JP2013252117A - Method and apparatus for proliferation and activation of fibroblast - Google Patents

Method and apparatus for proliferation and activation of fibroblast Download PDF

Info

Publication number
JP2013252117A
JP2013252117A JP2012130996A JP2012130996A JP2013252117A JP 2013252117 A JP2013252117 A JP 2013252117A JP 2012130996 A JP2012130996 A JP 2012130996A JP 2012130996 A JP2012130996 A JP 2012130996A JP 2013252117 A JP2013252117 A JP 2013252117A
Authority
JP
Japan
Prior art keywords
electric field
fibroblasts
skin
fibroblast
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012130996A
Other languages
Japanese (ja)
Other versions
JP2013252117A5 (en
JP6122585B2 (en
Inventor
Hiroyuki Kasano
宏之 笠野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Ltd
Original Assignee
Polytronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Ltd filed Critical Polytronics Ltd
Priority to JP2012130996A priority Critical patent/JP6122585B2/en
Priority to PCT/JP2013/065648 priority patent/WO2013183695A1/en
Publication of JP2013252117A publication Critical patent/JP2013252117A/en
Publication of JP2013252117A5 publication Critical patent/JP2013252117A5/en
Application granted granted Critical
Publication of JP6122585B2 publication Critical patent/JP6122585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/205Applying electric currents by contact electrodes continuous direct currents for promoting a biological process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2529/00Culture process characterised by the use of electromagnetic stimulation

Abstract

PROBLEM TO BE SOLVED: To provide an electric treatment method and an electric apparatus which are based on discovery by experiments and clinical trials, have extremely high safety and can easily proliferate and activate a fibroblast since a fibroblast existing in dermis or the like under the skin is a basic cell that can secrete an extracellular matrix in a supporting tissue (a connective tissue) in the body, a conventional method for proliferating/activating a fibroblast artificially comprises applying a relatively high voltage/electrical field and this method may cause the deterioration in safety or the damage to the skin.SOLUTION: As a result of repeated experiments and clinical trials, it is found that a fibroblast can be physiologically activated and can self-propagate by applying a far lower electric field than those employed in conventional methods. Consequently, it is confirmed that electrical field intensity of 0.001 to 0.3 V/cm is a proper electrical field region to be applied to a subepidermal region. On the basis of this confirmation, a method and an apparatus both for proliferating/activating a fibroblast by applying such an electrical field are invented. The electrical apparatus is so adapted that a battery composed of a metal and a semiconductor material having different electrical affinities from each other is used as a skin attachment tool.

Description

本発明は、線維芽細胞を自己増殖しかつ生理活性化させる方法とその装置に関する。   The present invention relates to a method and apparatus for self-proliferating and bioactivating fibroblasts.

線維芽細胞は、身体の支持組織(結合組織)においてたんぱく質、多糖類、糖タンパクなどの細胞外マトリクスを分泌する基本的細胞である。皮下脂肪領域では線維芽細胞が脂肪細胞に変化し、また軟骨細胞にも変化する。血管内壁の細胞も線維芽細胞が作り出す。特に皮膚においては、真皮や皮下組織に分布し、真皮ではコラーゲン、ヒアルロン酸、エラスチン、プロテオグリカンなどのたんぱく質、ムコ多糖類、糖たんぱく質を分泌して繊維状結合組織を作り出し、表皮を支えている。   Fibroblasts are basic cells that secrete extracellular matrices such as proteins, polysaccharides and glycoproteins in the body's supporting tissue (connective tissue). In the subcutaneous fat region, fibroblasts change into adipocytes and also into chondrocytes. Fibroblasts also produce cells on the inner wall of blood vessels. In particular, in the skin, it is distributed in the dermis and subcutaneous tissue. In the dermis, proteins such as collagen, hyaluronic acid, elastin, and proteoglycan, mucopolysaccharides, and glycoproteins are secreted to form a fibrous connective tissue to support the epidermis.

皮膚が外傷により破損すると、線維芽細胞は損傷部位に遊走し、活性化して破損箇所に細胞外マトリクスを生成供給する性質がある。これが皮膚の外傷自然治癒のプロセスであるが、線維芽細胞の遊走と生理活性化が電気的性質によるものであり、負極配向性を示すことに着目して、傷に通電することによって治癒を促進しようとする医療行為が、主に米国で行われている(非特許文献1)。非通電の場合に比べて通電治癒では傷が1.5〜2.5倍の速度で治癒していくという臨床報告もなされている(非特許文献2)。この様な傷の治療が実際に線維芽細胞の働きとどのように関係するのかを調べるために、皮膚線維芽細胞の印加電界依存性が in vitro で測定された(非特許文献3)。多孔性フィルター上に播種した後培養したヒト皮膚の未分化線維芽細胞 をガラス容器内の培養液中に浸漬し電界を印加した実験結果を示す図6によれば、線維芽細胞の生理活性度は明らかな電界依存性を示し、また自己増殖(DNA増殖)についてもほぼ同様の電界依存性が示された。   When the skin is damaged by trauma, the fibroblasts migrate to the damaged site and are activated to generate and supply an extracellular matrix to the damaged site. This is the process of natural healing of skin wounds, but the migration and physiological activation of fibroblasts is due to electrical properties, and focusing on the negative electrode orientation promotes healing by energizing the wound Medical practice to be performed is mainly performed in the United States (Non-patent Document 1). There has also been a clinical report that wounds are healed at a rate 1.5 to 2.5 times higher than in the case of non-energization (Non-Patent Document 2). In order to examine how treatment of such wounds is actually related to the action of fibroblasts, the applied electric field dependence of skin fibroblasts was measured in vitro (Non-patent Document 3). According to FIG. 6 showing the experimental results of applying an electric field by immersing undifferentiated fibroblasts of human skin seeded on a porous filter and culturing in a culture solution in a glass container, the physiological activity of fibroblasts is shown. Showed a clear electric field dependence, and the self-propagation (DNA proliferation) showed almost the same electric field dependence.

図6(A)はパルス電界を印加したときの正負極から中間的距離におかれた線維芽細胞の電界依存性を電界非印加時を標準として相対比で示したデータであり、同図(B)は同じ実験で負極近傍、正極近傍に置かれた線維芽細胞のデータと対比して示したもの、である。各図の横軸は、電極間に印加された電圧を示す。各実験における正負電極間距離は7.5cmである。図6のグラフ内矢印で示すように線維芽細胞が分泌するプロテインは、電極間印加電圧を電界強度に直すと17.8V/cmで産生量がピークに達し、またDNA合成(自己増殖)は同様の計算の仕方で約20V/cmに生成ピークを持ち、ほぼ13〜30V/cmの印加電界の範囲で線維芽細胞が生理活性化し、自己増殖することがわかる。図6(B)から、負極近傍で活性化が強く現れていることがわかり、この活性化領域で線維芽細胞は明瞭な負極配向性を示すことがわかる。図6(A)からわかるように、印加電圧が260V近傍(印加電界強度換算で約35V/cm)を超えると、逆に線維芽細胞の生理活性度及び自己増殖は抑制される。   FIG. 6 (A) is data showing the electric field dependence of fibroblasts placed at an intermediate distance from the positive and negative electrodes when a pulsed electric field is applied as a relative ratio with no electric field applied as a standard. B) is shown in comparison with the data of fibroblasts placed in the vicinity of the negative electrode and the positive electrode in the same experiment. The horizontal axis of each figure shows the voltage applied between the electrodes. The distance between the positive and negative electrodes in each experiment is 7.5 cm. As shown by the arrows in the graph of FIG. 6, the protein secreted by fibroblasts reaches a peak at 17.8 V / cm when the applied voltage between the electrodes is changed to the electric field strength, and DNA synthesis (self-replication) It can be seen that the same calculation method has a generation peak at about 20 V / cm, and fibroblasts are physiologically activated and self-proliferate in the range of an applied electric field of about 13 to 30 V / cm. FIG. 6 (B) shows that activation appears strongly in the vicinity of the negative electrode, and it can be seen that fibroblasts exhibit a clear negative electrode orientation in this activated region. As can be seen from FIG. 6A, when the applied voltage exceeds about 260 V (approx. 35 V / cm in terms of applied electric field strength), the physiological activity and self-growth of fibroblasts are conversely suppressed.

L.C.Kloth and J.M.McCullock; Advances in Wound Care, vol.9, No.5 (1996) pp.42-45L.C.Kloth and J.M.McCullock; Advances in Wound Care, vol.9, No.5 (1996) pp.42-45 P.J.Carley and S.F.Wainaipel; Arch. Phys. Med, Rehabil., Vol.66 (1985) pp.443-445P.J.Carley and S.F.Wainaipel; Arch. Phys. Med, Rehabil., Vol. 66 (1985) pp.443-445 G.B. Bourguignon and L.Y.W. Bourguignon; FASEB J. (1987) pp.398-402G.B.Bourguignon and L.Y.W.Bourguignon; FASEB J. (1987) pp.398-402 S.Tokumoto et al. ; Int. J. Pharm. 3/(2006) pp.13-19S. Tokumoto et al.; Int. J. Pharm. 3 / (2006) pp.13-19

前記した電界印加による線維芽細胞の生理活性化及び自己増殖は、実用上重要な技術であるが、生体に適用する場合危険を伴う。すなわち、前記した米国における創傷治療は、表皮が損傷消失している第2期〜第4期の重症患者に対して行われており、感染の危険を伴うので医師などの医療専門家が行っている。これに対して、表皮が損傷を受けていない状態で前記技術を適用し非侵襲的に線維芽細胞を生理活性化、自己増殖させようとすれば、表皮上に配置された電極間に電圧を印加することになる。表皮のもっとも上には厚さ20μm程度の角質層があり、それより下の皮膚層に比べて電気抵抗が数桁高い(上腕部で100kΩ)。したがって印加電圧の大半は表皮角質層にかかる。角質層は非常に緻密な構造を持っているが、100V以上の電気パルスを数回印加しただけで簡単に組織秩序が一時的に破壊され、巨大分子も容易に皮内に侵入できることがわかっている(たとえば、非特許文献4)。このために、表皮上電極から皮膚に電圧を印加する場合、真皮領域に13〜30V/cmの電界強度を付与することは事実上困難である(その過程で角質層の秩序が一時的に破壊されるのでウイルス感染やアレルゲン侵入を引き起こす危険に直面する)。電圧が数百V以上に及んだり、持続的に100V以上の電圧を印加した場合、損傷を受けた角質層秩序は容易に回復しない。
本発明は、角質層や表皮に悪影響を与えることなく線維芽細胞の活性化及び増殖を可能にする線維芽細胞の増殖・活性化方法及びその装置を提供することを目的とする。
The above-described physiological activation and self-proliferation of fibroblasts by application of an electric field are practically important techniques, but are dangerous when applied to a living body. That is, the above-mentioned wound treatment in the United States is carried out for severe patients in the second to fourth stages in which the epidermis has been damaged and disappeared, and is accompanied by the risk of infection, so it is performed by a medical professional such as a doctor. Yes. On the other hand, if the technique is applied in a state where the epidermis is not damaged and the fibroblasts are non-invasively physiologically activated and self-propagated, a voltage is applied between the electrodes arranged on the epidermis. Will be applied. There is a stratum corneum layer having a thickness of about 20 μm at the top of the epidermis, and its electric resistance is several orders of magnitude higher than the skin layer below it (100 kΩ at the upper arm). Therefore, most of the applied voltage is applied to the epidermal stratum corneum. The stratum corneum has a very dense structure, but it has been found that the tissue order can be easily destroyed by simply applying an electric pulse of 100 V or more several times, and macromolecules can easily enter the skin. (For example, Non-Patent Document 4). For this reason, when a voltage is applied to the skin from the electrode on the epidermis, it is practically difficult to give an electric field strength of 13 to 30 V / cm to the dermis region (the stratum corneum is temporarily destroyed in the process) Faced with the risk of causing viral infection and allergen invasion). Damaged stratum corneum order is not easily recovered when the voltage reaches several hundred volts or higher, or when a voltage of 100 volts or higher is applied continuously.
An object of the present invention is to provide a method and apparatus for proliferating and activating fibroblasts that enables the activation and proliferation of fibroblasts without adversely affecting the stratum corneum and the epidermis.

本発明は、培養性環境に在る線維芽細胞に、0.001〜0.3V/cmの強度の電界を持続的に付与することによって、当該電界付与の通電領域の線維芽細胞を、自己増殖させ、生理活性化させる線維芽細胞増殖・活性化方法を開示する。   The present invention continuously applies an electric field having an intensity of 0.001 to 0.3 V / cm to fibroblasts in a culture environment, thereby allowing fibroblasts in the energized region of the electric field application to self- A method for proliferating and activating fibroblasts that is proliferated and physiologically activated is disclosed.

更に本発明は、培養性環境に在る線維芽細胞を増殖・活性化させるための線維芽細胞増殖・活性化装置であって、
電源と、該電源に導線によってつながり、且つ、上記培養性環境内又はその近傍に裁置可能な第1、第2の電極と、を具え、上記電源は、培養性環境内で0.001〜0.3V/cmの電界を発生させるような容量とし、この通電領域の線維芽細胞を増殖させ、生理活性化させるための線維芽細胞増殖・活性化装置を開示する。
Furthermore, the present invention is a fibroblast proliferation / activation device for growing and activating fibroblasts in a culture environment,
A power source, and a first electrode and a second electrode connected to the power source by a conductive wire and disposed in or near the culture environment. The power source is 0.001 to 0.001 in the culture environment. Disclosed is a fibroblast proliferation / activation device for increasing the capacity to generate an electric field of 0.3 V / cm, and for proliferating and physiologically activating fibroblasts in this energized region.

更に本発明は、培養性環境に在る線維芽細胞を増殖活性化させるための線維芽細胞増殖・活性化装置であって、金属層と、この金属層に導線によってつながり且つこの金属層と電子親和力を異にする半導体層と、接触面を持ち、この接触面にこの金属層と半導体層とが接触し、この接触面と反対側の面が培養性環境に在る皮膚面に皮接可能とする電解質層と、を具え、上記電子親和力を異にする金属層と半導体層とは、上記培養性環境に在る皮膚面内の表皮領域の線維芽細胞を増殖させ、生理活性化させるべく、その培養性環境内で0.001〜0.3V/cmの電界を発生させるような容量を持つものとする線維芽細胞増殖・活性化装置を開示する。   Furthermore, the present invention is a fibroblast proliferation / activation device for proliferating and activating fibroblasts in a culture environment, wherein the metal layer is connected to the metal layer by a conductive wire, and the metal layer and the electron are connected to each other. It has a semiconductor layer with different affinity and a contact surface. This metal layer and the semiconductor layer are in contact with this contact surface, and the surface opposite to this contact surface can touch the skin surface in the culture environment. The metal layer and the semiconductor layer having different electron affinities in order to proliferate and physiologically activate fibroblasts in the epidermis region in the skin surface in the culture environment. Discloses a fibroblast proliferation / activation device having a capacity to generate an electric field of 0.001 to 0.3 V / cm in the culture environment.

更に本発明は、上記金属層と半導体層とは、シート上に所定の間隔幅を持って短冊状に配置され、且つその短冊状の金属層と半導体層とに交叉するように上記電極が配置されて成るものとする請求項3記載の線維芽細胞増殖・活性化装置を開示する。   Further, in the present invention, the metal layer and the semiconductor layer are disposed in a strip shape with a predetermined interval width on the sheet, and the electrode is disposed so as to intersect the strip-shaped metal layer and the semiconductor layer. A fibroblast proliferation / activation device according to claim 3 is disclosed.

本発明によれば、極めて低い電界強度で線維芽細胞の活性化及び自己増殖を実現できることになった。   According to the present invention, fibroblast activation and self-proliferation can be realized with extremely low electric field strength.

本発明の線維芽細胞の増殖・活性化用の電気装置の実施例図である。It is an Example figure of the electric apparatus for the proliferation and activation of the fibroblast of this invention. 本発明の微弱電界印加時の負極近傍の線維芽細胞活性化のデータ図である。It is a data figure of the fibroblast activation of the negative electrode vicinity at the time of the weak electric field application of this invention. 本発明の微弱電界印加時の電極間中央部の線維芽細胞活性化のデータ図である。It is a data figure of the fibroblast activation of the center part between electrodes at the time of the weak electric field application of this invention. 本発明の微弱電界印加時の正極近傍での線維芽細胞活性化のデータ図である。It is a data figure of the fibroblast activation in the positive electrode vicinity at the time of the weak electric field application of this invention. 本発明の実施例である電気装置の治癒データ図である。It is a healing data figure of the electric apparatus which is an Example of this invention. 従来の繊維細胞の活性化のデータ例図である。It is a data example figure of activation of the conventional fiber cell.

上記問題点を解決するために本発明者らは、従来よりはるかに低い印加電界で線維芽細胞が生理活性化し自己増殖するのに好適な電界強度領域がないか、を探索した結果、0.001〜0.3V/cmなる適合電界領域が存在することを突き止め、本発明を成すに至った。
本発明の適合電界領域は、上記した従来の適合領域より3〜4桁低く、また従来の適合領域では線維芽細胞が明瞭な負極配向性を示したのに対し無極性配向、つまり電界の極性によらず電界強度だけに依存して一様に活性化することから、従来の技術とは全く異なる電界領域であるといえる。
In order to solve the above-mentioned problems, the present inventors have searched for an electric field strength region suitable for fibroblasts to be physiologically activated and proliferate at a much lower applied electric field than before. The present inventors have found out that a suitable electric field region of 001 to 0.3 V / cm exists, and have achieved the present invention.
The conforming electric field region of the present invention is 3 to 4 orders lower than the conventional conforming region described above, and in the conventional conforming region, the fibroblasts showed a clear negative polarity orientation, whereas the nonpolar orientation, that is, the polarity of the electric field Regardless of the field strength, the activation is uniformly dependent only on the electric field strength, so it can be said that the electric field region is completely different from the conventional technique.

真皮領域の電気抵抗値は角質層より3桁以上低く数十Ωなので、表皮上の電極間に10V印加した場合、真皮領域は数乃至10mVに偏倚されることになる。そこで、電極間隔を1〜2cmに保持すれば、この偏倚電圧は真皮の線維芽細胞が無極性活性化(極性に関係なく活性化すること)するに好適な電界強度を与えることになる。この場合、厚さ20μmの角質層に印加される電界強度は5×10V/cm程度となり、直ちに角質層秩序に損傷を与えることはない。しかし、長期間にわたって同一箇所の表皮上で通電を行う場合には、10Vの印加といえども皮膚に影響を及ぼさないという保証はない。 Since the electric resistance value of the dermis region is several tens of ohms, which is three orders of magnitude lower than that of the stratum corneum, when 10 V is applied between the electrodes on the epidermis, the dermis region is biased to several to 10 mV. Therefore, if the electrode spacing is maintained at 1 to 2 cm, this bias voltage provides an electric field strength suitable for nonpolar activation (activation regardless of polarity) of the dermal fibroblasts. In this case, the electric field strength applied to the stratum corneum having a thickness of 20 μm is about 5 × 10 3 V / cm and does not immediately damage the stratum corneum order. However, when energization is performed on the same skin over a long period of time, there is no guarantee that even if 10 V is applied, the skin will not be affected.

そこで、更に皮膚に対する安全性を高めつつ真皮領域に0.001〜0.3V/cmの有効電界を付与できる電気的装置として、皮膚起電素子を推奨することが出来る。皮膚起電素子は外部電源ではなく、皮膚を電解質として起電する小型電池である。負極にn型半導体を用いると、皮接後外部導線を通じて正極金属側に電子が流れ、負極に正孔が発生する。この結果、正極金属から電子が、また負極半導体から正孔が同時に皮内に注入され、それぞれ皮内イオンを還元、酸化して皮内にイオン電流を発生させる(特2797118号)。正負極材料の組み合わせ(起電力)と正負電極間距離とを調整すれば、このイオン電流によって真皮領域に0.001〜0.3V/cmの有効電界を作り出すことが出来る。たとえば、正極に金、負極に酸化亜鉛を用い、正負極間を1〜2cmとすれば、真皮領域で0.005〜0.01V/cmの電界が発生する。この電界によって真皮領域の線維芽細胞は無極性活性化する。すなわち、通電方向に係わりなく電界の印加された領域の線維芽細胞は、ほぼ等しく生理活性化し自己増殖を行う。後述する実施例のデータによれば、電界非印加時に比べ90分間で50〜80%活性化率が高まる。このとき表皮上で測定される電圧は約0.8Vである。この電圧がすべて角質層に印加されるとしても角質層の電界強度は4×10V/cmにとどまり、長時間(たとえば48時間)通電を行っても角質層が損傷する危険はない。 Therefore, a skin electromotive element can be recommended as an electrical device that can apply an effective electric field of 0.001 to 0.3 V / cm to the dermis region while further improving the safety to the skin. The skin electromotive element is a small battery that uses the skin as an electrolyte instead of an external power source. When an n-type semiconductor is used for the negative electrode, electrons flow to the positive metal side through the external conductor after skin contact, and holes are generated in the negative electrode. As a result, electrons from the positive electrode metal and holes from the negative electrode semiconductor are simultaneously injected into the skin to reduce and oxidize intradermal ions to generate an ionic current in the skin (Japanese Patent No. 2797118). By adjusting the combination of the positive and negative electrode materials (electromotive force) and the distance between the positive and negative electrodes, an effective electric field of 0.001 to 0.3 V / cm can be created in the dermis region by this ion current. For example, if gold is used for the positive electrode and zinc oxide is used for the negative electrode and the distance between the positive and negative electrodes is 1 to 2 cm, an electric field of 0.005 to 0.01 V / cm is generated in the dermis region. This electric field activates fibroblasts in the dermis region nonpolarly. That is, fibroblasts in a region to which an electric field is applied regardless of the energization direction are physiologically activated and perform self-proliferation. According to the data of the examples described later, the activation rate is increased by 50 to 80% in 90 minutes as compared to when no electric field is applied. At this time, the voltage measured on the skin is about 0.8V. Even if all of these voltages are applied to the stratum corneum, the electric field strength of the stratum corneum remains at 4 × 10 2 V / cm, and there is no danger of damaging the stratum corneum even when energized for a long time (for example, 48 hours).

皮膚起電素子による皮内通電は、表皮上に密着させた電解質層を介して行うことも出来る。この場合、皮膚起電は、表皮上の電解質層と皮内電解質層の双方で発生し、皮膚起電電池が外部導線に対して並列接続した状況となる。
なお、本発明における適合電界領域0.001〜0.3V/cmは、線維芽細胞の自己増殖速度が電界非印加時に比べて10%以上高まる領域に設定した。これは、実施例その1における放射化測定結果を基にしたもので、増殖実験過程において個々の線維芽細胞活性化のばらつきが±10%程度見られたためである。
Intracutaneous energization by the skin electromotive element can also be performed through an electrolyte layer in close contact with the epidermis. In this case, skin electromotive force occurs in both the electrolyte layer and the intradermal electrolyte layer on the epidermis, and the skin electromotive battery is connected in parallel to the external conductor.
In addition, the suitable electric field area | region 0.001-0.3V / cm in this invention was set to the area | region where the self-growth rate of a fibroblast increases 10% or more compared with the time of no electric field application. This is based on the activation measurement result in Example 1 and is because variation in activation of individual fibroblasts was seen about ± 10% in the course of the proliferation experiment.

上記したように本発明では、従来用いられてきたより2〜4桁低い電界強度を線維芽細胞の存在する培養性環境に与えることによって、当該領域における線維芽細胞を生理活性化させ、自己増殖させることが出来る。この効果は、従来の電界強度領域(負極配向型活性化領域)における活性化とは異なり、無極性配向型であるため通電領域全体を等しく活性化でき、効果発現範囲を大幅に高めることが出来る。また、この技術を表皮下に存在する線維芽細胞に適用する場合においては、特に長時間通電時に角質層の秩序破壊を回避することができるというきわめて大きな利点がある。   As described above, in the present invention, the fibroblasts in the region are physiologically activated and self-proliferated by applying an electric field strength 2 to 4 orders of magnitude lower than that conventionally used to the culture environment where the fibroblasts are present. I can do it. Unlike the activation in the conventional electric field strength region (negative electrode orientation type activation region), this effect is a nonpolar orientation type, so that the entire current-carrying region can be activated equally, and the effect expression range can be greatly increased. . Moreover, when this technique is applied to fibroblasts existing under the epidermis, there is a very great advantage that the stratum corneum can be prevented from being broken especially when energized for a long time.

(その1)
内側寸法で幅7.5cm,奥行き2.5cm,高さ1.5cmのガラス製容器内に下記組成の培養液を充填した。この中に、ミリポアフィルター(25mm,GSWP02400; ミリポア社)上に5×10個/フィルターの密度で播種した未分化のヒト皮膚線維芽細胞を浸漬する。ヒト皮膚線維芽細胞は、健康な皮膚検体からExplant法により採取したもので37℃、5%COの条件下で48時間培地培養したものである。
(Part 1)
A culture solution having the following composition was filled in a glass container having inner dimensions of width 7.5 cm, depth 2.5 cm, and height 1.5 cm. In this, undifferentiated human skin fibroblasts seeded at a density of 5 × 10 3 cells / filter are immersed on a Millipore filter (25 mm, GSWP02400; Millipore). Human skin fibroblasts were collected from healthy skin specimens by the Expand method, and were cultured in a medium for 48 hours at 37 ° C. and 5% CO 2 .

培地は、10%ウシ胎児血清を含むDulbecco’s modified Eagle’s medium(DMEM)を使用した。培地培養後ガラス容器内の培養液に浸漬する前の線維芽細胞は増殖過程にあることを確認した。   As the medium, Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum was used. It was confirmed that the fibroblasts before immersing in the culture medium in the glass container after the culture were in the process of growth.

ガラス容器内の培養液は、10%ウシ胎児血清を含むDMEMにpH7.0のHEPES(4-(2-hydroxythyl)-1-piperazineethanesulfonic acid)緩衝液と1%ペニシリン及び1%ストレプトマイシンを加えたものである。   The culture solution in the glass container is a DMEM containing 10% fetal bovine serum with HEPES (4- (2-hydroxythyl) -1-piperazineethanesulfonic acid) buffer, 1% penicillin and 1% streptomycin added to pH 7.0. It is.

ガラス容器内の横方向両端器壁に2.4×2.0cmのステンレス製電極を配置してパルス電源に接続した。培養した線維芽細胞搭載フィルターを1.0×1.0cmのサイズにカットして各電極から5mmずつ離れた位置各1枚、ガラス容器中央に1枚の計3枚を容器底に浸漬した。この状態でステンレス電極間に、継続時間100μs、パルス密度100個/秒の三角波単方向パルス電圧を印加しピーク電圧を変化させた(図2〜図4の横軸は電界強度で表示)。印加実験は室温で90分間継続して行った。 A stainless steel electrode having a size of 2.4 × 2.0 cm 2 was arranged on both side walls in the glass container and connected to a pulse power source. The cultured fibroblast-mounted filter was cut to a size of 1.0 × 1.0 cm 2 and immersed in the bottom of the container, one sheet at a position 5 mm away from each electrode and one sheet at the center of the glass container. . In this state, a triangular wave unidirectional pulse voltage having a duration of 100 μs and a pulse density of 100 / sec was applied between the stainless steel electrodes to change the peak voltage (the horizontal axis in FIGS. 2 to 4 is represented by the electric field strength). The application experiment was continued for 90 minutes at room temperature.

その後ガラス容器から引き上げた線維芽細胞搭載フィルターを、再度上記培地に入れて37℃、5%CO雰囲気で2時間培養した。しかる後、線維芽細胞によるプロテインとDNA産生量を調べた。 Thereafter, the fibroblast-loaded filter pulled up from the glass container was again placed in the medium and cultured at 37 ° C. in a 5% CO 2 atmosphere for 2 hours. Thereafter, the amount of protein and DNA produced by fibroblasts was examined.

プロテイン産生量の測定は、放射化ラベルをつけて行う。すなわち、放射化アミノ酸[H]プロリン1Ci(キュリー)/mlを37℃で20分間、培養した線維芽細胞群に混ぜると合成したプロテインと結合する。20分経過後、線維芽細胞搭載フィルターを氷冷した5%三塩化酢酸溶液に浸漬してアミノ酸とプロテインの結合反応を停止させた。その後、フィルターをさらに3回、5%の氷冷三塩化酢酸溶液10mlで洗い、水洗後乾燥させた。しかる後、通常の液体シンチレーションカウンターを用いて計測した。 Protein production is measured with an activation label. That is, when the activated amino acid [ 3 H] proline 1Ci (Curie) / ml is mixed with the cultured fibroblast group at 37 ° C. for 20 minutes, it binds to the synthesized protein. After 20 minutes, the fibroblast-loaded filter was immersed in an ice-cooled 5% trichloroacetic acid solution to stop the amino acid-protein binding reaction. Thereafter, the filter was further washed three times with 10 ml of 5% ice-cold trichloroacetic acid solution, washed with water and dried. Thereafter, measurement was performed using a normal liquid scintillation counter.

DNA産生量は、培養した線維芽細胞をガラス容器内と同じ組成の培養液に放射化したヌクレオシド[H]チミジンを0.1Ci/ml加えた溶液中に37℃で12時間保持して作った検体で測定した。12時間保持後、検体を搭載したフィルターを氷冷した5%三塩化酢酸溶液中に浸漬してDNAとヌクレオシドの結合反応を停止させ、水洗乾燥してプロテインと同じ方法で産生量の計測を行った。 The amount of DNA produced is maintained by maintaining the cultured fibroblasts in a culture solution having the same composition as that in the glass container and adding 0.1 Ci / ml of nucleoside [ 3 H] thymidine at 37 ° C. for 12 hours. Measured with different specimens. After holding for 12 hours, the sample-loaded filter is immersed in an ice-cooled 5% trichloroacetic acid solution to stop the binding reaction between DNA and nucleosides, washed and dried, and the amount of production is measured in the same manner as for protein. It was.

電界印加試料との対比のために、同じガラス容器内の培養液に電界を印加しないで90分間浸漬した検体を用意し、そのプロテイン及びDNA産生量を上記と同じ方法で測定して基準値(コントロール)とした。そして、電界印加試料のデータをコントロールのデータに対する百分率比として図示したのが図2〜図4である。   For comparison with an electric field applied sample, a specimen immersed for 90 minutes without applying an electric field to a culture solution in the same glass container was prepared, and the amount of protein and DNA produced was measured by the same method as described above to obtain a reference value ( Control). FIG. 2 to FIG. 4 show the data of the electric field application sample as a percentage ratio with respect to the control data.

図2〜4は、微弱印加電界をパラメータとしてin vitro で得られたヒト皮膚線維芽細胞の生理活性化及び自己増殖の状態を示している。図2は負極近傍、図3は中間位置、図4は正極近傍で得られたデータを示している。これらの図は、
(1)プロテイン及びDNAの産生量が、0.001〜0.3V/cmの印加電界範囲で電界を印加しない場合より10%以上高い産生量(産生速度)を示すこと
(2)微弱電界印加時、線維芽細胞のプロテイン及びDNA産生量は、検体の電極からの距離に無関係にほぼ同じ電界強度(約0.01V/cm)でピーク値を示すこと、すなわち線維芽細胞の生理活性化及び自己増殖は無極性で電界強度のみに依存すること
を示している。
2 to 4 show the state of physiological activation and self-proliferation of human skin fibroblasts obtained in vitro using a weakly applied electric field as a parameter. 2 shows the data obtained in the vicinity of the negative electrode, FIG. 3 shows the data obtained in the intermediate position, and FIG. 4 shows the data obtained in the vicinity of the positive electrode. These figures are
(1) The amount of protein and DNA produced is 10% or more higher than the case where no electric field is applied in the applied electric field range of 0.001 to 0.3 V / cm (production rate). (2) Weak electric field applied At times, the amount of protein and DNA produced by fibroblasts shows a peak value at almost the same electric field strength (about 0.01 V / cm) regardless of the distance from the electrode of the specimen, that is, the physiological activation of fibroblasts and It shows that self-propagation is nonpolar and depends only on the electric field strength.

この線維芽細胞活性化領域は、図6に示した従来の実験データより2桁以上低い印加電界領域にあり、また従来の生理活性化が明瞭な負極配向性を示していたことに比べて全く異なる電界依存性を示すことから、本発明者らによって新たに発見された印加電界領域といえる。   This fibroblast activation region is in an applied electric field region that is two orders of magnitude lower than the conventional experimental data shown in FIG. 6, and is completely different from the conventional physiological activation showing a clear negative electrode orientation. Since it shows different electric field dependence, it can be said that it is an applied electric field region newly discovered by the present inventors.

このような低い電界印加によって皮膚の線維芽細胞が活性化し、皮膚や皮下組織の細胞外マトリクスであるたんぱく質を効率的に生産できるだけでなく、線維芽細胞自身のDNAを増殖することによって活性な線維芽細胞が複利計算的に生成されることは、実用上きわめて重要である。本実施例ではプロテインの生成のみについて測定したが、線維芽細胞の持つ作用を考慮すれば、他の分泌物、たとえばヒアルロン酸、エラスチンや脂肪細胞の産生も同様に活性化することが容易に考えられる。   Such application of a low electric field activates skin fibroblasts and not only efficiently produces proteins that are the extracellular matrix of skin and subcutaneous tissue, but also proliferates the active fibers by proliferating the fibroblast's own DNA. It is extremely important for practical use that blasts are generated compoundively. In this example, only protein production was measured. However, considering the action of fibroblasts, production of other secretions such as hyaluronic acid, elastin and adipocytes can be easily activated as well. It is done.

本実施例で得られた知見は、再生医療に応用することが出来る。すなわち、患者から採取した線維芽細胞を培養器内で微弱電界下に保持することにより大量の産生物を得ることが出来る。従来技術と異なり、きわめて低い電界を与えるだけで電界印加領域全体に均等な産生が可能となる。このようにして効率的に増殖させたプロテイン等の産生物や線維芽細胞自身を患者に注射で移植すれば、拒否反応は全くなく短期間で治療が可能となる。   The knowledge obtained in this example can be applied to regenerative medicine. That is, a large amount of product can be obtained by holding fibroblasts collected from a patient in a incubator under a weak electric field. Unlike the prior art, it is possible to produce the entire electric field application region evenly by applying an extremely low electric field. If products such as proteins and fibroblasts that have been efficiently proliferated in this way and the fibroblasts themselves are transplanted into a patient by injection, there is no rejection reaction and treatment is possible in a short period of time.

さらにこの方式を生体皮膚に応用すれば、皮内結合組織を非侵襲的にきわめて有効に増殖することが出来、増殖機能の衰えた高齢者や病人の美容(若返り)や末梢血管の柔軟性確保(動脈硬化の軽減)に威力を発揮できると期待される。   Furthermore, if this method is applied to living skin, the intradermal connective tissue can be proliferated very effectively in a non-invasive manner, ensuring the beauty (rejuvenation) of elderly and sick people with impaired proliferation function and ensuring flexibility of peripheral blood vessels. Expected to be effective in (reducing arteriosclerosis).

(その2)
上記したin vitro の実施例では、線維芽細胞への電界印加は外部電源によるパルス通電によって行われた。しかし,培養性環境とも看做しうる生体皮膚および皮下に本発明の技術を適用する場合、線維芽細胞の生理活性化は日単位で継続的に行う必要があり、利便性の観点から外部電源は不適当である。また、パルス通電ではなく直流通電によっても同様な効果が得られることを確かめる必要もある。
(Part 2)
In the in vitro examples described above, the electric field application to the fibroblasts was performed by pulse energization with an external power source. However, when the technique of the present invention is applied to living skin and subcutaneous tissue, which can be regarded as a culture environment, it is necessary to continuously perform physiological activation of fibroblasts on a daily basis. Is inappropriate. In addition, it is necessary to confirm that the same effect can be obtained not by pulse energization but by DC energization.

図1は、生体皮膚に非侵襲的に直流微弱電界を印加するための電気的装置の一実施例である。この装置は、電極1,2、リード線3、基材フィルム4、粘着テープ5、より成る。基材フィルム4は、厚さ12μmのPET製であり、このフィルム4上に、間隔aをあけて短冊状の電極1,2が交互に貼付されている。紙面の手前側が皮膚装着面となる。電極1は正極で、たとえば金、電極2は負極で、たとえば酸化亜鉛である。電極1,2はそれぞれ厚さ6μmのPETフィルム上に真空蒸着によって形成されており、電極幅は、たとえば15mmである。電極1,2は電極面を上にしてPET基材フィルム4に貼付されている。基材フィルム4は、電極1,2の間隔aを正確に保持し、かつ薄い電極1,2の強度補強の役割をする。これら短冊状電極群1,2の上に、直交してリード線3が間隔bを以って貼付されている。リード線3は、たとえば厚さ3μm、幅3mmの銅であり、防水性片面粘着テープ5によって電極1,2及びPET基材フィルム4に紙面の表側から密着貼付されている。テープ5の幅はリード線3より広く、リード線3は外部雰囲気から完全に遮断されている。また、防水性片面テープ5が皮膚に接触するが、このテープ5が遮蔽体となり、リード線3は、皮膚と直接接触することはない。図1の電気装置は、厚みが最も厚い部位で30μm程度であり、全体的に柔軟性が極めて高く軽いため、日常生活の妨げになることなく利便性は非常に高い。この電気装置のサイズは、たとえば50×100mmである。このように電極1,2を交互に間隔aを以って配置し、共通のリード線3で接続しておけば、患部皮膚面積にかかわらず皮下領域に一定強度の電界を付与することが出来、また量産にも好適である。 FIG. 1 shows an embodiment of an electrical apparatus for non-invasively applying a DC weak electric field to living body skin. This apparatus includes electrodes 1 and 2, a lead wire 3, a base film 4, and an adhesive tape 5. The base film 4 is made of PET having a thickness of 12 μm, and strip-like electrodes 1 and 2 are alternately stuck on the film 4 with an interval a. The front side of the paper is the skin attachment surface. The electrode 1 is a positive electrode, for example, gold, and the electrode 2 is a negative electrode, for example, zinc oxide. The electrodes 1 and 2 are each formed by vacuum deposition on a PET film having a thickness of 6 μm, and the electrode width is, for example, 15 mm. The electrodes 1 and 2 are attached to the PET base film 4 with the electrode surface facing up. The base film 4 accurately maintains the distance a between the electrodes 1 and 2 and serves to reinforce the strength of the thin electrodes 1 and 2. On these strip electrode groups 1 and 2, lead wires 3 are affixed at intervals b perpendicularly. The lead wire 3 is, for example, copper having a thickness of 3 μm and a width of 3 mm, and is adhered to the electrodes 1 and 2 and the PET base film 4 from the front side of the paper surface by a waterproof single-sided adhesive tape 5. The width of the tape 5 is wider than the lead wire 3, and the lead wire 3 is completely cut off from the external atmosphere. Moreover, although the waterproof single-sided tape 5 contacts the skin, this tape 5 serves as a shield, and the lead wire 3 does not directly contact the skin. The electric device of FIG. 1 has a thickness of about 30 μm at the thickest portion and is extremely flexible and light overall, so that it is very convenient without hindering daily life. The size of this electrical device is, for example, 50 × 100 mm 2 . Thus, if the electrodes 1 and 2 are alternately arranged with an interval a and connected by a common lead wire 3, an electric field having a constant strength can be applied to the subcutaneous region regardless of the affected skin area. It is also suitable for mass production.

この電気装置を生体皮膚に貼付すると、皮膚を電解質として起電し、貼付部位直下の皮膚内に直流通電することが出来る。起電力は理論的には電気親和力の異なる電極1,2の材料組み合わせによって決まるが、図1に示した上記金/酸化亜鉛電極の場合、皮膚上で約0.8Vであった(水溶液電解質を用いた場合、金/酸化亜鉛電極で開放端電圧は1.24Vであった)。したがって、電極1,2の材料の組み合わせと、間隔aを変化させることによって、皮膚に印加する電界強度を変化させることが出来る。   When this electric device is affixed to living body skin, the skin can be electrogenerated as an electrolyte, and direct current can be applied to the skin directly under the affixed site. The electromotive force is theoretically determined by the material combination of the electrodes 1 and 2 having different electric affinities, but in the case of the gold / zinc oxide electrode shown in FIG. When used, it was a gold / zinc oxide electrode with an open circuit voltage of 1.24V). Therefore, the electric field strength applied to the skin can be changed by changing the combination of the materials of the electrodes 1 and 2 and the distance a.

皮内での電位降下(電池の内部損失)は、上記金/酸化亜鉛の場合約0.4Vとなるが、その大半は表皮角質層で生じており、表皮下に印加される実効電圧は0.01V程度である。そこで、aを1cmとすれば表皮下には0.01V/cm,aを2cmとすれば表皮下には0.005V/cm程度の電界が印加されることになる。図2〜図4のデータによれば、この電界強度は、表皮下線維芽細胞を生理活性化させ、かつ自己増殖を効率的に行うことが出来る値である。bは8〜10cm程度とすれば、シート全面において十分均一な電界印加が可能である。   The potential drop (internal loss of the battery) in the skin is about 0.4 V in the case of the gold / zinc oxide, but most of it occurs in the epidermal stratum corneum, and the effective voltage applied to the epidermis is 0. It is about .01V. Therefore, if a is 1 cm, an electric field of about 0.01 V / cm is applied to the epidermis, and if a is 2 cm, an electric field of about 0.005 V / cm is applied to the epidermis. According to the data of FIGS. 2 to 4, this electric field strength is a value capable of physiologically activating epidermal fibroblasts and efficiently performing self-proliferation. If b is about 8 to 10 cm, a sufficiently uniform electric field can be applied to the entire surface of the sheet.

図1に示した電極シートと表皮との間に電解質層、たとえば0.5%生理的食塩水を含浸させたガーゼを密着させ、電極シートの電極面を当該ガーゼに貼り付けると、ガーゼ上と皮内の双方で発電する。負に帯電した金電極下のガーゼ電解質層からは、電子とともに塩素イオンが皮内に急速に強制導入され、また正に帯電した酸化亜鉛電極下のガーゼ電解質層からはナトリウムイオンが急速に皮内に導入されるため、皮内電池の発電量は経時的に増大し、逆にガーゼ電解質層を含む皮外電池の発電量は電解質層抵抗増大(電解質イオンが皮内浸透する結果電極間中央部位からイオン濃度が減少し電解質抵抗が増大)のため経時的に低下する。このため持続的通電の場合、この方法を用いたほうが皮内の必要電界を確保するための電極1,2の組み合わせ選択範囲が広くなり、好適である。   When a gauze impregnated with an electrolyte layer, for example, 0.5% physiological saline is adhered between the electrode sheet and the epidermis shown in FIG. 1 and the electrode surface of the electrode sheet is attached to the gauze, Electricity is generated both inside the skin. From the gauze electrolyte layer under the negatively charged gold electrode, chlorine ions are rapidly introduced into the skin together with the electrons, and from the gauze electrolyte layer under the positively charged zinc oxide electrode, sodium ions are rapidly injected into the skin. Therefore, the power generation amount of the skin battery increases with time, and conversely, the power generation amount of the skin battery including the gauze electrolyte layer increases the resistance of the electrolyte layer (as a result of electrolyte ions permeating into the skin, the central part between the electrodes). Therefore, the ion concentration decreases and the electrolyte resistance increases). For this reason, in the case of continuous energization, it is preferable to use this method because the combination selection range of the electrodes 1 and 2 for securing the necessary electric field in the skin is widened.

皮内にも多量存在する単原子イオン(塩素イオン、ナトリウムイオン)が電解質層からイオントフォレシス効果によって角質層に急速に浸透することで角質層の抵抗が下がれば、皮内に流入する電流量が急速に増えて皮下領域に印加される電圧(皮下電流×皮下抵抗)、すなわち皮内電界が増大し、この結果線維芽細胞の生理活性化に好ましい影響を与えることが出来る。   If the resistance of the stratum corneum decreases due to the rapid penetration of the stratum corneum by the iontophoresis effect of monoatomic ions (chlorine ions and sodium ions) that are also present in the skin, the amount of current flowing into the skin Increases rapidly, and the voltage applied to the subcutaneous region (subcutaneous current × subcutaneous resistance), that is, the intradermal electric field increases, and as a result, the physiological activation of fibroblasts can be favorably affected.

図1は本発明に用いる電気装置の一実施例を示したが、もちろん装着部位によってさまざまな形状が可能であり、またさまざまな電極素材での材料組み合わせ、リード線の種々材料選択が可能である。またガーゼ電解質層としたが、ゲル状電解質層の例もある。   FIG. 1 shows an embodiment of the electric device used in the present invention. Of course, various shapes are possible depending on the mounting site, and various electrode material combinations and various lead wire material selections are possible. . Moreover, although it was set as the gauze electrolyte layer, there is also an example of a gel electrolyte layer.

図1の装置で、正極電極1として金、負極電極2として酸化亜鉛、をそのまま使用し、リード線3を亜鉛、電極1,2の間隔を10mmとして褥瘡治療に適用した実施例を示す。体重400〜450gのウィスターラットの大腿部を剃毛後麻酔をかけ、剃毛部に円筒錘で1kg/cmの圧力を付与した。1日6時間ずつ5日間圧力付与を続けて表皮残存の擬似褥瘡を形成した。一群5匹とし、対照群(コントロール)、薬剤投与群、本発明の前記シート(電気的装置)装着群の各グループにつき、傷の状況を経時観測した。薬剤は褥瘡に効果があると指摘されたアセチルサリチル酸クリーム(濃度1%)を用いた(特願平8−345103)。アセチルサリチル酸投与は、1mg/傷部位/日ずつ行った。また、本発明の前記通電シートとラット皮膚面との間には、0.9%NaClを含むハイドロゲルシート(電解質層)を介在させた。比較のために、一群2匹としてハイドロゲルシートなしの場合(電極1,2を直接ラット表皮に接触させた場合)のデータも採取した。褥瘡形成直後に測定した傷面積(長径×短径)に対する各群の傷面積を経時的に測定し、その面積比で示したのが図5である。 In the apparatus shown in FIG. 1, gold is used as the positive electrode 1 and zinc oxide is used as the negative electrode 2 as it is, and the lead wire 3 is zinc and the distance between the electrodes 1 and 2 is 10 mm, which is applied to pressure ulcer treatment. The thighs of Wistar rats weighing 400 to 450 g were anesthetized after shaving, and a pressure of 1 kg / cm 2 was applied to the shaved part with a cylindrical weight. Pressure application was continued for 6 hours a day for 5 days to form a pseudo-decubitus with remaining epidermis. The wound condition was observed over time for each of the control group (control), the drug administration group, and the sheet (electrical device) wearing group of the present invention. The drug used was acetylsalicylic acid cream (concentration 1%), which was pointed out to be effective for pressure ulcers (Japanese Patent Application No. 8-345103). Acetylsalicylic acid was administered at 1 mg / wound site / day. In addition, a hydrogel sheet (electrolyte layer) containing 0.9% NaCl was interposed between the energizing sheet of the present invention and the rat skin surface. For comparison, data were also collected for two mice per group without the hydrogel sheet (when electrodes 1 and 2 were directly in contact with the rat epidermis). FIG. 5 shows the wound area of each group with respect to the wound area (major axis × minor axis) measured immediately after the pressure sore formation, and the ratio of the area was shown over time.

図から明らかなように、対照群や薬剤投与群では経時的に褥瘡が広がりを見せるのに対して、本実施例の方法では傷が縮小して治癒に向かっていることがわかる。これは、皮下領域の線維芽細胞が自己増殖し、かつ生理活性化して当該部位で著しく皮下組織の再生速度を高めている結果と推測される。表皮上に電解質層(ハイドロゲルシート)を用いない場合でも薬剤投与群より明らかに高い効果が示されている。しかし、角質層抵抗や接触抵抗のため皮内に印加される電界の強度がゲルシート使用の場合より小さく、この結果、線維芽細胞の生理活性化効果が相対的に小さくなっていることがわかる。   As is clear from the figure, the pressure ulcer spreads over time in the control group and the drug administration group, whereas the method of the present example shows that the wound is shrinking and is healing. This is presumed to be the result of fibroblasts in the subcutaneous region self-proliferating and physiologically activated to significantly increase the regeneration rate of the subcutaneous tissue at the site. Even when the electrolyte layer (hydrogel sheet) is not used on the epidermis, the effect is clearly higher than that of the drug administration group. However, due to stratum corneum resistance and contact resistance, the strength of the electric field applied in the skin is smaller than that in the case of using a gel sheet, and as a result, it can be seen that the physiological activation effect of fibroblasts is relatively small.

図1の装置を用いた図5のデータは、持続的な直流電界印加が前実施例のパルス電界印加同様、皮内の線維芽細胞の生理活性化にもすぐれた効果を示すことを裏付けている。印加した電界領域が、線維芽細胞に無極性活性化を付与することを考慮すれば、直流電界のみならず交流電界印加によっても同様の活性化効果が期待できることは自明であろう。   The data of FIG. 5 using the apparatus of FIG. 1 confirms that continuous DC electric field application has an excellent effect on physiological activation of fibroblasts in the skin as well as pulse electric field application of the previous example. Yes. Considering that the applied electric field region imparts nonpolar activation to the fibroblasts, it is obvious that the same activation effect can be expected not only by the DC electric field but also by applying the AC electric field.

本発明は、生体皮膚の再生や動脈硬化の治療など、美容分野、医療分野で利用することが期待される。   The present invention is expected to be used in the beauty field and the medical field such as regeneration of living skin and treatment of arteriosclerosis.

1 正極
2 負極半導体
3 リード線
4 基材フィルム
5 防水性片面粘着テープ
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode semiconductor 3 Lead wire 4 Base film 5 Waterproof single-sided adhesive tape

Claims (4)

培養性環境に在る線維芽細胞に、0.001〜0.3V/cmの強度の電界を持続的に付与することによって、当該電界付与の通電領域の線維芽細胞を、自己増殖させ、生理活性化させる線維芽細胞増殖・活性化方法。   By continuously applying an electric field having a strength of 0.001 to 0.3 V / cm to fibroblasts in a culture environment, the fibroblasts in the energized region to which the electric field is applied self-proliferates, Fibroblast proliferation / activation method to be activated. 培養性環境に在る線維芽細胞を増殖・活性化させるための線維芽細胞増殖・活性化装置であって、
電源と、該電源に導線によってつながり、且つ、上記培養性環境内又はその近傍に裁置可能な第1、第2の電極と、を具え、上記電源は、培養性環境内で0.001〜0.3V/cmの電界を発生させるような容量とし、この通電領域の線維芽細胞を増殖させ、生理活性化させるための線維芽細胞増殖・活性化装置。
A fibroblast proliferation / activation device for growing and activating fibroblasts in a culture environment,
A power source, and a first electrode and a second electrode connected to the power source by a conductive wire and disposed in or near the culture environment. The power source is 0.001 to 0.001 in the culture environment. A fibroblast proliferation / activation device that has a capacity that generates an electric field of 0.3 V / cm, and that causes the fibroblasts in this energized region to proliferate and physiologically activate.
培養性環境に在る線維芽細胞を増殖活性化させるための線維芽細胞増殖・活性化装置であって、金属層と、この金属層に導線によってつながり且つこの金属層と電気親和力を異にする半導体層と、接触面を持ち、この接触面にこの金属層と半導体層とが接触し、この接触面と反対側の面が培養性環境に在る皮膚面に皮接可能とする電解質層と、を具え、上記電子親和力を異にする金属層と半導体層とは、上記培養性環境に在る皮膚面内の表皮領域の線維芽細胞を増殖させ、生理活性化させるべく、その培養性環境内で0.001〜0.3V/cmの電界を発生させるような容量を持つものとする線維芽細胞増殖・活性化装置。   A fibroblast proliferation / activation device for proliferating and activating fibroblasts in a culture environment, wherein the metal layer is connected to the metal layer by a conductive wire and has an electric affinity different from that of the metal layer. An electrolyte layer having a semiconductor layer and a contact surface, the metal layer and the semiconductor layer are in contact with the contact surface, and the surface opposite to the contact surface is capable of skin contact with the skin surface in a culture environment; The metal layer and the semiconductor layer having different electron affinities are used to grow and physiologically activate fibroblasts in the epidermal region in the skin surface in the culture environment. A fibroblast proliferation / activation device having a capacity to generate an electric field of 0.001 to 0.3 V / cm within the device. 上記金属層と半導体層とは、シート上に所定の間隔幅を持って短冊状に配置され、且つその短冊状の金属層と半導体層とに交叉するように上記電極が配置されて成るものとする請求項3記載の線維芽細胞増殖・活性化装置。   The metal layer and the semiconductor layer are arranged in a strip shape with a predetermined interval width on the sheet, and the electrode is arranged so as to cross the strip-like metal layer and the semiconductor layer. The fibroblast proliferation / activation device according to claim 3.
JP2012130996A 2012-06-08 2012-06-08 Method and apparatus for improving protein production rate by fibroblasts Active JP6122585B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012130996A JP6122585B2 (en) 2012-06-08 2012-06-08 Method and apparatus for improving protein production rate by fibroblasts
PCT/JP2013/065648 WO2013183695A1 (en) 2012-06-08 2013-06-06 Method and apparatus for proliferation and activation of fibroblast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130996A JP6122585B2 (en) 2012-06-08 2012-06-08 Method and apparatus for improving protein production rate by fibroblasts

Publications (3)

Publication Number Publication Date
JP2013252117A true JP2013252117A (en) 2013-12-19
JP2013252117A5 JP2013252117A5 (en) 2015-06-18
JP6122585B2 JP6122585B2 (en) 2017-04-26

Family

ID=49712084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130996A Active JP6122585B2 (en) 2012-06-08 2012-06-08 Method and apparatus for improving protein production rate by fibroblasts

Country Status (2)

Country Link
JP (1) JP6122585B2 (en)
WO (1) WO2013183695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055502A (en) * 2019-11-07 2021-05-17 숭실대학교산학협력단 Microcurrent stimulation device using dry adhesive patch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880354A (en) * 1994-09-14 1996-03-26 Poritoronikusu:Kk Percutaneous administration element
JPH08173554A (en) * 1994-12-22 1996-07-09 Poritoronikusu:Kk Skin contact therapeutic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880354A (en) * 1994-09-14 1996-03-26 Poritoronikusu:Kk Percutaneous administration element
JPH08173554A (en) * 1994-12-22 1996-07-09 Poritoronikusu:Kk Skin contact therapeutic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055502A (en) * 2019-11-07 2021-05-17 숭실대학교산학협력단 Microcurrent stimulation device using dry adhesive patch
KR102329103B1 (en) 2019-11-07 2021-11-19 숭실대학교 산학협력단 Microcurrent stimulation device using dry adhesive patch

Also Published As

Publication number Publication date
JP6122585B2 (en) 2017-04-26
WO2013183695A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
Du et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing
Luo et al. Accelerated skin wound healing by electrical stimulation
Jaffe et al. Electric fields and wound healing
Kotwal et al. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials
Tandon et al. Electrical stimulation systems for cardiac tissue engineering
Farboud et al. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells
Mobini et al. Direct current electrical stimulation chamber for treating cells in vitro
JP4499295B2 (en) Delivery of macromolecules into cells
Huang et al. Implantable electronic medicine enabled by bioresorbable microneedles for wireless electrotherapy and drug delivery
SE443295B (en) ELECTROSTATIC SOFT RIBBON FOR SOFT TUBE DAMAGE INCLUDING AN ELECTRIC
Dubé et al. Restoration of the transepithelial potential within tissue-engineered human skin in vitro and during the wound healing process in vivo
EP3241556B1 (en) Activation and aggregation of human platelets and formation of platelet gels by nanosecond pulsed electric fields
JP2016521127A (en) Method and apparatus for cell activation
JP2002523195A (en) Electronic transport device with blade
JP2015500090A (en) Apparatus and method for reducing transthoracic impedance of a patient
Wang et al. A biocompatible self-powered piezoelectric poly (vinyl alcohol)-based hydrogel for diabetic wound repair
US20190009083A1 (en) Self-Powered Bone Growth Stimulator
CN113262105A (en) Wound dressing based on piezoelectric effect and preparation method thereof
EP1917350A2 (en) A biological bypass bridge with sodium channels, calcium channels and/or potassium channels to compensate for conduction block in the heart
JP6122585B2 (en) Method and apparatus for improving protein production rate by fibroblasts
Doillon et al. Fibroblast and epidermal cell-type I collagen interactions: cell culture and human studies
Canillas et al. TiO2 surfaces support neuron growth during electric field stimulation
Tzoneva Influence of electric field on cell behavior. Electrotreatment of cells for biomedical applications
Shastri et al. Application of conductive polymers in bone regeneration
CN204274780U (en) There is the wound dressing of autologous power supply layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6122585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250