JP2013251961A - Electric charging device - Google Patents

Electric charging device Download PDF

Info

Publication number
JP2013251961A
JP2013251961A JP2012123848A JP2012123848A JP2013251961A JP 2013251961 A JP2013251961 A JP 2013251961A JP 2012123848 A JP2012123848 A JP 2012123848A JP 2012123848 A JP2012123848 A JP 2012123848A JP 2013251961 A JP2013251961 A JP 2013251961A
Authority
JP
Japan
Prior art keywords
charging
power storage
storage device
command value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012123848A
Other languages
Japanese (ja)
Inventor
Toshihiro Maeda
俊博 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012123848A priority Critical patent/JP2013251961A/en
Publication of JP2013251961A publication Critical patent/JP2013251961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electric charging device capable of being continuously in electric charging operation even if the output voltage of a discharge-side power storage device drops.SOLUTION: An electric charging device which converts the output voltage and output current of a first power storage device into a charging voltage and a charging current having predetermined levels by an electric power converter for charging and supplies the charging voltage and charging current to a second power storage device so as to electrically charge the second power storage device includes command value adjusting means of adjusting a charging current command value of the second power storage device of a current control system of an electric power converter so that the output current of the first power storage device becomes equal to or less than an output current limit value. The command value adjusting means comprises PI operation means 62 of performing an adjusting operation so that the deviation between the output current limit value and output current detection value of the power storage device becomes zero, a second limiter 63 which limits the output thereof, and a first limiter 51 which limits the charging current command value on the basis of the output thereof as a charging current limit value.

Description

本発明は、電力変換器を用いて二次電池(バッテリー)等の蓄電装置を充電する充電装置に関するものである。   The present invention relates to a charging device that charges a power storage device such as a secondary battery (battery) using a power converter.

モータにより駆動される電気自動車やハイブリッド自動車は、電源として蓄電装置を備えている。蓄電装置の電力は車両の走行に伴って消費されるため、外部から蓄電装置を充電する必要がある。
このため、通常は、蓄電装置が過放電によって走行不能になる前に、車両を近くの充電スタンド等の充電装置まで移動させて充電作業を行っている。しかし、車両が充電装置の近くに到達する前に走行不能になった場合、車両を牽引して移動させる等の面倒な措置が必要になる。
An electric vehicle or a hybrid vehicle driven by a motor includes a power storage device as a power source. Since the power of the power storage device is consumed as the vehicle travels, it is necessary to charge the power storage device from the outside.
For this reason, normally, before the power storage device becomes unable to travel due to overdischarge, the vehicle is moved to a nearby charging device such as a charging stand to perform a charging operation. However, if the vehicle becomes unable to travel before it reaches the vicinity of the charging device, troublesome measures such as towing and moving the vehicle are necessary.

そこで、例えば特許文献1には、2台の車両間でバッテリーを充電可能とした車載型双方向バッテリー充電装置が開示されている。
図5は、この従来技術を示す回路であり、100はバッテリーBAT1を備えた自車、200はバッテリーBAT2を備えた他車、300は充電ケーブルである。
また、自車100において、Q1,Q2は昇降圧チョッパを構成する半導体スイッチング素子、D1,D2は還流ダイオード、Lはチョークコイル、CSは電流センサ、S11,S12,S21,S22はコンタクタ、150は演算ユニット、CFは電流センサCSによる電流検出値、VF1,VF2は電圧検出値である。
Thus, for example, Patent Document 1 discloses a vehicle-mounted bidirectional battery charging device that can charge a battery between two vehicles.
FIG. 5 is a circuit showing this prior art, in which 100 is a vehicle equipped with a battery BAT1, 200 is another vehicle equipped with a battery BAT2, and 300 is a charging cable.
Further, in the host vehicle 100, Q1 and Q2 are semiconductor switching elements constituting a step-up / down chopper, D1 and D2 are reflux diodes, L is a choke coil, CS is a current sensor, S11, S12, S21 and S22 are contactors, 150 is An arithmetic unit, CF is a current detection value by the current sensor CS, and VF1 and VF2 are voltage detection values.

上記構成において、例えば、他車200のバッテリーBAT2が過放電状態であり、バッテリーBAT1の電圧がバッテリーBAT2の電圧よりも高い場合には、コンタクタS11,S12をオンして降圧動作用のスイッチング素子Q1をオンオフさせ、バッテリーBAT1の直流電力によりバッテリーBAT2を降圧充電する。
更に、バッテリーBAT2の電圧がバッテリーBAT1の電圧よりも高い場合には、コンタクタS21,S22をオンして昇圧動作用のスイッチング素子Q2をオンオフさせ、バッテリーBAT1の直流電力によりバッテリーBAT2を昇圧充電する。
In the above configuration, for example, when the battery BAT2 of the other vehicle 200 is in an overdischarged state and the voltage of the battery BAT1 is higher than the voltage of the battery BAT2, the contactors S11 and S12 are turned on to switch the step-down operation switching element Q1. Is turned on and off, and the battery BAT2 is stepped down with the DC power of the battery BAT1.
Further, when the voltage of the battery BAT2 is higher than the voltage of the battery BAT1, the contactors S21 and S22 are turned on to turn on / off the switching element Q2 for boosting operation, and the battery BAT2 is boosted and charged by the DC power of the battery BAT1.

ここで、演算ユニット150には、電流検出値CF及び電圧検出値VF1,VF2が入力されており、電圧検出値VF1とVF2との差に応じてコンタクタS11,S12またはS21,S22をオンさせ、VF1またはVF2が設定値に達するまで定電圧、定電流充電を行うようにスイッチング素子Q1またはQ2を駆動している。   Here, the current detection value CF and the voltage detection values VF1, VF2 are input to the arithmetic unit 150, and the contactors S11, S12 or S21, S22 are turned on according to the difference between the voltage detection values VF1 and VF2. Switching element Q1 or Q2 is driven so as to perform constant voltage and constant current charging until VF1 or VF2 reaches a set value.

特許第3604582号公報(段落[0009]〜[0015]、図1等)Japanese Patent No. 3604582 (paragraphs [0009] to [0015], FIG. 1 etc.)

さて、様々な仕様(定格電圧)の蓄電装置を充電するために定電流充電を行う充電装置では、充電される蓄電装置の仕様に適合した一定電流により充電するのが一般的である。
しかし、充電の進行に伴って放電側の蓄電装置のSOC(充電率または充電量)が低下し、出力電圧が低下してくると、充電側の蓄電装置が要求する充電電力を出力するため、放電側の蓄電装置の出力電流が増加する。そして、この出力電流が放電側の蓄電装置の制限値を超えてしまうと、もはや充電電流を供給できなくなり、充電の継続が不可能になってしまう。
前述した特許文献1には、上記の問題点やその解決策について、何ら言及されていない。
Now, in a charging device that performs constant current charging in order to charge power storage devices with various specifications (rated voltage), charging is generally performed with a constant current that conforms to the specifications of the power storage device to be charged.
However, as the charging progresses, the SOC (charge rate or amount of charge) of the discharge-side power storage device decreases, and when the output voltage decreases, the charging power required by the charge-side power storage device is output. The output current of the discharge-side power storage device increases. If the output current exceeds the limit value of the discharge-side power storage device, the charging current can no longer be supplied, and charging cannot be continued.
Patent Document 1 mentioned above does not mention any of the above problems and solutions.

そこで、本発明の解決課題は、放電側の蓄電装置の出力電圧が低下した場合でも充電作業を継続可能とした充電装置を提供することにある。   Accordingly, an object of the present invention is to provide a charging device that can continue the charging operation even when the output voltage of the discharge-side power storage device decreases.

上記課題を解決するため、請求項1に係る発明は、第1の蓄電装置の出力電圧及び出力電流を、半導体スイッチング素子を有する充電用電力変換器により所定の大きさの充電電圧及び充電電流に変換して第2の蓄電装置に供給することにより第2の蓄電装置を充電する充電装置において、
前記充電用電力変換器の電流制御系における第2の蓄電装置の充電電流指令値を、第1の蓄電装置の出力電流が出力電流制限値以下になるように調整する指令値調整手段を備えたものである。
In order to solve the above-mentioned problem, the invention according to claim 1 is configured such that the output voltage and the output current of the first power storage device are changed to a charging voltage and a charging current of a predetermined magnitude by a charging power converter having a semiconductor switching element. In the charging device that charges the second power storage device by converting and supplying the second power storage device,
Command value adjusting means for adjusting the charging current command value of the second power storage device in the current control system of the charging power converter so that the output current of the first power storage device is equal to or less than the output current limit value. Is.

なお、前記指令値調整手段としては、請求項2に記載するように第1の蓄電装置の出力電流が出力電流制限値未満の閾値を超えた時、または、請求項3に記載するように第1の蓄電装置の出力電圧が所定の閾値を超えて低下した時に、充電電流指令値を予め設定した量だけ低減させ、あるいは、請求項4や請求項5に記載するように第1の蓄電装置の出力電圧またはSOCに応じて予め設定された低減量に従って充電電流指令値を段階的に低減させることが望ましい。   The command value adjusting means may be configured such that when the output current of the first power storage device exceeds a threshold value less than the output current limit value as described in claim 2, or as described in claim 3. When the output voltage of one power storage device falls below a predetermined threshold, the charge current command value is reduced by a preset amount, or the first power storage device as described in claim 4 or claim 5 It is desirable to reduce the charging current command value stepwise in accordance with a reduction amount set in advance according to the output voltage or SOC.

また、請求項6に記載されているように、予め設定されている第1の蓄電装置の出力電流制限値と第1の蓄電装置の出力電圧及び第2の蓄電装置の充電電圧とから求めた充電電流制限値により、前記充電電流指令値を調整するようにしてもよい。
更に、前記指令値調整手段としては、請求項7に記載するように、第1の蓄電装置の出力電流制限値と出力電流検出値との偏差がゼロになるように調節演算する演算手段と、この演算手段の出力を制限する第2のリミッタと、第2のリミッタの出力を充電電流制限値として充電電流指令値を制限する第1のリミッタと、を備えたものであってもよい。
Further, as described in claim 6, it is obtained from the preset output current limit value of the first power storage device, the output voltage of the first power storage device, and the charge voltage of the second power storage device. The charge current command value may be adjusted according to a charge current limit value.
Further, as the command value adjusting means, as described in claim 7, arithmetic means for adjusting and calculating so that a deviation between the output current limit value of the first power storage device and the output current detection value becomes zero, There may be provided a second limiter for limiting the output of the calculation means and a first limiter for limiting the charging current command value using the output of the second limiter as the charging current limit value.

本発明によれば、放電側の蓄電装置のSOCひいては出力電圧が低下した場合でも、充電側の蓄電装置の充電電流指令値を低減させることによって充電電力を低減、言い換えれば放電側の蓄電装置の出力電流を低減させるため、充電作業を支障なく継続させることができる。   According to the present invention, even when the SOC of the discharge-side power storage device and thus the output voltage is reduced, the charging power is reduced by reducing the charge current command value of the charge-side power storage device, in other words, the discharge-side power storage device. Since the output current is reduced, the charging operation can be continued without any trouble.

本発明の実施形態の全体構成図である。1 is an overall configuration diagram of an embodiment of the present invention. 本発明の実施形態の使用状態を示す図である。It is a figure which shows the use condition of embodiment of this invention. 充電用電力変換器の電流制御系の構成図である。It is a block diagram of the current control system of the power converter for charge. 充電用電力変換器の電流制御系の構成図である。It is a block diagram of the current control system of the power converter for charge. 特許文献1に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 1. FIG.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は本発明の実施形態の全体構成図である。図1において、11は充電用電源となる放電側の蓄電装置、21は充電側の蓄電装置であり、これらの蓄電装置11,21は、例えば電気自動車に搭載されているものである。なお、蓄電装置11,21は、必ずしも車載のものでなくてもよく、何れか一方または両方が非車載の蓄電装置であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is an overall configuration diagram of an embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a discharge-side power storage device serving as a charging power source, and reference numeral 21 denotes a charge-side power storage device. These power storage devices 11 and 21 are mounted on, for example, an electric vehicle. Note that the power storage devices 11 and 21 are not necessarily in-vehicle devices, and either one or both of them may be non-in-vehicle power storage devices.

放電側の蓄電装置11の出力電流Iは充電用電力変換器40に入力され、その出力電流は充電電流Iとして充電側の蓄電装置21に供給される。なお、Vは蓄電装置11の出力電圧、Vは蓄電装置22の充電電圧である。 Output current I 1 of the discharge-side power storage device 11 is input to the charging power converter 40, the output current is supplied to the power storage device 21 on the charge side as the charging current I 2. V 1 is an output voltage of the power storage device 11, and V 2 is a charging voltage of the power storage device 22.

図2は、この実施形態の使用状態を示す説明図である。
図2において、EV1は充電用電源となる蓄電装置11が搭載された電気自動車、EV2は充電される蓄電装置21が搭載された電気自動車である。これらの電気自動車EV1,EV2は、充電コネクタ12,22、電源ケーブル31,32を介して充電用電力変換器40に接続される。
充電用電力変換器40は、電気自動車EV1またはEV2に搭載されていてもよいし、外部に設けられていてもよい。なお、電気自動車にはモータ駆動用のインバータが搭載されているので、このインバータを充電用電力変換器40として利用することが望ましい。
FIG. 2 is an explanatory diagram showing a use state of this embodiment.
In FIG. 2, EV1 is an electric vehicle equipped with a power storage device 11 serving as a charging power source, and EV2 is an electric vehicle equipped with a power storage device 21 to be charged. These electric vehicles EV1 and EV2 are connected to a charging power converter 40 via charging connectors 12 and 22 and power cables 31 and 32.
Charging power converter 40 may be mounted on electric vehicle EV1 or EV2, or may be provided outside. In addition, since the inverter for motor drive is mounted in the electric vehicle, it is desirable to use this inverter as the power converter 40 for charge.

ここで、充電用電力変換器40の構成は特に限定されず、充電側の蓄電装置21の定格電圧に応じた充電電圧Vを出力し、かつ、蓄電装置21に対する充電電流指令値I に従って一定の充電電流Iを供給するように、半導体スイッチング素子を駆動するものであればよい。充電用電力変換器40としては、前述した特許文献1のように昇降圧チョッパを備えたものでもよいし、他の構成のものでもよい。 Here, the configuration of charging power converter 40 is not particularly limited, and outputs charging voltage V 2 corresponding to the rated voltage of power storage device 21 on the charging side, and charging current command value I 2 * for power storage device 21 . As long as the semiconductor switching element is driven so as to supply a constant charging current I 2 according to the above. The charging power converter 40 may include a step-up / step-down chopper as in Patent Document 1 described above, or may have another configuration.

図3は、充電用電力変換器40の半導体スイッチング素子を駆動する制御回路(図示せず)に設けられた電流制御系の構成図である。
図3において、充電側の蓄電装置21の仕様に基づく充電電流指令値I はリミッタ51を介して減算手段52に図示の符号で入力され、この減算手段52には充電電流検出値Iが図示の符号で入力されている。ここで、リミッタ51は、充電電流指令値I の上限値を充電電流制限値I2limitに制限するように動作する。
FIG. 3 is a configuration diagram of a current control system provided in a control circuit (not shown) for driving the semiconductor switching element of the charging power converter 40.
In FIG. 3, a charging current command value I 2 * based on the specification of the charging-side power storage device 21 is input to the subtracting means 52 by the illustrated symbol through the limiter 51, and the charging current detected value I 2 is input to the subtracting means 52. Are input with the reference numerals. Here, limiter 51 operates to limit the upper limit value of charging current command value I 2 * to charging current limit value I 2limit .

減算手段52から出力される偏差(リミッタ51により大きさが制限された充電電流指令値I と充電電流検出値Iとの偏差)は電流調節手段53に入力されており、上記偏差をゼロにする調節動作により、充電用電力変換器40の半導体スイッチング素子を駆動するオンオフ信号を得るための電圧指令値V が生成される。この電圧指令値V に基づいて上記半導体スイッチング素子を駆動することにより、充電用電力変換器40の出力電圧Vが電圧指令値V に一致するような制御が実行される。
ここで、リミッタ51は請求項における指令値調整手段を構成している。
The deviation output from the subtracting means 52 (deviation between the charging current command value I 2 * whose size is limited by the limiter 51 and the charging current detection value I 2 ) is input to the current adjusting means 53, and the deviation is calculated. The voltage command value V 2 * for obtaining an on / off signal for driving the semiconductor switching element of the charging power converter 40 is generated by the adjustment operation to zero. By driving the semiconductor switching element based on the voltage command value V 2 *, the output voltage V 2 of the charging power converter 40 is controlled to conform to the voltage command value V 2 * is executed.
Here, the limiter 51 constitutes a command value adjusting means in the claims.

次に、請求項2〜6に記載した充電電流制限値I2limitの設定方法について具体的に説明する。
すなわち、蓄電装置11の出力電流Iが所定の閾値(蓄電装置11の出力電流制限値I1limit未満の値)を超えた場合に、あるいは、蓄電装置11の出力電圧Vが所定の閾値を超えて低下した場合に、充電電流指令値I を予め設定した量(例えば、当初の充電電流指令値I から20%あるいは10[A])だけ低減させればよい。
また、放電側の蓄電装置11の出力電圧VやSOCに対する充電電流指令値I の低減量マップを予め用意しておき、この低減量マップに基づき、出力電圧VまたはSOCに応じて充電電流指令値I を低減させるような方法をとってもよい。
上記構成において、リミッタ51(充電電流制限値I2limit)を用いずに、充電電流指令値I 自体を調整することによっても、放電側の蓄電装置11の出力電流Iの増加を防ぐことができる。
また、蓄電装置11から出力される電力は蓄電装置21に充電される電力及び充電用電力変換器40の損失であることから、予め設定されている蓄電装置11の出力電流制限値I1limitと、蓄電装置11の出力電圧V及び蓄電装置21の充電電圧Vとから、下記の数式により充電電流制限値I2limitを設定してもよい。
2limit=I1limit×V×K/V
なお、Kは充電用電力変換器40の効率であり、例えば0.9等の予め決められた値が用いられる。
Next, a method for setting the charging current limit value I 2limit described in claims 2 to 6 will be specifically described.
That is, when the output current I 1 of the power storage device 11 exceeds a predetermined threshold value (output current limiting value I value below 1limit of the power storage device 11), or the output voltage V 1 of the power storage device 11 is a predetermined threshold value If the charging current command value I 2 * decreases, the charging current command value I 2 * may be reduced by a preset amount (for example, 20% or 10 [A] from the initial charging current command value I 2 * ).
In addition, a reduction amount map of the charging current command value I 2 * with respect to the output voltage V 1 and SOC of the discharge-side power storage device 11 is prepared in advance, and based on this reduction amount map, according to the output voltage V 1 or SOC. A method of reducing the charging current command value I 2 * may be taken.
In the above configuration, an increase in the output current I 1 of the discharge-side power storage device 11 can be prevented also by adjusting the charge current command value I 2 * itself without using the limiter 51 (charge current limit value I 2limit ). Can do.
Further, since the power output from the power storage device 11 is the power charged in the power storage device 21 and the loss of the charging power converter 40, the output current limit value I 1limit of the power storage device 11 set in advance, From the output voltage V 1 of the power storage device 11 and the charging voltage V 2 of the power storage device 21, the charging current limit value I 2limit may be set by the following formula.
I 2limit = I 1limit × V 1 × K 1 / V 2
K 1 is the efficiency of the charging power converter 40, and a predetermined value such as 0.9 is used.

上記のようにすれば、何れの場合にも、蓄電装置11の出力電流検出値Iが出力電流制限値I1limit以下となるように、充電電流制限値I2limitにより制限された充電電流指令値I に従って蓄電装置21が充電される。これにより、蓄電装置21の充電電流Iが増加し続ける事態は回避できるので、仮に電源側の蓄電装置11の出力電圧Vが低下しても、蓄電装置11の出力電流Iが出力電流制限値I1limitを超えて増加するおそれはない。 According to the above, in any case, the charging current command value limited by the charging current limit value I 2limit so that the output current detection value I 1 of the power storage device 11 is equal to or less than the output current limit value I 1limit. The power storage device 21 is charged according to I 2 * . Accordingly, since the situation in which the charging current I 2 of the electric storage device 21 continues to increase can be avoided, even if the output voltage V 1 of the power source side of the power storage device 11 decreases, the output current I 1 is the output current of the power storage device 11 There is no risk of increasing beyond the limit value I 1limit .

次に、請求項7に記載の方法について具体的に説明する。
図4は、図3と同様に充電用電力変換器40の半導体スイッチング素子を駆動する制御回路に設けられた電流制御系の構成図である。図4に示すように、リミッタ51における充電電流制限値I2limitを調整するための手段として、減算手段61、PI演算手段62及びリミッタ63が設けられる。
上記構成において、リミッタ51は請求項における第1のリミッタに相当し、リミッタ63は第2のリミッタに相当する。また、第1,第2のリミッタ51,63、減算手段61及びPI演算手段62は、請求項における指令値調整手段を構成している。
Next, the method according to claim 7 will be specifically described.
FIG. 4 is a configuration diagram of a current control system provided in a control circuit for driving the semiconductor switching element of the charging power converter 40 as in FIG. As shown in FIG. 4, subtracting means 61, PI calculating means 62, and limiter 63 are provided as means for adjusting charging current limit value I 2limit in limiter 51.
In the above configuration, the limiter 51 corresponds to the first limiter in the claims, and the limiter 63 corresponds to the second limiter. The first and second limiters 51 and 63, the subtracting means 61, and the PI calculating means 62 constitute command value adjusting means in the claims.

ここでは、減算手段61により、放電側の蓄電装置11の出力電流制限値I1limitと出力電流検出値Iとの偏差が求められ、この偏差はPI演算手段62に入力される。PI演算手段62では、入力された偏差をゼロにする比例・積分演算が行われ、その出力がリミッタ63により制限されて充電電流制限値I2limitとなる。
上記リミッタ63は、入力信号を0〜100%の範囲の任意の割合で制限する機能を備えている。
Here, the deviation between the output current limit value I 1limit of the discharge-side power storage device 11 and the output current detection value I 1 is obtained by the subtracting means 61, and this deviation is input to the PI calculating means 62. In the PI calculation means 62, proportional / integral calculation for making the input deviation zero is performed, and the output is limited by the limiter 63 to become the charging current limit value I 2limit .
The limiter 63 has a function of limiting the input signal at an arbitrary ratio in the range of 0 to 100%.

図4の構成によれば、蓄電装置11の出力電流検出値Iが出力電流制限値I1limit以下の最大値となるよう制御され、その時の充電電流制限値I2limitにより制限された充電電流指令値I に従って蓄電装置21が充電されることになる。
従って、蓄電装置11の出力電流が制限値I1limitを超えることはなく、前記同様に、蓄電装置11の出力電圧Vが低下した場合にも蓄電装置21を継続的に充電することが可能である。
According to the configuration of FIG. 4, the charging current command is controlled so that the output current detection value I 1 of the power storage device 11 becomes the maximum value not more than the output current limit value I 1limit, and is limited by the charging current limit value I 2limit at that time. The power storage device 21 is charged according to the value I 2 * .
Therefore, the output current of the power storage device 11 does not exceed the limit value I 1limit , and the power storage device 21 can be continuously charged even when the output voltage V 1 of the power storage device 11 decreases, as described above. is there.

なお、以上の動作により充電電流指令値I または充電電流制限値I2limitを調整した場合でも、何らかの理由によって蓄電装置11の出力電流Iが増加し続けるような場合には、非常時の保護動作として充電用電力変換器40の運転を停止することが望ましい。 Even when the charging current command value I 2 * or the charging current limit value I 2limit is adjusted by the above operation, the output current I 1 of the power storage device 11 continues to increase for some reason. It is desirable to stop the operation of the charging power converter 40 as a protective operation.

本発明の充電装置は、電気自動車等に搭載された蓄電装置の間だけでなく、車載型、非車載型を問わず、二つの蓄電装置の間で一方の直流電力により他方を充電する用途全般に利用することができる。   The charging device of the present invention is used not only between power storage devices mounted on electric vehicles or the like, but also for all purposes of charging the other with one DC power between two power storage devices, whether in-vehicle type or non-in-vehicle type. Can be used.

EV1,EV2:電気自動車
11,21:蓄電装置
12,22:充電コネクタ
31,32:電源ケーブル
40:充電用電力変換器
51,63:リミッタ
52,61:減算手段
53:電流調節手段
62:PI演算手段
EV1, EV2: Electric vehicle 11, 21: Power storage device 12, 22: Charging connector 31, 32: Power cable 40: Charging power converter 51, 63: Limiter 52, 61: Subtracting means 53: Current adjusting means 62: PI Calculation means

Claims (7)

第1の蓄電装置の出力電圧及び出力電流を、半導体スイッチング素子を有する充電用電力変換器により所定の大きさの充電電圧及び充電電流に変換して第2の蓄電装置に供給することにより第2の蓄電装置を充電する充電装置において、
前記充電用電力変換器の電流制御系における第2の蓄電装置の充電電流指令値を、第1の蓄電装置の出力電流が出力電流制限値以下になるように調整する指令値調整手段を備えたことを特徴とする充電装置。
The output voltage and the output current of the first power storage device are converted into a charge voltage and a charge current of a predetermined magnitude by a charging power converter having a semiconductor switching element, and then supplied to the second power storage device. In the charging device for charging the power storage device,
Command value adjusting means for adjusting the charging current command value of the second power storage device in the current control system of the charging power converter so that the output current of the first power storage device is equal to or less than the output current limit value. A charging device characterized by that.
請求項1に記載した充電装置において、
前記指令値調整手段は、第1の蓄電装置の出力電流が前記出力電流制限値未満の閾値を超えた時に、前記充電電流指令値を予め設定した量だけ低減させることを特徴とする充電装置。
The charging device according to claim 1,
The command value adjusting means reduces the charge current command value by a preset amount when the output current of the first power storage device exceeds a threshold value less than the output current limit value.
請求項1に記載した充電装置において、
前記指令値調整手段は、第1の蓄電装置の出力電圧が所定の閾値を超えて低下した時に、前記充電電流指令値を予め設定した量だけ低減させることを特徴とする充電装置。
The charging device according to claim 1,
The command value adjusting means reduces the charge current command value by a preset amount when the output voltage of the first power storage device falls below a predetermined threshold.
請求項1に記載した充電装置において、
前記指令値調整手段は、第1の蓄電装置の出力電圧に応じて予め設定された低減量に従って前記充電電流指令値を段階的に低減させることを特徴とする充電装置。
The charging device according to claim 1,
The charging device, wherein the command value adjusting means reduces the charging current command value in a stepwise manner according to a reduction amount set in advance according to the output voltage of the first power storage device.
請求項1に記載した充電装置において、
前記指令値調整手段は、第1の蓄電装置の充電率または充電量に応じて予め設定された低減量に従って前記充電電流指令値を段階的に低減させることを特徴とする充電装置。
The charging device according to claim 1,
The charging device is characterized in that the command value adjusting means reduces the charging current command value in a stepwise manner in accordance with a reduction amount set in advance according to a charging rate or a charging amount of the first power storage device.
請求項1に記載した充電装置において、
前記指令値調整手段は、予め設定されている第1の蓄電装置の出力電流制限値と第1の蓄電装置の出力電圧及び第2の蓄電装置の充電電圧とから求めた充電電流制限値により前記充電電流指令値を調整することを特徴とする充電装置。
The charging device according to claim 1,
The command value adjusting means is configured to calculate the command current based on a charge current limit value obtained from a preset output current limit value of the first power storage device, an output voltage of the first power storage device, and a charge voltage of the second power storage device. A charging device for adjusting a charging current command value.
請求項1に記載した充電装置において、
前記指令値調整手段は、第1の蓄電装置の出力電流制限値と出力電流検出値との偏差がゼロになるように調節演算する演算手段と、この演算手段の出力を制限する第2のリミッタと、第2のリミッタの出力を充電電流制限値として前記充電電流指令値を制限する第1のリミッタと、を備えたことを特徴とする充電装置。
The charging device according to claim 1,
The command value adjusting means includes a calculating means for adjusting and calculating so that a deviation between the output current limit value of the first power storage device and the output current detection value becomes zero, and a second limiter for limiting the output of the calculating means. And a first limiter that limits the charge current command value using the output of the second limiter as the charge current limit value.
JP2012123848A 2012-05-31 2012-05-31 Electric charging device Pending JP2013251961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123848A JP2013251961A (en) 2012-05-31 2012-05-31 Electric charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123848A JP2013251961A (en) 2012-05-31 2012-05-31 Electric charging device

Publications (1)

Publication Number Publication Date
JP2013251961A true JP2013251961A (en) 2013-12-12

Family

ID=49850154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123848A Pending JP2013251961A (en) 2012-05-31 2012-05-31 Electric charging device

Country Status (1)

Country Link
JP (1) JP2013251961A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201944A (en) * 2014-04-07 2015-11-12 Tdk株式会社 On-vehicle power supply apparatus and control method thereof
JP2015201945A (en) * 2014-04-07 2015-11-12 Tdk株式会社 On-vehicle power supply apparatus and control method therefor
JP2016187256A (en) * 2015-03-27 2016-10-27 オートモーティブエナジーサプライ株式会社 Charger
JP2017085763A (en) * 2015-10-28 2017-05-18 日東工業株式会社 Vehicle charge system
JP2017099102A (en) * 2015-11-20 2017-06-01 株式会社東芝 Exciter of synchronous machine, power storage device, and exciting method
CN107508335A (en) * 2017-08-04 2017-12-22 北京新能源汽车股份有限公司 The current limiting method and device of charging equipment
CN111817415A (en) * 2020-09-04 2020-10-23 深圳市永联科技股份有限公司 Novel battery charging control circuit and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299260A (en) * 2002-04-03 2003-10-17 Black & Decker Inc Charger with protection circuit
JP2010521947A (en) * 2007-03-26 2010-06-24 ザ ジレット カンパニー Portable energy storage and charging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299260A (en) * 2002-04-03 2003-10-17 Black & Decker Inc Charger with protection circuit
JP2010521947A (en) * 2007-03-26 2010-06-24 ザ ジレット カンパニー Portable energy storage and charging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201944A (en) * 2014-04-07 2015-11-12 Tdk株式会社 On-vehicle power supply apparatus and control method thereof
JP2015201945A (en) * 2014-04-07 2015-11-12 Tdk株式会社 On-vehicle power supply apparatus and control method therefor
JP2016187256A (en) * 2015-03-27 2016-10-27 オートモーティブエナジーサプライ株式会社 Charger
JP2017085763A (en) * 2015-10-28 2017-05-18 日東工業株式会社 Vehicle charge system
JP2017099102A (en) * 2015-11-20 2017-06-01 株式会社東芝 Exciter of synchronous machine, power storage device, and exciting method
CN107508335A (en) * 2017-08-04 2017-12-22 北京新能源汽车股份有限公司 The current limiting method and device of charging equipment
CN107508335B (en) * 2017-08-04 2021-03-19 北京新能源汽车股份有限公司 Current limiting method and device of charging equipment
CN111817415A (en) * 2020-09-04 2020-10-23 深圳市永联科技股份有限公司 Novel battery charging control circuit and method

Similar Documents

Publication Publication Date Title
US9680303B2 (en) Power storage system and power source system
EP3206936B1 (en) Steering power system for electric vehicle and method for controlling same
JP2013251961A (en) Electric charging device
JP5886734B2 (en) Electric vehicle
CN102574470B (en) Vehicle charging system and electric vehicle equipped with same
US20160079776A1 (en) Charge/discharge device
US20130221921A1 (en) Power supply system for electric powered vehicle, control method thereof, and electric powered vehicle
US9868358B2 (en) Power conversion system suppressing reduction in conversion efficiency
US9960612B2 (en) Charging and discharging system for a vehicle including a first fuse in the vehicle and a second fuse in a cable connected to the vehicle
KR20160092933A (en) High-voltage charge booster and method for charging a direct current traction battery at a direct current charging pillar and corresponding electric vehicle
US10173614B2 (en) Power supply device for auxiliary device battery
US10005370B2 (en) Charging apparatus for vehicle
US11535151B2 (en) Vehicle and method of notifying charging information of vehicle
CN102804574A (en) Converter output diode shortcircuit detection device
US20180358837A1 (en) Charging control device
WO2013129231A1 (en) Power supply apparatus
US11230199B2 (en) Motor-driven vehicle and control method for motor-driven vehicle
CN111479721B (en) Method for controlling a DC converter in an on-board network of a motor vehicle
JP2013074733A (en) Charge control device
KR20160038348A (en) Device for low voltage dc-dc converter-integrated charger
US20190322177A1 (en) Vehicle power supply device
JP2019088142A (en) Electric power system for vehicle
US20150372519A1 (en) Charging and discharging device
JP2016134969A (en) Power supply control apparatus
CN108995551B (en) Storage battery emergency charging circuit for motor car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160928