JP2013251955A - Power transportation method - Google Patents

Power transportation method Download PDF

Info

Publication number
JP2013251955A
JP2013251955A JP2012123738A JP2012123738A JP2013251955A JP 2013251955 A JP2013251955 A JP 2013251955A JP 2012123738 A JP2012123738 A JP 2012123738A JP 2012123738 A JP2012123738 A JP 2012123738A JP 2013251955 A JP2013251955 A JP 2013251955A
Authority
JP
Japan
Prior art keywords
power
portable device
power supply
information signal
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012123738A
Other languages
Japanese (ja)
Inventor
Hideaki Miyamoto
英明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012123738A priority Critical patent/JP2013251955A/en
Publication of JP2013251955A publication Critical patent/JP2013251955A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Abstract

PROBLEM TO BE SOLVED: To transport power from a power base to a portable device while transmitting an information signal stably and reliably from the portable device to the power base.SOLUTION: In the power transportation method, in a state where power is transported by magnetically coupling a power transmission coil 11 of a power base 10 and a power reception coil 51 of a portable device 50, the portable device 50 transmits an information signal to the power base 10 by a modulation system of changing the load impedance of the power reception coil 51, the power base 10 detects the information signal by detecting a change in the load impedance of the power reception coil 51 via the power transmission coil 11, and then the power base 10 transports power from the power transmission coil 11 to the power reception coil 51 while controlling the feed power of the power transmission coil 11 by the information signal transmitted from the portable device 50 side. Furthermore, the power base 10 transmits the information signal by setting the feed power of the power transmission coil 11 to a maximum initial power capable of transmitting the information signal from the portable device 50 to the power base 10, and then decreases the feed power of the power transmission coil 11 to an optimum feed power.

Description

本発明は、電源台に携帯機器をセットして、電源台の送電コイルから携帯機器の受電コイルに電力搬送する電力搬送方法に関する。   The present invention relates to a power transfer method in which a portable device is set on a power supply stand and power is transferred from a power transmission coil of the power supply stand to a power reception coil of the portable device.

電源台に携帯機器をセットして、電源台の送電コイルから携帯機器の受電コイルに電力搬送する電力搬送方法は開発されている。(特許文献1参照)
この電力搬送方法は、無接点で電源台から携帯機器に電力搬送できる。この方式は、携帯機器から電源台に情報信号を伝送しながら電力搬送する。たとえば、携帯機器から電源台に、受電コイルに誘導される電力を検出して電力信号を伝送し、あるいは充電している電池が満充電されたことを示す信号を伝送する。電源台は、携帯機器から伝送される電力信号と、送電コイルの給電電力との比率から送電効率を検出し、送電効率が好ましい状態となるように、送電コイルの給電電力を調整する。また、充電している電池が満充電されたことを検出すると、送電コイルへの電力供給を停止して、充電を停止する。
A power transfer method has been developed in which a portable device is set on a power supply stand and power is transferred from a power transmission coil of the power supply stand to a power reception coil of the portable device. (See Patent Document 1)
This power transfer method can transfer power from a power supply stand to a portable device without contact. This method carries power while transmitting information signals from a portable device to a power supply stand. For example, a power signal is transmitted from a portable device to a power supply base by detecting power induced in the power receiving coil, or a signal indicating that a charged battery is fully charged. The power supply stand detects the power transmission efficiency from the ratio between the power signal transmitted from the portable device and the power supplied to the power transmission coil, and adjusts the power supplied to the power transmission coil so that the power transmission efficiency is in a preferable state. When detecting that the battery being charged is fully charged, the power supply to the power transmission coil is stopped and the charging is stopped.

携帯機器から電源台に情報信号を伝送するために、特許文献1の電力搬送方法は、図1に示すように、携帯機器150側に、受電コイル151と並列にコンデンサー187とスイッチング素子186との直列回路からなる変調回路184を接続している。変調回路184は、スイッチング素子186のFETをオンオフに切り換えて、受電コイル151の負荷インピーダンスを変化させるように情報信号で変調して電源台110に伝送する。電源台110は、送電コイル111を介して受電コイル151の負荷インピーダンスの変化を検出して、情報信号を検出する。受電コイル151の負荷インピーダンスが変化すると、これに電磁結合している送電コイル111の交流波形の振幅が変化する。たとえば、受電コイル151の負荷インピーダンスが大きくなると、送電コイル111の交流波形の振幅が小さくなり、受電コイル151の負荷インピーダンスが小さくなると、交流波形の振幅が大きくなる。このため、送電コイル111の交流波形が携帯機器150の情報信号で振幅変調された状態となる。したがって、電源台110は、送電コイル111の交流波形の振幅変動から情報信号を検出できる。   In order to transmit an information signal from a portable device to a power supply stand, the power transfer method of Patent Document 1 is provided with a capacitor 187 and a switching element 186 in parallel with a power receiving coil 151 on the portable device 150 side as shown in FIG. A modulation circuit 184 composed of a series circuit is connected. The modulation circuit 184 switches the FET of the switching element 186 on and off, modulates it with an information signal so as to change the load impedance of the power receiving coil 151, and transmits it to the power supply stand 110. The power supply stand 110 detects a change in load impedance of the power receiving coil 151 via the power transmission coil 111 to detect an information signal. When the load impedance of the power receiving coil 151 changes, the amplitude of the AC waveform of the power transmitting coil 111 that is electromagnetically coupled to the power receiving coil 151 changes. For example, when the load impedance of the power receiving coil 151 increases, the amplitude of the AC waveform of the power transmission coil 111 decreases, and when the load impedance of the power receiving coil 151 decreases, the amplitude of the AC waveform increases. For this reason, the AC waveform of the power transmission coil 111 is amplitude-modulated by the information signal of the portable device 150. Therefore, the power supply stand 110 can detect an information signal from the amplitude fluctuation of the AC waveform of the power transmission coil 111.

特開2009−273327号公報JP 2009-273327 A

受電コイルの負荷インピーダンスを情報信号で変化させる変調方式は、電源台が送電コイルの交流波形を検出して情報信号を検出する。ところが、この方式は、携帯機器側の負荷の大きさによって、送電コイルの交流波形の変化幅が小さくなる。このため、携帯機器側の負荷が大きくなると、受電コイルの負荷インピーダンスを変化させても、送電コイルで負荷インピーダンスの変化を検出できなくなる。したがって、携帯機器から電源台に安定して情報信号を伝送できない欠点がある。電源台は、携帯機器から伝送される情報信号を検出して、送電コイルへの交流電力の供給を制御するので、情報信号が検出できないと、電源台から携帯機器に正常に電力搬送できなくなる。   In the modulation method in which the load impedance of the power receiving coil is changed by the information signal, the power supply stand detects the information signal by detecting the AC waveform of the power transmitting coil. However, in this method, the change width of the AC waveform of the power transmission coil is reduced depending on the load on the portable device side. For this reason, when the load on the portable device increases, even if the load impedance of the power receiving coil is changed, the change in the load impedance cannot be detected by the power transmission coil. Therefore, there is a drawback that information signals cannot be stably transmitted from the portable device to the power supply stand. Since the power supply base detects an information signal transmitted from the portable device and controls the supply of AC power to the power transmission coil, if the information signal cannot be detected, power cannot be normally transferred from the power supply stand to the portable device.

本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、携帯機器の負荷が変動しても、携帯機器から電源台に安定して確実に情報信号を伝送しながら、電源台から携帯機器に電力搬送できる方法を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a method capable of conveying power from a power supply base to a mobile device while stably and reliably transmitting an information signal even when the load of the mobile device fluctuates. It is in.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の電力搬送方法は、電源台10に携帯機器50をセットして、電源台10の送電コイル11と携帯機器50の受電コイル51とを電磁結合して、電源台10の送電コイル11から携帯機器50の受電コイル51に電力搬送すると共に、携帯機器50の送電コイル11から受電コイル51に電力搬送する状態で、携帯機器50が受電コイル51の負荷インピーダンスを変化する変調方式で電源台10に情報信号を伝送し、電源台10が、送電コイル11を介してこれに電磁結合してなる受電コイル51の負荷インピーダンスの変化を検出して情報信号を検出し、電源台10が、携帯機器50側から伝送される情報信号で送電コイル11の給電電力をコントロールしながら、送電コイル11から受電コイル51に電力搬送する。さらに、電力搬送方法は、電源台10が、送電コイル11の給電電力を、携帯機器50から電源台10に情報信号を伝送できる最大初期電力に設定して情報信号を伝送し、その後、送電コイル11の給電電力を低下させて、最適供給電力とする。   In the power transfer method of the present invention, the portable device 50 is set on the power supply base 10, and the power transmission coil 11 of the power supply base 10 and the power reception coil 51 of the portable device 50 are electromagnetically coupled. While the power is being transferred to the power receiving coil 51 of the portable device 50 and the power is being transferred from the power transmission coil 11 of the portable device 50 to the power receiving coil 51, the power supply base 10 is modulated by the modulation method in which the portable device 50 changes the load impedance of the power receiving coil 51. The power supply base 10 detects a change in the load impedance of the power receiving coil 51 that is electromagnetically coupled to the power supply coil 11 via the power transmission coil 11 to detect the information signal. Power is conveyed from the power transmission coil 11 to the power reception coil 51 while controlling the power supplied to the power transmission coil 11 by the information signal transmitted from the 50 side. Further, in the power transfer method, the power supply base 10 transmits the information signal by setting the power supplied to the power transmission coil 11 to the maximum initial power that can transmit the information signal from the portable device 50 to the power supply base 10, and then the power transmission coil. 11 is reduced to the optimum supply power.

以上の電力搬送方法は、携帯機器の負荷が変動しても、携帯機器から電源台に安定して確実に情報信号を伝送しながら、電源台から携帯機器に電力搬送できる特徴がある。それは、以上の電力搬送方法が、送電コイルに供給する給電電力を最大初期電力として、情報信号を伝送し、その後、送電コイルの給電電力を最適供給電力に低下させるからである。受電コイルの負荷が大きくなる状態、たとえば、電池の充電電流が大きくなる状態で、送電コイルの給電電力を大きくして、受電コイルの負荷インピーダンスの変化を確実に安定して検出できるのは、送電コイルの給電電力を大きくすると交流波形の振幅が大きくなって、振幅変動を確実に検出できるからである。   The power transfer method described above is characterized in that power can be transferred from the power supply stand to the portable device while the information signal is stably and reliably transmitted from the portable device to the power supply stand even when the load of the portable device changes. This is because the above power transfer method transmits an information signal using the power supplied to the power transmission coil as the maximum initial power, and then reduces the power supplied to the power transmission coil to the optimum power. In a state where the load on the power receiving coil is large, for example, in a state where the charging current of the battery is large, the power supplied to the power transmitting coil can be increased to reliably detect a change in the load impedance of the power receiving coil. This is because when the power supplied to the coil is increased, the amplitude of the AC waveform is increased, and amplitude fluctuations can be reliably detected.

図2は、受電コイルの負荷が大きくて、送電コイルの給電電力が小さい状態において、受電コイルの負荷インピーダンスを変化させて、送電コイルの交流波形の振幅が変化する状態を示している。この図に示すように、受電コイルの負荷が大きくなると、送電コイルの交流波形の振幅変動は極めて小さく、振幅変動から情報信号を正確に検出できなくなる。図3は、受電コイルの負荷を同じように大きくしながら、かつ送電コイルの給電電力を大きくする状態で、送電コイルの交流波形の振幅が変化する状態を示している。この図に示すように、送電コイルの給電電力を大きくすると、受電コイルの負荷が大きくても、送電コイルの交流波形の振幅変動は大きく、振幅変動から確実に情報信号を検出できる。   FIG. 2 shows a state in which the amplitude of the AC waveform of the power transmission coil changes by changing the load impedance of the power reception coil in a state where the load of the power reception coil is large and the power supplied to the power transmission coil is small. As shown in this figure, when the load on the power receiving coil increases, the amplitude fluctuation of the AC waveform of the power transmission coil is extremely small, and the information signal cannot be accurately detected from the amplitude fluctuation. FIG. 3 shows a state in which the amplitude of the AC waveform of the power transmission coil changes while the load of the power receiving coil is increased in the same manner and the power supplied to the power transmission coil is increased. As shown in this figure, when the feeding power of the power transmission coil is increased, the amplitude fluctuation of the AC waveform of the power transmission coil is large even if the load of the power receiving coil is large, and the information signal can be reliably detected from the amplitude fluctuation.

本発明の電力搬送方法は、電源台10に携帯機器50をセットして、電源台10の送電コイル11と携帯機器50の受電コイル51とを電磁結合して、電源台10の送電コイル11から携帯機器50の受電コイル51に電力搬送すると共に、携帯機器50の送電コイル11から受電コイル51に電力搬送する状態で、携帯機器50が受電コイル51の負荷インピーダンスを変化する変調方式で電源台10に情報信号を伝送し、電源台10が、送電コイル11を介してこれに電磁結合してなる受電コイル51の負荷インピーダンスの変化を検出して情報信号を検出し、電源台10が、携帯機器50側から伝送される情報信号で送電コイル11の給電電力をコントロールしながら、送電コイル11から受電コイル51に電力搬送する。さらに、電力搬送方法は、電源台10が、携帯機器50側の情報信号を検出できない不検出状態になると、送電コイル11の給電電力を情報信号を検出できるレベルまで増加して、携帯機器50から電源台10に情報信号を伝送する。   In the power transfer method of the present invention, the portable device 50 is set on the power supply base 10, and the power transmission coil 11 of the power supply base 10 and the power reception coil 51 of the portable device 50 are electromagnetically coupled. While the power is being transferred to the power receiving coil 51 of the portable device 50 and the power is being transferred from the power transmission coil 11 of the portable device 50 to the power receiving coil 51, the power supply base 10 is modulated by the modulation method in which the portable device 50 changes the load impedance of the power receiving coil 51. The power supply base 10 detects a change in the load impedance of the power receiving coil 51 that is electromagnetically coupled to the power supply coil 11 via the power transmission coil 11 to detect the information signal. Power is conveyed from the power transmission coil 11 to the power reception coil 51 while controlling the power supplied to the power transmission coil 11 by the information signal transmitted from the 50 side. Further, in the power transfer method, when the power supply stand 10 enters a non-detection state in which the information signal on the portable device 50 side cannot be detected, the power supply power of the power transmission coil 11 is increased to a level at which the information signal can be detected. An information signal is transmitted to the power supply base 10.

以上の電力搬送方法は、携帯機器の負荷が変動しても、携帯機器から電源台に安定して確実に情報信号を伝送しながら、電源台から携帯機器に電力搬送できる特徴がある。それは、以上の電力搬送方法が、情報信号を伝送できない不検出状態において、送電コイルの給電電力を情報信号を検出できるレベルまで増加して、携帯機器から電源台に情報信号を伝送するからである。   The power transfer method described above is characterized in that power can be transferred from the power supply stand to the portable device while the information signal is stably and reliably transmitted from the portable device to the power supply stand even when the load of the portable device changes. This is because the above power transfer method increases the power supplied to the power transmission coil to a level at which the information signal can be detected and transmits the information signal from the portable device to the power supply base in a non-detection state where the information signal cannot be transmitted. .

本発明の電力搬送方法は、電源台10が、携帯機器50の最大負荷において情報信号を検出できる送電コイル11の最大給電電力を記憶しており、電源台10が情報信号を検出できない不検出状態において、電源台10が送電コイル11の給電電力を最大給電電力に設定して、携帯機器50から電源台10への情報信号を検出することができる。   In the power transfer method of the present invention, the power supply base 10 stores the maximum power supply power of the power transmission coil 11 that can detect the information signal at the maximum load of the portable device 50, and the power supply base 10 cannot detect the information signal. The power supply base 10 can detect the information signal from the portable device 50 to the power supply base 10 by setting the power supply power of the power transmission coil 11 to the maximum power supply power.

以上の電力搬送方法は、情報信号の不検出状態において、電源台が記憶している最大給電電力を送電コイルに供給するので、携帯機器から電源台に安定して情報信号を伝送できる。それは、記憶している最大給電電力を確実に安定して情報信号を伝送できる電力に設定できるからである。   In the above power transfer method, the maximum power supply power stored in the power supply stand is supplied to the power transmission coil in the non-detection state of the information signal, so that the information signal can be stably transmitted from the portable device to the power supply stand. This is because the stored maximum power supply power can be set to a power that can reliably and stably transmit an information signal.

本発明の電力搬送方法は、電源台10が、送電コイル11の電圧振幅の変化から受電コイル51の負荷インピーダンスの変化を検出して、情報信号を検出することができる。
以上の電力搬送方法は、簡単な回路構成で、送電コイルの電圧振幅の変化から情報信号を検出できる特徴がある。
In the power transfer method of the present invention, the power supply stand 10 can detect a change in the load impedance of the power reception coil 51 from a change in the voltage amplitude of the power transmission coil 11 to detect an information signal.
The above power transfer method has a feature that an information signal can be detected from a change in voltage amplitude of a power transmission coil with a simple circuit configuration.

本発明の電力搬送方法は、携帯機器50が、受電コイル51と並列に、コンデンサー61Aとスイッチング素子62との直列回路60を接続し、スイッチング素子62をオンオフして、受電コイル51の負荷インピーダンスを変化して、情報信号を伝送することができる。
以上の電力搬送方法は、受電コイルにコンデンサーを接続する状態と接続しない状態とに切り換えて、受電コイルの負荷インピーダンスを変化させるので、送電効率を低下することなく、安定して情報信号を伝送できる特徴がある。それは、受電コイルと並列にコンデンサーを接続しても、コンデンサーが電力を消費しないからである。
In the power transfer method of the present invention, the portable device 50 connects the series circuit 60 of the capacitor 61A and the switching element 62 in parallel with the power receiving coil 51, turns the switching element 62 on and off, and sets the load impedance of the power receiving coil 51. The information signal can be transmitted by changing.
In the above power transfer method, the load impedance of the power receiving coil is changed by switching between the state where the capacitor is connected to the power receiving coil and the state where the capacitor is not connected, so that the information signal can be transmitted stably without reducing the power transmission efficiency. There are features. This is because even if a capacitor is connected in parallel with the power receiving coil, the capacitor does not consume power.

本発明の電力搬送方法は、携帯機器50が、受電コイル51に誘導される電力を情報信号として電源台10に伝送することができる。
この電力搬送方法は、携帯機器の受電コイルに誘導される電力が情報信号として電源台に伝送されるので、電源台は携帯機器から伝送される情報信号でもって、送電効率を検出し、送電効率を最適な状態にコントロールしながら、電力搬送できる特徴がある。
In the power transfer method of the present invention, the portable device 50 can transmit the power induced in the power receiving coil 51 to the power supply base 10 as an information signal.
In this power transfer method, since the power induced in the receiving coil of the portable device is transmitted as an information signal to the power supply stand, the power supply stand detects the power transmission efficiency with the information signal transmitted from the portable device, and the power transmission efficiency There is a feature that can carry power while controlling the power to the optimum state.

従来の電力搬送装置が情報信号を伝送する構造を示すブロック図である。It is a block diagram which shows the structure where the conventional electric power carrier apparatus transmits an information signal. 送電コイルの給電電力が小さい状態で、受電コイルの負荷インピーダンスを変化させて送電コイルの交流波形の振幅が変化する状態を示す図である。It is a figure which shows the state from which the amplitude of the alternating current waveform of a power transmission coil changes by changing the load impedance of a power receiving coil in the state with small electric power feeding of a power transmission coil. 送電コイルの給電電力を大きくする状態で、受電コイルの負荷インピーダンスを変化させて送電コイルの交流波形の振幅が変化する状態を示す図である。It is a figure which shows the state which changes the amplitude of the alternating current waveform of a power transmission coil by changing the load impedance of a power reception coil in the state which increases the electric power feeding of a power transmission coil. 本発明の一実施の形態にかかる電力搬送方法に使用する電源台と携帯機器を示す概略構成図である。It is a schematic block diagram which shows the power supply stand and portable apparatus which are used for the electric power conveyance method concerning one embodiment of this invention. 図4に示す電源台と携帯機器の一例を示す斜視図である。It is a perspective view which shows an example of the power supply stand and portable apparatus which are shown in FIG. 送電コイルの供給電圧を調整して携帯機器から電源台に情報信号を伝送する状態を示すグラフである。It is a graph which shows the state which adjusts the supply voltage of a power transmission coil and transmits an information signal from a portable apparatus to a power supply stand.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電力搬送方法を例示するものであって、本発明は電力搬送方法を以下の方法に特定しない。さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a power transfer method for embodying the technical idea of the present invention, and the present invention does not specify the power transfer method as the following method. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図4は、携帯機器50を電池内蔵機器50Aとし、電源台10を充電台10Aとし、送電コイル11から受電コイル51に電力搬送して、携帯機器50の電池52を充電する。ただし、本発明は、電力搬送方法の電源台を充電台に特定せず、また携帯機器を電池内蔵機器に特定しない。携帯機器を光源を備える照明や充電アダプターとし、これ等の携帯機器に電源台から電力搬送することもできるからである。   In FIG. 4, the portable device 50 is a battery built-in device 50 </ b> A, the power supply base 10 is a charging base 10 </ b> A, power is transferred from the power transmission coil 11 to the power reception coil 51, and the battery 52 of the portable device 50 is charged. However, the present invention does not specify the power supply base of the power transfer method as a charging stand, and does not specify the portable device as a battery built-in device. This is because the portable device can be an illumination or a charging adapter provided with a light source, and power can be transferred to the portable device from the power supply stand.

図4は、携帯機器50を、電池52を内蔵する電池内蔵機器50Aとし、電源台10を電池内蔵機器50Aの電池52を充電する充電台10Aとしている。携帯機器50は、電源台10の送電コイル11に電磁結合される受電コイル51と、この受電コイル51に誘導される交流を整流する整流回路57と、整流回路57の出力で電池52を充電する充電回路58と、携帯機器50の情報信号を電源台10に送信する変調回路54を備えている。   In FIG. 4, the portable device 50 is a battery built-in device 50 </ b> A that incorporates a battery 52, and the power supply base 10 is a charging stand 10 </ b> A that charges the battery 52 of the battery built-in device 50 </ b> A. The portable device 50 charges the battery 52 with the power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11 of the power supply base 10, the rectifying circuit 57 that rectifies the alternating current induced by the power receiving coil 51, and the output of the rectifying circuit 57. A charging circuit 58 and a modulation circuit 54 that transmits an information signal of the portable device 50 to the power supply base 10 are provided.

携帯機器50は、電源台10が最適な電力を給電するために変調回路54で情報信号を電源台10に伝送する。変調回路54は、受電コイル51の出力電圧、出力電流、電池状態、温度などを情報信号として電源台10に伝送する。変調回路54は、インピーダンス素子61とスイッチング素子62との直列回路60と、直列回路60のスイッチング素子62をオンオフに制御する入力回路63とを備える。直列回路60は、受電コイル51と並列に接続されて、スイッチング素子62をオンオフに切り換えて受電コイル51の負荷インピーダンスを変化させる。図4の変調回路54は、インピーダンス素子61をコンデンサー61Aとし、スイッチング素子62をFET62Aとしている。ただし、インピーダンス素子には、コンデンサーに代わってコイルや抵抗器も使用でき、またコンデンサーとコイルと抵抗を直列や並列に接続した素子も使用できる。また、スイッチング素子は、FETに代わってトランジスタも使用できる。   The portable device 50 transmits an information signal to the power supply base 10 by the modulation circuit 54 so that the power supply base 10 supplies optimal power. The modulation circuit 54 transmits the output voltage, output current, battery state, temperature, and the like of the power receiving coil 51 to the power supply base 10 as information signals. The modulation circuit 54 includes a series circuit 60 of an impedance element 61 and a switching element 62 and an input circuit 63 that controls the switching element 62 of the series circuit 60 to be turned on and off. The series circuit 60 is connected in parallel with the power receiving coil 51 and switches the switching element 62 on and off to change the load impedance of the power receiving coil 51. In the modulation circuit 54 of FIG. 4, the impedance element 61 is a capacitor 61A, and the switching element 62 is an FET 62A. However, as the impedance element, a coil or a resistor can be used in place of the capacitor, and an element in which a capacitor, a coil, and a resistor are connected in series or in parallel can be used. Moreover, a transistor can also be used for a switching element instead of FET.

入力回路63は、整流回路57の出力電圧、出力電流、電池の電圧、満充電状態、電池温度などを時系列に情報信号とし、情報信号をデジタル信号として、デジタル信号でスイッチング素子62をオンオフに切り換えて、受電コイル51の負荷インピーダンスを変化させる。すなわち、変調回路54は、情報信号のデジタル信号で受電コイル51の負荷インピーダンスを変化させて、情報信号を電源台10に伝送する。入力回路63は、所定の周期で順番に、出力電圧、出力電流、電池電圧、満充電状態、電池温度等を繰り返しデジタル信号に変換し、このデジタル信号でスイッチング素子62をオンオフに切り換えて、デジタル信号の情報信号を電源台10に伝送する。出力電圧、出力電流、電池電圧、満充電状態、電池温度等、種々の情報信号の順番を識別するために、複数の情報信号を伝送する変調回路54は、同期信号の後に複数の情報信号を伝送する。この変調回路54は、同期信号と情報信号でもって、受電コイル51の負荷インピーダンスを変化させるように変調して、電源台10に情報信号を伝送する。   The input circuit 63 uses the output voltage, output current, battery voltage, fully charged state, battery temperature, etc. of the rectifier circuit 57 as information signals in a time series, turns the switching element 62 on and off with digital signals, using the information signals as digital signals. The load impedance of the power receiving coil 51 is changed by switching. That is, the modulation circuit 54 changes the load impedance of the power receiving coil 51 with the digital signal of the information signal, and transmits the information signal to the power supply base 10. The input circuit 63 repeatedly converts the output voltage, output current, battery voltage, full charge state, battery temperature, etc. into digital signals in order at a predetermined cycle, and switches the switching element 62 on and off with this digital signal. The signal information signal is transmitted to the power supply base 10. In order to identify the order of various information signals such as output voltage, output current, battery voltage, fully charged state, battery temperature, etc., the modulation circuit 54 that transmits a plurality of information signals outputs a plurality of information signals after the synchronization signal. To transmit. The modulation circuit 54 modulates the load impedance of the power receiving coil 51 with the synchronization signal and the information signal, and transmits the information signal to the power supply base 10.

電源台10は、ケース20と、このケース20内に配置されて受電コイル51に電磁結合される送電コイル11と、この送電コイル11に交流電力を供給する交流電源12と、携帯機器50から伝送される情報信号を検出する復調回路14と、この復調回路14で検出する情報信号で交流電源12を制御する制御回路15とを備えている。   The power supply base 10 is transmitted from the case 20, the power transmission coil 11 that is disposed in the case 20 and electromagnetically coupled to the power receiving coil 51, the AC power supply 12 that supplies AC power to the power transmission coil 11, and the portable device 50. And a control circuit 15 for controlling the AC power supply 12 with the information signal detected by the demodulation circuit 14.

ケース20は、図5に示すように、携帯機器50を載せる平面状の上面プレート21を上面に設けている。図5の電源台10は、上面プレート21全体を平面状として水平に配設している。上面プレート21は、大きさや外形が異なる種々の携帯機器50を上に載せることができる大きさとしている。また、上面プレート21は、その周囲に周壁などを設け、周壁の内側に携帯機器をセットして、携帯機器を定位置にセットする構造とすることができる。   As shown in FIG. 5, the case 20 is provided with a flat upper surface plate 21 on which the portable device 50 is placed on the upper surface. In the power supply stand 10 of FIG. 5, the entire top plate 21 is horizontally arranged in a flat shape. The top plate 21 has a size that allows various portable devices 50 having different sizes and outer shapes to be placed thereon. Further, the top plate 21 may have a structure in which a peripheral wall or the like is provided around the top plate 21, the mobile device is set inside the peripheral wall, and the mobile device is set at a fixed position.

送電コイル11は、上面プレート21と平行な面で渦巻き状に巻かれて、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。送電コイル11は、受電コイル51の外径にほぼ等しくして、受電コイル51に効率よく電力搬送する。上面プレート21の自由な位置に携帯機器50をセットする電源台10は、送電コイル11を携帯機器50の受電コイル51に接近させる移送機構(図示せず)を備えている。携帯機器を上面プレートの定位置にセットする電源台は、セットされる携帯機器の受電コイルに接近する位置に送電コイルを配置している。   The power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21. The power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51. The power supply base 10 that sets the portable device 50 at a free position on the top plate 21 includes a transfer mechanism (not shown) that causes the power transmission coil 11 to approach the power reception coil 51 of the portable device 50. In the power supply stand for setting the portable device at a fixed position on the upper surface plate, the power transmission coil is arranged at a position approaching the power receiving coil of the portable device to be set.

交流電源12は、送電コイル11に交流電力を供給する。送電コイル11を受電コイル51に接近するように移動する電源台10は、交流電力を可撓性のリード線(図示せず)を介して送電コイル11に接続する。交流電源12は、図示しないが、発振回路と、この発振回路から出力される交流を電力増幅するパワーアンプとを備える。交流電力は、たとえば数百kHz〜数十MHzの交流電力を送電コイル11に供給する。   The AC power supply 12 supplies AC power to the power transmission coil 11. The power supply stand 10 that moves the power transmission coil 11 so as to approach the power reception coil 51 connects AC power to the power transmission coil 11 via a flexible lead wire (not shown). Although not shown, the AC power supply 12 includes an oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit. As the AC power, for example, AC power of several hundred kHz to several tens of MHz is supplied to the power transmission coil 11.

復調回路14は、送電コイル11の交流波形の振幅変動から情報信号を検出する。変調回路54のスイッチング素子62がオンオフに切り換えられると、送電コイル11に流れる交流波形の振幅が変化する。復調回路14は、波形整形回路(図示せず)で送電コイル11の交流波形の振幅変動を整形して、受電コイル51の負荷インピーダンスの変化を検出して情報信号を検出する。復調回路14は、携帯機器50から伝送される同期信号も検出し、同期信号に続いて順番に伝送される情報信号を検出する。   The demodulation circuit 14 detects an information signal from the amplitude fluctuation of the AC waveform of the power transmission coil 11. When the switching element 62 of the modulation circuit 54 is switched on and off, the amplitude of the AC waveform flowing through the power transmission coil 11 changes. The demodulation circuit 14 shapes an AC waveform amplitude variation of the power transmission coil 11 with a waveform shaping circuit (not shown), detects a change in load impedance of the power reception coil 51, and detects an information signal. The demodulating circuit 14 also detects a synchronization signal transmitted from the portable device 50 and detects an information signal transmitted in order following the synchronization signal.

復調回路14で検出される情報信号は制御回路15に入力される。制御回路15は情報信号で交流電源12を制御して、交流電源12から送電コイル11に供給する電力を最適値にコントロールする。電源台10にセットされた携帯機器50は、変調回路54でもって情報信号を電源台10に伝送する。電源台10は情報信号を検出して、送電コイル11に供給する交流電力を調整する。電源台10が携帯機器50からの情報信号を検出できないと、電源台10は正常な電力を送電コイル11に供給できない。携帯機器50からの情報信号を確実に検出するために、電源台10の制御回路15は送電コイル11の給電電力をコントロールする。   An information signal detected by the demodulation circuit 14 is input to the control circuit 15. The control circuit 15 controls the AC power supply 12 with the information signal to control the power supplied from the AC power supply 12 to the power transmission coil 11 to an optimum value. The portable device 50 set on the power supply base 10 transmits an information signal to the power supply base 10 by the modulation circuit 54. The power supply base 10 detects the information signal and adjusts the AC power supplied to the power transmission coil 11. If the power base 10 cannot detect the information signal from the portable device 50, the power base 10 cannot supply normal power to the power transmission coil 11. In order to reliably detect the information signal from the portable device 50, the control circuit 15 of the power supply base 10 controls the power supplied to the power transmission coil 11.

図6のラインAは、携帯機器50から電源台10に情報信号を伝送できる検出領域と、情報信号を伝送できない不検出領域(図においてハッチングで表示)の境界を示している。この図は、横軸を受電コイル51の負荷電流、縦軸を送電コイル11の給電電力(図においては、供給電圧)を示している。この図に示すように、受電コイル51の負荷電流が大きくなる領域では、送電コイル11の供給電圧(給電電力)が小さいと、情報信号を伝送できなくなる。送電コイル11の供給電圧(給電電力)が低いと、図2に示すように、送電コイル11の交流波形の振幅変動が小さくなるからである。送電コイル11の供給電圧(給電電力)を高くすると、図3に示すように、交流波形の振幅変動が大きくなって、情報信号を伝送できる状態となる。   A line A in FIG. 6 indicates a boundary between a detection area in which an information signal can be transmitted from the portable device 50 to the power supply base 10 and a non-detection area (indicated by hatching in the drawing) where the information signal cannot be transmitted. In this figure, the horizontal axis represents the load current of the power receiving coil 51, and the vertical axis represents the feed power (supply voltage in the figure) of the power transmission coil 11. As shown in this figure, in the region where the load current of the power receiving coil 51 is large, if the supply voltage (feed power) of the power transmission coil 11 is small, the information signal cannot be transmitted. This is because when the supply voltage (feed power) of the power transmission coil 11 is low, the amplitude fluctuation of the AC waveform of the power transmission coil 11 becomes small as shown in FIG. When the supply voltage (feeding power) of the power transmission coil 11 is increased, as shown in FIG. 3, the amplitude fluctuation of the AC waveform increases, and an information signal can be transmitted.

電源台10に携帯機器50がセットされると、セットされた携帯機器50は、情報信号を電源台10に伝送する。このとき、携帯機器50の負荷電流が大きく、送電コイル11の給電電力が小さいと、情報信号を検出できなくなる。情報信号が検出できない電源台10は、送電コイル11の供給電力を最適値に設定できない。   When the portable device 50 is set on the power supply stand 10, the set portable device 50 transmits an information signal to the power supply stand 10. At this time, if the load current of the portable device 50 is large and the power supplied to the power transmission coil 11 is small, the information signal cannot be detected. The power supply stand 10 that cannot detect the information signal cannot set the power supplied to the power transmission coil 11 to an optimum value.

以上の弊害を防止するために、電源台10の制御回路15は、以下のようにして確実に情報信号を検出する。この電源台10は、携帯機器50がセットされたことを検出する検出回路(図示せず)を備えている。検出回路は、たとえば、上面プレート21に検出コイルを設けて、この検出コイルにパルス信号を入力し、このパルス信号で受電コイル51を励起し、パルス信号で励起された受電コイル51から出力されるエコー信号を検出して、携帯機器50がセットされたことを検出できる。また、上面プレート21にリミットスイッチ等を設け、セットされる携帯機器50がリミットスイッチを切り換えることで、携帯機器50がセットされたことを検出することもできる。   In order to prevent the above adverse effects, the control circuit 15 of the power supply base 10 reliably detects the information signal as follows. The power supply base 10 includes a detection circuit (not shown) that detects that the portable device 50 is set. For example, the detection circuit is provided with a detection coil on the upper surface plate 21, inputs a pulse signal to the detection coil, excites the receiving coil 51 with this pulse signal, and is output from the receiving coil 51 excited with the pulse signal. It is possible to detect that the portable device 50 is set by detecting the echo signal. Further, it is possible to detect that the portable device 50 has been set by providing a limit switch or the like on the top plate 21 and switching the portable device 50 to be set.

電源台10は、図6のラインBで示すように、送電コイル11の供給電圧をコントロールして、情報信号を確実に検出しながら、送電コイル11の供給電圧を最適値に調整する。この電源台10は、検出回路でもって、携帯機器50がセットされることを検出すると、制御回路15が、送電コイル11の給電電力を、携帯機器50から電源台10に情報信号を伝送できる最大初期電力に設定して情報信号を検出する。図6において、最大初期電力は、送電コイル11に交流電力を供給する供給電圧を11Vとする電力に設定している。図6において、携帯機器50の最大負荷電流は2A、この状態で情報信号を検出できない送電コイル11の供給電圧は約10Vである。したがって、送電コイル11の供給電圧を11Vとして、最大初期電力に設定すると、携帯機器50の負荷電流が最大電流であっても、電源台10は情報信号を検出できる。その後、電源台10は、携帯機器50からの情報信号を検出しながら、次第に送電コイル11の給電電力を減少して、携帯機器50に最適な6Vに設定する。電源台10は、送電コイル11に給電する最適な給電電力を、携帯機器50から伝送される情報信号で決定する。すなわち、携帯機器50が必要な電力を電源台10に情報信号で要求し、電源台10がこの情報信号で送電コイル11への供給電力を設定する。また、電源台10は、携帯機器50からの情報信号と、送電コイル11の供給電力が送電効率を演算し、演算する送電効率が最適値、あるいはあらかじめ設定している好ましい領域となるように、送電コイル11の給電電力をコントロールすることもできる。   As shown by the line B in FIG. 6, the power supply base 10 controls the supply voltage of the power transmission coil 11 and adjusts the supply voltage of the power transmission coil 11 to the optimum value while reliably detecting the information signal. When the power supply base 10 detects that the portable device 50 is set with a detection circuit, the control circuit 15 can transmit the power supplied to the power transmission coil 11 from the portable device 50 to the power supply base 10 at the maximum. The information signal is detected by setting the initial power. In FIG. 6, the maximum initial power is set to a power at which a supply voltage for supplying AC power to the power transmission coil 11 is 11V. In FIG. 6, the maximum load current of the portable device 50 is 2A, and the supply voltage of the power transmission coil 11 that cannot detect the information signal in this state is about 10V. Therefore, when the supply voltage of the power transmission coil 11 is set to 11 V and the maximum initial power is set, the power supply base 10 can detect the information signal even if the load current of the portable device 50 is the maximum current. Thereafter, the power supply base 10 gradually reduces the power supplied to the power transmission coil 11 while detecting an information signal from the mobile device 50, and sets it to 6 V, which is optimal for the mobile device 50. The power supply base 10 determines an optimum power supply power to be supplied to the power transmission coil 11 by an information signal transmitted from the portable device 50. That is, the power required by the portable device 50 is requested to the power supply base 10 by an information signal, and the power supply base 10 sets the power supplied to the power transmission coil 11 by this information signal. Moreover, the power supply stand 10 calculates the power transmission efficiency by the information signal from the portable device 50 and the power supplied to the power transmission coil 11, and the power transmission efficiency to be calculated is an optimal value or a pre-set preferred region. The power supplied to the power transmission coil 11 can also be controlled.

さらに、電源台10にセットして電力搬送している状態で、携帯機器50の負荷が変動して、一時的に負荷電流が大きくなると、電源台10が情報信号を検出できなくなることがある。携帯機器50の負荷変動は、たとえば、携帯機器50が携帯電話で、電池を充電しているときに、電話を受信して受信音が鳴り、あるいはバイブレータが振動する状態で発生する。たとえば、図6において、送電コイル11の供給電圧を6Vとして電力搬送している状態で、携帯機器50の負荷電流が1Aを越えると、電源台10は情報信号を検出できなくなる。この不検出状態になると、制御回路15は、交流電源12を制御して送電コイル11の供給電圧が6Vよりも高くなるように、供給電力を増加する。送電コイル11の供給電圧を高くして、給電電力を高くすると、情報信号を検出できる領域となるので、電源台10は携帯機器50の情報信号を検出できる状態となる。   Furthermore, when the load of the portable device 50 fluctuates and the load current temporarily increases in a state where power is transferred while being set on the power supply base 10, the power supply base 10 may not be able to detect the information signal. For example, when the mobile device 50 is a mobile phone and the battery is charged, the load fluctuation of the mobile device 50 occurs when the phone is received and a reception sound is produced or the vibrator vibrates. For example, in FIG. 6, if the load current of the portable device 50 exceeds 1 A in the state where the supply voltage of the power transmission coil 11 is 6 V and the power is conveyed, the power supply base 10 cannot detect the information signal. In this non-detection state, the control circuit 15 controls the AC power supply 12 to increase the supply power so that the supply voltage of the power transmission coil 11 becomes higher than 6V. When the supply voltage of the power transmission coil 11 is increased and the power feeding power is increased, an information signal can be detected, so that the power supply base 10 can detect the information signal of the portable device 50.

すなわち、電源台10は、携帯機器50側の情報信号を検出できない不検出状態になると、送電コイル11の給電電力を情報信号を検出できるレベルまで増加して、携帯機器50からの情報信号を検出する。検出する情報信号で交流電源12を制御して、送電コイル11の供給電力を最適な状態に調整する。たとえば、携帯機器50の負荷電流が1A以下に減少すると、送電コイル11の給電電力を最適な電力に減少して、電源台10から携帯機器50に電力搬送する。   That is, when the power supply base 10 enters a non-detection state in which the information signal on the portable device 50 side cannot be detected, the power supply power of the power transmission coil 11 is increased to a level at which the information signal can be detected, and the information signal from the portable device 50 is detected. To do. The AC power supply 12 is controlled by the information signal to be detected, and the power supplied to the power transmission coil 11 is adjusted to an optimum state. For example, when the load current of the portable device 50 decreases to 1 A or less, the power supplied to the power transmission coil 11 is reduced to an optimum power, and power is transferred from the power supply base 10 to the portable device 50.

以上の電源台10は、以下の動作で携帯機器50に電力搬送する。
(1)ケース20の上面プレート21に携帯機器50が載せられると、携帯機器50がセットされたことを電源台10が検出する。この状態で、送電コイル11は受電コイル51に接近される。
(2)電源台10は、送電コイル11の給電電力を最大初期電力に設定して、携帯機器50からの情報信号を検出する。
(3)電源台10は、携帯機器50から伝送される情報信号で交流電源12を制御して、送電コイル11の給電電力を次第に減少して、送電コイル11の給電電力を最適な電力に調整して、送電コイル11から受電コイル51に電力搬送する。
(4)電源台10から携帯機器50に電力搬送している状態で、携帯機器50の負荷電流が増加して、電源台10が情報信号を検出できない不検出状態になると、制御回路15が交流電源12を制御して、送電コイル11の給電電力を情報信号を検出できる電力まで増加させる。
(5)電源台10は、携帯機器50から伝送される情報信号を検出して、情報信号を伝送できる状態を保持しながら、送電コイル11の給電電力を次第に低下して、最適な電力に設定する。この状態で、送電コイル11から受電コイル51に電力搬送する。
(6)携帯機器50が電池内蔵機器50Aであって、内蔵する電池52が満充電されると、電源台10は、携帯機器50から伝送される満充電信号を検出して、制御回路15が送電コイル11への電力供給を停止する。
携帯機器50がライトなどで電力搬送を停止しない状態では、連続して送電コイル11から受電コイル51に電力搬送して、電源台10から携帯機器50に給電する。
The above power supply stand 10 carries power to the portable device 50 by the following operation.
(1) When the portable device 50 is placed on the upper surface plate 21 of the case 20, the power supply base 10 detects that the portable device 50 is set. In this state, the power transmission coil 11 approaches the power reception coil 51.
(2) The power supply base 10 detects the information signal from the portable device 50 by setting the feeding power of the power transmission coil 11 to the maximum initial power.
(3) The power supply base 10 controls the AC power supply 12 with the information signal transmitted from the portable device 50 to gradually reduce the power supplied to the power transmission coil 11 and adjust the power supplied to the power transmission coil 11 to the optimum power. Then, power is transferred from the power transmission coil 11 to the power reception coil 51.
(4) When power is being transferred from the power supply base 10 to the mobile device 50, the load current of the mobile device 50 increases and the power supply base 10 enters a non-detection state in which an information signal cannot be detected. The power supply 12 is controlled to increase the power supplied to the power transmission coil 11 to a power at which an information signal can be detected.
(5) The power supply base 10 detects the information signal transmitted from the portable device 50, and while maintaining the state in which the information signal can be transmitted, the power supply power of the power transmission coil 11 is gradually reduced and set to the optimum power. To do. In this state, power is transferred from the power transmission coil 11 to the power reception coil 51.
(6) When the portable device 50 is the battery built-in device 50A and the built-in battery 52 is fully charged, the power supply base 10 detects the full charge signal transmitted from the portable device 50, and the control circuit 15 The power supply to the power transmission coil 11 is stopped.
In a state where the portable device 50 does not stop power transfer due to a light or the like, power is continuously transferred from the power transmission coil 11 to the power receiving coil 51, and power is supplied from the power supply stand 10 to the portable device 50.

本発明の電力搬送方法は、電源台から携帯機器に無接点で電力搬送し、さらに携帯機器から電源台に情報信号を安定して伝送しながら、電源台から携帯機器に電力搬送するので、携帯機器等の電池内蔵機器の安定な無接点充電等に好適に使用される。   In the power transfer method of the present invention, power is transferred from the power supply stand to the portable device in a contactless manner, and further, the power signal is transferred from the power supply stand to the portable device while stably transmitting information signals from the portable device to the power supply stand. It is suitably used for stable contactless charging of a battery built-in device such as a device.

10…電源台 10A…充電台
11…送電コイル
12…交流電源
14…復調回路
15…制御回路
20…ケース
21…上面プレート
50…携帯機器 50A…電池内蔵機器
51…受電コイル
52…電池
54…変調回路
57…整流回路
58…充電回路
60…直列回路
61…インピーダンス素子 61A…コンデンサー
62…スイッチング素子 62A…FET
63…入力回路
110…電源台
111…送電コイル
150…携帯機器
151…受電コイル
184…変調回路
186…スイッチング素子
187…コンデンサー
DESCRIPTION OF SYMBOLS 10 ... Power supply stand 10A ... Charging stand 11 ... Power transmission coil 12 ... AC power supply 14 ... Demodulation circuit 15 ... Control circuit 20 ... Case 21 ... Top plate 50 ... Portable device 50A ... Battery built-in device 51 ... Power receiving coil 52 ... Battery 54 ... Modulation Circuit 57 ... Rectifier circuit 58 ... Charging circuit 60 ... Series circuit 61 ... Impedance element 61A ... Capacitor 62 ... Switching element 62A ... FET
63 ... Input circuit 110 ... Power source 111 ... Power transmission coil 150 ... Portable device 151 ... Power reception coil 184 ... Modulation circuit 186 ... Switching element 187 ... Condenser

Claims (6)

電源台(10)に携帯機器(50)をセットして、電源台(10)の送電コイル(11)と携帯機器(50)の受電コイル(51)とを電磁結合して、電源台(10)の送電コイル(11)から携帯機器(50)の受電コイル(51)に電力搬送すると共に、
前記携帯機器(50)の送電コイル(11)から受電コイル(51)に電力搬送する状態で、携帯機器(50)が受電コイル(51)の負荷インピーダンスを変化する変調方式で電源台(10)に情報信号を伝送し、
前記電源台(10)が、前記送電コイル(11)を介してこれに電磁結合してなる受電コイル(51)の負荷インピーダンスの変化を検出して、前記情報信号を検出し、
前記電源台(10)が、携帯機器(50)側から伝送される情報信号で送電コイル(11)の給電電力をコントロールしながら、送電コイル(11)から受電コイル(51)に電力搬送する電力搬送方法であって、
前記電源台(10)が、前記送電コイル(11)の給電電力を、携帯機器(50)から電源台(10)に情報信号を伝送できる最大初期電力に設定して情報信号を伝送し、その後、送電コイル(11)の給電電力を低下させて、最適供給電力とする電力搬送方法。
The portable device (50) is set on the power supply stand (10), and the power transmission coil (11) of the power supply stand (10) and the power receiving coil (51) of the portable device (50) are electromagnetically coupled to each other. ) Power transfer from the power transmission coil (11) to the power reception coil (51) of the portable device (50),
In a state where power is transferred from the power transmission coil (11) of the portable device (50) to the power reception coil (51), the power supply base (10) is modulated by a modulation method in which the portable device (50) changes the load impedance of the power reception coil (51). Transmit information signals to
The power supply base (10) detects a change in load impedance of a power receiving coil (51) that is electromagnetically coupled to the power transmitting coil (11), and detects the information signal.
The power supply (10) carries power from the power transmission coil (11) to the power reception coil (51) while controlling the power feeding power of the power transmission coil (11) with the information signal transmitted from the portable device (50) side. A transport method,
The power supply base (10) sets the power supplied to the power transmission coil (11) to the maximum initial power that can transmit the information signal from the portable device (50) to the power supply base (10), and then transmits the information signal. The electric power conveyance method which reduces the electric power feeding of a power transmission coil (11), and makes it the optimal supply electric power.
電源台(10)に携帯機器(50)をセットして、電源台(10)の送電コイル(11)と携帯機器(50)の受電コイル(51)とを電磁結合して、電源台(10)の送電コイル(11)から携帯機器(50)の受電コイル(51)に電力搬送すると共に、
前記携帯機器(50)の送電コイル(11)から受電コイル(51)に電力搬送する状態で、携帯機器(50)が受電コイル(51)の負荷インピーダンスを変化する変調方式で電源台(10)に情報信号を伝送し、
前記電源台(10)が、前記送電コイル(11)を介してこれに電磁結合してなる受電コイル(51)の負荷インピーダンスの変化を検出して、前記情報信号を検出し、
前記電源台(10)が、携帯機器(50)側から伝送される情報信号で送電コイル(11)の給電電力をコントロールしながら、送電コイル(11)から受電コイル(51)に電力搬送する電力搬送方法であって、
前記電源台(10)が、携帯機器(50)側の情報信号を検出できない不検出状態になると、前記送電コイル(11)の給電電力を情報信号を検出できるレベルまで増加して、携帯機器(50)から電源台(10)に情報信号を伝送するようにしてなる電力搬送方法。
The portable device (50) is set on the power supply stand (10), and the power transmission coil (11) of the power supply stand (10) and the power receiving coil (51) of the portable device (50) are electromagnetically coupled to each other. ) Power transfer from the power transmission coil (11) to the power reception coil (51) of the portable device (50),
In a state where power is transferred from the power transmission coil (11) of the portable device (50) to the power reception coil (51), the power supply base (10) is modulated by a modulation method in which the portable device (50) changes the load impedance of the power reception coil (51). Transmit information signals to
The power supply base (10) detects a change in load impedance of a power receiving coil (51) that is electromagnetically coupled to the power transmitting coil (11), and detects the information signal.
The power supply (10) carries power from the power transmission coil (11) to the power reception coil (51) while controlling the power feeding power of the power transmission coil (11) with the information signal transmitted from the portable device (50) side. A transport method,
When the power supply stand (10) enters a non-detection state in which the information signal on the portable device (50) side cannot be detected, the power supplied to the power transmission coil (11) is increased to a level at which the information signal can be detected, and the portable device ( 50) A power transfer method configured to transmit an information signal from the power supply base (10) to the power supply base (10).
前記電源台(10)が、携帯機器(50)の最大負荷において情報信号を検出できる送電コイル(11)の最大給電電力を記憶しており、電源台(10)が情報信号を検出できない不検出状態において、電源台(10)が送電コイル(11)の給電電力を最大給電電力に設定して、携帯機器(50)から電源台(10)に情報信号を検出する請求項2に記載される電力搬送方法。   The power supply base (10) stores the maximum feeding power of the power transmission coil (11) that can detect the information signal at the maximum load of the portable device (50), and the power supply base (10) cannot detect the information signal. The power supply stand (10) sets the power supply power of the power transmission coil (11) to the maximum power supply power and detects the information signal from the portable device (50) to the power supply stand (10) in the state. Power transfer method. 前記電源台(10)が、送電コイル(11)の電圧振幅の変化から受電コイル(51)の負荷インピーダンスの変化を検出して、情報信号を検出する請求項1ないし3のいずれかに記載される電力搬送方法。   The said power supply stand (10) detects the change of the load impedance of a receiving coil (51) from the change of the voltage amplitude of a power transmission coil (11), and detects an information signal in any one of Claim 1 thru | or 3. Power transfer method. 前記携帯機器(50)が、受電コイル(51)と並列に、コンデンサー(61A)とスイッチング素子(62)との直列回路(60)を接続し、スイッチング素子(62)をオンオフして、受電コイル(51)の負荷インピーダンスを変化して、情報信号を伝送する請求項1ないし4のいずれかに記載される電力搬送方法。   The portable device (50) is connected in parallel with the power receiving coil (51) to connect a series circuit (60) of a capacitor (61A) and a switching element (62), and the switching element (62) is turned on and off to receive the power receiving coil. 5. The power carrying method according to claim 1, wherein the information signal is transmitted by changing the load impedance of (51). 前記携帯機器(50)が、受電コイル(51)に誘導される電力を情報信号として電源台(10)に伝送する請求項1ないし5のいずれかに記載される電力搬送方法。   The power carrying method according to any one of claims 1 to 5, wherein the portable device (50) transmits the power induced in the power receiving coil (51) to the power supply stand (10) as an information signal.
JP2012123738A 2012-05-30 2012-05-30 Power transportation method Pending JP2013251955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012123738A JP2013251955A (en) 2012-05-30 2012-05-30 Power transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012123738A JP2013251955A (en) 2012-05-30 2012-05-30 Power transportation method

Publications (1)

Publication Number Publication Date
JP2013251955A true JP2013251955A (en) 2013-12-12

Family

ID=49850149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012123738A Pending JP2013251955A (en) 2012-05-30 2012-05-30 Power transportation method

Country Status (1)

Country Link
JP (1) JP2013251955A (en)

Similar Documents

Publication Publication Date Title
JP5872373B2 (en) Contactless power supply method
JP5362453B2 (en) Charging stand
TWI565183B (en) Wireless power receiving unit, wireless power transmitting unit, and method for wireless load modulation
JP6090172B2 (en) Contactless charging method
JP5362330B2 (en) Charging stand
JP5872374B2 (en) Contactless power supply method
JP2013135599A (en) Contactless charge method
US20080174267A1 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device and electronic instrument
JP2017077093A (en) Power transmission apparatus and non-contact power supply system
JP2013115978A (en) Portable device and electric power feeding base, and power feeding method for portable device
US11682923B2 (en) Contactless power reception device and reception method
JP2010183706A (en) Charging cradle
WO2013031589A1 (en) Battery charger, and charging station
JP2017011954A (en) Power transmission device and non-contact power supply system
US9184634B2 (en) Wireless power transmitter and wireless power transmission method
WO2013047260A1 (en) Apparatus having built-in battery with charging stand, and apparatus having built-in battery
JP5430046B2 (en) Charging stand
JP2015006068A (en) Noncontact power supply method
JP2015080337A (en) Non-contact power supply method
JPWO2012141080A1 (en) Contactless charging method for battery built-in devices
JP2013251955A (en) Power transportation method
JP2015104141A (en) Non-contact power supply method
JP2013251956A (en) Power transport method
JP2014023323A (en) Power transportation method
JP2016220307A (en) Charger and charging system