JP2013251684A - Diffusive article position estimation device, diffusive article position estimation method, and program - Google Patents

Diffusive article position estimation device, diffusive article position estimation method, and program Download PDF

Info

Publication number
JP2013251684A
JP2013251684A JP2012124351A JP2012124351A JP2013251684A JP 2013251684 A JP2013251684 A JP 2013251684A JP 2012124351 A JP2012124351 A JP 2012124351A JP 2012124351 A JP2012124351 A JP 2012124351A JP 2013251684 A JP2013251684 A JP 2013251684A
Authority
JP
Japan
Prior art keywords
scatterer
data
cluster
particle
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124351A
Other languages
Japanese (ja)
Other versions
JP5583170B2 (en
Inventor
Kentaro Saito
健太郎 斎藤
Koshiro Kitao
光司郎 北尾
Tetsuro Imai
哲朗 今井
Shunji Miura
俊二 三浦
Hidetoshi Kayama
英俊 加山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2012124351A priority Critical patent/JP5583170B2/en
Priority to PCT/JP2013/063791 priority patent/WO2013179916A1/en
Publication of JP2013251684A publication Critical patent/JP2013251684A/en
Application granted granted Critical
Publication of JP5583170B2 publication Critical patent/JP5583170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0246Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving frequency difference of arrival or Doppler measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating the position of a diffusive article from only measurement data and performing clustering of a wavelet group and diffusive article position estimation in connection with each other.SOLUTION: The method includes: calculating, for each particle, a distance between propagation data and cluster-assumption data, where the former is obtained from measurement data of an electromagnetic wave received by a receiver, while the latter is an assumption value of propagation data of a cluster assumed by using a diffusive article estimation position; correlating, for each particle, a smallest-distance cluster with another cluster; calculating, as an evaluation value, for each particle, a ratio of the sum of electric power of propagation data whose distance is equal to or less than a threshold to the sum of electric power of propagation data of all measurement points and all wavelets; performing resampling in accordance with the evaluation value to calculate a particle; determining, as estimation-target data, for each particle calculated by the resampling, propagation data whose distance is the largest; estimating, for each particle, the position of the diffusive article anew, using the estimation-target data; and assuming cluster assumption data of a new cluster corresponding to the estimated diffusive article.

Description

本発明は、受信機で受信した電波の測定データから得られる伝搬データを用いて、受信機に到来した素波の伝搬路中の反射体及び散乱体(以下「散乱体」と略す)の位置を推定する技術に関する。   The present invention uses the propagation data obtained from the measurement data of the radio wave received by the receiver, and the position of the reflector and scatterer (hereinafter abbreviated as “scatterer”) in the propagation path of the wave arriving at the receiver. It is related with the technique which estimates.

セルラー無線において、受信機に到来した素波群の受信電力や到来方向だけでなく、その伝搬路中の散乱体の位置を推定することで、素波群の大まかな伝搬路を知ることができる。素波群の伝搬路を知ることで、エリア設計やチャネルの変動特性等の把握に有利なことが知られている。   In cellular radio, it is possible to know the rough propagation path of an elementary wave group by estimating the position of the scatterer in the propagation path as well as the reception power and direction of arrival of the elementary wave group that has arrived at the receiver. . It is known that knowing the propagation path of an elementary wave group is advantageous for grasping area design, channel fluctuation characteristics, and the like.

エリア内の各地点における素波群の伝搬路を推定するためには、通常、エリア内においてチャネルサウンダ等を用いて連続的に測定を行い、測定データを用いて伝搬データを得る。I点において測定を行った場合、一般に測定点i(1≦i≦I)における素波n(1≦n≦Nとし、Nを素波の個数とする)の伝搬データをx(i)={TOA(i),AOA(i),AOD(i),P(i)}と表記する。伝搬データ中の各要素は、それぞれ素波nの伝搬遅延(ToA:Time of Arrival) 、到来方位角(AoA:Angle of Arrival) 、出射角(AoD:Angle of Departure) 、(受信)電力(P:Power)である。なお、測定データを用いて伝搬データを得る従来技術として、特許文献1が知られている。 In order to estimate the propagation path of the wave group at each point in the area, normally, measurement is continuously performed using a channel sounder or the like in the area, and propagation data is obtained using the measurement data. When the measurement is performed at the point I, the propagation data of the elementary wave n (1 ≦ n ≦ N, where N is the number of elementary waves) at the measurement point i (1 ≦ i ≦ I) is generally expressed as x n (i). = {TOA n (i), AOA n (i), AOD n (i), P n (i)}. Each element in the propagation data includes propagation delay (ToA: Time of Arrival), arrival azimuth angle (AoA), outgoing angle (AoD: Angle of Departure), (reception) power (P : Power). Patent Document 1 is known as a conventional technique for obtaining propagation data using measurement data.

伝搬データより、到来した素波の散乱体の位置を推定するために、非特許文献1では、測定データと測定エリア内の建物マップを用いる手法が提案されている。非特許文献1では、受信機の位置より素波の到来方位角に向かって直線を引き、建物マップにおける壁等の障害物と交わる点を散乱体の位置として推定する。   In order to estimate the position of the incoming scatterer from the propagation data, Non-Patent Document 1 proposes a method using measurement data and a building map in the measurement area. In Non-Patent Document 1, a straight line is drawn from the position of the receiver toward the arrival azimuth angle of the elementary wave, and a point that intersects an obstacle such as a wall in the building map is estimated as the position of the scatterer.

また、通常、素波の伝搬データには多くの誤差が含まれており、各素波の伝搬データより個別に散乱体の位置を推定した場合、多くの推定誤差が生じる。その推定誤差を軽減するため、事前に素波群のクラスタリング(グループ分け)が必要となる。非特許文献2では素波の伝搬データの類似性に従ったクラスタリング手法(K-Power-Means)が、非特許文献3では素波データの目視によるクラスタリング手法が提案されている。   Also, the propagation data of elementary waves usually contains many errors, and many estimation errors occur when the position of the scatterer is estimated individually from the propagation data of each elementary wave. In order to reduce the estimation error, clustering (grouping) of elementary wave groups is required in advance. Non-patent document 2 proposes a clustering method (K-Power-Means) according to the similarity of propagation data of the wave, and non-patent document 3 proposes a clustering method by visual observation of the wave data.

特開2011−14980号公報JP 2011-14980 A

Poutanen, J.; Haneda, K.; Salmi, J.; Kolmonen, V.-M.; Richter, A.; Almers, P.; Vainikainen, P., “Development of measurement-based ray tracer for multi-link double directional propagation parameters”, EuCAP 2009. 3rd European Conference on Antennas and Propagation, 2009, pp 2622 - 2626Poutanen, J .; Haneda, K .; Salmi, J .; Kolmonen, V.-M .; Richter, A .; Almers, P .; Vainikainen, P., “Development of measurement-based ray tracer for multi-link double directional propagation parameters ”, EuCAP 2009. 3rd European Conference on Antennas and Propagation, 2009, pp 2622-2626 Czink N, Ruiyuan Tian, Wyne S, Tufvesson F, Nuutinen J.-P, Ylitalo J, Bonek E, Molisch A.F., "Tracking Time-Variant Cluster Parameters in MIMO Channel Measurements", 2007, IEEE CHINACOM '07, pp22-24Czink N, Ruiyuan Tian, Wyne S, Tufvesson F, Nuutinen J.-P, Ylitalo J, Bonek E, Molisch A.F., "Tracking Time-Variant Cluster Parameters in MIMO Channel Measurements", 2007, IEEE CHINACOM '07, pp22-24 Oestges, C. Clerckx, B., “Modeling Outdoor Macrocellular Clusters Based on 1.9-GHz Experimental Data”, Trans. on IEEE VTC2007-Fall, 2007, vol.55, Issue 5, pp.2821-2830Oestges, C. Clerckx, B., “Modeling Outdoor Macrocellular Clusters Based on 1.9-GHz Experimental Data”, Trans. On IEEE VTC2007-Fall, 2007, vol.55, Issue 5, pp.2821-2830

非特許文献1における散乱体位置推定では、測定データの他にも建物マップを必要とする。建物マップは常に得られるとは限らず、また現実の建物配置と建物マップに違いが生じた場合に推定間違いを生じる。   In the scatterer position estimation in Non-Patent Document 1, a building map is required in addition to the measurement data. A building map is not always obtained, and an estimation error occurs when there is a difference between the actual building layout and the building map.

非特許文献2におけるクラスタリング手法では、素波群は伝搬データの類似性のみに従ってクラスタリングされる。そのため散乱体の位置が異なる(伝搬路が異なる)素波群が、同一のクラスタに分類される可能性がある。その場合、正確に散乱体の位置を推定できない。   In the clustering method in Non-Patent Document 2, the wave group is clustered only according to the similarity of the propagation data. Therefore, there is a possibility that element waves having different positions of scatterers (different propagation paths) are classified into the same cluster. In that case, the position of the scatterer cannot be estimated accurately.

非特許文献3におけるクラスタリング手法では、伝搬データと建物マップから素波群を人間が目視する手法である。作業者により基準が異なる等、客観性が保障されない。   The clustering method in Non-Patent Document 3 is a method in which a human visually observes a wave group from propagation data and a building map. Objectivity is not guaranteed, such as different standards depending on the worker.

本発明は、測定データのみから散乱体の位置を推定し、素波群のクラスタリングと散乱体位置推定とを連動して行う手法を提供することを目的とする。   An object of the present invention is to provide a technique for estimating the position of a scatterer only from measurement data and performing clustering of the wave group and scatterer position estimation in conjunction with each other.

上記の課題を解決するために、本発明の第一の態様によれば、散乱体位置推定装置は、粒子毎に、受信機で受信した電波の測定データから得られる伝搬データと、散乱体推定位置を用いて想定されるクラスタの伝搬データの想定値であるクラスタ想定データとの間の距離を計算する距離計算部と、粒子毎に、最も距離の小さいクラスタに、他のクラスタを関連付けるクラスタリング部と、粒子毎に、全測定点及び全素波の伝搬データの電力の和に占める、距離が閾値以下となる伝搬データの電力の和の割合を評価値として計算する評価値計算部と、評価値に従ってリサンプリングを行い、粒子を求めるリサンプリング部と、リサンプリングにより求めた粒子毎に、最も距離の大きい伝搬データを推定対象データとして決定する推定対象データ決定部と、粒子毎に、推定対象データを用いて、新たに散乱体の位置を推定し、推定した散乱体に対応する新たなクラスタのクラスタ想定データを想定する散乱体位置推定部と、を含む。   In order to solve the above-described problems, according to the first aspect of the present invention, the scatterer position estimation device includes, for each particle, propagation data obtained from radio wave measurement data received by a receiver, and scatterer estimation. A distance calculation unit that calculates the distance between the assumed cluster propagation data that is assumed using the position and the cluster assumption data, and a clustering unit that associates another cluster with the cluster having the smallest distance for each particle. And, for each particle, an evaluation value calculation unit that calculates, as an evaluation value, a ratio of the sum of power of propagation data whose distance is equal to or less than a threshold value in the sum of power of propagation data of all measurement points and all the elementary waves, and evaluation Resampler that performs resampling according to the value, and estimation target data that determines the propagation data with the longest distance as estimation target data for each particle determined by resampling A scatterer position estimation unit that estimates a new scatterer position using estimation target data for each particle and assumes cluster assumption data of a new cluster corresponding to the estimated scatterer; Including.

上記の課題を解決するために、本発明の第二の態様によれば、散乱体位置推定方法は、粒子毎に、受信機で受信した電波の測定データから得られる伝搬データと、散乱体推定位置を用いて想定されるクラスタの伝搬データの想定値であるクラスタ想定データとの間の距離を計算する距離計算ステップと、粒子毎に、最も距離の小さいクラスタに、他のクラスタを関連付けるクラスタリングステップと、粒子毎に、全測定点及び全素波の伝搬データの電力の和に占める、距離が閾値以下となる伝搬データの電力の和の割合を評価値として計算する評価値計算ステップと、評価値に従ってリサンプリングを行い、粒子を求めるリサンプリングステップと、リサンプリングにより求めた粒子毎に、最も距離の大きい伝搬データを推定対象データとして決定する推定対象データ決定ステップと、粒子毎に、推定対象データを用いて、新たに散乱体の位置を推定し、推定した散乱体に対応する新たなクラスタのクラスタ想定データを想定する散乱体位置推定ステップと、を含む。   In order to solve the above problems, according to the second aspect of the present invention, the scatterer position estimation method includes, for each particle, propagation data obtained from radio wave measurement data received by a receiver, and scatterer estimation. A distance calculating step for calculating a distance between the assumed cluster propagation data assumed by using the position and a cluster assumed data, and a clustering step for associating another cluster with a cluster having the smallest distance for each particle. And an evaluation value calculation step for calculating, as an evaluation value, the ratio of the sum of the power of the propagation data whose distance is equal to or less than the threshold to the sum of the power of the propagation data of all the measurement points and all the elementary waves for each particle, and the evaluation Resampling is performed according to the value, the resampling step for obtaining particles, and the propagation data with the largest distance for each particle obtained by resampling The estimation target data determination step to be determined, and for each particle, the estimation target data is used to newly estimate the position of the scatterer, and the scatterer position assuming the cluster assumption data of a new cluster corresponding to the estimated scatterer An estimation step.

本発明によれば、測定データのみから散乱体の位置を推定し、素波群のクラスタリングと散乱体位置推定とを連動して行うため、建物マップを必要とせず、客観性を保ちつつ、正確に散乱体の位置を推定できるという効果を奏する。   According to the present invention, since the position of the scatterer is estimated only from the measurement data and the clustering of the wave group and the scatterer position estimation are performed in conjunction with each other, a building map is not required, and the objectivity is maintained while maintaining the objectivity. In addition, the position of the scatterer can be estimated.

第一実施形態の基本的な概念を説明するための図。The figure for demonstrating the basic concept of 1st embodiment. 散乱体推定装置の機能ブロック図。The functional block diagram of a scatterer estimation apparatus. 散乱体位置推定部の機能ブロック図。The functional block diagram of a scatterer position estimation part. 散乱体推定装置の処理フローを示す図。The figure which shows the processing flow of a scatterer estimation apparatus. 散乱体位置推定部における処理の詳細を説明するための図。The figure for demonstrating the detail of the process in a scatterer position estimation part. 散乱体位置推定部の処理フローを示す図。The figure which shows the processing flow of a scatterer position estimation part.

以下、本発明の実施形態について説明する。なお、以下の説明に用いる図面では、同じ機能を持つ構成部や同じ処理を行うステップには同一の符号を記し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described. In the drawings used for the following description, constituent parts having the same function and steps for performing the same process are denoted by the same reference numerals, and redundant description is omitted.

<第一実施形態>
図1に本実施形態の基本的な概念を示す。素波散乱体位置は測定データから直接得ることができない潜在変数となるため、散乱体存在範囲内でP通りの散乱体位置(L,L,…,L)を推定する。散乱体推定位置及びその散乱体推定位置から得られるパラメータ(例えば、送信機から散乱体までの伝搬遅延や素波の出射角等)を粒子(状態モデル)と呼ぶ。各粒子U(1≦p≦P、Pは推定に用いる粒子の個数である)において、各測定点i(1≦i≦I、ただしIは測定点の点数)におけるクラスタc(1≦c≦C、ただしCは推定に用いるクラスタの個数であり、推定対象となる散乱体の個数である。推定初期値ではC=0とする)の伝搬データの想定値(以下「クラスタ想定データ」ともいう)の推移は、散乱体推定位置を用いて、想定することができる。このようにして得られたクラスタ想定データと実際の測定データから得られる伝搬データとを比較し、実際の測定データから得られる伝搬データに近いクラスタ想定データ(図中、想定値2)に対応する粒子を有力な推定結果と判断する。
<First embodiment>
FIG. 1 shows the basic concept of this embodiment. Since the wave scatterer position is a latent variable that cannot be obtained directly from the measurement data, P kinds of scatterer positions (L 1 , L 2 ,..., L P ) are estimated within the scatterer existence range. A scatterer estimated position and parameters obtained from the scatterer estimated position (for example, a propagation delay from a transmitter to a scatterer, an outgoing angle of an elementary wave, and the like) are called particles (state model). In each particle U p (1 ≦ p ≦ P, P is the number of particles used for estimation), cluster c (1 ≦ c) at each measurement point i (1 ≦ i ≦ I, where I is the number of measurement points) ≦ C, where C is the number of clusters used for estimation, and is the number of scatterers to be estimated (assumed to be C = 0 in the initial estimation value). Transition) can be assumed using the estimated position of the scatterer. The estimated cluster data obtained in this way is compared with the propagation data obtained from the actual measurement data, and corresponds to the assumed cluster data (assumed value 2 in the figure) close to the propagation data obtained from the actual measurement data. Judge particles as a promising estimation result.

図2に本実施形態における散乱体位置推定装置100の機能ブロック図を示す。散乱体位置推定装置100は、測定データから得られるN個の伝搬データx(i)を入力される。ただし、nは素波のインデックスであり、1≦n≦Nである。N個の伝搬データx(i)を用いて、C個の散乱体の推定位置を出力する。なお、測定データを入力とし、散乱体位置推定装置100の前段に特許文献1記載の伝搬データ推定装置を備える構成としてもよい。 FIG. 2 shows a functional block diagram of the scatterer position estimation apparatus 100 in the present embodiment. The scatterer position estimation apparatus 100 receives N pieces of propagation data x n (i) obtained from measurement data. However, n is an index of a wave and 1 ≦ n ≦ N. The estimated positions of C scatterers are output using N pieces of propagation data x n (i). In addition, it is good also as a structure provided with the propagation data estimation apparatus of patent document 1 in the front | former stage of the scatterer position estimation apparatus 100 by making measurement data into an input.

散乱体位置推定装置100は、P個の距離計算部110、P個のクラスタリング部120、クラスタリング結果を元に各粒子の評価値を計算するP個の評価値計算部130、全ての粒子に対する評価値に従ってサンプリングするリサンプリング部140、P個の推定対象データ決定部150、P個の散乱体位置推定部160及び判定部170を含む。さらに、散乱体位置推定部160は、それぞれ散乱体存在範囲推定部161、散乱体配置部163及びクラスタパラメータ計算部165を含む(図3参照)。伝搬データx(i)及びリサンプリング部140は全ての粒子において共通であり、それ以外の各データ及び各部は粒子U毎に個別に存在する。 The scatterer position estimation apparatus 100 includes P distance calculation units 110 p , P clustering units 120 p , P evaluation value calculation units 130 p that calculate evaluation values of each particle based on the clustering results, It includes a resampling unit 140 that samples according to the evaluation value for particles, P estimation target data determination units 150 p , P scatterer position estimation units 160 p, and a determination unit 170. Moreover, the scatterer position estimating unit 160 p includes respective scatterers existence range estimation unit 161, a scatterer disposed portion 163 and the cluster parameter calculating unit 165 (see FIG. 3). Propagation data x n (i) and the resampling unit 140 is common to all of the particles, each data and each section other than it is present individually for each particle U p.

図4に散乱体位置推定装置100の処理フローを示す。測定データは受信機を移動させながら測定コースに沿ってI点の測定点において連続的に取得するものとする。各測定点における測定データはN個の素波データからなり、測定点iにおける素波nの伝搬データをx(i)={ToA(i),AoA(i),AoD(i),P(i)}と表記する。伝搬データx(i)中の各要素はそれぞれ測定点iにおける素波nの伝搬遅延、到来方位角、出射角、電力である。粒子Uにおけるクラスタcのクラスタ想定データをxp,c(i)={ToAp,c(i),AoAp,c(i),AoDp,c(i)}と表記する。クラスタ想定データxp,c(i)中の各要素はそれぞれ測定点iにおける素波n及びクラスタcの伝搬遅延、到来方位角、出射角である。クラスタ想定データxp,c(i)の算出方法は後述する。 FIG. 4 shows a processing flow of the scatterer position estimation apparatus 100. It is assumed that measurement data is continuously acquired at measurement points I along the measurement course while moving the receiver. The measurement data at each measurement point is composed of N pieces of wave data, and the propagation data of the wave n at the measurement point i is expressed as x n (i) = {ToA n (i), AoA n (i), AoD n (i ), P n (i)}. Each element in the propagation data x n (i) is the propagation delay, arrival azimuth angle, emission angle, and power of the elementary wave n at the measurement point i. Cluster assumed data cluster c in particles U p x p, c (i ) = is denoted as {ToA p, c (i) , AoA p, c (i), AoD p, c (i)}. Each element in the assumed cluster data x p, c (i) is the propagation delay, arrival azimuth angle, and emission angle of the elementary wave n and the cluster c at the measurement point i. A method of calculating the cluster assumption data x p, c (i) will be described later.

<距離計算部110
距離計算部110は、全測定データに対応するN×I個の伝搬データx(i)とC×I個のクラスタ想定データxp,c(i)とを受け取り、各伝搬データx(i)と各クラスタ想定データxp,c(i)の間のN×C×I個の距離Dn,p,c(i)を計算し(s1)、クラスタリング部120に出力する。本実施形態では、距離Dn,p,c(i)としてMCD(Multipath Component Distance)を用いる。MCDn,p,c(i)は以下の通り定義される。
<Distance calculation unit 110 p >
The distance calculation unit 110 p receives N × I pieces of propagation data x n (i) and C × I pieces of cluster assumed data x p, c (i) corresponding to all measurement data, and each piece of propagation data x n. N × C × I distances D n, p, c (i) between (i) and each cluster assumption data x p , c (i) are calculated (s1) and output to the clustering unit 120 p . In this embodiment, MCD (Multipath Component Distance) is used as the distance D n, p, c (i). MCD n, p, c (i) is defined as follows.

Figure 2013251684
Figure 2013251684

ただし、δToA、δAoA及びδToDは、それぞれ伝搬遅延、到来方位角及び出射角の規格化(正規化)パラメータである。 However, δToA , δAoA, and δToD are parameters for normalization (normalization) of propagation delay, arrival azimuth angle, and emission angle, respectively.

<クラスタリング部120
クラスタリング部120は、N×C×I個のMCDn,p,c(i)を受け取り、次式のように、素波n及び測定点i毎に、最もMCDn,p,c(i)の小さいクラスタに、他のクラスタを関連付け(s2)、N×I個のMCDn,p(i)を評価値計算部130に出力する。
<Clustering unit 120 p >
The clustering unit 120 p receives N × C × I MCD n, p, c (i), and most MCD n, p, c (i) for each elementary wave n and measurement point i as shown in the following equation. ) Is associated with other clusters (s2), and N × I MCD n, p (i) is output to the evaluation value calculation unit 130 p .

Figure 2013251684
Figure 2013251684

また、N×I個のMCDn,p(i)及び粒子Uを関連付けて図示しない記憶部に格納する。なお、最もMCDが小さいということは、伝搬データとクラスタ想定データとが最も近いということを表す。そこで、最も近いクラスタ想定データに他のクラスタ想定データを関連付けることでクラスタリングを行い、推定誤差を軽減する。 Further, N × I MCD n, p (i) and particle Up are associated and stored in a storage unit (not shown). The smallest MCD indicates that the propagation data and the cluster assumed data are closest. Therefore, clustering is performed by associating other cluster assumption data with the closest cluster assumption data to reduce the estimation error.

<評価値計算部130
評価値計算部130は、N×I個のMCDn,p(i)と、N×I個の伝搬データx(i)の電力p(i)とを受け取り、次式のように、全測定点i及び全素波nの伝搬データx(i)の電力の和に占める、MCDn,p(i)が閾値MCDth以下となる伝搬データx(i)の電力の和の割合を、粒子Uの評価値Eとして計算し(s3)、リサンプリング部140と判定部170とに出力する。
<Evaluation Value Calculation Unit 130 p >
The evaluation value calculation unit 130 p receives N × I MCD n, p (i) and N × I propagation data x n (i) power pn (i) as in the following equation: , the sum of the power occupying the sum of electric power of the propagation data x n for all the measurement points i and all rays n (i), MCD n, propagation p (i) is equal to or less than the threshold MCD th data x n (i) the proportion of, calculated as the evaluation value E p of the particles U p (s3), and outputs to the judging unit 170 and the resampling unit 140.

Figure 2013251684
Figure 2013251684

<判定部170>
判定部170は、P個の評価値Eを受け取り、評価値の中で最も大きい値が閾値Eth以上か否かを判定し(s4)、閾値Eth以上の場合には、その粒子Uに含まれる散乱体推定位置を最終的な推定値Uとして出力し、各部に処理を終了するように制御信号を出力する。閾値Eth未満の場合には、判定部170は、各部に処理を繰り返すように制御信号を出力する。
<Determining unit 170>
Determination unit 170 receives the P-number of evaluation values E p, the largest value among the evaluation values determined whether the threshold E th or (s4), in the case of more than the threshold value E th is the particle U The estimated scatterer position included in p is output as a final estimated value U, and a control signal is output so as to end the processing in each unit. If it is less than the threshold E th , the determination unit 170 outputs a control signal so as to repeat the processing to each unit.

<リサンプリング部140>
リサンプリング部140は、P個の評価値Eを受け取り、この値に従ってリサンプリング(本実施形態では重複サンプリング)を行い、P個の粒子Uを求め(s4)、それぞれ推定対象データ決定部150に出力する。例えば、評価値Eに比例する確率でP個の粒子Uを選択する。なお、選択の際には、同一の粒子を複数回選択することが許される。
<Resampling unit 140>
Resampler 140 receives the P-number of evaluation values E p, performs (duplicate samples in this embodiment) resampling in accordance with the value, determined P number of particles U p (s4), respectively estimation target data determination part Output to 150 p . For example, P particles U p are selected with a probability proportional to the evaluation value E p . In the selection, it is permitted to select the same particle a plurality of times.

<推定対象データ決定部150
推定対象データ決定部150は、リサンプリングにより求めた粒子Uを受け取り、この粒子Uに関連付けられたN×I個のMCDn,p(i)を図示しない記憶部から取り出す。推定対象データ決定部150は、次式のように、N×I個のMCDn,p(i)の中から、最も大きいMCDn,p(i)を選択し、これに対応する一つの伝搬データを推定対象データxn_tp(i_t)(ただし、下付添え字tpはtを表す)として決定し(s6)、散乱体位置推定部160に出力する。
<Estimation target data determination unit 150 p >
Estimation target data determination part 0.99 p receives the particles U p obtained by resampling, taken the particles U N × associated with p I pieces of MCD n, from the storage unit not shown p (i). The estimation target data determination unit 150 p selects the largest MCD n, p (i) from N × I MCD n, p (i) as shown in the following equation, and selects one corresponding to this. estimating the propagation data target data x n_tp (i_t p) (where subscript tp represents a t p) is determined as (s6), and outputs the scatterer position estimating unit 160 p.

Figure 2013251684
Figure 2013251684

最も大きいMCDに対応する伝搬データは何れのクラスタ想定データとも異なることを意味するので、この伝搬データが想定していない散乱体に基づく伝搬データであると考えられ、以下の処理において散乱体位置の推定対象とする。 This means that the propagation data corresponding to the largest MCD is different from any cluster assumption data, so this propagation data is considered to be propagation data based on a scatterer that is not assumed. Estimated.

なお、推定初期値(C=0)においては、次式のように、最も電力の大きな測定データを散乱体推定対象データxn_tp(i_t)として選択するものとする。 In the estimated initial value (C = 0), the following equation shall be the most selective power large measurement data as scatterer estimation target data x n_tp (i_t p).

Figure 2013251684
Figure 2013251684

推定対象データ決定部150は、上記処理後に、次式のようにクラスタの個数Cをインクリメントする(一つ増加させる)。
C=C+1
P個の評価値Eの中に、閾値Eth以上となるものが存在しないのは、想定している散乱体の個数と実際の散乱体の個数とが異なり、想定している散乱体の個数が実際の散乱体の個数よりも小さいと考えられるからである。散乱体位置推定部160では、新たに設けたC番目のクラスタに係るクラスタ想定データを想定する。
The estimation target data determination unit 150 p increments (increases by one) the number C of clusters as in the following equation after the above processing.
C = C + 1
The reason why there are no P evaluation values E p that exceed the threshold E th is that the number of assumed scatterers differs from the actual number of scatterers. This is because the number is considered to be smaller than the actual number of scatterers. The scatterer position estimation unit 160 p assumes cluster assumption data relating to a newly provided C-th cluster.

<散乱体位置推定部160
散乱体位置推定部160は、推定対象データxn_tp(i_t)を受け取り、この値を用いて、新たに散乱体の位置を推定し、推定した散乱体に対応する新たなクラスタCのI個のクラスタ想定データxp,C(i)を想定し(s7)、一回前の繰返し処理までに求めた(C−1)×I個のクラスタ想定データとともに、距離計算部110に出力する。なお、距離計算部110は一回前の繰返し処理までに求めた(C−1)×I個のクラスタ想定データを記憶しておき、散乱体位置推定部160は新たなクラスタCのI個のクラスタ想定データxp,C(i)のみを出力する構成としてもよい。
<Scatterer position estimation unit 160 p >
Scatterer position estimating unit 160 p receives the estimated target data x n_tp (i_t p), using this value, a new position of the scatterers and estimates, I new cluster C corresponding to the estimated scatterer Suppose cluster assumed data x p, C (i) (s7), and output to the distance calculation unit 110 p together with (C-1) × I assumed cluster data obtained up to the previous iteration process. To do. The distance calculation unit 110 p stores (C−1) × I cluster assumption data obtained up to the previous repetitive processing, and the scatterer position estimation unit 160 p stores the I of the new cluster C. Only one cluster assumed data x p, C (i) may be output.

なお、判定部170において、評価値の中で最も大きい値が閾値Eth以上であると判定されるまで、各部において処理を繰り返す。 It should be noted that the processing is repeated in each unit until the determination unit 170 determines that the largest value among the evaluation values is equal to or greater than the threshold value Eth .

図3、図5び図6を用いて散乱体位置推定部160における処理の詳細を説明する。 Details of processing in the scatterer position estimation unit 160 p will be described with reference to FIGS. 3, 5, and 6.

粒子Uは、C個のクラスタパラメータμp,cを含み、U={μp,1,μp,2,…,μp,C}と表記される。一つのクラスタパラメータμp,cは、一つの散乱体に対応し、μp,c={(xp,c,yp,c),Delayp,c,AoDp,c}と表記され、各要素はそれぞれ、散乱体の位置、送信機から散乱体までの伝搬遅延、素波の出射角である。送信機に対する測定点i_t(受信機)の相対座標を{x(i_t),y(i_t)}とする。散乱体位置推定装置100は、予め相対座標を取得できるものとする。 The particle U p includes C cluster parameters μ p, c and is expressed as U p = {μ p, 1 , μ p, 2 ,..., Μ p, C }. One cluster parameter μ p, c corresponds to one scatterer and is expressed as μ p, c = {(x p, c , y p, c ), Delay p, c , AoD p, c }, Each element is the position of the scatterer, the propagation delay from the transmitter to the scatterer, and the outgoing angle of the elementary wave. Let {x r (i_t p ), y r (i_t p )} be the relative coordinates of the measurement point i_t p (receiver) with respect to the transmitter. It is assumed that the scatterer position estimation apparatus 100 can acquire relative coordinates in advance.

散乱体位置推定部160は、散乱体存在範囲推定部161、散乱体配置部163及びクラスタパラメータ計算部165を含む(図3参照)。 The scatterer position estimation unit 160 p includes a scatterer existence range estimation unit 161, a scatterer arrangement unit 163, and a cluster parameter calculation unit 165 (see FIG. 3).

(散乱体存在範囲推定部161)
散乱体存在範囲推定部161は、推定対象データxn_tp(i_t)を受け取り、散乱体の存在し得る範囲(以下「散乱体存在範囲」という)を、送信機及び受信機を焦点とする楕円範囲内、かつ、推定対象データxn_tp(i_t)に対する伝搬データの到来角により規定される範囲内に限定する(s71)。
(Scatterer existence range estimation unit 161)
Scatterer existence range estimation unit 161 receives the estimated target data x n_tp (i_t p), is present which may be the range of the scattering bodies (hereinafter referred to as "scatterer existing range"), and focus the transmitter and receiver ellipse range, and is limited within the range defined by the angle of arrival of the propagation data for estimation target data x n_tp (i_t p) (s71 ).

まず、推定対象データxn_tp(i_t)における伝搬遅延ToAn_tp(i_t)と高速Vcとを用いて、対応する素波の伝搬路長を
n_tp(i_t)=ToAn_tp(i_t)×Vc
として計算する。送信機に対する測定点i_tの相対座標は{x(i_t),y(i_t)}であり、送信機と受信機(測定点)との間の距離は、
tx,rx(i_t)=√{x(i_t+y(i_t
であるため、散乱体の座標は、送信機及び受信機(測定点)からの和が素波の伝搬路長Ln_tpとなるような楕円の内部に限定される。言い換えると、送信機及び受信機(測定点)を焦点とする楕円内に限定される。
First, the estimated target data x N_tp propagation delay ToA N_tp in (i_t p) (i_t p) and by using the high-speed Vc, corresponding to the propagation path length L n_tp (i_t p) of rays = ToA n_tp (i_t p) × Vc
Calculate as The relative coordinates of the measurement points i_t p for the transmitter is {x r (i_t p), y r (i_t p)}, the distance between the transmitter and the receiver (measuring point),
L tx, rx (i_t p ) = √ {x r (i_t p ) 2 + y r (i_t p ) 2 }
Therefore , the coordinates of the scatterer are limited to an ellipse in which the sum from the transmitter and the receiver (measurement point) is the propagation path length L n_tp of the elementary wave. In other words, it is limited to an ellipse with the transmitter and receiver (measurement points) as the focal points.

次に本実施形態では、散乱体の座標は、推定対象データxn_tp(i_t)の到来角AoAn_tp(i_t)を用い、AoAn_tp(i_t)±f(0,ρAoA)の範囲内に限定する。ただし、f(0,ρAoA)は平均0、標準偏差ρAoAの正規乱数である。ρAoAはパラメータである。このように、散乱体存在範囲を限定することで、より効率的に散乱体位置を推定することができる。 In this embodiment then, the coordinates of the scatterer, using AoA AoA N_tp estimation target data x n_tp (i_t p) (i_t p), AoA n_tp (i_t p) ± f (0, ρ AoA) range Limited to within. However, f (0, ρ AoA ) is a normal random number having an average of 0 and a standard deviation ρ AoA . ρ AoA is a parameter. Thus, by limiting the scatterer existence range, the scatterer position can be estimated more efficiently.

(散乱体配置部163)
散乱体配置部163は、散乱体存在範囲内に一様な確率で新たに散乱体を配置し(s72)、散乱体位置{xp,C,yp,C}を決定し、クラスタパラメータ計算部165に出力する。
(Scatterer arrangement part 163)
The scatterer arrangement unit 163 newly arranges a scatterer with a uniform probability within the scatterer existence range (s72), determines the scatterer position {xp , C , yp , C }, and calculates cluster parameters. To the unit 165.

(クラスタパラメータ計算部165)
クラスタパラメータ計算部165は、散乱体位置{xp,C,yp,C}を受け取り、散乱体位置{xp,C,yp,C}と、受信機の位置{x(i_t),y(i_t)}との関係に基づき、以下のように、新たなクラスタCのクラスタパラメータμp,C={(xp,C,yp,C),Delayp,C,AoDp,C}を計算する。
(Cluster parameter calculation unit 165)
Cluster parameter calculation unit 165, the scatterer locations {x p, C, y p , C} receive scatterer position {x p, C, y p , C} and the position {x r (i_t p receiver ), Y r (i_t p )}, the cluster parameters μ p, C = {(x p, C , y p, C ), Delay p, C , of the new cluster C as follows: Calculate AoD p, C }.

Figure 2013251684
Figure 2013251684

ただし、Lrx,s(i_t)は、受信機と散乱体間の距離である。 However, L rx, s (i_t p ) is a distance between the receiver and the scatterer.

次に、クラスタパラメータ計算部165は、新たなクラスタパラメータμp,Cを用いて、次式のように、他の測定点におけるI個のクラスタ想定データxp,C(i)={ToAp,C(i),AoAp,C(i),AoDp,C(i)}を計算する(s73)。 Next, the cluster parameter calculation unit 165 uses the new cluster parameters μ p, C and uses the new cluster parameters μ p, C, as shown in the following equation, I cluster assumed data x p, C (i) = {ToA p , C (i), AoA p, C (i), AoD p, C (i)} are calculated (s73).

Figure 2013251684
Figure 2013251684

<その他の変形例>
本発明は上記の実施形態及び変形例に限定されるものではない。例えば、上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
<Other variations>
The present invention is not limited to the above-described embodiments and modifications. For example, the various processes described above are not only executed in time series according to the description, but may also be executed in parallel or individually as required by the processing capability of the apparatus that executes the processes. In addition, it can change suitably in the range which does not deviate from the meaning of this invention.

<プログラム及び記録媒体>
上述した散乱体推定装置は、コンピュータにより機能させることもできる。この場合はコンピュータに、目的とする装置(各種実施形態で図に示した機能構成をもつ装置)として機能させるためのプログラム、またはその処理手順(各実施形態で示したもの)の各過程をコンピュータに実行させるためのプログラムを、CD−ROM、磁気ディスク、半導体記憶装置などの記録媒体から、あるいは通信回線を介してそのコンピュータ内にダウンロードし、そのプログラムを実行させればよい。
<Program and recording medium>
The scatterer estimation device described above can also be operated by a computer. In this case, each process of a program for causing a computer to function as a target device (a device having the functional configuration shown in the drawings in various embodiments) or a process procedure (shown in each embodiment) is processed by the computer. A program to be executed by the computer may be downloaded from a recording medium such as a CD-ROM, a magnetic disk, or a semiconductor storage device or via a communication line into the computer, and the program may be executed.

100 散乱体位置推定装置
110距離計算部
120クラスタリング部
130評価値計算部
140 リサンプリング部
150推定対象データ決定部
160散乱体位置推定部
161 散乱体存在範囲推定部
163 散乱体配置部
165 クラスタパラメータ計算部
170 判定部
DESCRIPTION OF SYMBOLS 100 Scatterer position estimation apparatus 110 p distance calculation part 120 p clustering part 130 p evaluation value calculation part 140 resampling part 150 p estimation object data determination part 160 p scatterer position estimation part 161 Scatterer existence range estimation part 163 Scatterer arrangement Unit 165 cluster parameter calculation unit 170 determination unit

Claims (7)

粒子毎に、受信機で受信した電波の測定データから得られる伝搬データと、散乱体推定位置を用いて想定されるクラスタの伝搬データの想定値であるクラスタ想定データとの間の距離を計算する距離計算部と、
粒子毎に、最も距離の小さいクラスタに、他のクラスタを関連付けるクラスタリング部と、
粒子毎に、全測定点及び全素波の伝搬データの電力の和に占める、距離が閾値以下となる伝搬データの電力の和の割合を評価値として計算する評価値計算部と、
前記評価値に従ってリサンプリングを行い、粒子を求めるリサンプリング部と、
リサンプリングにより求めた粒子毎に、最も距離の大きい伝搬データを推定対象データとして決定する推定対象データ決定部と、
粒子毎に、推定対象データを用いて、新たに散乱体の位置を推定し、推定した散乱体に対応する新たなクラスタのクラスタ想定データを想定する散乱体位置推定部と、を含む、
散乱体位置推定装置。
For each particle, calculate the distance between the propagation data obtained from the radio wave measurement data received by the receiver and the assumed cluster data that is the assumed propagation data of the cluster using the estimated position of the scatterer A distance calculator;
For each particle, a clustering unit that associates another cluster with a cluster having the shortest distance;
For each particle, an evaluation value calculation unit that calculates, as an evaluation value, the ratio of the sum of power of propagation data whose distance is equal to or less than a threshold value in the sum of power of propagation data of all measurement points and all the elementary waves;
Re-sampling according to the evaluation value to obtain particles; and
For each particle obtained by resampling, an estimation target data determination unit that determines propagation data with the longest distance as estimation target data;
A scatterer position estimation unit that estimates the position of the scatterer newly using the estimation target data for each particle, and assumes cluster assumption data of a new cluster corresponding to the estimated scatterer,
Scatterer position estimation device.
請求項1記載の散乱体位置推定装置であって、
前記散乱体位置推定部は、
散乱体存在範囲を、送信機及び受信機を焦点とする楕円内、かつ、推定対象データに対する伝搬データの到来角により規定される範囲内に限定する散乱体存在範囲推定部を含む、
散乱体位置推定装置。
The scatterer position estimation apparatus according to claim 1,
The scatterer position estimation unit is
Including a scatterer existence range estimation unit that limits a scatterer existence range within an ellipse that focuses on a transmitter and a receiver and within a range defined by an arrival angle of propagation data with respect to estimation target data;
Scatterer position estimation device.
請求項1または請求項2記載の散乱体位置推定装置であって、
前記散乱体位置推定部は、
散乱体存在範囲内に一様な確率で散乱体を配置する散乱体配置部と、
前記散乱体配置部で求めた散乱体位置と、前記受信機の位置との関係に基づき、新たなクラスタのクラスタパラメータを計算し、そのクラスタパラメータを用いて他の測定点におけるクラスタ想定データを計算するクラスタパラメータ計算部と、を含み、
前記評価値計算部において求めた評価値の中で最も大きい値が、閾値以上となるまで、クラスタの個数を増やし、各部における処理を繰り返す、
散乱体位置推定装置。
The scatterer position estimation device according to claim 1 or 2,
The scatterer position estimation unit is
A scatterer arrangement part for arranging a scatterer with a uniform probability within the scatterer existence range;
Based on the relationship between the scatterer position obtained by the scatterer placement unit and the position of the receiver, a cluster parameter of a new cluster is calculated, and cluster assumption data at other measurement points is calculated using the cluster parameter. A cluster parameter calculation unit to
Increase the number of clusters until the largest value among the evaluation values obtained in the evaluation value calculation unit is equal to or greater than a threshold value, and repeat the processing in each unit.
Scatterer position estimation device.
粒子毎に、受信機で受信した電波の測定データから得られる伝搬データと、散乱体推定位置を用いて想定されるクラスタの伝搬データの想定値であるクラスタ想定データとの間の距離を計算する距離計算ステップと、
粒子毎に、最も距離の小さいクラスタに、他のクラスタを関連付けるクラスタリングステップと、
粒子毎に、全測定点及び全素波の伝搬データの電力の和に占める、距離が閾値以下となる伝搬データの電力の和の割合を評価値として計算する評価値計算ステップと、
前記評価値に従ってリサンプリングを行い、粒子を求めるリサンプリングステップと、
リサンプリングにより求めた粒子毎に、最も距離の大きい伝搬データを推定対象データとして決定する推定対象データ決定ステップと、
粒子毎に、推定対象データを用いて、新たに散乱体の位置を推定し、推定した散乱体に対応する新たなクラスタのクラスタ想定データを想定する散乱体位置推定ステップと、を含む、
散乱体位置推定方法。
For each particle, calculate the distance between the propagation data obtained from the radio wave measurement data received by the receiver and the assumed cluster data that is the assumed propagation data of the cluster using the estimated position of the scatterer A distance calculation step;
A clustering step of associating other clusters with the smallest distance cluster for each particle;
For each particle, an evaluation value calculation step for calculating, as an evaluation value, a ratio of the sum of power of propagation data in which the distance is equal to or less than a threshold value in the sum of power of propagation data of all measurement points and all elementary waves;
Resampling according to the evaluation value to obtain a particle;
For each particle obtained by resampling, an estimation target data determination step for determining propagation data with the longest distance as estimation target data;
For each particle, the estimation target data is used to newly estimate the position of the scatterer, and a scatterer position estimation step that assumes cluster assumption data of a new cluster corresponding to the estimated scatterer.
Scatterer position estimation method.
請求項4記載の散乱体位置推定方法であって、
前記散乱体位置推定ステップは、
散乱体存在範囲を、送信機及び受信機を焦点とする楕円内、かつ、推定対象データに対する伝搬データの到来角により規定される範囲内に限定する散乱体存在範囲推定ステップを含む、
散乱体位置推定方法。
The scatterer position estimation method according to claim 4,
The scatterer position estimating step includes:
A scatterer presence range estimation step for limiting the scatterer presence range within an ellipse focused on the transmitter and the receiver and within a range defined by an arrival angle of propagation data with respect to estimation target data,
Scatterer position estimation method.
請求項4または請求項5記載の散乱体位置推定方法であって、
前記散乱体位置推定ステップは、
散乱体存在範囲内に一様な確率で散乱体を配置する散乱体配置ステップと、
前記散乱体配置ステップで求めた散乱体位置と、前記受信機の位置との関係に基づき、新たなクラスタのクラスタパラメータを計算し、そのクラスタパラメータを用いて他の測定点におけるクラスタ想定データを計算するクラスタパラメータ計算ステップと、を含み、
前記評価値計算ステップにおいて求めた評価値の中で最も大きい値が、閾値以上となるまで、クラスタの個数を増やし、各ステップにおける処理を繰り返す、
散乱体位置推定方法。
The scatterer position estimation method according to claim 4 or 5,
The scatterer position estimating step includes:
A scatterer placement step of placing a scatterer with a uniform probability within the scatterer presence range;
Based on the relationship between the position of the scatterer obtained in the scatterer placement step and the position of the receiver, a cluster parameter of a new cluster is calculated, and cluster assumption data at other measurement points is calculated using the cluster parameter. A cluster parameter calculation step to
Increase the number of clusters until the largest value among the evaluation values obtained in the evaluation value calculation step is equal to or greater than a threshold value, and repeat the processing in each step.
Scatterer position estimation method.
請求項1から請求項3の何れかに記載の散乱体位置推定装置として、コンピュータを機能させるためのプログラム。   The program for functioning a computer as a scatterer position estimation apparatus in any one of Claims 1-3.
JP2012124351A 2012-05-31 2012-05-31 Scatterer position estimation apparatus, scatterer position estimation method, and program Expired - Fee Related JP5583170B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012124351A JP5583170B2 (en) 2012-05-31 2012-05-31 Scatterer position estimation apparatus, scatterer position estimation method, and program
PCT/JP2013/063791 WO2013179916A1 (en) 2012-05-31 2013-05-17 Scatterer position estimation device, scatterer position estimation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124351A JP5583170B2 (en) 2012-05-31 2012-05-31 Scatterer position estimation apparatus, scatterer position estimation method, and program

Publications (2)

Publication Number Publication Date
JP2013251684A true JP2013251684A (en) 2013-12-12
JP5583170B2 JP5583170B2 (en) 2014-09-03

Family

ID=49673119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124351A Expired - Fee Related JP5583170B2 (en) 2012-05-31 2012-05-31 Scatterer position estimation apparatus, scatterer position estimation method, and program

Country Status (2)

Country Link
JP (1) JP5583170B2 (en)
WO (1) WO2013179916A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511732A (en) * 2018-01-26 2021-05-06 ライトポイント・コーポレイションLitePoint Corporation Systems and methods for testing devices under test (DUTs) capable of determining the relative arrival times or angles of multiple radio frequency signals
JP7207659B2 (en) 2019-10-24 2023-01-18 日本電信電話株式会社 Scattered Particle Estimation Device, Scattered Particle Estimation Method, and Scattered Particle Estimation Program
WO2023286119A1 (en) * 2021-07-12 2023-01-19 日本電信電話株式会社 Position estimation method, position estimation device, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018234268A1 (en) * 2017-06-19 2018-12-27 Sika Technology Ag Blocking agent for amines, latent hardeners and polyurethane compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014980A (en) * 2009-06-30 2011-01-20 Ntt Docomo Inc Device and method of estimating radio wave propagation parameter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014980A (en) * 2009-06-30 2011-01-20 Ntt Docomo Inc Device and method of estimating radio wave propagation parameter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CSNJ201010069013; 齋藤 健太郎 Kentaro SAITO: '粒子フィルタを用いたMIMOチャネルパラメータ動的特性推定' 電子情報通信学会2010年総合大会講演論文集 通信1 PROCEEDINGS OF THE 2010 IEICE GENERAL CONFEREN , 20100302 *
JPN6013026865; 齋藤 健太郎 Kentaro SAITO: '粒子フィルタを用いたMIMOチャネルパラメータ動的特性推定' 電子情報通信学会2010年総合大会講演論文集 通信1 PROCEEDINGS OF THE 2010 IEICE GENERAL CONFEREN , 20100302 *
JPN6013026867; Tetsuro Imai, Tokio Taga: 'Statistical Scattering Model in Urban Propagation Environment' Vehicular Technology, IEEE Transactions on Volume 55, Issue 4, 200606, Pages 1081-1093 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511732A (en) * 2018-01-26 2021-05-06 ライトポイント・コーポレイションLitePoint Corporation Systems and methods for testing devices under test (DUTs) capable of determining the relative arrival times or angles of multiple radio frequency signals
JP7194740B2 (en) 2018-01-26 2022-12-22 ライトポイント・コーポレイション Apparatus and method including system for testing device under test (DUT) capable of determining relative time of arrival or angle of arrival of multiple radio frequency signals
JP7207659B2 (en) 2019-10-24 2023-01-18 日本電信電話株式会社 Scattered Particle Estimation Device, Scattered Particle Estimation Method, and Scattered Particle Estimation Program
WO2023286119A1 (en) * 2021-07-12 2023-01-19 日本電信電話株式会社 Position estimation method, position estimation device, and program

Also Published As

Publication number Publication date
WO2013179916A1 (en) 2013-12-05
JP5583170B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
Seow et al. Non-line-of-sight localization in multipath environments
US7519136B2 (en) Wireless positioning approach using time delay estimates of multipath components
Tayebi et al. The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments
US10271163B2 (en) System and method for robust and efficient TDOA based location estimation in the presence of various multipath delay
CN106851821B (en) Indoor three-dimensional positioning method based on wireless communication base station
JP6032462B2 (en) Source estimation method and source estimation apparatus using the same
Gan et al. Deep learning for weights training and indoor positioning using multi-sensor fingerprint
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
He et al. A novel radio map construction method to reduce collection effort for indoor localization
KR20120115895A (en) Wireless localization method using 4 or more anchor nodes based on rssi at indoor environment and a recording medium in which a program for the method is recorded
JP5583170B2 (en) Scatterer position estimation apparatus, scatterer position estimation method, and program
Kay et al. Improvement of TDOA position fixing using the likelihood curvature
JP2015045531A (en) Position estimation system
KR101627419B1 (en) Method for estmating location of mobile node and apparatus thereof
JP2016520801A (en) Transmitter directional pruning to improve position determination
Hatami et al. A comparative performance evaluation of indoor geolocation technologies
WO2008085093A1 (en) Method for classifying radio channels
Ferréol et al. A low-cost AOA-TDOA approach for blind geolocation in multi-paths context
Diao et al. CMD-based NLOS identification and mitigation in wireless sensor networks
Liu et al. A novel ultra-wideband-based localization and tracking scheme with channel classification
Machaj et al. Impact of radio map simulation on positioning in indoor environtment using finger printing algorithms
KR102008800B1 (en) Apparatus and method for determaining location of mobile terminal in mobile communication
KR100681393B1 (en) Multipath estimation using channel parameters matrix extension with virtual sensors
Venieris et al. Preprocessing algorithm for source localisation in a multipath environment
CN110346757A (en) Anti-multipath time difference positioning method, apparatus and system based on mobile measuring station

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5583170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees