JP2013252530A - Bend straightening method of electric cobalt plate - Google Patents

Bend straightening method of electric cobalt plate Download PDF

Info

Publication number
JP2013252530A
JP2013252530A JP2012128495A JP2012128495A JP2013252530A JP 2013252530 A JP2013252530 A JP 2013252530A JP 2012128495 A JP2012128495 A JP 2012128495A JP 2012128495 A JP2012128495 A JP 2012128495A JP 2013252530 A JP2013252530 A JP 2013252530A
Authority
JP
Japan
Prior art keywords
electric cobalt
electric
plate
bending
cobalt plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012128495A
Other languages
Japanese (ja)
Other versions
JP5807615B2 (en
Inventor
Toru Kitazaki
徹 北崎
Hidekazu Aoki
英和 青木
Kazumi Takenaka
和己 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012128495A priority Critical patent/JP5807615B2/en
Publication of JP2013252530A publication Critical patent/JP2013252530A/en
Application granted granted Critical
Publication of JP5807615B2 publication Critical patent/JP5807615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bend straightening method of an electric cobalt plate that can efficiently perform straightening of bending.SOLUTION: In two or more electric cobalt plates A obtained by electrowinning, those with small bending are disposed to the highest rung and the lowest rung, are piled in a direction in which bending becomes convex up, and annealed. Straightening of bending can be efficiently performed by annealing. Because the electric cobalt plate A with small bending is disposed to the highest rung, straightening of bending can be sufficiently performed only by its own weight. Because the electric cobalt plate A with small bending is disposed to the lowest rung, influence to the electric cobalt plate A in an upper rung decreases. Because it is piled to a direction that becomes convex up, collapse can be prevented and straightening of bending can be performed by its own weight.

Description

本発明は、電気コバルト板の曲がり矯正方法に関する。電解採取により得られた電気コバルト板は切断機で切断して矩形の小片とされる。本発明は、電気コバルト板を切断機で切断する際に割れないように、その曲がりを矯正する技術に関する。   The present invention relates to a method for correcting the bending of an electric cobalt plate. The electrocobalt plate obtained by electrowinning is cut by a cutting machine into rectangular pieces. The present invention relates to a technique for correcting the bending so that the electric cobalt plate is not broken when it is cut by a cutting machine.

ニッケルやコバルトを回収する湿式製錬においては、ニッケルマットやMS(Mix Sulfide:ニッケルとコバルトの混合硫化物)を原料として塩素浸出を行い、原料中のニッケルやコバルトを水溶液中に浸出させることが行われる。そして、ニッケルやコバルトが浸出された浸出液を用いて電解採取することにより電気ニッケルや電気コバルトを得ている(例えば、特許文献1)。   In hydrometallurgical recovery of nickel and cobalt, chlorine leaching is performed using nickel matte or MS (mixed sulfide of nickel and cobalt) as raw material, and nickel and cobalt in the raw material are leached into an aqueous solution. Done. Then, electrolytic nickel and electrolytic cobalt are obtained by electrolytic collection using a leachate from which nickel or cobalt has been leached (for example, Patent Document 1).

電解採取により電気コバルトは縦横が約1m×約0.8m、厚さが10〜12mm、重量が80〜90kgの電気コバルト板として得られる。このような電気コバルト板は、取り扱いを容易にするため、例えば25mm四方の矩形の小片に切断して製品とされる。電気コバルト板の切断は切断機により行われる。この切断機はシャーによる押し切りにより電気コバルト板を縦、横に切断して、所定寸法の小片にするものである(例えば、特許文献2)。   Electrolytic cobalt is obtained as an electrocobalt plate having a length and width of about 1m x about 0.8m, a thickness of 10 to 12mm, and a weight of 80 to 90kg. Such an electric cobalt plate is made into a product by, for example, cutting it into rectangular pieces of 25 mm square for easy handling. The electric cobalt plate is cut by a cutting machine. This cutting machine cuts an electric cobalt plate vertically and horizontally by pressing with a shear to make small pieces of a predetermined size (for example, Patent Document 2).

ところで、電解採取により得られた電気コバルト板は、電気ニッケル板に比べて平坦性が悪くその中央が凸になるように曲るという性質を有する。これは、コバルトの電解採取においては、不導体であるオキシ水酸化コバルト(CoOOH)がアノード表面で発生しやすく、アノード側の電流密度分布が不均一になる。これに伴いコバルトが析出するカソード側も影響を受け、電気コバルト板が曲がるほどにカソード側の電流密度分布が不均一になる。一方、ニッケルの電解採取においては、アノード側でオキシ水酸化物は発生しないため、カソード側の電流密度分布は比較的均一であり、電気ニッケル板の曲がりは少ない。このように、電気ニッケル板に比べて電気コバルト板の方が、平坦性が悪くなるのが一般的である。   By the way, the electrocobalt plate obtained by electrowinning has a property that the flatness is worse than that of the electronickel plate and the center of the electrocobalt plate is bent so as to be convex. This is because in cobalt electrowinning, cobalt oxyhydroxide (CoOOH), which is a nonconductor, is easily generated on the anode surface, and the current density distribution on the anode side becomes uneven. Along with this, the cathode side on which cobalt is deposited is also affected, and the current density distribution on the cathode side becomes non-uniform as the electric cobalt plate is bent. On the other hand, in nickel electrowinning, no oxyhydroxide is generated on the anode side, so the current density distribution on the cathode side is relatively uniform and the electric nickel plate is less bent. Thus, the flatness of the electric cobalt plate is generally worse than that of the electric nickel plate.

曲がりが大きい電気コバルト板は、切断機で切断する際に割れてしまうという問題がある。電気コバルト板が割れると切断工程を中断して破片を除去しなければならないため生産効率が悪化する。   There is a problem that an electric cobalt plate having a large bend is broken when it is cut by a cutting machine. If the electric cobalt plate is cracked, the cutting process must be interrupted to remove the debris, thus deteriorating the production efficiency.

特に、生産量を増加させるために電解採取の電流密度を高くすると、上記の問題は顕著となる。電解採取の電流密度を高くすると単位時間当たりの電着量が増加して電気コバルト板を厚くすることができ、その分生産量を増加させることができる。しかし、電気コバルト板を厚くするほど平坦性は悪化する傾向にあるからである。   In particular, when the current density of electrowinning is increased in order to increase the production amount, the above problem becomes remarkable. When the current density of electrolytic collection is increased, the amount of electrodeposition per unit time can be increased and the electric cobalt plate can be made thicker, and the production amount can be increased accordingly. However, the flatness tends to deteriorate as the electric cobalt plate becomes thicker.

上記の問題を解決するためには、曲がりが大きい電気コバルト板を切断機に挿入する前に曲がりを矯正する必要がある。その方法として、電気コバルト板をプレス機で加圧して曲がりを矯正する方法が考えられる。
ところが、電気コバルトは硬く(ビッカース硬さ約200〜250HV)脆いため、プレス機で加圧すると割れてしまう場合がある。特に電解採取により得られた電気コバルト板は、溶解、凝固させて得られた金属コバルトの鋳造品に比べて組織が密となり、硬く割れやすいという性質を有する。そのためプレス機により電気コバルト板の曲がりを矯正する方法は効率的ではなかった。
In order to solve the above problem, it is necessary to correct the bend before inserting the electric cobalt plate having a large bend into the cutting machine. As the method, a method of correcting the bending by pressing the electric cobalt plate with a press machine is conceivable.
However, since electric cobalt is hard (Vickers hardness: about 200 to 250 HV) and brittle, it may be cracked when pressed with a press. In particular, an electrocobalt plate obtained by electrowinning has a property that the structure is denser and harder and more easily cracked than a cast metal cobalt product obtained by melting and solidifying. Therefore, the method of correcting the bending of the electric cobalt plate with a press is not efficient.

特開平11−236630号公報Japanese Patent Laid-Open No. 11-236630 特開2009−196039号公報JP 2009-196039 A

本発明は上記事情に鑑み、効率良く曲がりを矯正できる電気コバルト板の曲がり矯正方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for correcting the bending of an electric cobalt plate that can efficiently correct the bending.

第1発明の電気コバルト板の曲がり矯正方法は、電解採取により得られた電気コバルト板を焼き鈍すにあたり、複数枚の前記電気コバルト板を、そのうち曲がりが小さいものを最上段および最下段に配置し、曲がりが上に凸となる向きに積み重ねることを特徴とする。
第2発明の電気コバルト板の曲がり矯正方法は、第1発明において、炉内温度を800〜1200℃で10〜15時間保持した後、200℃以下まで炉冷して、前記電気コバルト板を焼き鈍すことを特徴とする。
第3発明の電気コバルト板の曲がり矯正方法は、第1または第2発明において、前記電気コバルト板の焼き鈍しに要する時間を、電解採取において該電気コバルト板が得られる時間と略同一とすることを特徴とする。
In the method of correcting the bending of the electric cobalt plate according to the first aspect of the present invention, when annealing the electric cobalt plate obtained by electrowinning, a plurality of the electric cobalt plates are arranged in the uppermost and lowermost stages, of which the bending is small. , It is characterized by being stacked in a direction in which the bend is convex upward.
The method for correcting the bending of the electric cobalt plate according to the second invention is the method according to the first invention, wherein the furnace temperature is held at 800 to 1200 ° C. for 10 to 15 hours and then cooled to 200 ° C. or lower to baked the electric cobalt plate. It is characterized by blunting.
The bending correction method for the electric cobalt plate according to the third aspect of the present invention is that, in the first or second aspect, the time required for annealing the electric cobalt plate is substantially the same as the time for obtaining the electric cobalt plate in electrolytic collection. Features.

第1発明によれば、電気コバルト板を焼き鈍すことにより効率良く曲がりを矯正できる。また、最上段に曲がりが小さい電気コバルト板を配置するので、自重のみでも十分に曲がりを矯正できる。また、最下段に曲がりが小さい電気コバルト板を配置するので、その電気コバルト板の曲がりの上段の電気コバルト板への影響が少なくなる。さらに、電気コバルト板は曲がりが上に凸となる向きに積み重ねられているので、荷崩れを防止でき、自重で曲がりを矯正できる。
第2発明によれば、炉内温度が800℃より低いと焼き鈍しが不十分となり、炉内温度が1200℃を超え得ると曲がりの矯正には過剰なエネルギーを消費するため、炉内温度を800〜1200℃とすれば、電気コバルト板の曲がりを十分に矯正でき、かつ過剰なエネルギー消費を防止できる。また、200℃より高い温度で焼鈍炉を開けると炉壁のレンガが破損する恐れがあるので、200℃以下まで炉冷すれば、炉壁のレンガが破損することを防止できる。
第3発明によれば、焼き鈍しと電解採取の操業サイクルを同期できるので、電気コバルト板が滞留することなく、焼鈍炉の遊び期間がなく、効率的に操業できる。
According to the first invention, the bending can be efficiently corrected by annealing the electric cobalt plate. In addition, since the electric cobalt plate with a small bend is arranged at the uppermost stage, the bend can be sufficiently corrected only by its own weight. In addition, since the electric cobalt plate having a small bend is arranged at the lowermost stage, the influence on the electric cobalt plate at the upper stage of the bend of the electric cobalt plate is reduced. Furthermore, since the electric cobalt plates are stacked in such a direction that the bend is convex upward, the collapse of the load can be prevented and the bend can be corrected by its own weight.
According to the second invention, if the furnace temperature is lower than 800 ° C., annealing becomes insufficient, and if the furnace temperature can exceed 1200 ° C., excessive energy is consumed for the correction of bending, so the furnace temperature is set to 800 ° C. If it is set to -1200 degreeC, the bending of an electric cobalt board can fully be corrected, and excessive energy consumption can be prevented. Moreover, if the annealing furnace is opened at a temperature higher than 200 ° C, the bricks on the furnace wall may be damaged. Therefore, if the furnace is cooled to 200 ° C or lower, the bricks on the furnace wall can be prevented from being damaged.
According to the third invention, the operation cycle of annealing and electrowinning can be synchronized, so that the electric cobalt plate does not stay, there is no play period of the annealing furnace, and the operation can be performed efficiently.

焼鈍炉の説明図である。It is explanatory drawing of an annealing furnace. 電気コバルトの製造工程図である。It is a manufacturing-process figure of an electric cobalt.

つぎに、本発明の実施形態を図面に基づき説明する。
まず、図2に基づき電気コバルトの製造工程について説明する。
電解採取により電気コバルト板が得られる。一般に電解採取は湿式製錬の一工程として実施される。例えば、ニッケルやコバルトを回収する湿式製錬においては、ニッケルマットやMS(Mix Sulfide:ニッケルとコバルトの混合硫化物)を原料として塩素浸出を行い、原料中のニッケルやコバルトを水溶液中に浸出させる。その浸出液を溶媒抽出により塩化ニッケル液と塩化コバルト液とに分離する。得られた塩化コバルト液を電解液として電解採取することにより電気コバルト板が得られる。なお、電解採取に用いられる電解液の液種としては硫酸浴と塩化物浴があるが、上記の湿式製錬においては塩化物浴での電解採取が採用されている。
Next, an embodiment of the present invention will be described with reference to the drawings.
First, the production process of electrolytic cobalt will be described with reference to FIG.
An electrolytic cobalt plate is obtained by electrowinning. Generally, electrowinning is performed as a process of hydrometallurgy. For example, in wet smelting to recover nickel and cobalt, chlorine leaching is performed using nickel matte or MS (Mix Sulfide: mixed sulfide of nickel and cobalt) as a raw material, and nickel and cobalt in the raw material are leached into an aqueous solution. . The leachate is separated into a nickel chloride solution and a cobalt chloride solution by solvent extraction. An electrolytic cobalt plate is obtained by electrolytically collecting the obtained cobalt chloride solution as an electrolytic solution. In addition, although there exist a sulfuric acid bath and a chloride bath as a kind of electrolyte solution used for electrowinning, electrowinning in a chloride bath is adopted in the above-mentioned wet smelting.

得られる電気コバルト板のサイズは電解採取の条件により変わり特に限定されないが、例えば縦横が約1m×約0.8m、厚さが10〜12mm、重量が80〜90kgである。また、電気コバルト板は電気ニッケル板に比べて平坦性が悪くその中央が凸になるように曲るという性質を有する。そして、曲がりが大きい電気コバルト板は、後工程で小片に切断する際に割れてしまう場合がある。例えば、電気コバルト板を水平面に静置させたとき、その電気コバルト板の一番高い部分の水平面からの高さが40mmを超えるくらい曲がりが大きいと、切断機で切断する際に割れる可能性が高くなる。そのため、切断機の挿入口を高さ40mmのスリット状として、それより曲がりの大きな電気コバルト板は切断機に挿入できないようにしている。しかし、曲がりが大きい電気コバルト板は切断機に挿入できず、作業が停滞してしまう。   The size of the obtained electrocobalt plate varies depending on the conditions of electrolytic collection, and is not particularly limited. For example, the length and width are about 1 m × about 0.8 m, the thickness is 10 to 12 mm, and the weight is 80 to 90 kg. In addition, the electric cobalt plate has a property that the flatness is worse than that of the electric nickel plate and the center of the electric cobalt plate is bent. And an electric cobalt board with big bending may be cracked when cut | disconnecting to a small piece at a post process. For example, when the electric cobalt plate is placed on a horizontal surface, if the height of the highest portion of the electric cobalt plate from the horizontal surface is so large that it exceeds 40 mm, it may break when cutting with a cutting machine. Get higher. For this reason, the insertion port of the cutting machine has a slit shape with a height of 40 mm so that an electric cobalt plate having a larger bend cannot be inserted into the cutting machine. However, the electrocobalt plate with a large bend cannot be inserted into the cutting machine, and the work is stagnant.

そこで、電解採取により得られた電気コバルト板のうち曲がりが大きいものは、その曲がりを矯正する。そのため、電気コバルト板を曲がりの大きいものと曲がりの小さいものとに選り分ける。例えば、電気コバルト板を水平面に静置させたとき、その電気コバルト板の一番高い部分の水平面からの高さが40mmを超えるものを曲がりの大きい電気コバルト板とし、40mm以下のものを曲がりの小さい電気コバルト板とするなど、所定の基準を設けて選り分ける。この基準は電気コバルト板の性質や切断機の性能など、種々の条件を考慮して最適値が定められる。   Then, the thing with a big curvature among the electric cobalt plates obtained by electrowinning corrects the curvature. For this reason, the electric cobalt plate is classified into one having a large bend and one having a small bend. For example, when an electric cobalt plate is placed on a horizontal plane, the electric cobalt plate whose height from the horizontal plane of the highest portion of the electric cobalt plate exceeds 40 mm is regarded as a large electric cobalt plate, and those having a height of 40 mm or less are bent. Select a specific standard, such as a small electric cobalt plate. For this standard, an optimum value is determined in consideration of various conditions such as the properties of the electric cobalt plate and the performance of the cutting machine.

曲がりの小さい電気コバルト板は直接切断機に挿入して小片に切断する。一方、曲がりの大きい電気コバルト板は焼き鈍しをして曲がりを矯正した後、切断機に挿入して小片に切断する。この電気コバルト板の曲がりを矯正する工程が本発明の適用箇所である。   An electric cobalt plate with a small bend is inserted directly into a cutting machine and cut into small pieces. On the other hand, an electric cobalt plate having a large bend is annealed to correct the bend, and then inserted into a cutting machine and cut into small pieces. The process of correcting the bending of the electric cobalt plate is an application location of the present invention.

電気コバルト板は、取り扱いを容易にするため、例えば25mm四方の矩形の小片に切断して製品とされる。電気コバルト板を切断する切断機は、シャーによる押し切りにより電気コバルト板を縦、横に切断して、所定寸法の小片にするものである。   The electric cobalt plate is made into a product by cutting into rectangular pieces of 25 mm square, for example, in order to facilitate handling. A cutting machine that cuts an electric cobalt plate cuts the electric cobalt plate vertically and horizontally by pressing with a shear to make small pieces of a predetermined size.

つぎに、本発明の一実施形態に係る電気コバルト板の曲がり矯正方法について説明する。
図1に示すように、電気コバルト板Aを焼鈍炉1に装入して焼き鈍すことにより、その曲がりを矯正する。焼き鈍しに用いる焼鈍炉1は特に限定されないが、例えば、炉内に設けられた炭素棒11に通電して発熱させる電気炉などを用いることができる。また、炉内温度を測定する温度計12を有し炉内温度を制御できることが好ましく、真空排気口13やガス導入口14が設けられ炉内雰囲気を調整できることが好ましい。
Next, a method for correcting the bending of an electric cobalt plate according to an embodiment of the present invention will be described.
As shown in FIG. 1, the bending is corrected by charging the electric cobalt plate A into the annealing furnace 1 and annealing. Although the annealing furnace 1 used for annealing is not particularly limited, for example, an electric furnace that generates heat by energizing a carbon rod 11 provided in the furnace can be used. Further, it is preferable to have a thermometer 12 for measuring the temperature in the furnace and to control the temperature in the furnace, and it is preferable to provide a vacuum exhaust port 13 and a gas introduction port 14 to adjust the furnace atmosphere.

焼鈍炉1には複数枚の電気コバルト板Aを積み重ねて装入する。積み重ねられる電気コバルト板Aの枚数は、焼鈍炉1のサイズにより定まり特に限定されないが、例えば数枚から十数枚である。   A plurality of electric cobalt plates A are stacked and charged in the annealing furnace 1. The number of the electric cobalt plates A to be stacked is determined by the size of the annealing furnace 1 and is not particularly limited, but is, for example, several to a dozen.

電気コバルト板Aは、曲がりが上に凸となる向きに積み重ねられる。このように積み重ねることで、その縁部分が接地し安定するので荷崩れを防止できる。また、電気コバルト板Aは縁近傍が大きく曲がる傾向があるが、その縁部分を接地させることにより自重で曲がりを矯正できる。   The electric cobalt plate A is stacked in a direction in which the curve is convex upward. By stacking in this way, the edge portion is grounded and stabilized, so that load collapse can be prevented. In addition, the electric cobalt plate A tends to bend greatly in the vicinity of the edge, but the bending can be corrected by its own weight by grounding the edge portion.

また、積み重ねられる電気コバルト板Aのうち比較的曲がりが小さいものを最上段および最下段に配置する。最上段の電気コバルト板Aは、その上に他の電気コバルト板Aが載らないので上方から押さえつける力が働かず、自重のみで曲がりを矯正する必要がある。この点最上段に曲がりが小さい電気コバルト板Aを配置すれば、自重のみでも十分に曲がりを矯正できる。また、最下段に曲がりが大きい電気コバルト板Aを配置すると、その曲により上段の電気コバルト板Aが押し上げられ、上段の電気コバルト板Aの形状に影響する。この点最下段に曲がりが小さい電気コバルト板Aを配置すれば、上段の電気コバルト板Aへの影響が少なくなる。   Further, among the electric cobalt plates A to be stacked, those having relatively small bends are arranged at the uppermost stage and the lowermost stage. The uppermost electric cobalt plate A does not have another electric cobalt plate A on it, so that the pressing force does not work from above, and it is necessary to correct the bending only by its own weight. If the electric cobalt plate A having a small bend is arranged at the uppermost point, the bend can be sufficiently corrected only by its own weight. Further, when the electric cobalt plate A having a large bend is arranged at the bottom, the upper electric cobalt plate A is pushed up by the bend, and the shape of the upper electric cobalt plate A is affected. If the electric cobalt plate A with a small bend is arranged at the lowest stage in this respect, the influence on the upper electric cobalt plate A is reduced.

焼鈍炉1内の雰囲気調整は、まず真空排気口13に真空ポンプなどを接続して焼鈍炉1内を真空にし、つぎにガス導入口14から酸素濃度100ppm以下の窒素ガスを導入して焼鈍炉1内に封入することが好ましい。このようにすれば、電気コバルト板Aの表面の酸化を防止することができる。なお、酸素濃度が100ppmを上回ると、電気コバルト板Aの表面に薄い酸化層が形成されて色が黒ずんでしまうため外観不良となる。   The atmosphere in the annealing furnace 1 is adjusted by first connecting a vacuum pump or the like to the vacuum exhaust port 13 to evacuate the inside of the annealing furnace 1 and then introducing nitrogen gas having an oxygen concentration of 100 ppm or less from the gas inlet 14 to the annealing furnace. It is preferable to enclose in 1. In this way, oxidation of the surface of the electric cobalt plate A can be prevented. If the oxygen concentration exceeds 100 ppm, a thin oxide layer is formed on the surface of the electric cobalt plate A and the color becomes dark, resulting in poor appearance.

また、焼き鈍しの条件は、まず炉内温度を800〜1200℃まで昇温し、その温度で10〜15時間保持した後、200℃以下まで炉冷することが好ましい。炉内温度が800℃より低いと焼き鈍しが不十分となり電気コバルト板Aの曲がり矯正が不十分となる。また、炉内温度が1200℃を超え得ると曲がりの矯正には過剰なエネルギーを消費する。そのため、炉内温度を800〜1200℃とすれば、電気コバルト板Aの曲がりを十分に矯正でき、かつ過剰なエネルギー消費を防止できる。また、200℃より高い温度で焼き鈍しを終了し、焼鈍炉1を開けると炉壁のレンガが破損する恐れがある。200℃以下まで炉冷すれば、炉壁のレンガが破損することを防止できる。   The annealing condition is preferably that the furnace temperature is first raised to 800 to 1200 ° C., held at that temperature for 10 to 15 hours, and then cooled to 200 ° C. or lower. When the furnace temperature is lower than 800 ° C., the annealing is insufficient and the bending correction of the electric cobalt plate A is insufficient. Also, if the furnace temperature can exceed 1200 ° C, excessive energy is consumed to correct the bending. Therefore, if the furnace temperature is set to 800 to 1200 ° C., the bending of the electric cobalt plate A can be sufficiently corrected, and excessive energy consumption can be prevented. Moreover, if the annealing is finished at a temperature higher than 200 ° C. and the annealing furnace 1 is opened, the bricks on the furnace wall may be damaged. If the furnace is cooled to 200 ° C or less, the bricks on the furnace wall can be prevented from being damaged.

また、上記条件を満たしつつ、電気コバルト板Aの焼き鈍しに要する時間を、電解採取において電気コバルト板が得られる時間と略同一とすることが好ましい。このようにすれば、焼き鈍しと電解採取の操業サイクルを同期できるので、電気コバルト板Aが焼き鈍し工程で滞留することがなく、また焼鈍炉1の遊び期間がないので、効率的に操業できる。例えば、電解採取により電気コバルト板が得られる時間が7日間である場合、炉内温度、保持時間、焼鈍炉1を開ける温度などを調整し、電気コバルト板Aの焼き鈍しを約7日間とする。このように、焼き鈍しの条件を調整することにより焼き鈍しに要する時間を電解採取に要する時間に合わせることができる。   In addition, it is preferable that the time required for annealing the electric cobalt plate A is substantially the same as the time required for obtaining the electric cobalt plate by electrowinning while satisfying the above conditions. In this way, since the annealing and electrowinning operation cycles can be synchronized, the electric cobalt plate A does not stay in the annealing process, and there is no play period of the annealing furnace 1, so that it can be operated efficiently. For example, when the time for obtaining the electric cobalt plate by electrowinning is 7 days, the temperature in the furnace, the holding time, the temperature at which the annealing furnace 1 is opened are adjusted, and the annealing of the electric cobalt plate A is set to about 7 days. Thus, the time required for annealing can be matched with the time required for electrowinning by adjusting the annealing conditions.

以上のように電気コバルト板Aを焼き鈍しすれば、プレス機で加圧して曲がりを矯正する場合のように割れてしまうことがないので、効率良く曲がりを矯正できる。そして、電気コバルト板Aを切断機で小片に切断する際に割れることを防止できる。
なお、焼き鈍しをしても曲がりの矯正が不十分となる恐れもあるが、焼き鈍しをした後の電気コバルト板Aは軟化しているので、そのまま切断機で切断しても割れることなく、切断することができる。
If the electric cobalt plate A is annealed as described above, the bending can be efficiently corrected because the electric cobalt plate A is not cracked as in the case where the bending is corrected by pressing with a press. And it can prevent that the electric cobalt plate A is broken when it is cut into small pieces with a cutting machine.
In addition, even if annealing is performed, the correction of bending may be insufficient, but since the electric cobalt plate A after annealing is softened, it is cut without being broken even if it is cut with a cutting machine as it is. be able to.

なお、上記のように電気コバルト板を曲がりの大きいものと曲がりの小さいものとに選り分けて、曲がりが大きいもののみ焼き鈍す以外に、電解採取で得られた全ての電気コバルト板を焼き鈍してもよい。しかし、選り分けた方が、焼き鈍しに必要なエネルギーを低減でき、作業員の手間も低減できるので好ましい。   In addition, it is possible to anneal all the electrocobalt plates obtained by electrowinning in addition to annealing the electrocobalt plate having a large bend and the small bend as described above, and annealing only the large bend. . However, it is preferable to select them because the energy required for annealing can be reduced and the labor of workers can be reduced.

つぎに実施例について説明する。
(実施例)
上記実施形態のように、9枚の電気コバルト板を、曲がりが上に凸となる向きに積み重ねて焼鈍炉に装入した。つぎに、炉内雰囲気を酸素濃度100ppm以下の窒素ガスとした。つぎに、炉内温度を1100℃に昇温して15時間保持した後、炉冷した。そして昇温開始から156時間後に炉内温度が30℃まで冷却されていることを確認して、電気コバルト板を焼鈍炉から取り出した。
焼鈍炉から取り出した電気コバルト板を切断機に装入して小片に切断した結果、切断機で割れた電気コバルト板は1枚もなかった。
Next, examples will be described.
(Example)
As in the above-described embodiment, nine electrocobalt plates were stacked in a direction in which the curve is convex upward and charged into the annealing furnace. Next, the furnace atmosphere was nitrogen gas with an oxygen concentration of 100 ppm or less. Next, the furnace temperature was raised to 1100 ° C. and held for 15 hours, and then the furnace was cooled. Then, after confirming that the temperature in the furnace was cooled to 30 ° C. after 156 hours from the start of temperature increase, the electric cobalt plate was taken out from the annealing furnace.
The electric cobalt plate taken out from the annealing furnace was loaded into a cutting machine and cut into small pieces. As a result, no electric cobalt plate was broken by the cutting machine.

(比較例)
9枚の電気コバルト板を、曲がりが下に凸となる向きに積み重ねて焼鈍炉に装入した。それ以外の条件は実施例と同条件として電気コバルト板の焼き鈍しを行った。
その結果、電気コバルト板の曲がりが十分に矯正されていなかった。そのため、プレス機により曲がりの矯正を行ったが、その過程において2枚の電気コバルト板が割れた。
(Comparative example)
Nine electric cobalt plates were stacked in a direction in which the bends protrude downward, and charged into the annealing furnace. The other conditions were the same as in the example, and the electric cobalt plate was annealed.
As a result, the bending of the electric cobalt plate was not sufficiently corrected. For this reason, bending was corrected with a press machine, but in the process, two electric cobalt plates broke.

以上のように、電気コバルト板を、曲がりが上に凸となる向きに積み重ねることにより、曲がりが矯正されやすいことが分かった。   As described above, it was found that the bending is easily corrected by stacking the electric cobalt plates in a direction in which the bending is convex upward.

A 電気コバルト板
1 焼鈍炉
11 炭素棒
12 温度計
13 真空排気口
14 ガス導入口
A Electric cobalt plate 1 Annealing furnace 11 Carbon rod 12 Thermometer 13 Vacuum exhaust port 14 Gas inlet

Claims (3)

電解採取により得られた電気コバルト板を焼き鈍すにあたり、
複数枚の前記電気コバルト板を、そのうち曲がりが小さいものを最上段および最下段に配置し、曲がりが上に凸となる向きに積み重ねる
ことを特徴とする電気コバルト板の曲がり矯正方法。
In annealing the electric cobalt plate obtained by electrowinning,
A method for correcting the bending of an electric cobalt plate, wherein a plurality of the electric cobalt plates are arranged in an uppermost stage and a lowermost stage, and the electric cobalt plates are stacked in a direction in which the bending is convex upward.
炉内温度を800〜1200℃で10〜15時間保持した後、200℃以下まで炉冷して、前記電気コバルト板を焼き鈍す
ことを特徴とする請求項1記載の電気コバルト板の曲がり矯正方法。
The method for correcting the bending of an electric cobalt plate according to claim 1, wherein the electric cobalt plate is annealed by holding the furnace temperature at 800-1200 ° C for 10-15 hours and then cooling to 200 ° C or less. .
前記電気コバルト板の焼き鈍しに要する時間を、電解採取において該電気コバルト板が得られる時間と略同一とする
ことを特徴とする請求項1または2記載の電気コバルト板の曲がり矯正方法。
The method for correcting the bending of an electric cobalt plate according to claim 1 or 2, wherein the time required for annealing the electric cobalt plate is substantially the same as the time required for obtaining the electric cobalt plate by electrowinning.
JP2012128495A 2012-06-06 2012-06-06 Bending correction method for electric cobalt plate Active JP5807615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128495A JP5807615B2 (en) 2012-06-06 2012-06-06 Bending correction method for electric cobalt plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128495A JP5807615B2 (en) 2012-06-06 2012-06-06 Bending correction method for electric cobalt plate

Publications (2)

Publication Number Publication Date
JP2013252530A true JP2013252530A (en) 2013-12-19
JP5807615B2 JP5807615B2 (en) 2015-11-10

Family

ID=49950494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128495A Active JP5807615B2 (en) 2012-06-06 2012-06-06 Bending correction method for electric cobalt plate

Country Status (1)

Country Link
JP (1) JP5807615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003346A (en) * 2014-06-16 2016-01-12 住友金属鉱山株式会社 Removal method of deposit on insoluble electrode
CN112044982A (en) * 2020-07-29 2020-12-08 宝钛特种金属有限公司 Vacuum creep heating leveling treatment method for titanium and titanium alloy sheet thin plate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839769A (en) * 1981-09-03 1983-03-08 Toshiba Corp Flattening method for mo plate
JPS62280386A (en) * 1986-05-30 1987-12-05 Furukawa Mining Co Ltd Method for electrolyzing high-purity metal
JPS63115617A (en) * 1986-10-31 1988-05-20 Kobe Steel Ltd Annealing of metal made large plate sheet stock
JPH0199720A (en) * 1987-10-09 1989-04-18 Tokyo Tungsten Co Ltd Jig for correcting flatness of thin sheet
JPH02250916A (en) * 1989-03-22 1990-10-08 Takasago Tekko Kk Production of flat thin and medium steel sheet with high hardness
JPH09157734A (en) * 1995-12-11 1997-06-17 Nippon Light Metal Co Ltd Method for correcting strain of metal-made annular plate material
JPH10289446A (en) * 1997-04-15 1998-10-27 Kobe Steel Ltd Device and production for magnetic disk substrate
JPH1129899A (en) * 1997-07-09 1999-02-02 Res Dev Corp Of Japan Metallic cobalt or cobalt-base alloy, having surface controlled at atomic level, and its production
JPH11323430A (en) * 1998-05-18 1999-11-26 Nippon Light Metal Co Ltd Laminate annealing of plate
JP2009196039A (en) * 2008-02-21 2009-09-03 Sumitomo Metal Mining Co Ltd Cutting device of cathode plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839769A (en) * 1981-09-03 1983-03-08 Toshiba Corp Flattening method for mo plate
JPS62280386A (en) * 1986-05-30 1987-12-05 Furukawa Mining Co Ltd Method for electrolyzing high-purity metal
JPS63115617A (en) * 1986-10-31 1988-05-20 Kobe Steel Ltd Annealing of metal made large plate sheet stock
JPH0199720A (en) * 1987-10-09 1989-04-18 Tokyo Tungsten Co Ltd Jig for correcting flatness of thin sheet
JPH02250916A (en) * 1989-03-22 1990-10-08 Takasago Tekko Kk Production of flat thin and medium steel sheet with high hardness
JPH09157734A (en) * 1995-12-11 1997-06-17 Nippon Light Metal Co Ltd Method for correcting strain of metal-made annular plate material
JPH10289446A (en) * 1997-04-15 1998-10-27 Kobe Steel Ltd Device and production for magnetic disk substrate
JPH1129899A (en) * 1997-07-09 1999-02-02 Res Dev Corp Of Japan Metallic cobalt or cobalt-base alloy, having surface controlled at atomic level, and its production
JPH11323430A (en) * 1998-05-18 1999-11-26 Nippon Light Metal Co Ltd Laminate annealing of plate
JP2009196039A (en) * 2008-02-21 2009-09-03 Sumitomo Metal Mining Co Ltd Cutting device of cathode plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003346A (en) * 2014-06-16 2016-01-12 住友金属鉱山株式会社 Removal method of deposit on insoluble electrode
CN112044982A (en) * 2020-07-29 2020-12-08 宝钛特种金属有限公司 Vacuum creep heating leveling treatment method for titanium and titanium alloy sheet thin plate
CN112044982B (en) * 2020-07-29 2022-08-12 宝钛特种金属有限公司 Vacuum creep heating leveling treatment method for titanium and titanium alloy sheet thin plate

Also Published As

Publication number Publication date
JP5807615B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
US8628646B2 (en) Grooved anode for electrolysis cell
JP5807615B2 (en) Bending correction method for electric cobalt plate
US9150975B2 (en) Electrorefiner system for recovering purified metal from impure nuclear feed material
CN108220569A (en) A kind of method for preventing small blade blank heat-treatment distortion in steam turbine
KR20140010004A (en) Electrolytic oxide reduction system
KR101455326B1 (en) Device for separating metal deposit from a cathode
JP2021161496A (en) Lithium-ion battery waste treatment method
CN101343759B (en) Cathode stripping device
KR101714113B1 (en) Anode shroud for off-gas capture and removal from electrolytic oxide reduction system
US20120205254A1 (en) Contact bar assembly, system including the contact bar assembly, and method of using same
CN104233369B (en) Device for fixing lower edges of copper electrolytic refining anode plates at equal intervals
AU2008217567B9 (en) Self dunnaged cathode bundle
Maccagni New approaches on non ferrous metals electrolysis
CA1049956A (en) Electrolytic deposition of metals
WO2011157893A1 (en) Method and apparatus for securing together stripped metal deposit sheets
JP6362029B2 (en) Nickel sulfide raw material processing method
CN102839266A (en) Production method for cold-rolled pole steel with yield strength being 250MPa
WO2014019070A1 (en) Method and apparatus for starter sheet stripping
CN102560553A (en) Electrolytic aluminum anode capable of inhibiting deformation of steel claws
US10337084B2 (en) Method and carrier for transporting reductant such as coke into a metallurgical furnace and production method of the carrier
AU762788B2 (en) Starting cathodes made of copper band for copper electrolysis and a method for the production thereof
JP7210827B2 (en) Pretreatment method for recovery of at least one of Ni or Co
KR101448341B1 (en) Manufacturing method for electrolytic lead
JP5034249B2 (en) Lead acid battery
KR20230132940A (en) Method for extracting cobalt from disposed cathode material of secondary battery using mixed solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent or registration of utility model

Ref document number: 5807615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150