JP2013253327A - Functional rayon fiber and method for producing the same - Google Patents

Functional rayon fiber and method for producing the same Download PDF

Info

Publication number
JP2013253327A
JP2013253327A JP2012127826A JP2012127826A JP2013253327A JP 2013253327 A JP2013253327 A JP 2013253327A JP 2012127826 A JP2012127826 A JP 2012127826A JP 2012127826 A JP2012127826 A JP 2012127826A JP 2013253327 A JP2013253327 A JP 2013253327A
Authority
JP
Japan
Prior art keywords
tea
rayon fiber
producing
husk
viscose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012127826A
Other languages
Japanese (ja)
Other versions
JP5849378B2 (en
Inventor
Tetsuya Takahashi
哲也 高橋
Katsumi Yoshino
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2012127826A priority Critical patent/JP5849378B2/en
Publication of JP2013253327A publication Critical patent/JP2013253327A/en
Application granted granted Critical
Publication of JP5849378B2 publication Critical patent/JP5849378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a functional rayon fiber having antibacterial properties and deodorant properties more effectively imparted therein while maintaining safety, and to provide a method for producing the same.SOLUTION: The rayon fiber is obtained by adding pulverized tea leaves to the rayon fiber. The method for producing the rayon fiber comprises adding and mixing an aqueous dispersion in which a pulverized material of tea leaves is dispersed, to and with a viscose, and then spinning the viscose.

Description

本発明は、機能性を有するレーヨン繊維およびその製造方法に関する。詳しくは、抗菌性や消臭性などの機能を有する茶殻を含有してなるレーヨン繊維およびその製造方法に関する。   The present invention relates to a functional rayon fiber and a method for producing the same. Specifically, the present invention relates to a rayon fiber containing tea leaves having functions such as antibacterial properties and deodorizing properties, and a method for producing the same.

カテキンなどお茶の水溶性の成分を抽出した抽出分を日常的に利用する物品に含有させることで物品に防菌性などの機能を付与することは広く知られており、特に衛生用途への展開を計ることが試みられている(特許文献1)。一方、衣料用、インテリア用などの繊維製品に、抗菌性、消臭性、UVカット性を付与することが行われている(特許文献2)。また、壁紙等に用いられる繊維製品にも、抗菌性や消臭性を与えることが行われているが機能が十分とは言えない。   It is widely known to add antibacterial and other functions to articles that are used in daily-use articles by extracting the extracted water-soluble components of tea such as catechins, especially for hygiene applications. (Patent Document 1). On the other hand, antibacterial properties, deodorizing properties, and UV-cutting properties are imparted to textile products for clothing and interior use (Patent Document 2). Moreover, although antibacterial property and deodorant property are given also to the textiles used for wallpaper etc., it cannot be said that a function is enough.

このような用途に対して食用に広く用いられているお茶の成分を用いる上記方法は安全性に問題がないことが期待でき、繊維に対しては抽出成分を含浸するとか、混合する方法に加えて、繊維などを成形する際にお茶の有効成分を成形材料に混合することも試みられ、レーヨンを成形する際に有効成分の機能が失われないように脂肪酸あるいはその塩を添加するなどの改良法も知られている(特許文献3)。   The above method using tea ingredients widely used for food for such applications can be expected to have no safety problem. In addition to the method of impregnating or mixing the extract with fibers, In addition, attempts have been made to mix the active ingredients of tea into the molding material when molding fibers and the like, and improvements such as the addition of fatty acids or salts thereof so that the functions of the active ingredients are not lost when molding rayon. The method is also known (Patent Document 3).

特開2004−187732号公報JP 2004-187732 A 特開昭63−300769号公報JP-A-63-300769 特開2010−121229号公報JP 2010-121229 A

上記お茶の抽出成分を用いる方法は一定の効果を与えるものの機能が十分ではなく、安全性は維持しつつ、より効果的に抗菌性とか防臭性を付与した繊維の開発が望まれる。   Although the method using the tea extract component gives a certain effect, its function is not sufficient, and it is desired to develop a fiber having antibacterial and deodorizing properties more effectively while maintaining safety.

本発明者らは上記問題を解決する方法について鋭意検討し特定の茶殻が極めて有効であることを見出し、本発明を完成した。   The inventors of the present invention diligently studied a method for solving the above-mentioned problems, and found that a specific tea husk is extremely effective, thereby completing the present invention.

即ち本発明は、レーヨン繊維の内部に、粉砕した茶殻を含有させてなることを特徴とするレーヨン繊維である。   That is, the present invention is a rayon fiber characterized by containing crushed tea shells inside the rayon fiber.

本発明はまた、ビスコースに茶殻の粉砕物が分散されてなる分散液を添加混合した後、紡糸することを特徴とするレーヨン繊維の製造方法である。   The present invention is also a method for producing rayon fiber, characterized in that a dispersion obtained by dispersing ground tea powder in viscose is added and mixed and then spun.

本発明のレーヨン繊維は極めて抗菌性に優れるものであり、また抽出残分である茶殻を利用すると言う本発明の方法を実施することにより、水等に抽出された成分に比較して極めて効率的に高性能のレーヨン繊維を提供することができ工業的に極めて価値がある。   The rayon fiber of the present invention is extremely excellent in antibacterial properties, and it is extremely efficient compared to components extracted in water or the like by carrying out the method of the present invention that uses tea leaves as the extraction residue. Can provide high-performance rayon fibers and is extremely valuable industrially.

本発明のレーヨン繊維は布団綿、ベッドシーツ、枕カバー、衣料用素材等として本発明に係るレーヨン繊維を用いれば、雑菌を完全に死滅させるために嫌な臭気を除去できる。その上、白癬菌などに対しても抗菌性を有するため、水虫などの皮膚病に対しても効果があり、さらにはダニの忌避効果も期待できる。   If the rayon fiber of the present invention is used as a futon cotton, a bed sheet, a pillow cover, a clothing material, etc., the unpleasant odor can be removed to completely kill germs. In addition, since it has antibacterial properties against ringworm, etc., it is also effective against skin diseases such as athlete's foot, and further, it can be expected to repel mites.

本発明に於いて茶殻とは、ツバキ科ツバキ属の常緑樹であるチャノキ(学名Camellia sinensis)の葉を熱湯などで加熱処理したものを示し、本発明の効果を損なわない範囲で枝とか幹とか根を含んでも構わない。また、緑茶とか紅茶とかウーロン茶、プーアル茶の茶葉のように、加熱処理、発酵処理あるいは半発酵処理、後発酵処理などを施し、茶葉として提供されるようなものであればそれをそのままあるいは、茶のエキスを熱湯等で抽出して利用あるいは除いたものを有効に活用して、あるいは抽出液中に分散した状態でそのまま利用しても良い。   In the present invention, the tea husk refers to a heat-treated tea tree (scientific name Camellia sinensis) leaf, which is an evergreen tree of the camellia family Camellia. May be included. In addition, if it is provided as tea leaves after being subjected to heat treatment, fermentation treatment or semi-fermentation treatment, post-fermentation treatment, such as tea leaves of green tea, black tea, oolong tea, puer tea, etc. The extract extracted with hot water or the like may be used or removed effectively, or may be used as it is in a state dispersed in the extract.

上記茶殻は、粉砕して微粒子として用いるのが好ましく、粉砕方法は公知の種々の方法が適用でき、乾燥した状態で、あるいはスラリー状態で粉砕処理される。具体的にはボールミル、ハンマーミル、ロールクラッシャー、塔式摩砕機等を用いるのが好ましい。粉砕物の粒径としてはレーヨン繊維中に含有できる程度であればよいが、好ましくは茶殻の粉砕物のうち、粒子径1.0μm未満が95%以上であるのが良い。粒子径1.0μm未満のものが95%未満であると、ビスコースに茶殻の粉砕物を添加混合するとビスコースが増粘し、ゲル化を生じる恐れがある。ここで、粒径およびその分布は、縣濁液をフラットなフローセルを通過させて、撮影し画像処理する方法で測定でき、例えば、ベックマン・コールター社製フロー方式粒度分布・画像解析装置RapidVUEを用いて1秒間に10回の高速撮影し画像のノイズ除去、エッジの強調などの補正を行った後、粒子形状の特徴を抽出して数値化して測定されるようなものである。   The tea leaves are preferably pulverized and used as fine particles. Various known methods can be applied as the pulverization method, and the crushed powder is pulverized in a dry state or a slurry state. Specifically, it is preferable to use a ball mill, a hammer mill, a roll crusher, a tower grinder, or the like. The particle size of the pulverized product is not limited as long as it can be contained in the rayon fiber. Preferably, among the crushed product of tea husk, the particle size of less than 1.0 μm is 95% or more. If the particle diameter is less than 1.0 μm and the amount is less than 95%, when the ground material of tea husk is added to and mixed with viscose, the viscosity of the viscose may increase and gelation may occur. Here, the particle size and its distribution can be measured by a method of photographing and image processing by passing the suspension through a flat flow cell. For example, using a flow method particle size distribution / image analysis device RapidVUE manufactured by Beckman Coulter, Inc. In other words, after taking 10 high-speed shots per second and correcting noise such as image noise and edge enhancement, particle shape features are extracted and digitized for measurement.

茶殻の粉砕物は、ドライ条件で製造した場合にも水などに分散させて分散液として用いるのが好ましい。茶殻粉砕物を水に分散させるには、界面活性剤等の適当な分散剤を用いても良いし、また用いなくても良い。水分散液中における茶殻の粉砕物のレーヨン繊維に対する割合は、1〜80質量%であるのが好ましい。さらに好ましくは5〜70質量%である。1質量%未満であると、レーヨン繊維中に含有させる茶殻の粉砕物の数が少なくなり、レーヨン繊維に充分な抗菌性や消臭性が得られない。また、茶殻の粉砕物の添加量が80質量%を超えると紡糸性が低下したり、得られたレーヨン繊維から茶殻の粉砕物が脱落しやすくなったり、或いはレーヨン繊維の強度や伸度等の力学物性が低下したりする傾向があり好ましくないことがある。   Even when the tea crushed product is produced under dry conditions, it is preferably dispersed in water or the like and used as a dispersion. In order to disperse the tea crushed material in water, an appropriate dispersant such as a surfactant may be used or may not be used. It is preferable that the ratio of the ground crushed material to the rayon fiber in the aqueous dispersion is 1 to 80% by mass. More preferably, it is 5-70 mass%. When the amount is less than 1% by mass, the number of ground tea powders contained in the rayon fiber decreases, and sufficient antibacterial and deodorant properties cannot be obtained for the rayon fiber. Moreover, if the added amount of the crushed tea husk exceeds 80% by mass, the spinnability is lowered, the crushed crumb of the tea husk easily falls off from the obtained rayon fiber, or the strength and elongation of the rayon fiber. The mechanical properties tend to decrease, which may be undesirable.

茶殻は、加熱処理や紫外線照射処理をおこなって用いるのが特に、緑茶を用いる場合に好ましく、190℃〜270℃、好ましくは200℃〜250℃、さらに好ましくは210℃〜230℃で、10分間〜60分間、より好ましくは15分間〜40分間の加熱を行って用いるのが良い。また、紫外線照射処理では、茶殻の粉砕物に波長365nmの光量として2.5×10−2J/m〜0.5J/m、好ましくは2.9×10−2J/m〜1.6×10−1J/mの線量の光の照射をおこなって用いるのが好ましい。加熱処理や紫外線照射処理はそれぞれを単独で行うだけで充分な抗菌効果が見られるが、両方とも行ってもよい。 The tea husk is preferably used after being subjected to heat treatment or ultraviolet irradiation treatment, particularly when green tea is used, 190 ° C. to 270 ° C., preferably 200 ° C. to 250 ° C., more preferably 210 ° C. to 230 ° C. for 10 minutes. It is good to use after heating for 60 minutes, more preferably 15 minutes to 40 minutes. In addition, in the ultraviolet irradiation treatment, the amount of light having a wavelength of 365 nm is 2.5 × 10 −2 J / m 2 to 0.5 J / m 2 , preferably 2.9 × 10 −2 J / m 2 It is preferable to perform irradiation with a dose of 1.6 × 10 −1 J / m 2 of light. A sufficient antibacterial effect can be seen by carrying out the heat treatment and the ultraviolet irradiation treatment alone, but both may be carried out.

本発明において、レーヨン繊維を製造するに用いるビスコースとしては、公知のビスコースレーヨン繊維の製造に用いられるもので良く特に制限はない。例えば、セルロース含有率が7〜10質量%程度で、苛性ソーダ等のアルカリがセルロースに対して50〜80質量%程度含有されているビスコースを用いれば良い。ビスコース中には、所望により、各種の金属塩や帯電防止剤等の任意の添加剤が含有されていても良い。さらに、ビスコース代えてセルロースを銅アンモニア水に溶解した溶液やアセチルセルロースの溶液を用いることで茶殻入りのキュプラレーヨン繊維とかアセテートレーヨン繊維としたものも本発明のレーヨン繊維と称する。   In the present invention, the viscose used for producing the rayon fiber is not particularly limited as long as it is used for producing a known viscose rayon fiber. For example, viscose having a cellulose content of about 7 to 10% by mass and an alkali such as caustic soda in an amount of about 50 to 80% by mass with respect to cellulose may be used. Viscose may optionally contain various additives such as various metal salts and antistatic agents. Further, a solution obtained by dissolving cellulose in copper ammonia water instead of viscose or using a solution of acetyl cellulose to make cupra rayon fiber or acetate rayon fiber with tea husk is also referred to as rayon fiber of the present invention.

ビスコースに、茶殻の粉砕物を分散した分散液を加える工程は、ビスコースを紡糸する前であればどこでも構わないが、紡糸する直前に添加して混合するのが最も好ましい。分散液は水分散液とするのが一般的である。   The step of adding the dispersion obtained by dispersing the ground tea powder to the viscose may be anywhere before spinning the viscose, but is most preferably added and mixed immediately before spinning. In general, the dispersion is an aqueous dispersion.

茶殻の粉砕物が分散されてなる分散液をビスコースに加えた後は、通常のレーヨン繊維を製造するのと同様の方法で紡糸することができ紡糸方法については特に制限はない。   After adding the dispersion liquid in which the crushed tea leaves are dispersed to the viscose, spinning can be performed in the same manner as in producing ordinary rayon fiber, and the spinning method is not particularly limited.

例えば、ビスコースを紡糸ノズルから凝固液(液温40〜50℃程度)中に押し出せば良い。凝固液は、硫酸80〜120g/l及び硫酸ソーダ50〜360g/lを主成分として含有するものであるのが一般的である。   For example, viscose may be extruded from a spinning nozzle into a coagulation liquid (liquid temperature of about 40 to 50 ° C.). The coagulation liquid generally contains 80 to 120 g / l sulfuric acid and 50 to 360 g / l sodium sulfate as main components.

凝固液中に押し出されたビスコースは、再生セルロースになると共に凝固し、その後所望により延伸を施されてレーヨン繊維が得られる。   The viscose extruded into the coagulating liquid becomes regenerated cellulose and coagulates, and is then stretched as desired to obtain rayon fibers.

本発明においては、ビスコース中に茶殻の粉砕物が添加混合されているために、レーヨン繊維中に茶殻の粉砕物が含まれた状態のレーヨン繊維が得られる。   In the present invention, since the ground crushed material is added and mixed in the viscose, the rayon fiber in a state where the ground crushed material is contained in the rayon fiber is obtained.

さらに、本発明の構成に基づいて得られるレーヨン繊維に紫外線カット性を付与するために、原料ビスコースに、無機系微粒子のアルミ、チタン、亜鉛、アンチモン、ジルコニウムなどの酸化物あるいは硫酸バリウム、炭酸カルシウム、窒化ホウソ、アルミ酸ストロチウム、硫化亜鉛などを練り込んだり、布帛に有機物のベンゾフェノン系、サリチル酸系、シアノアクリレート系、ベンゾトリアゾール系などの吸収剤を加えても良い。   Furthermore, in order to impart ultraviolet ray cutting properties to the rayon fiber obtained based on the configuration of the present invention, the raw material viscose is made of oxides of inorganic fine particles such as aluminum, titanium, zinc, antimony, zirconium, or barium sulfate, carbonic acid. Calcium, boron nitride, strontium aluminate, zinc sulfide, or the like may be kneaded, or an organic benzophenone-based, salicylic acid-based, cyanoacrylate-based, or benzotriazole-based absorbent may be added to the fabric.

以上のようにして得られたレーヨン繊維は、長繊維のまま用いても良いし、所望の繊維長に切断して短繊維として用いても良い。このようなレーヨン繊維を用いて紡績して糸にすれば、機能性糸となる。また、レーヨン繊維を集積すれば機能性綿状物にすることもできるし、或いはレーヨン繊維相互間を任意の手段で結合すれば機能性不織布にもなる。更に、糸を編織すれば、機能性の編織物となる。得られた不織布や編織物は、例えば衣料用素材として好適に用いることができる。また、ベッドシーツ、枕カバー、毛布、カーペット、壁張り布、ぬいぐるみの生地、カーテン、掛け布、座布団カバー、自動車の内張り布等の素材としても好適に用いることができる。医療用途や介護用途にも幅広く使用できる。   The rayon fiber obtained as described above may be used as a long fiber, or may be cut into a desired fiber length and used as a short fiber. If such a rayon fiber is spun into a yarn, it becomes a functional yarn. Moreover, if rayon fiber is integrated | stacked, it can also be set as a functional cotton-like thing, or if it joins between rayon fibers by arbitrary means, it will also become a functional nonwoven fabric. Furthermore, if the yarn is knitted, it becomes a functional knitted fabric. The obtained non-woven fabric and knitted fabric can be suitably used as a clothing material, for example. It can also be suitably used as a material for bed sheets, pillow covers, blankets, carpets, wall coverings, stuffed fabrics, curtains, quilts, cushion covers, automobile linings, and the like. Can be widely used for medical and nursing care.

以下、実施例に基づいて本発明を説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example.

茶殻の採取方法
発酵方法や発酵度合いなどの製法の異なる市販の3種類の茶葉(緑茶(煎茶、伊藤園が販売する、日本産、おーいお茶)、ウーロン茶(日本茶販売が販売する中国産、中国名茶館・鉄観音茶)、紅茶(三井農林が販売するインド産、こく味ある紅茶))を試料として用いた。ホーロー製鍋に所定量の蒸留水を入れ、所定温度になるまで沸かした後(緑茶は70℃、ウーロン茶は90℃、紅茶は90℃)、所定量の各種の茶葉(水10リットルに茶葉1000g)を加えて30分間煮出した。その後、目開きの細かなステンレス製のメッシュボールを用いて茶を濾した。残された茶殻を採取して用いた。
How to collect tea husks Three types of commercially available tea leaves (green tea (sencha, Japanese tea, sold by ITO EN), oolong tea (Chinese, sold by Japanese tea sales, Chinese name) that differ in the fermentation method, fermentation method, etc. (Teakan / Tetsukannon tea) and black tea (Indian, rich black tea sold by Mitsui Norin) were used as samples. After putting a predetermined amount of distilled water into the enamel pan and boiling until it reaches a predetermined temperature (green tea is 70 ° C, oolong tea is 90 ° C, black tea is 90 ° C), a predetermined amount of various tea leaves (10 liters of water and 1000 g of tea leaves) ) And boiled for 30 minutes. Thereafter, the tea was filtered using a fine mesh ball made of stainless steel. The remaining tea leaves were collected and used.

測定方法
抗菌性試験
黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)を独立行政法人製品評価技術基盤機構より入手し、抗菌性評価に用いた。黄色ブドウ球菌はグラム陽性の球菌であり、食中毒の原因菌であるほか、化膿性疾患の起因菌としても知られている。
Measurement method Antibacterial test Staphylococcus aureus NBRC 12732 was obtained from National Institute of Technology and Evaluation, and used for antibacterial evaluation. Staphylococcus aureus is a Gram-positive cocci that is a causative agent of food poisoning and is also known as a causative agent of purulent diseases.

JIS-L-1902を参考にして、黄色ブドウ球菌を用いて抗菌性の評価試験を実施した。試料である繊維0.20gを採取し、バイアル瓶に挿入した。試料の入った状態のバイアル瓶を121℃で15分間滅菌した。Becton Dickinson社製ペプトン(1.0質量%)とBecton Dickinson社製酵母エキス(0.5質量%)、及び塩化ナトリウム(0.5質量%)を用いて、ペプトン水を所定濃度に調整した。そのペプトン水を用いて黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)を1.0±0.3×10CFU/mlになるように調節した後、その懸濁液0.10mlを試料に接種して密栓した。そして、37±1℃の設定した恒温器内で18時間培養した。 An antibacterial evaluation test was performed using Staphylococcus aureus with reference to JIS-L-1902. A sample, 0.20 g of fiber, was collected and inserted into a vial. The vial containing the sample was sterilized at 121 ° C. for 15 minutes. Peptone water was adjusted to a predetermined concentration using peptone (1.0% by mass) manufactured by Becton Dickinson, yeast extract (0.5% by mass) manufactured by Becton Dickinson, and sodium chloride (0.5% by mass). The peptone water was used to adjust Staphylococcus aureus NBRC 12732 to 1.0 ± 0.3 × 10 5 CFU / ml, and the sample was inoculated with 0.10 ml of the suspension. Sealed. And it culture | cultivated for 18 hours in the thermostat set to 37 +/- 1 degreeC.

培養後のバイアル瓶に、塩化ナトリウム(0.85質量%)とTween 80(0.20質量%)を用いて所定濃度に調整した洗い出し用生理食塩水を10ml加え、菌を振とう分散させた。各々の試料の分散液の原液に対して、塩化ナトリウム(0.85質量%)で作製した生理食塩水を加えて10倍までの所定濃度に希釈した。マンニット食塩培地を用いて11.1質量%に調整した培地に、各々の濃度に希釈した菌液を接種した。その際、培地を4分割して1つの区画に同じ希釈濃度の菌液を5μlずつ5ヶ所に滴下する方法を採用した。37±1℃の恒温器内で、シャーレを44時間倒置培養した。培養後の成育コロニー数を計測し、希釈倍数を乗じて生菌数を算出した。 10 ml of a physiological saline for washing adjusted to a predetermined concentration using sodium chloride (0.85% by mass) and Tween 80 (0.20% by mass) was added to the vial after incubation, and the bacteria were shaken and dispersed. . Against undiluted dispersions of each sample by adding saline prepared in sodium chloride (0.85 wt%) was diluted to a predetermined concentration of up to 10 7 times. A bacterial solution diluted to each concentration was inoculated into a medium adjusted to 11.1% by mass using a mannitol salt medium. At that time, a method was adopted in which the culture medium was divided into four and the bacterial solution having the same dilution concentration was dropped into 5 sections of 5 μl in one compartment. The petri dish was inverted for 44 hours in a 37 ± 1 ° C. incubator. The number of growing colonies after culturing was counted, and the number of viable bacteria was calculated by multiplying by the dilution factor.

[実施例1〜5]
先に示す方法で得られた3種の茶殻に対してマスコロイダーを用いて湿式粉砕処理を行い、茶殻の粉砕物の水分散液(茶殻の粉砕物の質量割合は20質量%)を得た。この茶殻の粉砕物は、ベックマン・コールター社製フロー方式粒度分布・画像解析装置RapidVUEを用いて測定したところその95%以上が粒子径1.0μm未満であり、数平均粒子径0.7μm程度であり、最大粒子径が2.5μmであった。
[Examples 1 to 5]
The three types of tea husks obtained by the method described above were subjected to wet pulverization using a mascolloider to obtain an aqueous dispersion of crushed tea husks (the mass ratio of crushed tea husks was 20% by mass). . The crushed material of the tea husks was measured using a flow method particle size distribution / image analysis device RapidVUE manufactured by Beckman Coulter, Inc., and 95% or more of them were less than 1.0 μm in particle size, and the number average particle size was about 0.7 μm. The maximum particle size was 2.5 μm.

実施例1の場合では、緑茶(煎茶)の茶殻に対してホットプレートを用いて表に示す温度、時間の加熱処理を行った。また、実施例2の場合では、緑茶(煎茶)の茶殻に対して島津製作所製キセノンテスター サンテスタXF-180を用いて所定の照射量の紫外線照射を行った。その際、波長310nmと波長365nmでの照射量を測定した。また、実施例3では粉砕処理したものをそのまま用いた。   In the case of Example 1, a green tea (sencha) tea husk was subjected to heat treatment at the temperatures and times shown in the table using a hot plate. Further, in the case of Example 2, ultraviolet rays having a predetermined irradiation amount were applied to green tea (sencha) tea husk using a xenon tester Sun Tester XF-180 manufactured by Shimadzu Corporation. At that time, irradiation doses at a wavelength of 310 nm and a wavelength of 365 nm were measured. In Example 3, the pulverized product was used as it was.

また、実施例4では緑茶に代えウーロン茶を、実施例5では紅茶を用いて実施例1と同様に行った。   In Example 4, oolong tea was used instead of green tea, and in Example 5, black tea was used.

レーヨン繊維の紡糸方法については、まず原料パルプを約18%の苛性ソーダ水溶液に浸漬し、圧搾・粉砕によりアルカリセルロースを得た。これを老成した後、二硫化炭素を反応させ、セルロースザンテートを得、次いで希釈苛性ソーダ水溶液で溶解し、ビスコースを調整した。このビスコースは、セルロース含有率8.8%、アルカリ含有率5.9%で、粘度が50秒(落球式)であった。紡糸直前の上記のアルカリビスコースに、インジェクションポンプにより上述の3種類の水分散液を定量的且つ連続的に加え、均一に混合した。上記の茶殻の粉砕物を加えて、ビスコース中のセルロース質量に対して60質量%になるように調整した。この後、茶殻の粉砕物を含有したビスコースを、ノズル径0.06mm、孔数10,000の紡糸口金から、紡糸速度68m/分にて、凝固・再生浴中に紡糸した。凝固・再生浴は、硫酸110g/l、芒硝350g/l、硫酸亜鉛15g/lを含有するものであり、その液温は45℃とした。紡糸後は、常法の二浴緊張紡糸法により延伸した後、切断し、繊度1.5デニールで繊維長51mmのレーヨン短繊維を得た。得られたレーヨン短繊維は、乾強度が1.85〜1.15g/dで、乾伸度が11.2〜19.3%であった。これは、通常のビスコースレーヨン短繊維と比較して、ほぼ同程度の強伸度を持つものであった。なお、ウーロン茶、紅茶ともに95%以上が粒子径1.0μm未満であった。   Regarding the spinning method of the rayon fiber, first, the raw material pulp was immersed in an caustic soda aqueous solution of about 18%, and alkali cellulose was obtained by pressing and grinding. After aging this, carbon disulfide was reacted to obtain cellulose xanthate, which was then dissolved in dilute caustic soda solution to prepare viscose. This viscose had a cellulose content of 8.8%, an alkali content of 5.9%, and a viscosity of 50 seconds (falling ball type). The above-mentioned three types of aqueous dispersions were quantitatively and continuously added to the alkali viscose just before spinning by an injection pump and mixed uniformly. The crushed material of the above-mentioned tea husk was added and adjusted to 60 mass% with respect to the mass of cellulose in the viscose. Thereafter, viscose containing ground tea crushed material was spun into a coagulation / regeneration bath at a spinning speed of 68 m / min from a spinneret having a nozzle diameter of 0.06 mm and a hole number of 10,000. The coagulation / regeneration bath contained 110 g / l of sulfuric acid, 350 g / l of sodium sulfate, and 15 g / l of zinc sulfate, and the liquid temperature was 45 ° C. After spinning, the fiber was drawn by a conventional two-bath tension spinning method and then cut to obtain a short rayon fiber having a fineness of 1.5 denier and a fiber length of 51 mm. The obtained rayon short fibers had a dry strength of 1.85 to 1.15 g / d and a dry elongation of 11.2 to 19.3%. This had almost the same high elongation as compared with ordinary viscose rayon staple fibers. In addition, 95% or more of both oolong tea and black tea had a particle size of less than 1.0 μm.

次に、このレーヨン短繊維に対して、抗菌性の評価を行った。表1にその結果を示す。その結果、実施例1、2、4、5に係るレーヨン短繊維の黄色ブドウ球菌に対する抗菌性は、非常に高く現れた。つまり、茶殻を原料として用いたものでは3以外では生菌が全く見られず、非常に優れた抗菌性を示していた。また3でもエキスを用いたものに比較すれば効果的であった。   Next, the antibacterial property was evaluated for the rayon short fibers. Table 1 shows the results. As a result, the antibacterial activity of the short rayon fibers according to Examples 1, 2, 4, and 5 against S. aureus appeared very high. In other words, in the case of using tea husk as a raw material, no viable bacteria were observed except for 3, and very excellent antibacterial property was shown. Also, 3 was more effective than that using the extract.

[比較例1〜3]
実施例1、実施例4、実施例5を行う際に茶殻スラリーに代え、ろ別した抽出液を実施例と同じ分散液量にまで濃縮して用いた他は同様にしてレーヨン繊維を得た。得られたレーヨン繊維を実施例と同様に評価したところ表2に示すように劣る結果であった。
[Comparative Examples 1-3]
A rayon fiber was obtained in the same manner as in Example 1, Example 4 and Example 5, except that instead of the tea husk slurry, the filtered extract was concentrated to the same dispersion amount as in the Example. . When the obtained rayon fiber was evaluated in the same manner as in the Examples, the results were inferior as shown in Table 2.

[比較例4〜6]
比較例4は茶由来成分を含まないレーヨン繊維のケースであり、比較例5、6はそれぞれ茶由来成分を含まない綿、ウールの織物の評価結果である。表2に合わせて示す。
[Comparative Examples 4 to 6]
Comparative Example 4 is a case of rayon fiber not containing tea-derived components, and Comparative Examples 5 and 6 are evaluation results of cotton and wool fabrics not containing tea-derived components, respectively. It shows according to Table 2.

Figure 2013253327
Figure 2013253327

Figure 2013253327
Figure 2013253327

Claims (11)

レーヨン繊維に、粉砕した茶殻を含有させてなることを特徴とするレーヨン繊維。   A rayon fiber comprising a rayon fiber containing crushed tea shells. ビスコースに茶殻の粉砕物が分散されてなる分散液を添加混合した後、紡糸することを特徴とするレーヨン繊維の製造方法。   A method for producing rayon fiber, comprising: adding and mixing a dispersion obtained by dispersing ground tea powder into viscose, followed by spinning. 茶殻の粉砕物は、粒子径1.0μm未満が95%以上である請求項2記載のレーヨン繊維の製造方法。   The method for producing rayon fiber according to claim 2, wherein the ground material of tea husk has a particle size of less than 1.0 µm and is 95% or more. 茶殻の粉砕物の添加混合量が、ビスコース中のセルロース質量に対して1〜80質量%である請求項2又は3記載のレーヨン繊維の製造方法。   The method for producing rayon fiber according to claim 2 or 3, wherein the added amount of the ground tea ground material is 1 to 80% by mass relative to the mass of cellulose in the viscose. 茶殻が、発酵処理あるいは半発酵処理、後発酵処理を施したお茶の茶殻である請求項1記載のレーヨン繊維。   The rayon fiber according to claim 1, wherein the tea husk is a tea husk of tea subjected to fermentation treatment, semi-fermentation treatment, or post-fermentation treatment. 茶殻が、発酵処理あるいは半発酵処理、後発酵処理を施したお茶の茶殻である請求項2〜4の何れか一項記載のレーヨン繊維の製造方法。   The method for producing rayon fiber according to any one of claims 2 to 4, wherein the tea husk is tea husk of tea subjected to fermentation treatment, semi-fermentation treatment, or post-fermentation treatment. 茶殻が緑茶の茶殻である請求項1記載のレーヨン繊維。   The rayon fiber according to claim 1, wherein the tea shell is a green tea tea shell. 茶殻が緑茶の茶殻である請求項2〜4の何れか一項記載のレーヨン繊維の製造方法。   The method for producing rayon fiber according to any one of claims 2 to 4, wherein the tea shell is a green tea tea shell. 茶殻の粉砕物を190℃〜290℃で10分間〜60分間加熱処理したものあるいは、茶殻の粉砕物に波長365nmで2.5×10−2J/m〜0.5J/m線量の光量を照射したものあるいは両方を実施したものを用いる請求項1又は7記載のレーヨン繊維。 Things pulverized tea leaves was heated for 10 minutes to 60 minutes at 190 ° C. to 290 ° C. Alternatively, a wavelength 365nm to pulverized tea leaves 2.5 × 10 -2 J / m 2 ~0.5J / m 2 dose The rayon fiber according to claim 1 or 7, wherein the one irradiated with a light amount or one subjected to both is used. 茶殻の粉砕物を190℃〜290℃で10分間〜60分間加熱した茶殻を用いる請求項2〜4及び8の何れか一項記載のレーヨン繊維の製造方法。   The method for producing rayon fiber according to any one of claims 2 to 4 and 8, wherein a tea husk obtained by heating a crushed tea husk at 190 to 290 ° C for 10 to 60 minutes is used. 茶殻の粉砕物に波長365nmで2.5×10−2J/m〜0.5J/m線量の光量を照射をした茶殻を用いる請求項2〜4及び8の何れか一項記載のレーヨン繊維の製造方法。 The pulverized tea leaves at a wavelength 365nm 2.5 × 10 -2 J / m 2 ~0.5J / m 2 dose amount of used tea leaves that was irradiated according to any one of claims 2-4 and 8 A method for producing rayon fiber.
JP2012127826A 2012-06-05 2012-06-05 Functional rayon fiber and method for producing the same Expired - Fee Related JP5849378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127826A JP5849378B2 (en) 2012-06-05 2012-06-05 Functional rayon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127826A JP5849378B2 (en) 2012-06-05 2012-06-05 Functional rayon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013253327A true JP2013253327A (en) 2013-12-19
JP5849378B2 JP5849378B2 (en) 2016-01-27

Family

ID=49951074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127826A Expired - Fee Related JP5849378B2 (en) 2012-06-05 2012-06-05 Functional rayon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5849378B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592697A (en) * 2019-08-06 2019-12-20 安徽省健熙生物科技有限公司 Preparation method of green tea membrane cloth
CN111809263A (en) * 2020-07-16 2020-10-23 宜宾惠美纤维新材料股份有限公司 Antibacterial and deodorant tea cellulose fiber and preparation method thereof
WO2022124305A1 (en) * 2020-12-07 2022-06-16 香港紡織及成衣研發中心有限公司 Recycled cellulose fiber, method for manufacturing same, and fiber structure including same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109505018B (en) * 2018-11-29 2021-07-16 青岛邦特生态纺织科技有限公司 Antibacterial and anti-mite Tiancha fiber and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247781A (en) * 1999-12-28 2001-09-11 Erubu:Kk Functional formed product and functional composite formed product
JP2005307384A (en) * 2004-04-20 2005-11-04 Adachi Kogyo Kk Tea leaves cellulose composite regenerated fiber and method for producing the same
JP2007107127A (en) * 2005-10-12 2007-04-26 Adachi Kogyo Kk Fibrous structural material consisting of regenerated cellulose fiber
JP2008057089A (en) * 2006-09-04 2008-03-13 Kami Shoji Kk Functional paper compounded with used tea leaves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247781A (en) * 1999-12-28 2001-09-11 Erubu:Kk Functional formed product and functional composite formed product
JP2005307384A (en) * 2004-04-20 2005-11-04 Adachi Kogyo Kk Tea leaves cellulose composite regenerated fiber and method for producing the same
JP2007107127A (en) * 2005-10-12 2007-04-26 Adachi Kogyo Kk Fibrous structural material consisting of regenerated cellulose fiber
JP2008057089A (en) * 2006-09-04 2008-03-13 Kami Shoji Kk Functional paper compounded with used tea leaves

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592697A (en) * 2019-08-06 2019-12-20 安徽省健熙生物科技有限公司 Preparation method of green tea membrane cloth
CN111809263A (en) * 2020-07-16 2020-10-23 宜宾惠美纤维新材料股份有限公司 Antibacterial and deodorant tea cellulose fiber and preparation method thereof
WO2022124305A1 (en) * 2020-12-07 2022-06-16 香港紡織及成衣研發中心有限公司 Recycled cellulose fiber, method for manufacturing same, and fiber structure including same

Also Published As

Publication number Publication date
JP5849378B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
CN100521943C (en) Inorganic/organic nano composite antibacterial agent and its fabric product application
CN106637498A (en) Preparation method of self-fragrance natural antibacterial and deodorizing fiber and application thereof
CN105908280B (en) A kind of antibacterial viscose fiber and preparation method thereof
CN104294595A (en) Production process for anti-bacterial deodorant textile
JP5849378B2 (en) Functional rayon fiber and method for producing the same
CN107955995B (en) A kind of multifunctional protein fiber
CN111394820A (en) Preparation method of multifunctional regenerated cellulose fiber with antiviral, antibacterial and anti-mite functions
KR20130075466A (en) Fabrication of electrospun nanocomposite fibers containing germanium and silica
CN100535208C (en) Nano silver-bamboo-charcoal dispersing liquid and method for preparing nano silver-bamboo-charcoal fiber
CN102304783A (en) Preparation method of antibacterial anti-flaming protein viscose fiber
CN110273218A (en) A kind of Wormwood fiber bedding and preparation method thereof
KR20170019514A (en) Composition for making antibacterial and deodorant non-weaven fabric product, method of producing the compostion, non-weaven fabric product comprising the composition, and the method for making the fabric product
CN105821503A (en) Pearl antifungal fiber containing multiple amino acids and microelement and preparing method thereof
CN105821507A (en) Natural antibacterial skin-care polypropylene fiber and preparation method thereof
CN109868525A (en) A kind of preparation method of high intensity seaweed and polyvinyl alcohol blending fiber
CN108670897A (en) A kind of Efficient antibacterial wet tissue composition and preparation method thereof
WO2008003243A1 (en) Calamine viscose fiber, its process for preparing and application
CN106065502A (en) A kind of Margarita antibacterial yarn with anti-ultraviolet, radiation proof function and preparation method thereof
KR102158145B1 (en) A method for preparing antibacterial fiber
CN101732757A (en) Method for preparing biological calcium alginate antimicrobial dressing
CN106757459B (en) A kind of antibacterial mite-resistant cellulose viscose and preparation method containing sophora alopecuroides extract
CN102851768A (en) Production method of durable composite antibiotic fibers
JP2006241627A (en) Antibacterial fiber, method for producing the same and antibacterial textile product
JP2571738B2 (en) Non-woven
CN105316785B (en) A kind of preparation method of argy wormwood fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151116

R150 Certificate of patent or registration of utility model

Ref document number: 5849378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees