JP2013254646A - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
JP2013254646A
JP2013254646A JP2012129663A JP2012129663A JP2013254646A JP 2013254646 A JP2013254646 A JP 2013254646A JP 2012129663 A JP2012129663 A JP 2012129663A JP 2012129663 A JP2012129663 A JP 2012129663A JP 2013254646 A JP2013254646 A JP 2013254646A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
secondary batteries
temperature
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012129663A
Other languages
Japanese (ja)
Inventor
Susumu Nishida
進 西田
Fujio Sudo
富士雄 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012129663A priority Critical patent/JP2013254646A/en
Publication of JP2013254646A publication Critical patent/JP2013254646A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery system capable of efficiently using power to retain and warming a secondary battery by suppressing a number of charging and discharging times of the secondary battery by switching a warming method.SOLUTION: A battery system comprises: battery monitoring circuits 22a and 22b, the battery monitoring circuit 22a monitoring a state of a secondary battery 21a and the battery monitoring circuit 22b monitoring a state of a secondary battery 21b; temperature measuring units 23a and 23b, the temperature measuring unit 23a measuring a temperature of the secondary battery 21a and a temperature measuring unit 23b monitoring a temperature of the secondary battery 21b; keep-warm dummy resistors 25a and 25b, the keep-warm dummy resistor 25a arranged near the secondary battery 21a and warming the battery from the outside and the keep-warm dummy resistor 25b arranged near the secondary battery 21b and warming the battery from the outside; a step-up/down circuit 11 which is provided between the secondary batteries and steps up or down an input voltage and supplies the voltage to the secondary batteries; one or a plurality of switches 24a and 24b connected to the keep-warm dummy resistors, step-up/down circuit, and secondary batteries; and a warming control circuit 10a which operates the step-up/down circuit to switch a warming method by power delivery between the secondary batteries and operates the switches to switch a warning method by the warm-keep dummy resistors on the basis of temperature information from the temperature measuring units and battery state information from the battery monitoring circuits.

Description

本発明の実施形態は、複数のリチウムイオン電池と保温用ダミー抵抗を有する電池システムに関する。   Embodiments described herein relate generally to a battery system having a plurality of lithium ion batteries and a warm-in dummy resistor.

一般的に、リチウムイオン電池は低温環境下において内部抵抗が増加し、充放電特性が著しく低下する。このため、電池を外部又は内部から加温して電池温度を上昇させることにより、低温環境下でも常温に近い特性で電池を使用することができる。外部から電池を加温する場合、一般的にヒータが用いられている。   In general, the internal resistance of a lithium ion battery increases in a low temperature environment, and the charge / discharge characteristics are significantly deteriorated. For this reason, a battery can be used with the characteristic close | similar to normal temperature also in a low temperature environment by heating a battery from the inside or outside and raising battery temperature. When the battery is heated from the outside, a heater is generally used.

また、複数のリチウムイオン電池を用いる電池システムでは、複数の電池間で電力の授受を行なう提案がなされている(特許文献1、特許文献2)。このような電池システムは、サブの電池に蓄えられた電力をメインの電池に供給することで長時間の運用を図り、電力授受により電池の温度上昇を図っている。例えば、特許文献1に記載されたハイブリッドカー用電源装置は、温度特性の悪いニッケル水素電池を使用した駆動用二次電池を、温度特性の良い鉛蓄電池を使用した電装用二次電池により加温しており、交互に充放電を行っている。   In addition, in a battery system using a plurality of lithium ion batteries, proposals have been made to transfer power between a plurality of batteries (Patent Documents 1 and 2). Such a battery system is operated for a long time by supplying the power stored in the sub battery to the main battery, and the temperature of the battery is increased by power transfer. For example, a hybrid car power supply device described in Patent Document 1 warms a driving secondary battery using a nickel-metal hydride battery having poor temperature characteristics by an electrical secondary battery using a lead storage battery having good temperature characteristics. The battery is alternately charged and discharged.

特開2003−92805号公報JP 2003-92805 A 特開2003−259508号公報JP 2003-259508 A

しかしながら、組電池では、セル構造、及び複数個のセルを組み合わせた電池モジュール構造など様々な形態があり、必ずしも外部から加温し易い構造になっていない。このため、加温効率が悪く、電池モジュール内部の温度上昇の分布が不均一になる。このため、電池セルの温度や電圧にばらつきが発生し、セル及び電池モジュールが劣化する可能性がある。また、電池容量や電池構造によってはヒータ用の電源容量が増大する。   However, the assembled battery has various forms such as a cell structure and a battery module structure in which a plurality of cells are combined, and is not necessarily structured to be easily heated from the outside. For this reason, the heating efficiency is poor, and the distribution of the temperature rise inside the battery module becomes non-uniform. For this reason, dispersion | variation generate | occur | produces in the temperature and voltage of a battery cell, and a cell and a battery module may deteriorate. Further, depending on the battery capacity and the battery structure, the power supply capacity for the heater increases.

一方、電力授受により内部的に二次電池を加温する場合、自己発熱によりセル内部から温度が上昇するため、電池モジュールの構造物により断熱されることもなく外部からの加温方法に比べて、加温効率が非常に良くなる。   On the other hand, when the secondary battery is heated internally by power transfer, the temperature rises from the inside of the cell due to self-heating, so it is not insulated by the battery module structure, compared to the external heating method. The heating efficiency is very good.

しかし、二次電池には充放電サイクル特性により充放電可能な回数には限度があり、二次電池間で電力授受を頻繁に行えば、本来の二次電池の寿命が短くなる。また、各二次電池が満充電状態である場合、二次電池に空き容量を設けないと、二次電池間での電力授受を開始することができない。   However, there is a limit to the number of times that the secondary battery can be charged / discharged due to the charge / discharge cycle characteristics, and if power is frequently exchanged between the secondary batteries, the life of the original secondary battery is shortened. In addition, when each secondary battery is fully charged, power transfer between the secondary batteries cannot be started unless the secondary battery has a free capacity.

本発明が解決しようとする課題は、電池システム使用時における二次電池の加温に際し、二次電池の保持する電力を効率的に活用すると共に、方式を切り替えることで加温のための二次電池の充放電回数を低減可能な電池システムを提供することにある。   The problem to be solved by the present invention is to efficiently utilize the electric power held by the secondary battery during the heating of the secondary battery when using the battery system, and to switch the system to the secondary for heating. An object of the present invention is to provide a battery system that can reduce the number of times the battery is charged and discharged.

実施形態に係る電池システムによれば、複数の二次電池と、前記複数の二次電池に対応して設けられ、前記二次電池の電池状態を監視する複数の電池監視回路と、前記複数の二次電池に対応して設けられ、前記二次電池の温度を計測する複数の温度計測部と、前記二次電池の近傍に配置され、前記二次電池を外部から加温する1つ以上の保温用ダミー抵抗と、前記複数の二次電池間に設けられ、入力された電圧を昇圧又は降圧して前記複数の二次電池に供給する昇降圧回路と、前記1つ以上の保温用ダミー抵抗に対応して設けられ、前記保温用ダミー抵抗と前記昇降圧回路と前記二次電池とに接続される1つ以上のスイッチと、前記複数の温度計測部からの温度情報と前記複数の電池監視回路からの電池状態情報とに基づき、前記昇降圧回路を動作させて前記二次電池間の電力授受による加温方式と前記スイッチを動作させて前記保温用ダミー抵抗による加温方式とを切り替えて前記二次電池の加温制御を行う加温制御回路とを備えることを特徴とする。   According to the battery system according to the embodiment, a plurality of secondary batteries, a plurality of battery monitoring circuits provided corresponding to the plurality of secondary batteries and monitoring a battery state of the secondary battery, A plurality of temperature measuring units that are provided corresponding to the secondary battery and measure the temperature of the secondary battery, and one or more temperature measuring units that are disposed in the vicinity of the secondary battery and heat the secondary battery from the outside A temperature-retaining dummy resistor, a step-up / step-down circuit provided between the plurality of secondary batteries to increase or decrease an input voltage and supply the voltage to the plurality of secondary batteries, and the one or more heat-retaining dummy resistors One or more switches provided corresponding to the thermal insulation dummy resistor, the step-up / step-down circuit, and the secondary battery, temperature information from the plurality of temperature measurement units, and the plurality of battery monitors The step-up / step-down circuit based on the battery status information from the circuit A heating control circuit for controlling the heating of the secondary battery by switching between a heating method by operating and transferring power between the secondary batteries and a heating method by operating the switch and the warming dummy resistor; It is characterized by providing.

第1の実施形態に係る電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system which concerns on 1st Embodiment. 第1の実施形態に係る電池システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the battery system which concerns on 1st Embodiment.

以下、本発明の実施例に係る電池システムについて、図面を参照しながら詳細に説明する。   Hereinafter, a battery system according to an embodiment of the present invention will be described in detail with reference to the drawings.

第1の実施形態First embodiment

第1の実施形態の電池システムは、低温環境において低下する二次電池の充放電特性を改善するために、複数のリチウムイオン二次電池間で電力の授受を行ない二次電池の内部抵抗による自己発熱を利用して二次電池を加温させる加温方式と、二次電池近傍に配置される保温用ダミー抵抗による発熱を利用して二次電池を加温する加温方式とを有し、二次電池の電圧情報と温度情報とに基づき、前記2つの加温方式を切り替えることを特徴とする。   The battery system according to the first embodiment transfers power between a plurality of lithium ion secondary batteries to improve the charge / discharge characteristics of a secondary battery that deteriorates in a low-temperature environment. It has a heating method that heats the secondary battery using heat generation, and a heating method that heats the secondary battery using heat generation by a dummy resistance for heat retention arranged near the secondary battery, The two heating methods are switched based on voltage information and temperature information of the secondary battery.

図1は、第1の実施形態に係る電池システムの構成を示すブロック図である。電池システムは、発電器2、充電器3、操作入力部5、二次電池モジュール20a,温度計測部23a,23b、スイッチ24a,24b、保温用ダミー抵抗25a,25b、負荷30a,30bを備えている。   FIG. 1 is a block diagram showing the configuration of the battery system according to the first embodiment. The battery system includes a power generator 2, a charger 3, an operation input unit 5, a secondary battery module 20a, temperature measurement units 23a and 23b, switches 24a and 24b, heat insulation dummy resistors 25a and 25b, and loads 30a and 30b. Yes.

発電器2は充電器3の入力端側に接続され、充電器3に充電用の電力を供給する。充電器3の出力側の一端には二次電池モジュール20aとスイッチ24aとが接続され、充電器3の出力側の他端には二次電池モジュール20bとスイッチ24bとが接続されている。充電器3は、二次電池モジュール20aと二次電池モジュール20bとを充電するための充電回路1a、1b、これら充電回路を制御するための充電制御回路10、及び昇降圧回路11を備えている。   The power generator 2 is connected to the input end side of the charger 3, and supplies power for charging to the charger 3. The secondary battery module 20 a and the switch 24 a are connected to one end on the output side of the charger 3, and the secondary battery module 20 b and the switch 24 b are connected to the other end on the output side of the charger 3. The charger 3 includes charging circuits 1a and 1b for charging the secondary battery module 20a and the secondary battery module 20b, a charging control circuit 10 for controlling these charging circuits, and a step-up / down circuit 11. .

二次電池モジュール20a,20bは、二次電池21a,21b、電池監視回路22a,22bを備え、二次電池21a,21bには昇降圧回路11及びスイッチ24a,24bが接続されている。二次電池21a,21bは、通常は充電回路1a、1bからの電力により充電され、通常時以外(例えば、充電回路から電力が供給されない場合)は昇降圧回路11からの電力により充電され、蓄積された電力を負荷30a,30bに供給する。   The secondary battery modules 20a and 20b include secondary batteries 21a and 21b and battery monitoring circuits 22a and 22b, and the step-up / down circuit 11 and switches 24a and 24b are connected to the secondary batteries 21a and 21b. The secondary batteries 21a and 21b are normally charged by the power from the charging circuits 1a and 1b, and are charged and stored by the power from the step-up / down circuit 11 except during normal times (for example, when power is not supplied from the charging circuit). The supplied electric power is supplied to the loads 30a and 30b.

電池監視回路22a,22bは、二次電池21a,21bの電池電圧や電池温度などの電池状態の監視と、電池残容量(SOC:State of charge)の推定を行い、これらの電池状態情報を充電制御回路10に出力する。温度計測部23a,23bは、二次電池モジュール20a,20bの温度を計測し、計測された温度情報を充電制御回路10に出力する。   The battery monitoring circuits 22a and 22b monitor the battery state such as the battery voltage and battery temperature of the secondary batteries 21a and 21b, estimate the battery remaining capacity (SOC), and charge the battery state information. Output to the control circuit 10. The temperature measurement units 23 a and 23 b measure the temperature of the secondary battery modules 20 a and 20 b and output the measured temperature information to the charge control circuit 10.

スイッチ24a,24bは、加温昇温制御回路10aからの保温制御信号によりオン/オフして、オン時に二次電池21a,21bの電荷を保温用ダミー抵抗25a,25bに放電させるように動作する。   The switches 24a and 24b are turned on / off by a heat retention control signal from the warming / temperature raising control circuit 10a, and operate to discharge the charges of the secondary batteries 21a and 21b to the heat insulation dummy resistors 25a and 25b when turned on. .

充電制御回路10は、二次電池21a,21bを充電するための充電回路1a、1bを制御するもので、加温制御回路10aを備えている。加温制御回路10aは、温度計測部23a,23bからの温度情報と電池監視回路22a,22bからの電池状態情報とに基づき、昇降圧回路11を動作させて二次電池21a,21b間の電力授受による加温方式とスイッチ24a,24bを動作させて保温用ダミー抵抗25a,25bによる加温方式とを切り替えて二次電池21a,21bの加温制御を行う。   The charging control circuit 10 controls the charging circuits 1a and 1b for charging the secondary batteries 21a and 21b, and includes a heating control circuit 10a. The heating control circuit 10a operates the step-up / step-down circuit 11 based on the temperature information from the temperature measuring units 23a and 23b and the battery state information from the battery monitoring circuits 22a and 22b, and power between the secondary batteries 21a and 21b. Heating control of the secondary batteries 21a and 21b is performed by switching between the heating method by transfer and the switches 24a and 24b to switch the heating method by the heat-insulating dummy resistors 25a and 25b.

昇降圧回路11は、二次電池モジュール20a,20b間で電力授受を行うために二次電池モジュール20a,20b間に配置され、加温制御回路10aからの加温制御信号により、入力された電圧を昇圧又は降圧して二次電池21a,21bに電力を供給する。
保温用ダミー抵抗25a,25bは、二次電池モジュール20a,20bの近傍に配置され、抵抗による発熱により二次電池モジュール20a,20bを外部から加温する。保温用ダミー抵抗25a,25bの一端には、スイッチ24a,24bが接続され、スイッチ24a,24bの他端には、二次電池21a,21bと昇降圧回路11とが接続されている。
The step-up / step-down circuit 11 is disposed between the secondary battery modules 20a and 20b in order to transfer power between the secondary battery modules 20a and 20b, and is input with a heating control signal from the heating control circuit 10a. Is stepped up or down to supply power to the secondary batteries 21a and 21b.
The thermal insulation dummy resistors 25a and 25b are disposed in the vicinity of the secondary battery modules 20a and 20b, and heat the secondary battery modules 20a and 20b from the outside by heat generated by the resistors. Switches 24a and 24b are connected to one end of the warming dummy resistors 25a and 25b, and the secondary batteries 21a and 21b and the step-up / step-down circuit 11 are connected to the other ends of the switches 24a and 24b.

次に、上記のように構成される第1の実施形態に係る電池システムの動作を説明する。図2は、第1の実施形態に係る電池システムの動作を示すフローチャートである。図2を参照しながら第1の実施形態に係る電池システムの動作を説明する。ここでは、二次電池21a,21bの加温制御について説明する。   Next, the operation of the battery system according to the first embodiment configured as described above will be described. FIG. 2 is a flowchart showing the operation of the battery system according to the first embodiment. The operation of the battery system according to the first embodiment will be described with reference to FIG. Here, the heating control of the secondary batteries 21a and 21b will be described.

この例では、低温起動時に二次電池21a,21b間での電力授受による加温を実施し、その後、運用中に片側の二次電池モジュール20a又は20bの温度が低下した場合に、保温用ダミー抵抗25a,25bによる加温制御を実施し、それ以降は二次電池21a,21bの温度を均一に保持することを想定して説明する。   In this example, warming dummy is performed when warming is performed by power transfer between the secondary batteries 21a and 21b at low temperature startup, and then the temperature of the secondary battery module 20a or 20b on one side decreases during operation. Description will be made assuming that the heating control is performed by the resistors 25a and 25b, and thereafter the temperature of the secondary batteries 21a and 21b is uniformly maintained.

まず、電池システムを起動時に電池システムに異常があるか否かのチェックを行い(ステップS11)、電池システムに異常がない場合には、電池監視回路22a,22bは、二次電池21a,21bの電圧情報を監視し、電池残容量SOCを監視する(ステップS12)。また、温度計測部23a,23bは、二次電池21a,21bの温度を計測し、充電制御回路10に出力する。   First, it is checked whether or not there is an abnormality in the battery system when starting the battery system (step S11). If there is no abnormality in the battery system, the battery monitoring circuits 22a and 22b are connected to the secondary batteries 21a and 21b. The voltage information is monitored, and the battery remaining capacity SOC is monitored (step S12). Further, the temperature measuring units 23 a and 23 b measure the temperatures of the secondary batteries 21 a and 21 b and output them to the charge control circuit 10.

次に、充電制御回路10は、操作入力部5から充放電要求が入力されたかどうかを判定する(ステップS13)。操作入力部5から充放電要求が入力された場合には、充電制御回路10は、温度計測部23a,23bで計測された二次電池21a,21bの温度が低温かどうかを判定する(ステップS14)。   Next, the charge control circuit 10 determines whether or not a charge / discharge request is input from the operation input unit 5 (step S13). When a charge / discharge request is input from the operation input unit 5, the charge control circuit 10 determines whether or not the temperature of the secondary batteries 21a and 21b measured by the temperature measurement units 23a and 23b is low (step S14). ).

二次電池21a,21bの温度が低温である場合、即ち、充放電特性が低下する温度範囲にある場合には、二次電池間の電力授受による加温制御シーケーンスに移行する。二次電池間の電力授受による加温制御シーケーンスでは、実行前に対象となる二次電池21a,21bのSOCを監視する(ステップS15)。   When the temperature of the secondary batteries 21a and 21b is low, that is, when the temperature is in a temperature range where the charge / discharge characteristics are lowered, the process shifts to a heating control sequence based on power transfer between the secondary batteries. In the heating control sequence based on power transfer between the secondary batteries, the SOC of the target secondary batteries 21a and 21b is monitored before execution (step S15).

二次電池21a,21bのいずれもが満充電である場合には(ステップS16のYES)、いずれか一方の保温用ダミー抵抗、例えば、保温用ダミー抵抗25aのスイッチ24aを閉じて、二次電池21aを放電した後(ステップS17)、ステップS20の処理に進む。   If both of the secondary batteries 21a and 21b are fully charged (YES in step S16), either one of the warming dummy resistors, for example, the switch 24a of the warming dummy resistor 25a is closed, and the secondary battery is closed. After discharging 21a (step S17), the process proceeds to step S20.

一方、二次電池21a,21bがともに満充電でない場合には、充電制御回路10は、二次電池21a,21bがともに完放電に近いかどうかを判定する(ステップS18)。二次電池21a,21bがともに完放電に近い場合には、充電制御回路10は、一方の二次電池、例えば、二次電池21aを充電し(ステップS19)、ステップS20の処理に進む。   On the other hand, when both the secondary batteries 21a and 21b are not fully charged, the charging control circuit 10 determines whether or not both the secondary batteries 21a and 21b are nearly completely discharged (step S18). When both the secondary batteries 21a and 21b are close to complete discharge, the charge control circuit 10 charges one secondary battery, for example, the secondary battery 21a (step S19), and proceeds to the process of step S20.

ステップS20の処理では、昇降圧回路11により二次電池21a,21b間の充放電制御を開始する。そして、例えば、一方の二次電池21aを30秒間放電し、5秒間休止し、二次電池21aを30秒間充電し、5秒間休止するようなサイクル制御を行う。このステップの処理は、他方の二次電池21bから見ると、二次電池21bを30秒間充電し、5秒間休止し、二次電池21aを30秒間放電し、5秒間休止となる。計測された温度が所定温度に達した場合に、前述したサイクル制御を停止する(ステップS21〜S22)。あるいは、十分な充放電電流により充放電を行っているにも関わらず、計測された時間がタイマで設定された時間を経過しても、計測された温度が所定温度に達しない場合には、電池システムが異常であると判定しても良い。     In the process of step S20, charge / discharge control between the secondary batteries 21a and 21b is started by the step-up / down circuit 11. Then, for example, cycle control is performed such that one secondary battery 21a is discharged for 30 seconds, paused for 5 seconds, charged with the secondary battery 21a for 30 seconds, and paused for 5 seconds. In the process of this step, when viewed from the other secondary battery 21b, the secondary battery 21b is charged for 30 seconds, paused for 5 seconds, the secondary battery 21a is discharged for 30 seconds, and paused for 5 seconds. When the measured temperature reaches a predetermined temperature, the above-described cycle control is stopped (steps S21 to S22). Or, even when charging / discharging with sufficient charging / discharging current, even if the measured time has passed the time set by the timer, the measured temperature does not reach the predetermined temperature, It may be determined that the battery system is abnormal.

二次電池21a,21b間の電力授受により、計測された温度が目標温度に到達したことで、加温制御を停止した後、操作入力部5からの充放電要求に従い、充放電動作を行う。   When the measured temperature reaches the target temperature due to power transfer between the secondary batteries 21a and 21b, the heating control is stopped, and then the charge / discharge operation is performed according to the charge / discharge request from the operation input unit 5.

この場合、運用中のいずれか一方の二次電池の使用頻度が低い場合、運用過程において二次電池21a,21bの温度が低下することがある。このため、充電制御回路10は、運用中に、二次電池21a,21bの温度が低下したかどうかを判定する(ステップS23)。   In this case, when the usage frequency of one of the secondary batteries in operation is low, the temperature of the secondary batteries 21a and 21b may decrease during the operation process. For this reason, the charge control circuit 10 determines whether the temperature of the secondary batteries 21a and 21b has dropped during operation (step S23).

二次電池21a,21bの温度が低下した場合には、温度計測部23a,23bからの信号により充電制御回路10からスイッチ24a,24bがオンされて、保温用ダミー抵抗25a,25bが充電器3に接続され、保温用ダミー抵抗25a,25bの発熱により二次電池21a,21bが加温される(ステップS24)。さらに、温度計測部23a,23bは、二次電池21a,21bの温度を計測する(ステップS25)。   When the temperature of the secondary batteries 21a and 21b decreases, the switches 24a and 24b are turned on from the charge control circuit 10 by the signals from the temperature measuring units 23a and 23b, and the warming dummy resistors 25a and 25b are connected to the charger 3. And the secondary batteries 21a and 21b are heated by the heat generated by the warming dummy resistors 25a and 25b (step S24). Further, the temperature measuring units 23a and 23b measure the temperatures of the secondary batteries 21a and 21b (step S25).

このように保温動作設定温度によりスイッチ24a,24bが開閉制御されて、使用頻度の少ない二次電池21a,21bの温度低下を防止することができる。   As described above, the switches 24a and 24b are controlled to be opened and closed by the heat-retaining operation set temperature, and the temperature decrease of the secondary batteries 21a and 21b that are not frequently used can be prevented.

このように、第1の実施形態に係る電池システムによれば、二次電池21a,21b間で電力の授受を行ない二次電池21a,21bの内部抵抗による自己発熱を利用して二次電池21a,21bを加温させる加温方式と、電池近傍に配置される保温用ダミー抵抗25a,25bによる発熱を利用して二次電池21a,21bを加温する加温方式とを有し、二次電池21a,21bの電圧情報と温度情報とに基づき前記2つの加温方式を切り替えることで、状況に応じて二次電池21a,21bの加温制御を行うことができる。   As described above, according to the battery system according to the first embodiment, the secondary battery 21a uses the self-heat generated by the internal resistance of the secondary batteries 21a and 21b by transferring power between the secondary batteries 21a and 21b. , 21b, and a heating system that heats the secondary batteries 21a, 21b using heat generated by the thermal insulation dummy resistors 25a, 25b disposed in the vicinity of the battery. By switching the two heating methods based on the voltage information and temperature information of the batteries 21a and 21b, the heating control of the secondary batteries 21a and 21b can be performed according to the situation.

従って、ヒータである保温用ダミー抵抗25a,25bを小型化及び軽量化できるとともに、電力授受による加温方式単独のシステムに比べて二次電池21a,21bの間での電力の授受による充放電回数を抑えることができる電池システムを提供することができる。   Therefore, the heat-insulating dummy resistors 25a and 25b, which are heaters, can be reduced in size and weight, and the number of times of charging and discharging by transferring power between the secondary batteries 21a and 21b as compared to a system of heating method alone by transferring power. It is possible to provide a battery system that can suppress the above.

また、各二次電池21a,21bが満充電状態であっても、無駄に電力を負荷側に捨てずに保温用ダミー抵抗25a,25bを用いることで、エネルギー効率良く二次電池21a,21bの加温を実施することができる。   Moreover, even if each secondary battery 21a, 21b is in a fully charged state, by using the heat-insulating dummy resistors 25a, 25b without wasting power on the load side, the secondary batteries 21a, 21b are energy efficient. Warming can be performed.

一般にリチウムイオン二次電池の充放電サイクル特性はあまり良くないが、例えば、負極材にチタン酸リチウムを採用した充放電サイクル特性の良いリチウムイオン二次電池を用いることで、実施例1の電池システムを有効に活用できる。   In general, the charge / discharge cycle characteristics of a lithium ion secondary battery are not so good. For example, by using a lithium ion secondary battery with good charge / discharge cycle characteristics employing lithium titanate as a negative electrode material, the battery system of Example 1 is used. Can be used effectively.

なお、充放電サイクル特性の良くないリチウムイオン二次電池では、二次電池間で電力授受を頻繁に繰り返すことは、電池寿命を縮めることになるが、低温起動時の1回の動作とするなどの制限を加えることで、実施例1の電池システムを適用することができる。
実施例1の電池システムでは、2つの二次電池モジュール20a,20bを有する電池システムを例示したが、本発明は、3つ以上の二次電池モジュールを有する電池システムにも適用できる。また、保温用ダミー抵抗は必ずしも電池モジュール毎に必要ではないため、一部の保温用ダミー抵抗を削減することができる。
In lithium ion secondary batteries with poor charge / discharge cycle characteristics, frequent power transfer between secondary batteries shortens battery life, but only one operation at low temperature startup. By adding this limitation, the battery system of Example 1 can be applied.
In the battery system of Example 1, a battery system having two secondary battery modules 20a and 20b has been illustrated, but the present invention can also be applied to a battery system having three or more secondary battery modules. Further, since the heat insulation dummy resistors are not necessarily required for each battery module, some of the heat insulation dummy resistors can be reduced.

また、実施例1の電池システムでは、低温起動時に二次電池間の電力授受により内部抵抗による加温制御を実施し、温度が目標温度に到達した以降では、温度低下が発生した場合に保温用ダミー抵抗で二次電池を加温する制御を行ったが、例えば、最初から、二次電池間の電力授受による内部抵抗による加温制御と、保温用ダミー抵抗で二次電池を加温する制御とを併用するようにしても良い。   Moreover, in the battery system of Example 1, the heating control by the internal resistance is performed by the power transfer between the secondary batteries at the time of starting at low temperature, and after the temperature reaches the target temperature, the temperature is maintained when the temperature decreases. Control was performed to heat the secondary battery with a dummy resistor. For example, from the beginning, heating control by internal resistance by power transfer between the secondary batteries and control to heat the secondary battery with a warming dummy resistor And may be used in combination.

あるいは、温度が目標温度に到達した以降に、温度低下が発生した時に、再度、二次電池間の電力授受による内部抵抗による加温制御を実施しても良い。あるいは、少し温度を上げるだけで良い場合には、保温用ダミー抵抗による加温から開始する場合などがあり、状況に応じて様々な制御シーケンスを用いることができる。   Alternatively, when the temperature decreases after the temperature reaches the target temperature, the heating control by the internal resistance by the power transfer between the secondary batteries may be performed again. Alternatively, when it is only necessary to raise the temperature a little, there is a case where heating is started by a dummy resistance for heat retention, and various control sequences can be used depending on the situation.

以上のように、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1a、1b 充電回路
2 発電器
3 充電器
5 操作入力部
10 充電制御回路
10a 加温制御回路
11 昇降圧回路
20a,20b 二次電池モジュール
21a,21b 二次電池
22a,22b 電池監視回路
23a,23b 温度計測部
24a,24b スイッチ
25a,25b 保温用ダミー抵抗
30a,30b 負荷
DESCRIPTION OF SYMBOLS 1a, 1b Charging circuit 2 Generator 3 Charger 5 Operation input part 10 Charging control circuit 10a Heating control circuit 11 Buck-boost circuit 20a, 20b Secondary battery module 21a, 21b Secondary battery 22a, 22b Battery monitoring circuit 23a, 23b Temperature measurement unit 24a, 24b Switch 25a, 25b Thermal insulation dummy resistor 30a, 30b Load

Claims (3)

複数の二次電池と、
前記複数の二次電池に対応して設けられ、前記二次電池の電池状態を監視する複数の電池監視回路と、
前記複数の二次電池に対応して設けられ、前記二次電池の温度を計測する複数の温度計測部と、
前記二次電池の近傍に配置され、前記二次電池を外部から加温する1つ以上の保温用ダミー抵抗と、
前記複数の二次電池間に設けられ、入力された電圧を昇圧又は降圧して前記複数の二次電池に供給する昇降圧回路と、
前記1つ以上の保温用ダミー抵抗に対応して設けられ、前記保温用ダミー抵抗と前記昇降圧回路と前記二次電池とに接続される1つ以上のスイッチと、
前記複数の温度計測部からの温度情報と前記複数の電池監視回路からの電池状態情報とに基づき、前記昇降圧回路を動作させて前記二次電池間の電力授受による加温方式と前記スイッチを動作させて前記保温用ダミー抵抗による加温方式とを切り替えて前記二次電池の加温制御を行う加温制御回路と、
を備えることを特徴とする電池システム。
A plurality of secondary batteries;
A plurality of battery monitoring circuits provided corresponding to the plurality of secondary batteries and monitoring a battery state of the secondary battery;
A plurality of temperature measuring units provided corresponding to the plurality of secondary batteries and measuring the temperature of the secondary battery;
One or more heat-retaining dummy resistors which are arranged in the vicinity of the secondary battery and heat the secondary battery from the outside;
A step-up / step-down circuit that is provided between the plurality of secondary batteries and boosts or steps down an input voltage and supplies the voltage to the plurality of secondary batteries;
One or more switches provided corresponding to the one or more heat insulation dummy resistors and connected to the heat insulation dummy resistor, the step-up / step-down circuit, and the secondary battery;
Based on the temperature information from the plurality of temperature measuring units and the battery state information from the plurality of battery monitoring circuits, the heating and boosting circuit by operating the step-up / step-down circuit and transferring power between the secondary batteries and the switch A heating control circuit for controlling the heating of the secondary battery by operating and switching the heating method by the dummy resistance for heat retention;
A battery system comprising:
前記加温制御回路は、前記複数の二次電池の全てが満充電である場合、前記複数の二次電池の内の1つの二次電池を選択し、選択された二次電池に接続される前記スイッチを閉じて、選択された前記二次電池を前記保温用ダミー抵抗により放電し、電池残量が一定の電池残量に達した場合には前記スイッチを開いて前記二次電池の放電動作を停止し、前記昇降圧回路を制御して、前記放電された二次電池に対して前記放電された二次電池以外の二次電池から充電を行うことを特徴とする請求項1記載の電池システム。   When all of the plurality of secondary batteries are fully charged, the heating control circuit selects one secondary battery among the plurality of secondary batteries and is connected to the selected secondary battery. The switch is closed and the selected secondary battery is discharged by the heat-retaining dummy resistor. When the remaining battery level reaches a certain level, the switch is opened and the secondary battery is discharged. The battery according to claim 1, wherein the battery is charged from a secondary battery other than the discharged secondary battery by controlling the step-up / step-down circuit and controlling the step-up / down circuit. system. 前記複数の二次電池の各々は、リチウムイオン二次電池であることを特徴とする請求項1又は請求項2記載の電池システム。   The battery system according to claim 1, wherein each of the plurality of secondary batteries is a lithium ion secondary battery.
JP2012129663A 2012-06-07 2012-06-07 Battery system Pending JP2013254646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129663A JP2013254646A (en) 2012-06-07 2012-06-07 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129663A JP2013254646A (en) 2012-06-07 2012-06-07 Battery system

Publications (1)

Publication Number Publication Date
JP2013254646A true JP2013254646A (en) 2013-12-19

Family

ID=49951989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129663A Pending JP2013254646A (en) 2012-06-07 2012-06-07 Battery system

Country Status (1)

Country Link
JP (1) JP2013254646A (en)

Similar Documents

Publication Publication Date Title
KR101558674B1 (en) Battery temperature rising system and control method therof
JP5687340B2 (en) Battery control device, battery system
JP5819443B2 (en) Battery control device, battery system
JP6634453B2 (en) Power consumption control device
EP2908378B1 (en) Battery system with selective thermal management group
JP5225519B2 (en) Charge / discharge device and charge / discharge control method
CN103098339B (en) Battery charging control device
JPWO2013021589A1 (en) Equalizing circuit, power supply system, and vehicle
CN106608195A (en) Electric vehicle and battery heating method and system thereof
CN108777339A (en) A kind of lithium ion battery pulsed discharge self-heating method and device
CN203631703U (en) Control circuit of electric car battery heating system
JPWO2013042165A1 (en) VEHICLE BATTERY CONTROL DEVICE AND VEHICLE BATTERY CONTROL METHOD
JPWO2016111106A1 (en) Battery system
JP2014075297A (en) Power storage system
CN109075401A (en) Battery pack and the method to charge to battery pack
CN110828882A (en) Lithium battery
RU2403656C1 (en) Method of using lithium-ion accumulator battery in artificial earth satellite
JP2013149471A (en) Secondary battery control device
CN105051968A (en) Battery and motor vehicle
JP2015037013A (en) Self-heating apparatus for storage battery, self-heating method therefor, and power supply system
JP2016181985A (en) Current controller
JP5861063B2 (en) Power storage device and power supply system
JP6094389B2 (en) Power supply device, electric propulsion vehicle, and secondary battery temperature raising method
JP6411318B2 (en) Charging current setting method, charging method, charging device and actuator
JP2016181327A (en) Power storage system