1a expression level or a primer set for amplification of HSPA1a gene capable of quantitatively measuring HSPA1a gene transcription level, or circadian rhythm sleep disorder or circadian Rhythm disturbance kit.
[6] A screening method for a substance for improving circadian rhythm sleep disorder or circadian rhythm disturbance, characterized by using HSPA1a or a gene thereof as a circadian rhythm sleep disorder marker, comprising the following (1) to (4): A method comprising the step of
(1) a step of preparing a circadian rhythm sleep disorder model mouse or a stress sleep disorder model mouse;
(2) dividing one of the model mice into two groups, administering a test substance to one, not administering to the other, and rearing both for a certain period, and collecting samples from both;
(3) measuring the expression level of HSPA1a protein or the transcription level of the gene in both samples and comparing the two,
(4) When the measured value of the group to which the test substance is administered is significantly lower than the measured value of the group to which the test substance is not administered, the test substance is used to improve circadian rhythm sleep disorder or circadian rhythm disturbance The process of evaluating that it is.
[7] The method according to [6], wherein the sample is white blood cells or blood containing white blood cells.

本発明で見出された概日リズム睡眠障害診断用マーカーであるHSPA1a及びその遺伝子は、大脳内又は他の臓器内での発現量増加を、末梢血中の発現量の増加として観測できるため、睡眠障害が疑われる被験者の血液中のHSPA1a存在量を測定するだけで、ストレス性の睡眠障害など概日リズム睡眠障害であるか否かを判定できる。被験者のHSPA1a存在量が増えていれば、患者が睡眠障害を訴えていない場合であっても、概日リズム睡眠障害であることを予想し、確定することができる。また、慢性疲労症候群の診断にも有用である。   HSPA1a which is a circadian rhythm sleep disorder diagnostic marker found in the present invention and its gene can be observed as an increase in the expression level in peripheral blood, the increase in the expression level in the cerebrum or other organs, Whether or not it is a circadian rhythm sleep disorder such as a stress sleep disorder can be determined only by measuring the amount of HSPA1a present in the blood of a subject suspected of having a sleep disorder. If the amount of HSPA1a present in the subject increases, it can be predicted and confirmed that the patient has circadian rhythm sleep disorder even if the patient does not complain of sleep disorder. It is also useful for diagnosis of chronic fatigue syndrome.

マウスの1日の行動パターン(対照群マウスの飲水行動)。図中、縦軸は日付けを表し、横軸は時刻を表す。Daily behavior pattern of mice (drinking behavior of control group mice). In the figure, the vertical axis represents the date, and the horizontal axis represents the time. マウスの1日の行動パターン(概日リズム睡眠障害マウスの飲水行動)。Daily behavior pattern of mice (drinking behavior of circadian rhythm sleep disorder mice). 肝臓中のHSP70(HSPA1a)のmRNA発現量(βアクチン発現量に対する比として算出)。対照群を100%として、概日リズム睡眠障害マウスにおける発現量の増加を表す。MRNA expression level of HSP70 (HSPA1a) in the liver (calculated as a ratio to β-actin expression level). The increase of the expression level in a circadian rhythm sleep disorder mouse | mouth is represented by making a control group 100%. マウスの1日の行動パターン(対照群マウスの輪回し行動)。Daily behavior pattern of mice (rolling behavior of control mice). マウスの1日の行動パターン(ストレス性睡眠障害マウスの輪回し行動)。Daily behavior pattern of mice (spinning behavior of stress sleep disorder mice). ストレス性睡眠障害マウスにおける各臓器内でのmRNA発現量。それぞれの臓器中の左側の「10:00」と表記されているのは、明期のはじめ(10:00)に測定されたことを示し、「22:00」は、暗期の初め(22:00)に測定されたことを示す。MRNA expression level in each organ in mice with stress sleep disorder. The notation of `` 10:00 '' on the left side of each organ indicates that it was measured at the beginning of the light period (10:00), and `` 22:00 '' indicates the beginning of the dark period (22 : 00). ストレス性睡眠障害マウスの大脳における断眠ストレス応答遺伝子のmRNA発現量。それぞれ左側の「10:00」と表記されているのは、明期のはじめ(10:00)に測定されたことを示し、「22:00」は、暗期の初め(22:00)に測定されたことを示す。MRNA expression level of sleep deprivation stress response gene in cerebrum of stress sleep disorder mouse. “10:00” on the left side indicates that it was measured at the beginning of the light period (10:00), and “22:00” indicates that it was measured at the beginning of the dark period (22:00). Indicates that it was measured.

1.HSP70(HSPA1a)遺伝子について
HSPA1aは、ヒトからバクテリアに至るまで様々な生物種で保存されている熱ショックタンパク質(HSP)のうち、分子量70kDaのタンパク質に付けられた「HSP70」のサブファミリー内の1種である。そのアミノ酸配列及び塩基配列は公知であり、哺乳動物に対しても、様々な突然変異体が知られている。例えば、ヒトHSPA1Aの典型的なアミノ酸配列及び塩基配列は、それぞれNCBI Reference SequenceのNP_005336.3、NM_005345.5、マウスHspa1aは、それぞれNP_034609.2、NM_010479.2で入手できる。なお、一般的表記方法として、ヒトの遺伝子(またはタンパク質)は「HSPA1A」、マウスの遺伝子(またはタンパク質)は「Hspa1a」と表記されるが、本発明で「HSPA1a」というとき、ヒト、マウスのみならず、他の哺乳動物由来の遺伝子(またはタンパク質)であり、かつそれぞれのアレル変異体を含むものを意味する。
HSPは、一般に細菌感染や炎症、活性酸素、紫外線、重金属など細胞に対する様々なストレスで誘導されることが知られている。今回2種類のモデルマウス中で他のHSP70をはじめ他のHSPの発現増加は見られず、HSPA1aのみの有意な増加が確認されている。HSPA1aは、タンパク質が生体膜を通過する際のフォールでキングの制御に関与するHspAファミリーに属し、消化管や皮膚など多くの臓器で恒常的に発現されており、抗細胞死作用や抗炎症作用を持ち、種々のストレスから細胞を保護する作用があることが知られている。また、上述のように、HSPA1aは、睡眠時無呼吸症などの睡眠呼吸障害の患者の末梢血単核球において増加しているという報告(非特許文献1)もある。睡眠時無呼吸症では、低酸素による酸化ストレスが生じているため、酸化ストレスによってHSPA1aの発現が誘導されることは容易に想像できるが、睡眠障害のうちでも、体内時計の乱れに起因する概日リズム睡眠障害でHSPA1a遺伝子の発現量の増加が観察されたことは、熱ショックタンパク質が体内時計と関連づけられたことがないことからみて極めて意外なことである。
また、本発明では、HSPA1aの発現量の増加が、大脳以外にも、視床下部、心臓、肝臓の各臓器及び末梢全血(白血球を含む)で観察されるばかりでなく、明期初期の増加量よりも暗期初期での増加量が顕著に高いという発現の概日リズムも、大脳のみならず、視床下部、心臓、肝臓の各臓器や、白血球を含む末梢全血で同期していることが観察されている。
1. About HSP70 (HSPA1a) gene
HSPA1a is a member of the subfamily of “HSP70” attached to a protein having a molecular weight of 70 kDa among heat shock proteins (HSP) conserved in various species from humans to bacteria. Its amino acid sequence and base sequence are known, and various mutants are known for mammals. For example, typical amino acid sequences and base sequences of human HSPA1A can be obtained from NCBI Reference Sequences NP_005336.3 and NM_005345.5, respectively, and mouse Hspa1a can be obtained from NP_034609.2 and NM_010479.2, respectively. As a general notation method, a human gene (or protein) is represented as “HSPA1A” and a mouse gene (or protein) as “Hspa1a”. Rather, it means a gene (or protein) derived from another mammal and containing each allelic variant.
It is known that HSP is generally induced by various stresses on cells such as bacterial infection, inflammation, active oxygen, ultraviolet rays, and heavy metals. The expression of other HSPs, including other HSP70s, was not observed in the two model mice this time, and a significant increase in HSPA1a alone was confirmed. HSPA1a belongs to the HspA family that is involved in the control of king during the fall of proteins through biological membranes, and is constantly expressed in many organs such as the digestive tract and skin, and has anti-cell death and anti-inflammatory effects. It is known that it has an effect of protecting cells from various stresses. In addition, as described above, there is a report (Non-patent Document 1) that HSPA1a is increased in peripheral blood mononuclear cells of patients with sleep respiratory disorder such as sleep apnea. In sleep apnea, oxidative stress is caused by hypoxia, so it can be easily imagined that the expression of HSPA1a is induced by oxidative stress. The observed increase in HSPA1a gene expression in circadian rhythm sleep disorders is very surprising given that heat shock proteins have never been associated with a circadian clock.
Further, in the present invention, an increase in the expression level of HSPA1a is not only observed in the hypothalamus, heart, liver organs and peripheral whole blood (including leukocytes) but also in the early light period, in addition to the cerebrum. The circadian rhythm of expression that the amount of increase in the early dark period is significantly higher than the amount is synchronized not only in the cerebrum but also in the hypothalamus, heart and liver organs and peripheral whole blood including white blood cells Has been observed.

2.概日リズム睡眠障害モデルマウス
本発明者らが以前に報告した(非特許文献6)ように、通常、明期12時間、暗期12時間の24時間周期で飼育するマウスを、明期3時間、暗期3時間の6時間の明暗サイクル下で飼育することで、行動の概日リズムを司る体内時計が、明暗サイクルに同調することができなくなって、行動の概日リズムが消失する。行動リズムの消失は、例えば、クロノバイオロジーキット(Stanford Software Systems、CA)による飲水行動又は回転かごの輪回し行動の測定により明確に判定できる。当該マウスは、睡眠も概日リズムを失っていることから、概日リズム睡眠障害のモデルマウスであるともいえる。
2. Circadian rhythm sleep disorder model mouse As previously reported by the present inventors (Non-patent Document 6), a mouse usually raised in a 24-hour cycle of 12 hours light period and 12 hours dark period is 3 hours light period. By rearing under a 6-hour light-dark cycle with a dark period of 3 hours, the circadian rhythm of behavior cannot synchronize with the light-dark cycle, and the circadian rhythm of behavior disappears. The disappearance of the behavior rhythm can be clearly determined, for example, by measuring the drinking behavior or the rotating behavior of the rotating basket using a chronobiology kit (Stanford Software Systems, CA). Since the mouse has also lost its circadian rhythm, it can be said that the mouse is a model mouse for circadian rhythm sleep disorder.

3.ストレス性睡眠障害モデルマウス
本発明者らは、依然、通常の飼育ケージを用い、ケージの底面に水を満たしマウスが回転輪から降りられないという物理的な遮蔽による行動の制限を施した飼育方法を2週間続けることにより、ストレス性睡眠障害モデルマウスを創出した(非特許文献7)。このストレス性睡眠障害マウスは、一般的な睡眠障害に外挿できるリズム障害を示す。また、総活動量(特に暗期の活動量)が減少するとともに、明期暗期ともに活動が見られる行動リズムの乱れが観察される。特に明期前半の過活動が特徴である。また、これに連動するように、明期前半の睡眠量低下、活動期(暗期)における睡眠量の増加が認められる(非特許文献7)。この行動リズムの判定には、上記概日リズム睡眠障害モデルマウスの場合と同様に、クロノバイオロジーキット(Stanford Software Systems、CA)による飲水行動、又は回転かごの輪回し行動などの運動量の測定法を用いることができる。なお、活動期(夜間)の活動量の極端な減少も見られることから、現在大きな社会問題となっている慢性疲労症候群モデル動物としても位置づけられる。このようなストレス性睡眠障害マウスの具体的な作製方法は、本発明者らによる概日リズム改善剤に係る出願明細書(特願2012−46806)に詳細に記載されている。
3. Stress-induced sleep disorder model mouse The present inventors still used a normal breeding cage, and the breeding method provided with a behavior restriction by physical shielding that the bottom of the cage is filled with water and the mouse cannot get off the rotating wheel For 2 weeks, a stress sleep disorder model mouse was created (Non-patent Document 7). This stress sleep disorder mouse exhibits a rhythm disorder that can be extrapolated to a general sleep disorder. In addition, the total amount of activity (especially the amount of activity during the dark period) decreases, and disturbances in behavioral rhythms, in which activity is observed during the light period and dark period, are observed. It is especially characterized by overactivity in the first half of the light period. Further, in conjunction with this, a decrease in sleep amount in the first half of the light period and an increase in sleep amount in the active period (dark period) are observed (Non-patent Document 7). For the determination of this behavioral rhythm, as in the case of the circadian rhythm sleep disorder model mouse, a method for measuring the momentum such as drinking behavior by using the Chronobiology Kit (Stanford Software Systems, CA) or rotating behavior of a rotating basket. Can be used. In addition, since there is an extreme decrease in activity during the active period (nighttime), it is positioned as a model animal for chronic fatigue syndrome, which is currently a major social problem. A specific method for producing such a stress sleep disorder mouse is described in detail in the application specification (Japanese Patent Application No. 2012-46806) concerning the circadian rhythm improving agent by the present inventors.

4.本発明における概日リズム睡眠障害診断用マーカーの使用方法
概日リズム睡眠障害が疑われる患者など哺乳動物から採取した白血球又は白血球を含む血液、典型的には末梢血中の、HSPA1aの発現量をHSPA1a抗体で測定する。あらかじめ、健常な哺乳動物(例えば健常人)の発現量を基準値として設定しておけば、その基準値を超えた場合に、概日リズム睡眠障害であると診断できる。HSPA1a抗体は、適宜マウスなどの実験動物を免疫して得ることもできるが、Uscn Life Science Inc.社、Merck Millipore社などから市販されている。
特に、睡眠開始時間帯の血液を採取すれば、より正確な診断が可能である。
また、被験哺乳動物の血液に対して、定量PCR解析などを適用し、同様に遺伝子の転写レベルでのHSPA1aの発現量の増加を測定しても良い。HSPA1a遺伝子増幅用プライマーも、インビトロジェン社などにより市販されている。
ヒトの時計遺伝子は、毛髪の毛胞細胞や、皮膚、口腔内細胞にも存在し、概日リズムを刻むことが知られていることをみれば、HSPA1a遺伝子もこれら細胞内での発現量の変動が予測される。したがって、被検哺乳動物の血液試料に代えて、毛胞細胞、皮膚細胞、口腔内細胞を用いてモニターすることも可能である。実験動物であるげっ歯類の場合、尻尾を採取しながらモニターする手法も可能である。
なお、概日リズム睡眠障害の診断の対象となる哺乳動物とは、典型的にはヒトであるが、イヌやネコなどの愛玩動物、ウシ、ウマ、ブタなどの家畜動物、マウス、ラットなどの実験動物など、どのような哺乳動物であってもよい。
4). Method of using marker for diagnosing circadian rhythm sleep disorder in the present invention Expression level of HSPA1a in leukocytes or blood containing leukocytes collected from mammals such as patients suspected of having circadian rhythm sleep disorder, typically peripheral blood Measure with HSPA1a antibody. If the expression level of a healthy mammal (for example, a healthy person) is set in advance as a reference value, it can be diagnosed as circadian rhythm sleep disorder when the reference value is exceeded. HSPA1a antibody can be obtained by appropriately immunizing experimental animals such as mice, but is commercially available from Uscn Life Science Inc., Merck Millipore, and the like.
In particular, more accurate diagnosis is possible by collecting blood during the sleep start time zone.
Alternatively, quantitative PCR analysis or the like may be applied to the blood of the test mammal to similarly measure the increase in the expression level of HSPA1a at the gene transcription level. HSPA1a gene amplification primers are also commercially available from Invitrogen Corporation.
The human clock gene is also present in hair follicle cells, skin, and oral cells, and it is known that the circadian rhythm is inscribed. HSPA1a gene also varies in the expression level in these cells. Is predicted. Therefore, it is possible to monitor using follicular cells, skin cells, and oral cells instead of the blood sample of the test mammal. In the case of rodents, which are experimental animals, a technique of monitoring while collecting the tail is also possible.
The mammals that are subject to the diagnosis of circadian rhythm sleep disorders are typically humans, but they are pets such as dogs and cats, livestock animals such as cows, horses and pigs, mice and rats, etc. Any mammal such as a laboratory animal may be used.

5.本発明における概日リズム睡眠障害改善剤のスクリーニング方法
前記2.又は3.に記載された概日リズム睡眠障害モデルマウス又はストレス性睡眠障害マウスを用い、これらマウスを2群に分け、1つの群のマウスに対して被検物質を投与する。静注、塗布などの投与形態も可能であるが、典型的には、飼料中又は、給水中に被検物質を添加しておくことが好ましい。被検物質を投与した群のマウス由来の血液などの試料と残りの群の対照マウス由来試料を採取し、それぞれのHSPA1a発現量又はその遺伝子転写レベルを比較して、前者の測定値が有意に減少した場合、用いた被検物質を、概日リズム睡眠障害改善剤の候補として選択する。なお、その際のHSPA1a発現量又はその遺伝子転写レベルは、上記4.に記載したHSPA1a抗体、又はHSPA1a遺伝子増幅用プライマーにより測定できる。
ここで、マウス由来試料としては、簡便かつ感度の高い末梢血又は白血球が好ましいが、大脳、視床下部、心臓、肝臓を摘出して、すりつぶしてタンパク質又はDNAを抽出し、抽出液中のHSPA1a発現量又はその遺伝子転写レベルを測定することも可能である。毛胞細胞、皮膚細胞、口腔内細胞、または尻尾を採取してモニターしても良い。
5. 1. Screening method for circadian rhythm sleep disorder improving agent in the present invention Or 3. Circadian rhythm sleep disorder model mice or stress sleep disorder mice described in 1), these mice are divided into two groups, and a test substance is administered to one group of mice. Administration forms such as intravenous injection and application are also possible, but it is typically preferable to add a test substance in the feed or in the water supply. Samples such as blood from mice in the group to which the test substance was administered and samples from the control mice in the remaining groups were collected, and the respective HSPA1a expression levels or gene transcription levels were compared. When it decreases, the used test substance is selected as a circadian rhythm sleep disorder improving agent candidate. In this case, the expression level of HSPA1a or the gene transcription level is the same as that described in 4. It can be measured using the HSPA1a antibody or HSPA1a gene amplification primer described in 1.
Here, the mouse-derived sample is preferably simple and sensitive peripheral blood or leukocytes, but the cerebrum, hypothalamus, heart, and liver are removed and ground to extract protein or DNA, and HSPA1a expression in the extract is obtained. It is also possible to measure the quantity or its gene transcription level. Hair follicle cells, skin cells, oral cells, or tails may be collected and monitored.

以下、実施例により本発明を具体的に説明するが、本発明は特にこれら実施例に限定されるものではない。
なお、本発明で使用されている技術的用語は、別途定義されていない限り、当業者により普通に理解されている意味を持つ。
また、本発明で引用した先行文献又は特許出願明細書の記載内容は、本明細書の記載として組み入れるものとする。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not particularly limited to these examples.
Technical terms used in the present invention have meanings commonly understood by those skilled in the art unless otherwise defined.
Moreover, the description content of the prior art literature or the patent application specification cited in the present invention is incorporated as the description of this specification.

(実施例1)概日リズム睡眠障害モデルマウスにおけるHSPA1a遺伝子発現量の増加観察
(1−1)概日リズム睡眠障害モデルマウスの作製
非特許文献5に記載の方法に従って、概日リズム睡眠障害モデルマウスを作製した。具体的には以下の通りである。
ICR系統のマウス(3週齢の雄性、日本エスエルシー株式会社)13匹を、明期12時間、暗期12時間の明暗サイクル下(8:00点灯、20:00消灯)で馴化のための予備飼育を行った。馴化終了後、マウスを2群に分け(対照群6匹、実験群7匹)、対照群は明期12時間、暗期12時間のまま、実験群は、明期3時間、暗期3時間の明暗6時間サイクル(8:00点灯、11:00消灯、14:00点灯、17:00消灯、20:00点灯、23:00消灯、2:00点灯、5:00消灯)にて飼育を行った。飼料としては、AIN-93M(オリエンタル酵母工業株式会社製)を用いた。
全期間を通じて、マウスの飲水行動を、クロノバイオロジーキット(Stanford Software Systems、CA)により測定した。マウスは夜行性であるため、通常の明暗サイクル下(明期12時間、暗期12時間)で飼育すると、飲水行動は夜間の12時間に多く認められる。ところが、明期3時間、暗期3時間の6時間周期の明暗サイクル下においては、行動の概日リズムを司る体内時計が、明暗サイクルに同調することができないため、非特許文献6に記載されると同様に明瞭な行動リズムが消失した(図1B)。
(Example 1) Observation of increased expression of HSPA1a gene in circadian rhythm sleep disorder model mice
(1-1) Production of circadian rhythm sleep disorder model mouse A circadian rhythm sleep disorder model mouse was produced according to the method described in Non-Patent Document 5. Specifically, it is as follows.
For acclimation of 13 mice of ICR strain (3-week-old male, Japan SLC Co., Ltd.) under a light / dark cycle of 12 hours light period, 12 hours dark period (lights on at 8:00, lights off at 20:00) Preliminary breeding was performed. After acclimation, the mice were divided into 2 groups (6 control groups, 7 experimental groups), the control group remained 12 hours light and 12 hours dark, and the experimental group 3 hours light and 3 hours dark Breeding in the light and dark 6-hour cycle (8: 00 lights, 11:00 lights off, 14:00 lights on, 17:00 lights off, 20:00 lights on, 23:00 lights off, 2:00 lights on, 5:00 lights off) went. As the feed, AIN-93M (manufactured by Oriental Yeast Co., Ltd.) was used.
Throughout the period, the drinking behavior of mice was measured with a chronobiology kit (Stanford Software Systems, CA). Since mice are nocturnal, drinking behavior is often observed at 12 hours at night when kept under normal light-dark cycle (12 hours light period, 12 hours dark period). However, it is described in Non-Patent Document 6 because the body clock that controls the circadian rhythm of behavior cannot synchronize with the light-dark cycle under a light-dark cycle of 6 hours period of light period 3 hours and dark period 3 hours. As a result, a clear behavioral rhythm disappeared (FIG. 1B).

(1−2)HSPA1a遺伝子発現の顕著な誘導
明期3時間、暗期3時間の明暗6時間サイクル下にて8週間の飼育を行った後、殺処分したマウスの肝臓より全RNAを抽出し、定量PCR法にてHSPA1a mRNAの発現量を調べた。(図2)中、HSPA1a mRNAの発現量は、βアクチンmRNAの発現量に対する比として数値化した後、対照群を100%とした比として示してある。すなわち、明暗6時間サイクル下にて飼育することにより、肝臓でのHSPA1a遺伝子の発現が顕著に誘導されることが判明した。
(1-2) Remarkable induction of HSPA1a gene expression After rearing for 8 weeks under a 6-hour light-dark cycle of 3 hours in the light period and 3 hours in the dark period, total RNA is extracted from the liver of the sacrificed mouse. The expression level of HSPA1a mRNA was examined by quantitative PCR. In FIG. 2, the expression level of HSPA1a mRNA is quantified as a ratio to the expression level of β-actin mRNA, and then shown as a ratio with the control group as 100%. That is, it was found that the expression of the HSPA1a gene in the liver was remarkably induced by breeding under a light / dark 6 hour cycle.

(実施例2)ストレス性睡眠障害モデルマウスを用いたHSPA1a遺伝子発現量の増加観察
(2−1)ストレス性睡眠障害モデルマウスの作製方法
ストレス性睡眠障害マウスの作製は、本発明者らによる前記出願明細書(特願2012−46806)に記載の方法に従った。具体的には、以下の通りである。
Slc:B6C3F1系統のマウス(4週齢の雄性、日本エスエルシー株式会社)を20匹用意し、明期12時間、暗期12時間の明暗サイクル下(8:00点灯、20:00消灯)で飼育した。マウスは、全期間を通して、回転かご(SW-15s、有限会社メルクエスト)内で個別飼育した。マウスの活動量は、クロノバイオロジーキット(Stanford Systems、CA)を用いてその回転かごの輪回し行動をドットで表わしている。飼料としては、CE-2(日本クレア株式会社製)を用いた。
図3は、マウスの活動リズムを示す図である。全20匹中の10匹のマウスを明期12時間、暗期12時間の明暗サイクル下(8:00点灯、20:00消灯)で1週間以上の非ストレス飼育期間(馴化)後、ケージの底面に水を満たしマウスが回転輪から降りられないように制限することにより、ストレス性睡眠障害を1週間連続的に誘発した(ストレス飼育期間)。他の10匹のマウスは対照マウスとして、上記同様の非ストレス飼育を続けた。
このストレス性睡眠障害モデルマウスは、一般的なヒトの睡眠障害に外挿できるリズム障害を示す(図3B)。例えば、夜行性であるマウスの本来の非活動期である昼間(明期)の活動量が増加するとともに、活動期である夜(暗期)の活動量の減少が認められる。特に、明期前半の過活動が特徴である。またこれに連動するように、明期前半の睡眠量低下、活動期(暗期)における睡眠量の増加が認められる点も特徴的である(非特許文献7)。
図3は、マウスの1日の行動パターンを示す図である。図3中、縦軸は日付けを表し、横軸は時刻を表す。ドットはマウスの輪回し行動が観察されたことを表す。なお、(図3A)はストレス負荷していないマウスの行動パターンを、(図3B)はストレス負荷したマウスの行動パターンを示す。図3より、ストレスがなければ、明期(8〜20時:睡眠時間帯)では、ほとんど輪回し行動が観察されないことが分かる(ドットが少ない)。一方、暗期(20〜8時:活動時間帯)では、活発に輪回し行動を行っていることが分かる(ドットが多い)。これに対して、ストレス性睡眠障害モデルマウスの場合は、明期におけるドットの増加及び暗期におけるドットの減少が観察され、行動の概日リズムが乱れ睡眠障害が起きていることが分かる。また、このモデルマウスでは、全体に活動量が低下していることが見て取れ、特に暗期(活動期)の活動量の極端な減少が特徴的であり、慢性疲労症候群モデルであるともいえる。
(Example 2) Increased expression of HSPA1a gene expression using stress sleep disorder model mice
(2-1) Method for producing stress sleep disorder model mouse The stress sleep disorder mouse was produced according to the method described in the above-mentioned application specification (Japanese Patent Application No. 2012-46806) by the present inventors. Specifically, it is as follows.
Prepare 20 mice of Slc: B6C3F1 strain (4-week-old male, Japan SLC Co., Ltd.) under a light-dark cycle of 12 hours light period, 12 hours dark period (lights on at 8:00, lights off at 20:00) Raised. Mice were individually housed in a rotating cage (SW-15s, Merquest Co., Ltd.) throughout the period. The amount of activity of the mouse is represented by dots in the rotation of the rotating cage using a chronobiology kit (Stanford Systems, CA). CE-2 (manufactured by Clea Japan Co., Ltd.) was used as the feed.
FIG. 3 is a diagram showing an activity rhythm of a mouse. Ten mice out of 20 were kept under a 12-hour light-dark cycle (lighting on at 8:00, light-off at 20:00) for a period of more than one week (acclimation) for 12 weeks or longer. Stress-induced sleep disturbance was continuously induced for one week by filling the bottom with water and restricting the mouse from getting off the rotating wheel (stress breeding period). The other 10 mice continued to be non-stressed as described above as control mice.
This stress-induced sleep disorder model mouse exhibits a rhythm disorder that can be extrapolated to a general human sleep disorder (FIG. 3B). For example, the activity amount in the daytime (light period), which is the original inactive period, of the nocturnal mouse increases, and the activity amount in the night (dark period), which is the active period, decreases. In particular, it is characterized by overactivity in the first half of the light period. Further, in conjunction with this, it is also characteristic that a decrease in sleep amount in the first half of the light period and an increase in sleep amount in the active period (dark period) are observed (Non-patent Document 7).
FIG. 3 is a diagram showing a daily behavior pattern of a mouse. In FIG. 3, the vertical axis represents the date, and the horizontal axis represents the time. The dots indicate that the mouse's rolling behavior was observed. In addition, (FIG. 3A) shows the behavior pattern of the mouse | mouth which is not stressed, (FIG. 3B) shows the behavior pattern of the mouse | mouth which stressed. From FIG. 3, it can be seen that in the light period (8-20 o'clock: sleeping hours), there is almost no rotating behavior observed in the light period (no dots). On the other hand, it can be seen that in the dark period (20 to 8 o'clock: activity time zone), it is actively spinning around (many dots). In contrast, in the case of a stress sleep disorder model mouse, an increase in dots in the light period and a decrease in dots in the dark period are observed, indicating that the circadian rhythm of behavior is disturbed and sleep disorders occur. In addition, it can be seen that the activity amount of the model mouse is decreased as a whole, and particularly, an extreme decrease in the activity amount in the dark period (active period) is characteristic, and it can be said that this is a chronic fatigue syndrome model.

(2−2)ストレス性睡眠障害マウスの各臓器におけるHSPA1a mRNAの発現量の測定
ストレス性睡眠障害を2週間負荷した後に、明期の初期(10:00)と暗期の初期(22:00)にマウスを殺処分し、大脳、視床下部、精巣周りの脂肪組織、心臓、肝臓、末梢全血(白血球を含む)より全RNAを抽出し、定量PCR法にてHSPA1a mRNAの発現量を調べた。用いたプライマー配列は以下の通りである。

Hspa1a-F:5’-ATGGCCAAGAACACGGCGATC-3’(配列番号1)
Hspa1a-R:5’-ACCTGGAAGGGCCAGTGCTTC-3’(配列番号2)

図4中、HSPA1a mRNAの発現量は、βアクチンmRNAの発現量に対する比として数値化した後、対照群を100%とした比として示してある。
図4に示したように、脂肪組織を除く、肝臓、心臓、大脳、視床下部、全血におけるHSPA1a遺伝子の発現量には、対照群において、明期のはじめ(10:00)に低く、暗期の初め(22:00)に高くなる日内リズムが存在する。
また、ストレス性睡眠障害モデルマウスにおけるHSPA1a遺伝子の発現量は、脂肪組織を除いて、対照群に比べて高値を示した。特に白血球を含む全血でのHSPA1a遺伝子の発現量は、明期初め(10:00)において顕著に高くなっていた。すなわち、採血時刻を考慮に入れて、血球を含む全血でのHSPA1a遺伝子の発現量を調べることにより、睡眠障害などの生体リズムの異常を推測することが可能であると考えられる。
(2-2) Measurement of the expression level of HSPA1a mRNA in each organ of stress-induced sleep disorder mice After the stress sleep disorder was loaded for 2 weeks, the early period of light (10:00) and the early period of dark (22:00) ), The total RNA was extracted from the cerebrum, hypothalamus, adipose tissue around the testis, heart, liver, and peripheral whole blood (including leukocytes), and the expression level of HSPA1a mRNA was examined by quantitative PCR. It was. The primer sequences used are as follows.

Hspa1a-F: 5′-ATGGCCAAGAACACGGCGATC-3 ′ (SEQ ID NO: 1)
Hspa1a-R: 5′-ACCTGGAAGGGCCAGTGCTTC-3 ′ (SEQ ID NO: 2)

In FIG. 4, the expression level of HSPA1a mRNA is quantified as a ratio to the expression level of β-actin mRNA, and is shown as a ratio with the control group being 100%.
As shown in FIG. 4, the expression level of the HSPA1a gene in the liver, heart, cerebrum, hypothalamus, and whole blood, excluding adipose tissue, was low in the control group at the beginning of the light period (10:00) and dark. There is a daily rhythm that rises at the beginning of the season (22:00).
Moreover, the expression level of the HSPA1a gene in stress sleep disorder model mice was higher than that of the control group except for adipose tissue. In particular, the expression level of HSPA1a gene in whole blood including leukocytes was remarkably high at the beginning of the light period (10:00). That is, it is considered that abnormalities in biological rhythms such as sleep disorders can be estimated by examining the expression level of the HSPA1a gene in whole blood including blood cells, taking blood collection time into consideration.

(実施例3)ストレス性睡眠障害マウスの脳における断眠ストレス応答遺伝子発現量の測定
実施例2と同じSlc:B6C3F1系統のマウス(4週齢の雄性、日本エスエルシー株式会社)に対して、実施例2に記載の方法に従って、ストレス性睡眠障害マウスを作製した(10匹、対照マウスも10匹使用)。ストレス性睡眠障害を2週間負荷した後、明期の初期(10:00)と暗期の初期(22:00)にマウスを殺処分し、大脳より全RNAを抽出し、定量PCR法にて断眠ストレス応答遺伝子として知られているTtr(トランスサイレチン)(特許文献1)、Homer1a(非特許文献8)、Egr2(NGFI-B)(非特許文献8)の発現量を調べた。これら遺伝子は、いずれも強制的な断眠を行った実験動物での脳内で遺伝子発現量の増加が観察された遺伝子群である。
用いたプライマー配列は以下の通りである。

Ttr-F:5’-CATGAATTCGCGGATGTG-3’(配列番号3)
Ttr-R:5’-GATGGTGTAGTGGCGATGG-3’(配列番号4)
Homer1a-F:5’-AGCTCATGTCTTCCAGATTGACC-3’(配列番号5)
Homer1a-R:5’-GTCATGTTTGGTGTGATGGTGCT-3’(配列番号6)
Egr2-F:5’-TGACCAGATGAACGGAGTGGC-3’(配列番号7)
Egr2-R:5’-GTGAAGGTCTGGTTTCTAGGTGC-3’(配列番号8)
(Example 3) Measurement of gene expression level of sleep deprivation stress response gene in the brain of stress sleep disorder mice For mice of the same Slc: B6C3F1 strain as in Example 2 (4 weeks old male, Japan SLC, Inc.) According to the method described in Example 2, stress sleep disorder mice were prepared (10 mice and 10 control mice were used). After 2 weeks of stressful sleep disorder, mice were killed in the early light phase (10:00) and early dark phase (22:00), and total RNA was extracted from the cerebrum and quantitative PCR was used. The expression levels of Ttr (transthyretin) (patent document 1), Homer1a (non-patent document 8), and Egr2 (NGFI-B) (non-patent document 8), which are known as sleeplessness stress response genes, were examined. Each of these genes is a gene group in which an increase in gene expression level was observed in the brain of experimental animals subjected to forced sleep deprivation.
The primer sequences used are as follows.

Ttr-F: 5'-CATGAATTCGCGGATGTG-3 '(SEQ ID NO: 3)
Ttr-R: 5′-GATGGTGTAGTGGCGATGG-3 ′ (SEQ ID NO: 4)
Homer1a-F: 5'-AGCTCATGTCTTCCAGATTGACC-3 '(SEQ ID NO: 5)
Homer1a-R: 5'-GTCATGTTTGGTGTGATGGTGCT-3 '(SEQ ID NO: 6)
Egr2-F: 5'-TGACCAGATGAACGGAGTGGC-3 '(SEQ ID NO: 7)
Egr2-R: 5'-GTGAAGGTCTGGTTTCTAGGTGC-3 '(SEQ ID NO: 8)

図5中、各遺伝子のmRNA発現量は、βアクチンmRNAの発現量に対する比として数値化した後、対照群を100%とした比として示してある。
図5に示したように、断眠ストレス応答遺伝子として知られているTtr(トランスサイレチン)、Homer1a、Egr2遺伝子の発現量には、対照マウスとストレス性睡眠障害モデルマウスとの間に有意な差異は認められなかった。
このことから、本ストレス性睡眠障害モデルマウスにおける遺伝子発現の応答性は、強制的な断眠ストレスによる遺伝子発現の応答性とは明確に異なっていることが示され、本ストレス性睡眠障害モデルマウスが、慢性的な精神的ストレスの結果として発症するヒトの睡眠障害のきわめて正確なモデル動物となっていることが実証された。
また、それと共に、HSPA1a又はHSPA1a遺伝子の発現量を調べることにより、強制的な断眠ストレスとは異なる慢性的な睡眠障害などの生体リズムの異常を推測することが可能である。すなわち、本発明のHSPA1a又はHSPA1a遺伝子は、概日リズム睡眠障害又は概日リズムの乱れを判定可能な優れた概日リズム睡眠障害マーカーであることが実証された。
In FIG. 5, the mRNA expression level of each gene is quantified as a ratio to the expression level of β-actin mRNA, and then shown as a ratio with the control group as 100%.
As shown in FIG. 5, the expression levels of Ttr (transthyretin), Homer1a, and Egr2 genes known as sleep deprivation stress response genes are significantly different between control mice and stress sleep disorder model mice. There was no difference.
This indicates that the gene expression responsiveness in this stress-induced sleep disorder model mouse is clearly different from the gene expression responsiveness due to forced sleep deprivation stress. However, this proved to be a very accurate model animal for human sleep disorders that develop as a result of chronic mental stress.
At the same time, by examining the expression level of HSPA1a or HSPA1a gene, it is possible to estimate biological rhythm abnormalities such as chronic sleep disorders different from forced sleepless stress. That is, it was demonstrated that the HSPA1a or HSPA1a gene of the present invention is an excellent circadian rhythm sleep disorder marker capable of determining circadian rhythm sleep disorder or circadian rhythm disturbance.

Claims (7)

HSPA1a又はその遺伝子からなる概日リズム睡眠障害マーカー。   A circadian rhythm sleep disorder marker comprising HSPA1a or its gene. HSPA1a又はその遺伝子を概日リズム睡眠障害マーカーとして用いることを特徴とする、概日リズム睡眠障害又は概日リズムの乱れを判定する方法であって、下記(1)〜(3)の工程を含む方法;
(1)被験哺乳動物由来の試料中のHSPA1aタンパク発現量又はその遺伝子転写レベルを測定する工程、
(2)あらかじめ測定しておいた健常哺乳動物由来の試料中のHSPA1aタンパク発現量又はその遺伝子転写レベルと比較する工程、
(3)工程(1)での測定値が、工程(2)での測定値を、有意差をもって上回っている場合に、被験哺乳動物において概日リズム睡眠障害又は概日リズムの乱れがあると判定する工程。
A method for determining circadian rhythm sleep disorder or circadian rhythm disturbance, characterized by using HSPA1a or a gene thereof as a circadian rhythm sleep disorder marker, comprising the following steps (1) to (3): Method;
(1) a step of measuring the expression level of HSPA1a protein in a sample derived from a test mammal or the gene transcription level thereof,
(2) a step of comparing the expression level of HSPA1a protein in a sample derived from a healthy mammal or a gene transcription level thereof measured in advance,
(3) When the measured value in step (1) exceeds the measured value in step (2) with a significant difference, circadian rhythm sleep disorder or circadian rhythm disturbance in the test mammal A step of determining.
前記試料が、白血球又は白血球を含む血液である、請求項2に記載の方法。   The method according to claim 2, wherein the sample is white blood cells or blood containing white blood cells. HSPA1a発現量を定量的に測定可能な抗HSPA1a抗体又はHSPA1a遺伝子転写レベルを定量的に測定可能なHSPA1a遺伝子増幅用プライマーセットを含むことを特徴とする、概日リズム睡眠障害診断剤。   A diagnostic agent for circadian rhythm sleep disorder, comprising an anti-HSPA1a antibody capable of quantitatively measuring the expression level of HSPA1a or a primer set for amplification of HSPA1a gene capable of quantitatively measuring the transcription level of HSPA1a gene. HSPA1a発現量を定量的に測定可能な抗HSPA1a抗体又はHSPA1a遺伝子転写レベルを定量的に測定可能なHSPA1a遺伝子増幅用プライマーセットを含むことを特徴とする、概日リズム睡眠障害又は概日リズムの乱れの判定用キット。   Circadian rhythm sleep disorder or disturbance of circadian rhythm, characterized by including anti-HSPA1a antibody that can quantitatively measure HSPA1a expression level or primer set for HSPA1a gene amplification that can quantitatively measure HSPA1a gene transcription level Evaluation kit. HSPA1a又はその遺伝子を概日リズム睡眠障害マーカーとして用いることを特徴とする、概日リズム睡眠障害又は概日リズムの乱れの改善物質のスクリーニング方法であって、下記(1)〜(4)の工程を含む方法;
(1)概日リズム睡眠障害モデルマウス又はストレス性睡眠障害モデルマウスを用意する工程、
(2)前記いずれかのモデルマウスを2群に分け、一方には被検物質を投与し、他方には投与せずに、両者を一定期間飼育後、両者から試料を採取する工程、
(3)両試料中のHSPA1aタンパク質発現量又はその遺伝子の転写レベルを測定し、両者を比較する工程、
(4)被検物質を投与した群の測定値が、投与しない群の測定値を有意差をもって下回っていた場合に、被検物質を、概日リズム睡眠障害又は概日リズムの乱れの改善物質であると評価する工程。
A method for screening a substance for improving circadian rhythm sleep disorder or circadian rhythm disturbance, characterized by using HSPA1a or a gene thereof as a circadian rhythm sleep disorder marker, comprising the following steps (1) to (4): A method comprising:
(1) a step of preparing a circadian rhythm sleep disorder model mouse or a stress sleep disorder model mouse;
(2) dividing one of the model mice into two groups, administering a test substance to one, not administering to the other, and rearing both for a certain period, and collecting samples from both;
(3) measuring the expression level of HSPA1a protein or the transcription level of the gene in both samples and comparing the two,
(4) When the measured value of the group to which the test substance is administered is significantly lower than the measured value of the group to which the test substance is not administered, the test substance is used to improve circadian rhythm sleep disorder or circadian rhythm disturbance The process of evaluating that it is.
前記試料が、白血球又は白血球を含む血液である、請求項6に記載の方法。   The method according to claim 6, wherein the sample is white blood cells or blood containing white blood cells.
JP2012144660A 2012-05-15 2012-06-27 Biomarkers for predicting circadian rhythm disturbances Active JP5963192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144660A JP5963192B2 (en) 2012-05-15 2012-06-27 Biomarkers for predicting circadian rhythm disturbances

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012111932 2012-05-15
JP2012111932 2012-05-15
JP2012144660A JP5963192B2 (en) 2012-05-15 2012-06-27 Biomarkers for predicting circadian rhythm disturbances

Publications (2)

Publication Number Publication Date
JP2013255481A true JP2013255481A (en) 2013-12-26
JP5963192B2 JP5963192B2 (en) 2016-08-03

Family

ID=49952522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144660A Active JP5963192B2 (en) 2012-05-15 2012-06-27 Biomarkers for predicting circadian rhythm disturbances

Country Status (1)

Country Link
JP (1) JP5963192B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423648A (en) * 2018-07-18 2021-02-26 苏州大学 Method for screening desynchronization indexes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075071A (en) * 2005-09-16 2007-03-29 Eisai R & D Management Co Ltd Sleep disorder marker and therapeutic agent for sleep disorder
JP2009544329A (en) * 2006-07-27 2009-12-17 スミスクライン・ビーチャム・コーポレイション HSPA1a as a susceptibility marker for KSP inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075071A (en) * 2005-09-16 2007-03-29 Eisai R & D Management Co Ltd Sleep disorder marker and therapeutic agent for sleep disorder
JP2009544329A (en) * 2006-07-27 2009-12-17 スミスクライン・ビーチャム・コーポレイション HSPA1a as a susceptibility marker for KSP inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015043826; J.Sleep Res. vol.19, 2010, pp.139-147 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423648A (en) * 2018-07-18 2021-02-26 苏州大学 Method for screening desynchronization indexes
CN112423648B (en) * 2018-07-18 2024-03-22 苏州大学 Method for screening desynchronization indexes

Also Published As

Publication number Publication date
JP5963192B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
Takumi et al. Behavioral neuroscience of autism
Toth et al. Animal models of sleep disorders
Friend et al. Basal ganglia dysfunction contributes to physical inactivity in obesity
Watkins et al. Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application
Zhao et al. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders
Hasler et al. Discovering endophenotypes for major depression
El-Khodor et al. Identification of a battery of tests for drug candidate evaluation in the SMNΔ7 neonate model of spinal muscular atrophy
Meng et al. Brain-derived neurotrophic factor in 5-HT neurons regulates susceptibility to depression-related behaviors induced by subchronic unpredictable stress
Dempsey et al. Persistent central inflammation and region specific cellular activation accompany depression-and anxiety-like behaviours during the resolution phase of experimental colitis
Shi et al. Predictable maternal separation confers adult stress resilience via the medial prefrontal cortex oxytocin signaling pathway in rats
Cherian et al. Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model
Baier et al. Mice lacking the circadian modulators SHARP1 and SHARP2 display altered sleep and mixed state endophenotypes of psychiatric disorders
Burbano et al. Antisense oligonucleotide therapy for KCNT1 encephalopathy
Copping et al. Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome
Zhang et al. Pontine norepinephrine defects in Mecp2-null mice involve deficient expression of dopamine β-hydroxylase but not a loss of catecholaminergic neurons
Xie et al. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice
CN103638531A (en) LGR4 gene for screening of medicines promoting browning of white fat
Li et al. Hypoactivity of the lateral habenula contributes to negative symptoms and cognitive dysfunction of schizophrenia in rats
Shelton et al. X-linked myotubular myopathy in Rottweiler dogs is caused by a missense mutation in Exon 11 of the MTM1 gene
Sokolowska et al. The circadian gene Cryptochrome 2 influences stress‐induced brain activity and depressive‐like behavior in mice
JP6715568B2 (en) A model animal for depression that causes sleep disorders
JP5963192B2 (en) Biomarkers for predicting circadian rhythm disturbances
Ledoux et al. Combining accelerometers and direct visual observations to detect sickness and pain in cows of different ages submitted to systemic inflammation
Sheneman et al. GP222 Clinical and metabolic parameters in girls-carriers of LEPR rs1137100 with android and gynoid obesity
Nichols et al. Sleep deprivation alters the influence of biological sex on active-phase sleep behavior

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5963192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250