JP2013249619A - Composite sheet for building component and building component - Google Patents

Composite sheet for building component and building component Download PDF

Info

Publication number
JP2013249619A
JP2013249619A JP2012124375A JP2012124375A JP2013249619A JP 2013249619 A JP2013249619 A JP 2013249619A JP 2012124375 A JP2012124375 A JP 2012124375A JP 2012124375 A JP2012124375 A JP 2012124375A JP 2013249619 A JP2013249619 A JP 2013249619A
Authority
JP
Japan
Prior art keywords
synthetic resin
composite sheet
nonwoven fabric
building
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012124375A
Other languages
Japanese (ja)
Other versions
JP5848671B2 (en
JP2013249619A5 (en
Inventor
Mitsuhiro Ikeda
光弘 池田
Mariko Ishida
麻里子 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2012124375A priority Critical patent/JP5848671B2/en
Publication of JP2013249619A publication Critical patent/JP2013249619A/en
Publication of JP2013249619A5 publication Critical patent/JP2013249619A5/ja
Application granted granted Critical
Publication of JP5848671B2 publication Critical patent/JP5848671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finishing Walls (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite sheet for a building component composed of a core material of synthetic resin foam of which one face is provided with a front face material and another face is provided with a rear face material, which is suitable for the rear face material allowing the front face and the rear face to have a pattern and a shape freely selected, preventing defects such as warpage of the building component, and keeping the rear face material free from wrinkles in a manufacturing process, with thin thickness; and a building component having the composite sheet at least on one face of the synthetic resin foam.SOLUTION: A composite sheet for a building component as the rear face material is composed of a nonwoven cloth including glass fiber, to which at least two kinds of synthetic resin films having different breaking strength are laminated. The rear face material has a compression strength of 0.30 to 1.00 kN/m in the lateral direction, and a weight of 50 to 120 g/m.

Description

本発明は、合成樹脂発泡体からなる芯材を表面材と裏面材でサンドイッチした金属サイディングや建築用パネル等の建築部材に用いられる裏面材として好適な建築部材用複合シートおよび建築部材に関するものである。   The present invention relates to a composite sheet for building members and a building member suitable as a back material used for building members such as metal siding and building panels in which a core material made of a synthetic resin foam is sandwiched between a surface material and a back material. is there.

合成樹脂発泡体からなる芯材を、表面材と裏面材でサンドイッチした金属サイディングや建築用パネル等の建築部材が数多く市販されている。しかしながら、合成樹脂発泡体の経時変化や、室内外の温度差や湿度差により、建築部材の表面に凹凸が生じたり、反ったりする不具合が生じることがあった。また、建築部材の製造工程において、合成樹脂発泡体からなる芯材を形成させる際に、合成樹脂発泡体は膨張だけでなく収縮も起こすため、裏面材にシワが入り、建築部材の反りを助長することがあった。   Many building members such as metal siding and building panels in which a core material made of a synthetic resin foam is sandwiched between a front surface material and a back surface material are commercially available. However, the surface of the building member may be uneven or warped due to a change with time of the synthetic resin foam or a temperature difference or humidity difference between the inside and outside the room. In addition, when forming a core material made of synthetic resin foam in the manufacturing process of building members, the synthetic resin foam not only expands but also shrinks. There was something to do.

これらの問題を解決するために、裏面材にその長手方向に沿って凹状をした溝を形成させ、裏面材に収縮が生じた際には、凹状をした溝により収縮が吸収され、裏面に反りが生じるのを緩和する方法が提案されている(例えば、特許文献1参照)。しかしながら、この方法では表面の反りは緩和できず、且つ裏面が平面にならないと言う問題がある。   In order to solve these problems, a concave groove is formed in the back surface material along the longitudinal direction thereof, and when the back material shrinks, the shrinkage is absorbed by the concave groove and warps the back surface. There has been proposed a method for mitigating the occurrence of this phenomenon (see, for example, Patent Document 1). However, this method has a problem that the warpage of the front surface cannot be reduced and the back surface does not become flat.

また、表面材を凹凸模様とし、且つ凹部の大きさを凸部の大きさよりも大きくすることにより、建築部材自体の機械的強度を向上させることによって、反ったりする不具合を防止する方法が提案されている(例えば、特許文献2参照)。しかしながら、この方法では表面を任意の形状に成形できないと言う問題がある。   In addition, a method for preventing a warp problem by improving the mechanical strength of the building member itself by making the surface material a concavo-convex pattern and making the size of the concave portion larger than the size of the convex portion has been proposed. (For example, refer to Patent Document 2). However, this method has a problem that the surface cannot be formed into an arbitrary shape.

また、温度や湿度の変化で膨張や収縮を起こさない、ガラス繊維を含有した不織布に、合成樹脂フィルムやアルミ箔を貼り合わせた複合シートを、合成樹脂発泡体の表裏に貼り合わせた建築部材が提案および考案されている(例えば、特許文献3〜4参照)。ガラス繊維を含有した不織布は、温度や湿度の変化の影響を受け難いため寸法安定性に優れるが、複合シートの強度が弱いと、合成樹脂発泡体からなる芯材は温度や湿度の変化で膨張や収縮を起こすため、建築部材に反りが発生することがある。また、建築部材の製造工程において、合成樹脂発泡体からなる芯材を形成させる際には、合成樹脂発泡体は膨張だけでなく収縮も起こすため、複合シートの圧縮強度が弱いと、複合シートにシワが入り、建築部材の反りを助長することがある。これらの問題を解決する方法として、複合シートを十分な強度となるまで厚くすることが考えられるが、複合シートが厚いと建築部材の製造工程において取扱いが難いと言う問題がある。また、コスト面でも複合シートが厚い方が不利である。   In addition, there is a building component in which a composite sheet in which a synthetic resin film or aluminum foil is bonded to a nonwoven fabric containing glass fibers that does not expand or contract due to changes in temperature or humidity is bonded to the front and back of a synthetic resin foam. It has been proposed and devised (see, for example, Patent Documents 3 to 4). Nonwoven fabrics containing glass fibers are excellent in dimensional stability because they are not easily affected by changes in temperature and humidity. However, if the strength of the composite sheet is weak, the core material made of synthetic resin foam expands due to changes in temperature and humidity. In some cases, the building material may warp due to shrinkage. In addition, when forming a core made of a synthetic resin foam in the manufacturing process of a building member, the synthetic resin foam not only expands but also contracts. Wrinkles may enter and promote the warping of building components. As a method for solving these problems, it is conceivable to increase the thickness of the composite sheet until it has sufficient strength. However, if the composite sheet is thick, there is a problem that it is difficult to handle in the manufacturing process of building members. In terms of cost, a thicker composite sheet is disadvantageous.

また、ガラス繊維等の無機繊維を主体とする層と、木材パルプやポリエステル系の繊維等の有機繊維を主体とする層を積層したシートにより、反りや剥離等の不具合の防止や、皮膚刺激性を少なくする方法が提案されている(例えば、特許文献5〜8参照)。しかしながら、これらのシートでは、合成樹脂発泡体からなる芯材を形成させようとする際に、その原液が裏面側に染み出てしまう問題がある。また、シートの最外面が外気に接しているため、反り等の原因となる湿度の影響を受け易い。   In addition, it is possible to prevent defects such as warping and peeling, and skin irritation by a sheet in which a layer mainly composed of inorganic fibers such as glass fibers and a layer mainly composed of organic fibers such as wood pulp and polyester fibers are laminated. Has been proposed (see, for example, Patent Documents 5 to 8). However, these sheets have a problem that when the core material made of the synthetic resin foam is formed, the stock solution oozes out to the back surface side. Further, since the outermost surface of the seat is in contact with the outside air, it is easily affected by humidity that causes warping or the like.

また、線膨張係数が−2×10−5〜1×10−5/℃と非常に小さく、弾性率も5〜15GPaと非常に高い合成樹脂フィルムをクラフト紙、織布、不織布と貼り合わせることにより、反りなどによる不具合を防止した複合シートが提案されている(例えば、特許文献9参照)。しかしながら、合成樹脂フィルムの線膨張係数や弾性率を上述の範囲に調整するには、延伸倍率を十倍〜数十倍にして製造を行う必要があり、且つ合成樹脂フィルムを製造した後、溶融樹脂や接着剤を用いて貼り合わせる必要があるため、裏面材を薄くすることができない。また、使用する溶融樹脂や接着剤が温度や湿度の変化で膨張や収縮を起こすため、反りなどによる不具合を十分に防止できないことがある。 Also, a synthetic resin film having a very low linear expansion coefficient of −2 × 10 −5 to 1 × 10 −5 / ° C. and a very high elastic modulus of 5 to 15 GPa is bonded to kraft paper, woven fabric, or nonwoven fabric. Therefore, there has been proposed a composite sheet that prevents problems due to warpage or the like (see, for example, Patent Document 9). However, in order to adjust the linear expansion coefficient and elastic modulus of the synthetic resin film to the above-mentioned range, it is necessary to carry out production with a draw ratio of 10 times to several tens of times, and after the synthetic resin film is produced, it is melted. Since it is necessary to bond together using resin and an adhesive agent, a back material cannot be made thin. In addition, since the molten resin or adhesive used causes expansion and contraction due to changes in temperature and humidity, it may not be possible to sufficiently prevent problems due to warpage.

このように、合成樹脂発泡体からなる芯材の一方の面に表面材を、他方の面に裏面材を設けた建築部材において、表面や裏面の模様や形状を自由に選択でき、建築部材が反ったりする不具合を抑制し、製造工程での裏面材にシワが入るのが抑制され、且つ厚みも薄くすることができる裏面材は未だ得られていなかった。また、このような裏面材が合成樹脂発泡体の少なくとも片面に設けられている建築部材も未だ得られていなかった。   Thus, in a building member in which a surface material is provided on one surface of a core material made of a synthetic resin foam and a back material is provided on the other surface, the pattern and shape of the front surface and the back surface can be freely selected. There has not yet been obtained a back material that suppresses the problems of warping, suppresses wrinkles from entering the back material in the manufacturing process, and can reduce the thickness. Further, a building member in which such a back material is provided on at least one surface of the synthetic resin foam has not been obtained yet.

特開2004−116019号公報JP 2004-1116019 A 特開2003−147898号公報JP 2003-147898 A 実開昭53−46372号公報Japanese Utility Model Publication No. 53-46372 特開2002−4548号公報JP 2002-4548 A 特開昭51−84161号公報JP-A-51-84161 特開平4−226747号公報JP-A-4-226747 特開昭58−179641号公報JP 58-179641 A 特開2000−303389号公報JP 2000-303389 A 特開2006−212895号公報Japanese Patent Laid-Open No. 2006-212895

本発明の課題は、合成樹脂発泡体からなる芯材の一方の面に表面材を、他方の面に裏面材を設けた建築部材において、表面や裏面の模様や形状を自由に選択でき、建築部材が反ったりする不具合を抑制し、製造工程での裏面材にシワが入るのが抑制され、且つ厚みも薄くすることができる裏面材として好適な建築部材用複合シートを提供することにある。また、このような建築部材用複合シートを合成樹脂発泡体の少なくとも片面に設けた建築部材を提供することである。   An object of the present invention is to provide a building material in which a surface material is provided on one surface of a core material made of a synthetic resin foam and a back material is provided on the other surface, and the pattern and shape of the surface and the back surface can be freely selected. An object of the present invention is to provide a composite sheet for building members that is suitable as a back material that suppresses problems such as warping of members, prevents wrinkles from entering the back material in the manufacturing process, and can reduce the thickness. Moreover, it is providing the building member which provided such a composite sheet for building members on the at least single side | surface of the synthetic resin foam.

この課題を解決するための具体的手段は以下の通りである。   Specific means for solving this problem is as follows.

(1)合成樹脂発泡体からなる芯材の一方の面に表面材を、他方の面に裏面材を設けた建築部材の裏面材として用いられる建築部材用複合シートであって、建築部材用複合シートはガラス繊維を含有する不織布に破断強度の異なる少なくとも2種類の合成樹脂フィルムを貼り合わせてなり、且つ建築部材用複合シートの横方向の圧縮強度が0.30〜1.00kN/mであり、建築部材用複合シートの目付けが50〜120g/mであることを特徴とする建築部材用複合シート。 (1) A composite sheet for building members used as a back member of a building member in which a surface material is provided on one surface of a core material made of a synthetic resin foam and a back material is provided on the other surface, the composite sheet for building members The sheet is formed by laminating at least two types of synthetic resin films having different breaking strengths to a nonwoven fabric containing glass fibers, and the composite sheet for building members has a lateral compression strength of 0.30 to 1.00 kN / m. The building material composite sheet is characterized in that the basis weight of the building material composite sheet is 50 to 120 g / m 2 .

(2)該不織布が、繊維径が5〜10μmであり、且つ繊維長が6〜20mmのガラス繊維を不織布の全繊維量に対して、20〜80質量%含有している(1)記載の建築部材用複合シート。   (2) The nonwoven fabric contains 20 to 80% by mass of a glass fiber having a fiber diameter of 5 to 10 μm and a fiber length of 6 to 20 mm based on the total fiber amount of the nonwoven fabric. Composite sheet for building materials.

(3)該不織布は、ガラス繊維と木材パルプとを含有し、且つ2層以上の多層不織布であり、不織布の合成樹脂フィルムと貼り合わせる側の層は木材パルプを含有しないか、または質量比で木材パルプよりもガラス繊維を多く含有しており、不織布の合成樹脂発泡体からなる芯材と接する側の層は、ガラス繊維を含有しないか、または質量比でガラス繊維よりも木材パルプを多く含有する(1)または(2)記載の建築部材用複合シート。   (3) The nonwoven fabric contains glass fibers and wood pulp, and is a multilayer nonwoven fabric of two or more layers, and the layer on the side to be bonded to the synthetic resin film of the nonwoven fabric does not contain wood pulp or is in a mass ratio It contains more glass fibers than wood pulp, and the layer on the side in contact with the core made of synthetic resin foam of non-woven fabric does not contain glass fibers or contains more wood pulp than glass fibers by mass ratio The composite sheet for building members according to (1) or (2).

(4)合成樹脂発泡体からなる芯材の一方の面に、(1)〜(3)のいずれか記載の建築部材用複合シートが設けられてなる建築部材。   (4) A building member in which the composite sheet for building members according to any one of (1) to (3) is provided on one surface of a core made of a synthetic resin foam.

本発明により、合成樹脂発泡体からなる芯材の一方の面に表面材を、他方の面に裏面材を設けた建築部材において、表面や裏面の模様や形状を自由に選択でき、建築部材が反ったりする不具合を抑制し、製造工程での裏面材にシワが入るのが抑制され、且つ厚みも薄くすることができる裏面材として好適な建築部材用複合シートを提供することができる。また、このような建築部材用複合シートを合成樹脂発泡体の少なくとも片面に設けた建築部材を提供することができる。   According to the present invention, in a building member in which a surface material is provided on one surface of a core material made of a synthetic resin foam and a back material is provided on the other surface, the pattern and shape of the front surface and the back surface can be freely selected. It is possible to provide a composite sheet for a building member that is suitable as a back material that suppresses problems of warping, prevents wrinkles from entering the back material in the manufacturing process, and can reduce the thickness. Moreover, the building member which provided such a composite sheet for building members on the at least single side | surface of the synthetic resin foam can be provided.

本発明の建築部材用複合シート(以下、「複合シート」と略す場合がある)は、合成樹脂発泡体からなる芯材の一方の面に表面材を、他方の面に裏面材を設けた建築部材の裏面材として用いられる建築部材用複合シートであって、該建築部材用複合シートはガラス繊維を含有する不織布に、破断強度の異なる少なくとも2種類の合成樹脂フィルムを貼り合わせてなる複合シートであり、且つ該建築部材用複合シートの横方向の圧縮強度が0.30〜1.00kN/mであり、該建築部材用複合シートの目付けが50〜120g/mであることを特徴とする建築部材用複合シートである。 The composite sheet for building members of the present invention (hereinafter sometimes abbreviated as “composite sheet”) is a building in which a surface material is provided on one surface of a core material made of a synthetic resin foam and a back material is provided on the other surface. A composite sheet for building members used as a back material of a member, wherein the composite sheet for building members is a composite sheet in which at least two kinds of synthetic resin films having different breaking strengths are bonded to a nonwoven fabric containing glass fibers. And the lateral compression strength of the composite sheet for building members is 0.30 to 1.00 kN / m, and the basis weight of the composite sheet for building members is 50 to 120 g / m 2. It is a composite sheet for building members.

ガラス繊維は、温度や湿度の変化による膨張や収縮が小さいことから、ガラス繊維を含有した不織布は、温度や湿度の変化によって寸法変化を起こし難く、寸法安定性が良い。また、建築部材の製造工程における合成樹脂発泡体からなる芯材を形成させる過程(樹脂が発泡する過程)において、その原液が裏面から染み出てくるのを防止するために、本発明の複合シートでは、ガラス繊維を含有する不織布に、少なくとも2種類の合成樹脂フィルムを貼り合わせている。   Since glass fibers are small in expansion and contraction due to changes in temperature and humidity, nonwoven fabrics containing glass fibers hardly undergo dimensional changes due to changes in temperature and humidity, and have good dimensional stability. Further, in order to prevent the stock solution from seeping out from the back surface in the process of forming the core material made of the synthetic resin foam in the manufacturing process of the building member (process of foaming the resin), the composite sheet of the present invention is used. Then, at least 2 types of synthetic resin films are bonded together to the nonwoven fabric containing glass fiber.

しかしながら、建築部材の製造工程で樹脂を発泡させる際に、通常は60〜100℃に加熱して発泡体の膨張反応を完結させるが、反応後に室温近傍まで冷却する過程において、発泡体は収縮も起こすため、裏面材の圧縮強度が弱い場合には、裏面材にシワが入り、それが原因となり建築部材に反ったりする不具合が発生することがある。   However, when the resin is foamed in the manufacturing process of the building member, the foam is usually heated to 60 to 100 ° C. to complete the expansion reaction of the foam. However, in the process of cooling to near room temperature after the reaction, the foam may shrink. For this reason, when the compressive strength of the back surface material is weak, wrinkles may enter the back surface material, which may cause a problem of warping the building member.

本発明者等が鋭意検討した結果、複合シートの横方向(CD方向)の圧縮強度を0.30〜1.00kN/m、好ましくは0.30〜0.80kN/mとすることにより、建築部材の製造工程における裏面材のシワを抑制できることを見出した。複合シートの横方向の圧縮強度が1.00kN/mを超えてもシワは抑制されるが、圧縮強度が強すぎると裏面材が変形し難くなるために、逆に成形が難しくなる。複合シートの横方向の圧縮強度が0.30kN/m未満の場合には、建築部材の製造工程において裏面材にシワが発生し、建築部材が反る。なお、本発明で言う「圧縮強度」とはJIS P8126に規定されるリングクラッシュ法で測定される試験片が圧潰する際の最大荷重から算出される圧縮強度である。   As a result of intensive studies by the present inventors, the composite sheet has a compression strength in the lateral direction (CD direction) of 0.30 to 1.00 kN / m, preferably 0.30 to 0.80 kN / m. It discovered that the wrinkle of the back surface material in the manufacturing process of a member could be suppressed. Even if the compressive strength in the transverse direction of the composite sheet exceeds 1.00 kN / m, wrinkles are suppressed, but if the compressive strength is too strong, the back surface material is difficult to deform, and conversely, molding becomes difficult. When the compressive strength in the lateral direction of the composite sheet is less than 0.30 kN / m, wrinkles are generated in the back material in the manufacturing process of the building member, and the building member is warped. The “compressive strength” referred to in the present invention is a compressive strength calculated from the maximum load when a test piece measured by the ring crush method defined in JIS P8126 is crushed.

なお、目付けを増やすことでも複合シートの圧縮強度を強くすることができる。しかしながら、複合シートの目付けを増やすと、例えば、通常は表面材を裏側で折り返して固定するが、裏面材が厚くなるために表面材を折り返して固定することができないことや、施工に必要な成形を裏面材に施すことができなくなることがある。また、裏面材の巻き取りの重量が重くなる、または巻き長さが短くなり、生産効率が悪くなることがある。   Note that the compressive strength of the composite sheet can be increased by increasing the basis weight. However, if the basis weight of the composite sheet is increased, for example, the surface material is usually folded back and fixed on the back side, but the surface material cannot be folded back and fixed because the back material is thick, and molding required for construction May not be applied to the back material. Moreover, the weight of winding of a back surface material may become heavy, or winding length may become short, and production efficiency may worsen.

本発明者等が鋭意検討した結果、複合シートの目付けを50〜120g/m、好ましくは60〜100g/mとすることにより、表面材を裏側で折り返して固定する際に、支障なく表面材を折り返して固定することができた。複合シートの目付けが50g/m未満の場合は、裏面材の引張強度も低下するため、建築部材の製造工程で樹脂を発泡させる際に裏面材が破け易くなる。また、複合シートの目付けが120g/mを超える場合は、前述の表面材を折り返して固定することができないことや、施工に必要な成形を裏面材に施すことができなくなる問題が発生する。 As a result of intensive studies by the present inventors, the surface weight of the composite sheet is set to 50 to 120 g / m 2 , preferably 60 to 100 g / m 2 , so that the surface material can be easily folded when fixed on the back side. The material could be folded back and fixed. When the basis weight of the composite sheet is less than 50 g / m 2 , the tensile strength of the back surface material is also reduced, so that the back material is easily broken when the resin is foamed in the manufacturing process of the building member. Moreover, when the fabric weight of a composite sheet exceeds 120 g / m < 2 >, the above-mentioned surface material cannot be folded and fixed, and the problem which cannot perform shaping | molding required for construction to a back surface generate | occur | produces.

本発明に係わる合成樹脂フィルムの材料としては、ポリエチレンやポリプロピレン等のポリオレフィン、ポリアミド、アクリル、ポリウレタン、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリビニルアルコール、スチレン−ブタジエン共重合体、ポリエチレンテレフタレートやポリトリメチレンテレフタレート等のポリエステル、ポリアクリロニトリル、ポリスチレンおよびそれらの変性樹脂等の合成樹脂が使用される。また、無機や有機の顔料を練りこんで着色した合成樹脂フィルムを用いても良い。   Examples of the material for the synthetic resin film according to the present invention include polyolefins such as polyethylene and polypropylene, polyamide, acrylic, polyurethane, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinyl alcohol, styrene-butadiene copolymer, polyethylene terephthalate, Synthetic resins such as polyester such as polytrimethylene terephthalate, polyacrylonitrile, polystyrene, and modified resins thereof are used. Further, a synthetic resin film colored by kneading an inorganic or organic pigment may be used.

合成樹脂フィルムの総厚としては、3〜70μmが好ましく、10〜60μmがより好ましく、20〜50μmが特に好ましい。3μmより薄いと、不織布との接着が弱くて剥がれてしまうことや、ピンホールができ易く、合成樹脂発泡体からなる芯材を形成させようとする際に、その原液が染み出てしまうことがある。また、合成樹脂フィルムが70μmより厚いと、裏面材の目付けを軽くできなくなることや、温度による合成樹脂フィルムの膨張や収縮のために反りが発生することがある。   The total thickness of the synthetic resin film is preferably 3 to 70 μm, more preferably 10 to 60 μm, and particularly preferably 20 to 50 μm. If it is thinner than 3 μm, the adhesion to the nonwoven fabric is weak and peels off, and pinholes are easily formed, and when trying to form a core made of a synthetic resin foam, the stock solution may ooze out. is there. On the other hand, if the synthetic resin film is thicker than 70 μm, the basis weight of the back surface material cannot be reduced, and warping may occur due to expansion and contraction of the synthetic resin film due to temperature.

不織布に合成樹脂フィルムを貼り合わせる方法としては、(1)走行する不織布とシート状の合成樹脂フィルムとの間に、合成樹脂組成物を加熱溶融した状態でフィルム状に流延し、圧着して貼り合わせるいわゆる熱溶融押し出しラミネート法、(2)熱可塑性の合成樹脂フィルムを不織布と積層して熱圧処理で一体化する方法、(3)合成樹脂フィルムと不織布の間に、熱可塑性のフィルムを挟んで積層し、熱圧延処理で一体化する方法、(4)合成樹脂フィルムを接着剤により不織布と積層する方法等が挙げられるが、本発明はこれらに限定されるものではない。   As a method of attaching a synthetic resin film to a non-woven fabric, (1) a synthetic resin composition is cast and melted between a traveling non-woven fabric and a sheet-like synthetic resin film in a heated and melted state, followed by pressure bonding. The so-called hot melt extrusion laminating method, (2) a method in which a thermoplastic synthetic resin film is laminated with a nonwoven fabric and integrated by hot pressing, and (3) a thermoplastic film is placed between the synthetic resin film and the nonwoven fabric. Examples include a method of sandwiching and laminating and integrating by hot rolling, and (4) a method of laminating a synthetic resin film with a nonwoven fabric using an adhesive, but the present invention is not limited thereto.

また、合成樹脂フィルムが、不織布の合成樹脂フィルムと貼り合わせる側の面の上に、合成樹脂を加熱溶融した状態で流延される上記(1)が、不織布の繊維間に合成樹脂が浸透するために、強度が強くなるだけでなく、薄化し易いこと、接着剤を使用する方法や熱圧処理して一体化する方法よりもカールし難いこと等から特に好ましい。   Further, the synthetic resin penetrates between the fibers of the nonwoven fabric in the above (1), in which the synthetic resin film is cast on the surface of the nonwoven fabric on the side to be bonded to the synthetic resin film while the synthetic resin is heated and melted. Therefore, it is particularly preferable not only because the strength is increased, but also because it is easy to be thinned, and it is more difficult to curl than a method using an adhesive or a method of integrating by hot pressing.

なお、本発明の建築部材用複合シートは、ガラス繊維を含有する不織布に、破断強度の異なる少なくとも2種類の合成樹脂フィルムを貼り合わせた複合シートである。   In addition, the composite sheet for building members of the present invention is a composite sheet in which at least two types of synthetic resin films having different breaking strengths are bonded to a nonwoven fabric containing glass fibers.

建築部材の製造工程で樹脂を発泡させる際に裏面材の引張強度が弱いと、樹脂が発泡する際に裏面材が破けることがある。一方、不織布に合成樹脂を貼り合わせる方法としては、前述したように合成樹脂組成物を加熱溶融した状態でフィルム状に流延して貼り合わせる方法が好ましい。しかしながら、この方法で貼り合わせし易い合成樹脂フィルムはポリオレフィン系など破断強度が弱い樹脂が比較的多い。   If the tensile strength of the back material is weak when the resin is foamed in the manufacturing process of the building member, the back material may be broken when the resin is foamed. On the other hand, as a method of bonding the synthetic resin to the nonwoven fabric, a method of casting and bonding the synthetic resin composition into a film in a state of being heated and melted as described above is preferable. However, synthetic resin films that can be easily bonded together by this method are relatively many resins such as polyolefins that have a low breaking strength.

破断強度の異なる少なくとも2種類の合成樹脂フィルムを貼り合わせることによって、複合シートの横方向の圧縮強度だけでなく、破断強度も調整し易くなり、建築部材の製造が容易となる。特に、不織布に直接貼り合わされている合成樹脂フィルムの破断強度が弱い場合には、破断強度の強いフィルムを貼り合わせることによって、建築部材の製造工程で樹脂を発泡させる際に、裏面材が破けるのを防ぐことができる。   By laminating at least two types of synthetic resin films having different breaking strengths, it becomes easy to adjust not only the compressive strength in the lateral direction of the composite sheet but also the breaking strength, thereby facilitating the production of building members. In particular, when the breaking strength of the synthetic resin film directly bonded to the nonwoven fabric is weak, the back material is broken when the resin is foamed in the manufacturing process of the building member by laminating the strong breaking strength film. Can be prevented.

なお、本発明で言う「破断強度」とは、JIS K7127で規定される引張特性の試験方法において、フィルムが引張られたときに耐えられる最大の力(引張り強さ)である。また、破断強度は厚みによっても変わるが、本発明で言う「破断強度の異なる少なくとも2種類の合成樹脂フィルム」とは、同じ厚みのフィルムの破断強度を比較した際に、破断強度が異なるフィルムを示す。その理由は、厚みの異なる同じフィルムを積層した場合、1枚のフィルムを厚くした場合と効果に大きな差がないためである。破断強度の異なる少なくとも2種類の合成樹脂フィルムのうち、少なくとも一方のフィルムの破断強度は100MPaであることが、建築部材の製造工程で樹脂を発泡させる際に、裏面材が破けるトラブルを軽減できることから好ましい。   The “breaking strength” referred to in the present invention is the maximum force (tensile strength) that can be withstood when the film is pulled in the tensile property test method defined in JIS K7127. In addition, although the breaking strength varies depending on the thickness, the “at least two kinds of synthetic resin films having different breaking strengths” referred to in the present invention refers to films having different breaking strengths when comparing the breaking strengths of films having the same thickness. Show. The reason is that when the same film having a different thickness is laminated, there is no significant difference in effect from the case where one film is thickened. Of at least two types of synthetic resin films having different breaking strengths, the breaking strength of at least one film is 100 MPa, which can reduce the trouble that the back material breaks when foaming the resin in the manufacturing process of building members. To preferred.

本発明に係わるガラス繊維は、折れ難く、繊維シート形成能力があれば、ガラスウール、ガラス繊維チョップドストランド(ガラス繊維カット品)のいずれのガラス繊維でも使用することができるが、本発明に係わるガラス繊維の繊維径は、2〜20μmが好ましく、4〜15μmがより好ましく、5〜10μmがさらに好ましい。ガラス繊維の繊維径が2μm未満であると、寸法安定性に劣る場合がある。一方、ガラス繊維の繊維径が20μmを超えた場合、シート形成する際に地合が悪化し、その結果、圧縮強度が弱くなり、圧縮強度を0.30kN/m以上にすることが難しくなることがある。また、ガラス繊維の繊維長は、2〜30mmが好ましく、4〜25mmがより好ましく、6〜20mmがさらに好ましい。ガラス繊維の繊維長が2mm未満であると、寸法安定性に劣る場合がある。一方、ガラス繊維の繊維長が30mmを超えた場合、抄紙時のよれや固まりが発生し易くなり、形成された不織布が不均一になり、その結果、圧縮強度が弱くなり、圧縮強度を0.30kN/m以上にすることが難しくなることがある。   The glass fiber according to the present invention can be used with any glass fiber of glass wool or glass fiber chopped strand (glass fiber cut product) as long as it is hard to break and has a fiber sheet forming ability. 2-20 micrometers is preferable, as for the fiber diameter of a fiber, 4-15 micrometers is more preferable, and 5-10 micrometers is still more preferable. When the fiber diameter of the glass fiber is less than 2 μm, the dimensional stability may be inferior. On the other hand, when the fiber diameter of the glass fiber exceeds 20 μm, the formation is deteriorated when the sheet is formed. As a result, the compressive strength becomes weak, and it becomes difficult to make the compressive strength 0.30 kN / m or more. There is. Moreover, 2-30 mm is preferable, as for the fiber length of glass fiber, 4-25 mm is more preferable, and 6-20 mm is further more preferable. If the fiber length of the glass fiber is less than 2 mm, the dimensional stability may be inferior. On the other hand, when the fiber length of the glass fiber exceeds 30 mm, kinks and clumps during papermaking tend to occur, and the formed nonwoven fabric becomes non-uniform. As a result, the compressive strength becomes weak and the compressive strength is reduced to 0. 0. It may be difficult to make it 30 kN / m or more.

また、ガラス繊維の含有量は、本発明の該不織布の全繊維量に対して、10〜90質量%含有していることが好ましく、20〜80質量%含有していると、寸法安定性が良く、且つ複合シートの圧縮強度を0.30kN/m以上に調整し易いため、建築部材の製造工程において裏面材にシワが発生するのを抑え易くなることからより好ましい。また、40〜80質量%含有していると、寸法安定性が特に良い。ガラス繊維の含有量が、不織布の全繊維量に対して、10質量%未満であると、寸法安定性が悪くなる場合がある。一方、ガラス繊維の含有量が90質量%を超えると、寸法安定性は良好であるが、不織布が脆くなるため圧縮強度を0.30kN/m以上にすることが難しくなることがある。   In addition, the glass fiber content is preferably 10 to 90% by mass, and preferably 20 to 80% by mass, based on the total fiber content of the nonwoven fabric of the present invention. This is preferable because it is easy to adjust the compressive strength of the composite sheet to 0.30 kN / m or more, and it is easy to suppress the occurrence of wrinkles on the back material in the manufacturing process of the building member. Moreover, when it contains 40-80 mass%, dimensional stability is especially good. If the glass fiber content is less than 10% by mass relative to the total fiber content of the nonwoven fabric, the dimensional stability may deteriorate. On the other hand, when the content of the glass fiber exceeds 90% by mass, the dimensional stability is good, but the nonwoven fabric becomes brittle, so that it may be difficult to make the compressive strength 0.30 kN / m or more.

また、本発明に係わる不織布が、ガラス繊維と木材パルプとを含有する不織布であり、且つ該不織布は2層以上の多層シートであり、該不織布の合成樹脂フィルムと貼り合わせる側の層は木材パルプを含有しないか、または質量比で木材パルプよりもガラス繊維を多く含有しており、不織布の合成樹脂発泡体からなる芯材と接する側の層は、ガラス繊維を含有しないか、または質量比でガラス繊維よりも木材パルプを多く含有する不織布であることが最も好ましい。   The nonwoven fabric according to the present invention is a nonwoven fabric containing glass fibers and wood pulp, and the nonwoven fabric is a multilayer sheet of two or more layers, and the layer on the side of the nonwoven fabric bonded to the synthetic resin film is wood pulp. Does not contain, or contains more glass fiber than wood pulp by mass ratio, and the layer on the side in contact with the core made of the synthetic resin foam of the nonwoven fabric does not contain glass fiber or by mass ratio. Most preferably, the nonwoven fabric contains more wood pulp than glass fibers.

合成樹脂フィルムは、熱溶融押し出しラミネート法や、熱圧処理や接着剤などを用いることによって貼り合わせるが、接着剤や熱溶融した合成樹脂は粘度が高い。ガラス繊維は木材パルプよりも目が粗いため、不織布の合成樹脂フィルムと貼り合わせる側にガラス繊維が多いと、粘度の高い熱溶融した合成樹脂や接着剤などが不織布の繊維間に浸透し、接着強度が強くなる。一方、合成樹脂フィルムと貼り合わせる側の層における木材パルプの含有量が多いと、接着強度が弱くなることがあるだけでなく、木材パルプは湿気を吸収し易いため、エッジの部分から侵入する湿気の影響を受け易くなることがある。   The synthetic resin film is bonded by using a hot melt extrusion laminating method, a hot press treatment, an adhesive, or the like, but the adhesive or the hot melt synthetic resin has a high viscosity. Glass fiber is coarser than wood pulp, so if there is a lot of glass fiber on the side to be bonded to the synthetic resin film of the nonwoven fabric, high-viscosity hot-melt synthetic resin or adhesive will penetrate between the nonwoven fabric fibers and adhere Strength increases. On the other hand, if the content of the wood pulp in the layer to be bonded to the synthetic resin film is large, not only the adhesive strength may be weakened, but the wood pulp is easy to absorb moisture, so moisture entering from the edge portion. May be susceptible to

さらに、合成樹脂発泡体からなる芯材と接する層が、ガラス繊維を含有しないか、または質量比でガラス繊維よりも木材パルプを多く含有することにより、ガラス繊維による皮膚刺激性を抑制することができるため、建築部材を製造する際の作業者へ悪影響を抑えることができる。また、合成樹脂発泡体を形成させる際に、その原液は一般に粘度が低いが、木材パルプの毛細管現象により粘度の低い原液が不織布の繊維間に浸透することにより合成樹脂発泡体と不織布が一体化して接着が強固になる。さらに、合成樹脂発泡体の原液が木材パルプに浸透することにより、エッジ部から侵入する湿気の影響も受け難くなる。一方、ガラス繊維の方が木材パルプよりも多い場合には、ガラス繊維の方が木材パルプよりも繊維が粗いために、合成樹脂発泡体の原液を繊維間に保持することができず、接着が不十分になったり、ガラス繊維の方が木材パルプよりも硬いために、脆くなったりすることがある。   Furthermore, the layer in contact with the core material made of the synthetic resin foam does not contain glass fibers or contains more wood pulp than glass fibers in a mass ratio, thereby suppressing skin irritation caused by glass fibers. Therefore, it is possible to suppress adverse effects on workers when manufacturing building members. In addition, when forming a synthetic resin foam, the stock solution generally has a low viscosity, but the synthetic resin foam and the nonwoven fabric are integrated by the permeation of the low viscosity stock solution between the fibers of the nonwoven fabric due to the capillary action of wood pulp. The adhesion becomes stronger. Furthermore, when the undiluted | stock solution of a synthetic resin foam osmose | permeates a wood pulp, it becomes difficult to receive the influence of the moisture which penetrate | invades from an edge part. On the other hand, when there are more glass fibers than wood pulp, glass fibers are coarser than wood pulp, so the synthetic resin foam stock solution cannot be held between the fibers, and adhesion is not achieved. Insufficient glass fiber may be brittle because it is harder than wood pulp.

本発明に係わる木材パルプとは、NBKP、LBKP、NBSP、LBSP、GP、TMP、その他いずれの種類のパルプでも良く特に限定はされないが、強度の点からNBKPが好ましい。また、叩解度(CSF)は300〜600mlの範囲が好ましい。CSFが300ml未満であると不織布の寸法安定性が低下する場合があり、CSFが600mlを超えると不織布の強度が低下する場合がある。   The wood pulp according to the present invention may be NBKP, LBKP, NBSP, LBSP, GP, TMP, or any other type of pulp, and is not particularly limited, but NBKP is preferred from the viewpoint of strength. The beating degree (CSF) is preferably in the range of 300 to 600 ml. If the CSF is less than 300 ml, the dimensional stability of the nonwoven fabric may be reduced, and if the CSF exceeds 600 ml, the strength of the nonwoven fabric may be reduced.

本発明に係わる不織布が木材パルプを含有する場合、木材パルプの含有量は、不織布の全繊維量に対して、5〜70質量%が好ましく、10〜60質量%がより好ましく、20〜50質量%がさらに好ましい。木材パルプの含有量が5質量%未満であると、湿式抄紙法で製造する際、乾燥前シートの保水性が乏しくなり、フェルトから剥がれ難くなる場合がある。木材パルプの含有量が70質量%を超えると、不織布の寸法安定性が得られない恐れがある。   When the nonwoven fabric concerning this invention contains a wood pulp, 5-70 mass% is preferable with respect to the total fiber amount of a nonwoven fabric, 10-60 mass% is more preferable, and 20-50 mass is preferable. % Is more preferable. When the content of the wood pulp is less than 5% by mass, the water retention of the sheet before drying becomes poor when it is produced by the wet papermaking method, and it may be difficult to peel off from the felt. If the content of wood pulp exceeds 70% by mass, the dimensional stability of the nonwoven fabric may not be obtained.

また、本発明に係わる不織布には、不織布の強度を高めるために少なくとも1種のバインダー繊維を含有することが好ましい。   The nonwoven fabric according to the present invention preferably contains at least one binder fiber in order to increase the strength of the nonwoven fabric.

本発明に用いられるバインダー繊維としては、ポリビニルアルコール(PVA)繊維、ビスコース繊維、ポリエステル繊維、ポリオレフィン繊維等が挙げられる。また、バインダー繊維は、単繊維であっても、芯鞘繊維、分割繊維等の複合繊維であっても良い。また、ポリビニルアルコール繊維は、常温の水ではほとんど溶解しないで繊維形態を保っているが、抄紙後の水分を含んだ状態で加熱されると容易に溶解し始め、溶解したところで、タッチロール等の設備で加圧すると、ガラス繊維や木材パルプとの間にまたがって作用するバインダー能力を発現し、その後の脱水乾燥によって再凝固し、高温水中でなければ容易に溶解しない強力なバインダー繊維となることから、特に好ましい。   Examples of the binder fiber used in the present invention include polyvinyl alcohol (PVA) fiber, viscose fiber, polyester fiber, and polyolefin fiber. The binder fiber may be a single fiber or a composite fiber such as a core-sheath fiber or a split fiber. Polyvinyl alcohol fiber is hardly dissolved in water at room temperature and keeps its fiber form, but when heated in a state containing moisture after paper making, it begins to dissolve easily. When pressed with equipment, it develops a binder ability that works between glass fiber and wood pulp, and then re-solidifies by dehydration and drying, resulting in a strong binder fiber that does not dissolve easily unless in high-temperature water. Are particularly preferred.

本発明に係わるバインダー繊維の繊維径は、4〜40μmが好ましく、6〜25μmがより好ましく、10〜18μmがさらに好ましい。バインダー繊維の繊維径が4μm未満であると、抄紙時に抄紙ワイヤーから脱落し、バインダー能力が低下する場合があり、一方、バインダー繊維の繊維径が40μmを超えた場合には、繊維の比表面積が相対的に低下し、バインダー能力が低下することがあり、さらに、シート表面の平滑性に劣ることがある。バインダー繊維の繊維長は、1〜20mmが好ましく、2〜15mmがより好ましく、3〜10mmがさらに好ましい。バインダー繊維の繊維長が1mm未満であると、バインダー能力が低下する場合があり、一方、バインダー繊維の繊維長が20mmを超えた場合、抄紙時のよれや固まりが発生し易くなることがあり、形成された不織布が不均一になる恐れがある。   The fiber diameter of the binder fiber according to the present invention is preferably 4 to 40 μm, more preferably 6 to 25 μm, and still more preferably 10 to 18 μm. When the fiber diameter of the binder fiber is less than 4 μm, it may fall off from the paper making wire during paper making, and the binder capacity may decrease. On the other hand, when the fiber diameter of the binder fiber exceeds 40 μm, the specific surface area of the fiber is It may be relatively lowered, the binder ability may be lowered, and the smoothness of the sheet surface may be inferior. The fiber length of the binder fiber is preferably 1 to 20 mm, more preferably 2 to 15 mm, and still more preferably 3 to 10 mm. If the fiber length of the binder fiber is less than 1 mm, the binder capacity may be reduced, while if the fiber length of the binder fiber exceeds 20 mm, it may be easy to generate kinks and clumps during papermaking, The formed nonwoven fabric may be non-uniform.

バインダー繊維の含有量は、不織布の全繊維量に対して、5〜40質量%が好ましく、7〜30質量%がより好ましく、10〜25質量%がさらに好ましい。バインダー繊維の含有量が5質量%未満であると、引張強度が弱く、湿式抄紙の際に断紙する場合がある。バインダー繊維の含有量が40質量%を超えると、通気性が低下して、合成樹脂発泡体からなる芯材を形成させる際に、合成樹脂が不織布に浸透し難くなり、合成樹脂発泡体と不織布との接着が弱くなることがある。   The content of the binder fiber is preferably 5 to 40% by mass, more preferably 7 to 30% by mass, and still more preferably 10 to 25% by mass with respect to the total fiber content of the nonwoven fabric. When the content of the binder fiber is less than 5% by mass, the tensile strength is weak and the paper may be cut off during wet papermaking. When the content of the binder fiber exceeds 40% by mass, the air permeability is lowered, and when the core material made of the synthetic resin foam is formed, the synthetic resin hardly penetrates into the non-woven fabric. Adhesion may be weak.

本発明に係わる不織布には、空隙や強度の調整等、必要に応じて、ガラス繊維、木材パルプ、バインダー繊維以外の繊維を含有させることができる。このような繊維としては、例えば、レーヨン、キュプラ、リヨセル繊維等の再生繊維、ポリエステル系、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン、ポリ塩化ビニル、ポリエステル系、ベンゾエート、ポリクラール、フェノール系等の合成繊維等を挙げることができるが、本発明はこれらに限定されるものではない。   The nonwoven fabric according to the present invention may contain fibers other than glass fibers, wood pulp, and binder fibers as necessary, such as adjustment of voids and strength. Examples of such fibers include regenerated fibers such as rayon, cupra, and lyocell fibers, polyester-based, polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene, polyvinyl chloride, polyester-based, benzoate, polyclar, phenol Examples thereof include synthetic fibers and the like, but the present invention is not limited to these.

本発明に係わる不織布が2層以上の多層シートの場合、該不織布は湿式抄紙法で製造される。本発明に用いることができる抄紙機は、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機等の抄紙機が同種または異種の2機以上がオンラインで設置されているコンビネーション抄紙機等である。これらの抄紙機で抄造された湿紙ウェブは加熱乾燥される。加熱乾燥手段としては、シリンダードライヤー、エアードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤーなどの方式を用いることができる。   When the nonwoven fabric according to the present invention is a multilayer sheet having two or more layers, the nonwoven fabric is produced by a wet papermaking method. The paper machine that can be used in the present invention is a combination paper machine in which two or more of the same or different types of paper machines such as a long paper machine, a circular net paper machine, and an inclined wire type paper machine are installed on-line. is there. The wet paper web made by these paper machines is dried by heating. As the heating and drying means, methods such as a cylinder dryer, an air dryer, a suction drum dryer, and an infrared dryer can be used.

下記に本発明に係わる不織布がガラス繊維と木材パルプとを含有する2層以上の多層シートの場合における製造方法の一例を挙げるが、本発明はこれに限定されるものではない。   Although an example of the manufacturing method in case the nonwoven fabric concerning this invention is a multilayer sheet | seat of 2 or more layers containing glass fiber and wood pulp below is given, this invention is not limited to this.

例えば、水に分散剤を添加した後、ガラス繊維を投入して撹拌する。分散剤としては、特に限定はないが、ノニオン系分散剤を用いることが好ましい。その後、高分子ポリアクリルアミド水溶液あるいは高分子ポリエチレンオキシド水溶液と言った粘剤類を添加し、往復撹拌機で撹拌した状態でガラス繊維スラリーとして貯蔵する。また、水に叩解後の木材パルプ、バインダー繊維、サイズ剤を混合分散した後、木材パルプスラリーとして、別の貯蔵タンクに送る。ガラス繊維スラリーと木材パルプスラリーとを一定量ずつ貯蔵タンクあるいは抄紙機に送り、混合して目標の混合比率と坪量になるように湿紙ウェブを抄造する。得られた湿紙ウェブをシリンダードライヤーに接触させて、加熱乾燥することによって、バインダー繊維を効率よく融着させることができる。   For example, after adding a dispersant to water, glass fiber is added and stirred. The dispersant is not particularly limited, but it is preferable to use a nonionic dispersant. Thereafter, a viscous agent such as an aqueous polymer polyacrylamide solution or an aqueous polymer polyethylene oxide solution is added, and the mixture is stored as a glass fiber slurry while being stirred by a reciprocating stirrer. Moreover, after mixing and dispersing the wood pulp, the binder fiber, and the sizing agent after beating in water, it is sent to another storage tank as a wood pulp slurry. A glass fiber slurry and a wood pulp slurry are sent to a storage tank or a paper machine in a certain amount and mixed to form a wet paper web so as to obtain a target mixing ratio and basis weight. The obtained wet paper web is brought into contact with a cylinder dryer and dried by heating, whereby the binder fibers can be efficiently fused.

2層以上の多層シートに積層する方法は、各々の抄紙機で抄きあげた湿紙ウェブを湿潤状態にあるうちに積層する抄き合わせや、一方の湿紙ウェブを形成した後に、この湿紙ウェブの上に繊維を分散した原料スラリーを流して積層不織布を形成する方法でも良い。また、乾燥したウェブの上に、繊維を分散した原料スラリーを流して、積層不織布を形成する方法でも良い。   The method of laminating two or more multilayer sheets is that the wet paper webs made by each paper machine are laminated while they are in a wet state, or after one wet paper web is formed, this wet paper web is formed. A method of forming a laminated nonwoven fabric by flowing a raw material slurry in which fibers are dispersed on a paper web may be used. Moreover, the method of flowing the raw material slurry which disperse | distributed fiber on the dried web, and forming the laminated nonwoven fabric may be used.

不織布の坪量は、合成樹脂フィルムを貼り合わせた後の複合シートの目付けが50〜120g/mに入れば限定する必要はないが、15〜100g/mが好ましく、20〜80g/mがより好ましく、30〜70g/mがさらに好ましい。不織布の坪量が15g/m未満の場合、寸法安定性が確保できないことや、圧縮強度を0.30kN/m以上にすることが難しくなることがある。また、不織布の坪量が100g/mを超えると、合成樹脂フィルムを薄くせざるを得ないため、合成樹脂フィルムにピンホールなどができ易くなる。不織布の厚みは、50〜250μmが好ましく、70〜200μmがより好ましく、100〜180μmがさらに好ましい。不織布の厚みが50μm未満の場合、圧縮強度を0.30kN/m以上にすることが難しくなることがあり、250μmを超えると、通常は表面材を裏側で折り返して固定するが、裏面材が厚いと表面材を折り返して固定することができないことがある。 The basis weight of the nonwoven fabric need not basis weight of the composite sheet is limited so placed in 50 to 120 / m 2 after bonding the synthetic resin film is preferably 15~100g / m 2, 20~80g / m 2 is more preferable, and 30 to 70 g / m 2 is more preferable. When the basis weight of the nonwoven fabric is less than 15 g / m 2 , it may be difficult to ensure dimensional stability or to make the compressive strength 0.30 kN / m or more. Moreover, since the synthetic resin film must be made thin when the basis weight of the nonwoven fabric exceeds 100 g / m 2 , pinholes and the like are easily formed in the synthetic resin film. 50-250 micrometers is preferable, as for the thickness of a nonwoven fabric, 70-200 micrometers is more preferable, and 100-180 micrometers is more preferable. When the thickness of the nonwoven fabric is less than 50 μm, it may be difficult to make the compressive strength 0.30 kN / m or more. When the thickness exceeds 250 μm, the surface material is usually folded back and fixed, but the back material is thick. In some cases, the surface material cannot be folded back and fixed.

また、不織布の密度は、0.10〜0.90g/cmが好ましく、0.15〜0.80g/cmがより好ましく、0.20〜0.60g/cmがさらに好ましい。不織布の密度が0.10g/cm未満の場合、繊維間の接着が不良となり、寸法安定性が確保できないことや、圧縮強度を0.30kN/m以上にすることが難しくなることがある。また、不織布の密度が0.90g/cmを超えると、ガラス繊維の折れが発生して十分な寸法安定性が得られない場合がある。 The density of the nonwoven fabric is preferably 0.10~0.90g / cm 3, more preferably 0.15~0.80g / cm 3, more preferably 0.20~0.60g / cm 3. When the density of the nonwoven fabric is less than 0.10 g / cm 3 , the adhesion between fibers becomes poor, and dimensional stability cannot be ensured, and it may be difficult to make the compressive strength 0.30 kN / m or more. On the other hand, if the density of the nonwoven fabric exceeds 0.90 g / cm 3 , the glass fiber may be broken and sufficient dimensional stability may not be obtained.

また、本発明に係わる不織布には、耐湿性や撥水性を持たせる等、必要に応じてサイズ剤を配合することができる。サイズ剤としては、本発明の所望の効果を損なわないものであれば、強化ロジンサイズ剤、ロジンエマルジョンサイズ剤、石油樹脂系サイズ剤、合成サイズ剤、中性ロジンサイズ剤、アルキルケテンダイマー(AKD)など公知のサイズ剤のいずれをも用いることができる。   Moreover, the nonwoven fabric concerning this invention can be mix | blended with a sizing agent as needed, such as giving moisture resistance and water repellency. As the sizing agent, any reinforced rosin sizing agent, rosin emulsion sizing agent, petroleum resin sizing agent, synthetic sizing agent, neutral rosin sizing agent, alkyl ketene dimer (AKD) may be used as long as the desired effect of the present invention is not impaired. Any of known sizing agents such as) can be used.

また、この他に、アニオン性、ノニオン性、カチオン性、あるいは両性の歩留り向上剤、濾水剤、分散剤、紙力向上剤や粘剤が必要に応じて適宜選択して使用される。また、pH調整剤、消泡剤、ピッチコントロール剤、スライムコントロール剤等の抄紙用内添助剤を目的に応じて適宜添加することができる。   In addition to these, an anionic, nonionic, cationic or amphoteric retention improver, a filtering agent, a dispersant, a paper strength improver and a sticking agent are appropriately selected and used as necessary. Moreover, internal additives for papermaking, such as a pH adjuster, an antifoaming agent, a pitch control agent, and a slime control agent, can be appropriately added depending on the purpose.

また、不透明度を高める等、必要に応じて、クレー、カオリン、焼成カオリン、タルク、炭酸カルシウム、二酸化チタン等の填料や、水酸化アルミニウム、水酸化マグネシウム等の自己消火性を有する填料等を含有させることができる。   In addition, if necessary, it contains clay, kaolin, calcined kaolin, talc, calcium carbonate, titanium dioxide, and other self-extinguishing fillers such as aluminum hydroxide and magnesium hydroxide. Can be made.

また、本発明は、合成樹脂発泡体からなる芯材の一方の面に、本発明の建築部材用複合シートが設けられてなる建築部材でもある。   Moreover, this invention is also a building member by which the composite sheet for building members of this invention is provided in one surface of the core material which consists of a synthetic resin foam.

本発明に係わる合成樹脂発泡体からなる芯材は、例えばポリウレタンフォーム、ポリイソシアヌレートフォーム、フェノールフォーム、塩化ビニルフォーム、ポリエチレンフォーム、ポリスチレンフォーム、ユリアフォーム等の合成樹脂発泡体からなるものであり、特に耐火性を必要とする場合には、レゾール型フェノールの原液と、硬化剤、発泡剤を混合し、一般に表面材および/または裏面材に吐出させ、加熱して反応・発泡・硬化させて形成したものである。   The core material composed of the synthetic resin foam according to the present invention is composed of a synthetic resin foam such as polyurethane foam, polyisocyanurate foam, phenol foam, vinyl chloride foam, polyethylene foam, polystyrene foam, urea foam, and the like. Especially when fire resistance is required, it is formed by mixing a stock solution of resol type phenol, a curing agent and a foaming agent, and generally discharging it to the surface material and / or the backside material and heating it to react, foam and cure. It is a thing.

また、芯材には各種難燃材として軽量骨材(パーライト粒、ガラスビーズ、石膏スラグ、タルク石、シラスバルーン、水酸化アルミニウム等)、繊維状物(グラスウール、ロックウール、カーボン繊維、グラファイト等)を混在させ、耐火性、防火性を向上させることもできる。   In addition, lightweight aggregates (perlite grains, glass beads, gypsum slag, talc stone, shirasu balloon, aluminum hydroxide, etc.), fibrous materials (glass wool, rock wool, carbon fiber, graphite, etc.) ) Can be mixed to improve fire resistance and fire resistance.

本発明に用いることができる表面材としては、例えば鉄、アルミニウム、銅、ステンレス、チタン、アルミ・亜鉛合金メッキ鋼板、ガルバリウム鋼板、ホーロー鋼板、クラッド鋼板、ラミネート鋼板(塩ビ鋼板等)、サンドイッチ鋼板(制振鋼板等)、塩化ビニル樹脂、ポリカーボネイト樹脂等(塗装したカラー板を含む)の1種をロール成形、プレス成形、押出成形等によって各種形状に成形したもの、あるいは無機質材を押出成形、プレス成形、オートクレーブ養生成形等して各種任意形状に形成したものなどを挙げることができる。   Examples of the surface material that can be used in the present invention include iron, aluminum, copper, stainless steel, titanium, aluminum / zinc alloy-plated steel plate, galvalume steel plate, enameled steel plate, clad steel plate, laminated steel plate (vinyl chloride steel plate, etc.), sandwich steel plate ( Damping steel plate, etc.), vinyl chloride resin, polycarbonate resin, etc. (including painted color plate) are molded into various shapes by roll molding, press molding, extrusion molding, etc., or inorganic material is extrusion molded, pressed Examples thereof include those formed into various arbitrary shapes by molding, autoclave ripening form, and the like.

また、本発明建築部材用複合シートの合成樹脂フィルム側に、アルミニウム蒸着紙、クラフト紙、アスファルトフェルト、金属箔(Al、Fe、Pb、Cu)、合成樹脂シート、ゴムシート、布シート、石膏紙、水酸化アルミ紙などを必要に応じて貼り合わせても良い。   Further, on the synthetic resin film side of the composite sheet for building members of the present invention, aluminum vapor-deposited paper, kraft paper, asphalt felt, metal foil (Al, Fe, Pb, Cu), synthetic resin sheet, rubber sheet, cloth sheet, gypsum paper Alternatively, aluminum hydroxide paper or the like may be bonded as necessary.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。また、本実施例中で、特に明示しない限り部および百分率は質量基準である。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. Further, in the examples, unless otherwise indicated, parts and percentages are based on mass.

[ガラス繊維分散液−Aの調製]
パルパー分散タンク中の水に市販のチョップドストランドガラス繊維(繊維径9μm、繊維長6mm)、バインダー繊維(商品名:VPB107、クラレ社製、1.1dt×3mm、PVA繊維)をそれぞれ85:15の比率で投入して10分間混合分散してガラス繊維分散液−Aを調製した。
[Preparation of Glass Fiber Dispersion-A]
85:15 of commercially available chopped strand glass fiber (fiber diameter 9 μm, fiber length 6 mm) and binder fiber (trade name: VPB107, manufactured by Kuraray Co., Ltd., 1.1 dt × 3 mm, PVA fiber) in water in the pulper dispersion tank A glass fiber dispersion liquid-A was prepared by charging at a ratio and mixing and dispersing for 10 minutes.

[ガラス繊維分散液−B〜Gの調製]
ガラス繊維分散液−Aにおける、市販のチョップドストランドガラス繊維の代わりに、各々ガラス繊維分散液−B(市販のチョップドストランドガラス繊維、繊維径6μm、繊維長9mm)、ガラス繊維分散液−C(市販のチョップドストランドガラス繊維、繊維径9μm、繊維長18mm)、ガラス繊維分散液−D(市販のチョップドストランドガラス繊維、繊維径3μm、繊維長8mm)、ガラス繊維分散液−E(市販のチョップドストランドガラス繊維、繊維径6μm、繊維長4mm)、ガラス繊維分散液−F(市販のチョップドストランドガラス繊維、繊維径15μm、繊維長9mm)、ガラス繊維分散液−G(市販のチョップドストランドガラス繊維、繊維径9μm、繊維長22mm)を各々用いた以外は、ガラス繊維分散液−Aと同様にしてガラス繊維分散液−B〜Gを調製した。
[Preparation of Glass Fiber Dispersions-B to G]
Instead of commercially available chopped strand glass fibers in Glass Fiber Dispersion-A, Glass Fiber Dispersion-B (commercially chopped strand glass fibers, fiber diameter 6 μm, fiber length 9 mm), Glass Fiber Dispersion-C (commercially available) Chopped strand glass fiber, fiber diameter 9 μm, fiber length 18 mm), glass fiber dispersion-D (commercially chopped strand glass fiber, fiber diameter 3 μm, fiber length 8 mm), glass fiber dispersion-E (commercial chopped strand glass Fiber, fiber diameter 6 μm, fiber length 4 mm), glass fiber dispersion-F (commercially chopped strand glass fiber, fiber diameter 15 μm, fiber length 9 mm), glass fiber dispersion-G (commercially chopped strand glass fiber, fiber diameter) 9 μm, fiber length 22 mm) We were prepared glass fiber dispersion -B~G a manner.

[木材パルプ分散液の調製]
パルパー分散タンク中の水に500mlCSFに叩解したNBKP(木材パルプ繊維)、バインダー繊維(商品名:VPB107、クラレ社製、1.1dt×3mm、PVA繊維)を85:15の比率で投入して10分間混合分散して木材パルプ分散液を調製した。
[Preparation of wood pulp dispersion]
NBKP (wood pulp fiber) beaten in 500 ml CSF and binder fiber (trade name: VPB107, manufactured by Kuraray Co., Ltd., 1.1 dt × 3 mm, PVA fiber) are added at a ratio of 85:15 to the water in the pulper dispersion tank. A wood pulp dispersion was prepared by mixing and dispersing for a minute.

[合成繊維分散液の調製]
パルパー分散タンク中の水に市販のポリエステル短繊維(繊度0.6dtex、繊維長5mm)と熱融着型芯鞘バインダー繊維(芯部ポリエステル、鞘部流動開始温度110℃の低融点共重合ポリエステル、繊度1.1dtex、繊維長5mm)を投入し、10分間混合分散して合成繊維分散液を調製した。
[Preparation of synthetic fiber dispersion]
Commercially available polyester short fibers (fineness 0.6 dtex, fiber length 5 mm) and heat-sealable core / sheath binder fibers (core polyester, low melting point copolymer polyester having a sheath flow start temperature of 110 ° C., in water in a pulper dispersion tank, (Fineness 1.1 dtex, fiber length 5 mm) was added and mixed and dispersed for 10 minutes to prepare a synthetic fiber dispersion.

[不織布1〜21の製造]
不織布1〜21は円網抄紙機を用いて製造した。ガラス繊維分散液、パルプ分散液および合成繊維分散液を、表1に示す混合比になるように、貯蔵タンクに送り混合した。表1の坪量になるように、混合した分散液を抄紙ヘッドに送り、湿紙ウエッブを抄いた後にプレスを行い、ヤンキードライヤー面に当てて乾燥し、表1に示す不織布1〜21を得た。
[Production of non-woven fabrics 1 to 21]
Nonwoven fabrics 1-21 were produced using a circular net paper machine. The glass fiber dispersion, the pulp dispersion, and the synthetic fiber dispersion were sent to a storage tank and mixed so as to have a mixing ratio shown in Table 1. The mixed dispersion is fed to the paper making head so as to have the basis weight shown in Table 1. After the wet paper web is made, pressing is performed, and it is applied to the Yankee dryer surface and dried to obtain nonwoven fabrics 1 to 21 shown in Table 1. It was.

[建築部材用複合シートの製造]
<実施例1〜21>
ポリオレフィン樹脂(高密度ポリエチレン60部と低密度ポリエチレン40部の混合樹脂)を押出機で加熱溶融し、表2の厚みになるように押し出して合成樹脂フィルム(A)を得た。なお、この合成樹脂フィルム(A)の25μmにおける破断強度は21MPaであった。破断強度の異なる合成樹脂フィルム(B)として透明ポリエステルを用いた。合成樹脂フィルム(B)の25μmにおける破断強度は230MPaであった。
[Manufacture of composite sheets for building components]
<Examples 1 to 21>
A polyolefin resin (mixed resin of 60 parts of high-density polyethylene and 40 parts of low-density polyethylene) was melted by heating with an extruder and extruded to the thickness shown in Table 2 to obtain a synthetic resin film (A). In addition, the breaking strength in 25 micrometers of this synthetic resin film (A) was 21 MPa. Transparent polyester was used as the synthetic resin film (B) having different breaking strengths. The breaking strength at 25 μm of the synthetic resin film (B) was 230 MPa.

貼り合わせる方法は、合成樹脂フィルム(A)を押出成形によってフィルム状に吐出し、溶融状態の合成樹脂フィルム(A)を、合成樹脂フィルム(B)と不織布1〜5および7〜20のヤンキードライヤーに当てた側の面との間に介在させつつ熱融着することで実施し、表2に示す実施例1〜21の建築部材用複合シートを得た。   The synthetic resin film (A) is ejected into a film by extrusion, and the synthetic resin film (A) in a molten state is bonded to the synthetic resin film (B) and the Yankee dryers 1 to 5 and 7 to 20 The composite sheet for building members of Examples 1 to 21 shown in Table 2 was obtained by heat-sealing while interposing between the surface and the surface of the building member.

<実施例22>
実施例3における合成樹脂フィルム(B)として、透明PETの代わりに厚み12μmのアルミ蒸着PETを用い、アルミ蒸着面側を不織布側にして貼り合わせた以外は、実施例3と同様にして実施例22の建築部材用複合シートを得た。なお、このアルミ蒸着PETの25μmにおける破断強度は228MPaであった。
<Example 22>
Example 3 is the same as Example 3 except that 12 μm thick aluminum vapor-deposited PET is used instead of transparent PET as the synthetic resin film (B) in Example 3, and the aluminum vapor-deposited surface is bonded to the nonwoven fabric side. 22 composite sheets for building members were obtained. In addition, the breaking strength in 25 micrometers of this aluminum vapor deposition PET was 228 MPa.

<実施例23>
実施例3における合成樹脂フィルム(B)として、透明PETの代わりに厚み30μmの延伸ポリプロピレンフィルムを用いた以外は、実施例3と同様にして実施例23の建築部材用複合シートを得た。なお、この延伸ポリプロピレンフィルムの25μmにおける破断強度は181MPaであった。
<Example 23>
As a synthetic resin film (B) in Example 3, a composite sheet for building members of Example 23 was obtained in the same manner as in Example 3 except that a stretched polypropylene film having a thickness of 30 μm was used instead of transparent PET. In addition, the breaking strength in 25 micrometers of this stretched polypropylene film was 181 MPa.

<実施例24>
合成樹脂フィルム(A)として12μmの透明ポリエステル用いた。貼り合わせる方法は、合成樹脂フィルム(A)の片面に、無溶剤型アクリル樹脂接着剤を10g/m塗布し、接着剤を塗布した側の面に不織布3を貼り合わせることで実施した。さらに、ポリオレフィン樹脂(高密度ポリエチレン60部と低密度ポリエチレン40部の混合樹脂)を押出機で加熱溶融し、上記の合成樹脂フィルム(A)を貼り合わせた不織布3の合成樹脂フィルム(A)側の面とクーリングロールとの間に、フィルム状に厚みが20μmになるように押し出して合成樹脂フィルム(B)を得て、圧着、冷却し、実施例24の建築部材用複合シートを得た。
<Example 24>
A 12 μm transparent polyester was used as the synthetic resin film (A). The laminating method was carried out by applying 10 g / m 2 of a solventless acrylic resin adhesive on one side of the synthetic resin film (A), and laminating the nonwoven fabric 3 on the surface on which the adhesive was applied. Further, a polyolefin resin (mixed resin of 60 parts of high density polyethylene and 40 parts of low density polyethylene) is heated and melted by an extruder, and the synthetic resin film (A) side of the nonwoven fabric 3 bonded with the synthetic resin film (A). A synthetic resin film (B) was obtained by extruding the film between the surface and the cooling roll so as to have a thickness of 20 μm, followed by pressure bonding and cooling to obtain a composite sheet for building members of Example 24.

<比較例1〜5>
ポリオレフィン樹脂(高密度ポリエチレン60部と低密度ポリエチレン40部の混合樹脂)を押出機で加熱溶融し、表2の厚みになるように押し出して合成樹脂フィルム(A)を得た。なお、この合成樹脂フィルム(A)の25μmにおける破断強度は21MPaであった。破断強度の異なる合成樹脂フィルム(B)として透明ポリエステルを用いた。合成樹脂フィルム(B)の25μmにおける破断強度は230MPaであった。
<Comparative Examples 1-5>
A polyolefin resin (mixed resin of 60 parts of high-density polyethylene and 40 parts of low-density polyethylene) was melted by heating with an extruder and extruded to the thickness shown in Table 2 to obtain a synthetic resin film (A). In addition, the breaking strength in 25 micrometers of this synthetic resin film (A) was 21 MPa. Transparent polyester was used as the synthetic resin film (B) having different breaking strengths. The breaking strength at 25 μm of the synthetic resin film (B) was 230 MPa.

貼り合わせる方法は、合成樹脂フィルム(A)を押出成形によってフィルム状に吐出し、溶融状態の合成樹脂フィルム(A)を、表2に示す不織布のヤンキードライヤーに当てた側の面と、合成樹脂フィルム(B)との間に介在させつつ熱融着することで実施し、表2に示す比較例1〜5の建築部材用複合シートを得た。   The method of laminating is that the synthetic resin film (A) is ejected into a film by extrusion, and the molten synthetic resin film (A) is applied to the non-woven Yankee dryer shown in Table 2 and the synthetic resin. It carried out by heat-seal | fusing while interposing between films (B), and obtained the composite sheet for building members of Comparative Examples 1-5 shown in Table 2.

<比較例6>
ポリオレフィン樹脂(高密度ポリエチレン60部と低密度ポリエチレン40部の混合樹脂)を押出機で加熱溶融し、不織布3のヤンキードライヤーに当てた側の面とクーリングロールとの間にフィルム状に厚みが20μmになるように押し出して合成樹脂フィルム(A)を得て、圧着、冷却し、合成樹脂フィルム(A)を貼り合わせた不織布を得た。
<Comparative Example 6>
Polyolefin resin (mixed resin of 60 parts of high density polyethylene and 40 parts of low density polyethylene) is heated and melted with an extruder, and the thickness of the nonwoven fabric 3 is 20 μm between the surface of the non-woven fabric 3 applied to the Yankee dryer and the cooling roll. To obtain a synthetic resin film (A), which was pressure-bonded and cooled to obtain a nonwoven fabric bonded with the synthetic resin film (A).

さらに、同じポリオレフィン樹脂(高密度ポリエチレン60部と低密度ポリエチレン40部の混合樹脂)を押出機で加熱溶融し、上記の合成樹脂フィルムを貼り合わせた不織布の合成樹脂フィルム側の面とクーリングロールとの間に、フィルム状に厚みが30μmになるように押し出して合成樹脂フィルム(B)を得て、圧着、冷却し、比較例6の建築部材用複合シートを得た。   Further, the same polyolefin resin (mixed resin of 60 parts of high-density polyethylene and 40 parts of low-density polyethylene) is heated and melted by an extruder, and the synthetic resin film side surface of the nonwoven fabric bonded with the above synthetic resin film and a cooling roll In between, it extrude | pushed out so that thickness might be set to 30 micrometers, and obtained the synthetic resin film (B), crimped | bonded and cooled, and the composite sheet for building members of the comparative example 6 was obtained.

<比較例7>
ポリオレフィン樹脂(高密度ポリエチレン60部と低密度ポリエチレン40部の混合樹脂)を押出機で加熱溶融し、不織布3のヤンキードライヤーに当てた側の面とクーリングロールとの間にフィルム状に厚みが50μmになるように押し出して合成樹脂フィルム(A)を得て、圧着、冷却し、合成樹脂フィルム(A)を貼り合わせた不織布を得た。これに破断強度の異なる合成樹脂フィルム(B)を貼り合わせることなく、比較例7の建築部材用複合シートとして用いた。
<Comparative Example 7>
A polyolefin resin (mixed resin of 60 parts of high density polyethylene and 40 parts of low density polyethylene) is heated and melted with an extruder, and the thickness of the nonwoven fabric 3 is 50 μm in thickness between the surface of the nonwoven fabric 3 applied to the Yankee dryer and the cooling roll. To obtain a synthetic resin film (A), which was pressure-bonded and cooled to obtain a nonwoven fabric bonded with the synthetic resin film (A). The synthetic resin film (B) having different breaking strengths was not bonded thereto, and used as a composite sheet for building members of Comparative Example 7.

[建築部材の製造]
<実施例25〜48>
鉄板(0.27mm)を表面材とし、実施例1〜24で得た建築部材用複合シートを裏面材とし、硬質ポリウレタンフォームを芯材(10mm)とし、表面材と裏面材との間に2液性の硬質ポリウレタンフォームの原液を流し込み、24時間静置して、発泡と硬化を十分に完了させ、実施例25〜48の建築部材を得た。なお、建築部材用複合シートは不織布側の面が芯材に接するようにした。
[Manufacture of building components]
<Examples 25 to 48>
An iron plate (0.27 mm) is used as a surface material, the composite sheet for building members obtained in Examples 1 to 24 is used as a back material, a hard polyurethane foam is used as a core material (10 mm), and 2 between the surface material and the back material. A stock solution of liquid rigid polyurethane foam was poured and allowed to stand for 24 hours to sufficiently complete foaming and curing, and building members of Examples 25 to 48 were obtained. In addition, the composite sheet for building members was such that the surface on the nonwoven fabric side was in contact with the core material.

<比較例8〜14>
実施例25〜48における実施例1〜24で得た建築部材用複合シートの代わりに、比較例1〜7で得た建築部材用複合シートを用いた以外は、実施例25〜48と同様にして比較例8〜14の建築部材を製造した。
<Comparative Examples 8-14>
In the same manner as in Examples 25 to 48 except that the composite sheet for building members obtained in Comparative Examples 1 to 7 was used instead of the composite sheet for building members obtained in Examples 1 to 24 in Examples 25 to 48. The building members of Comparative Examples 8 to 14 were manufactured.

[評価]
[複合シートの圧縮強度]
複合シートを幅12.7mm、長さ152.4mmの大きさに切り、リングクラッシュテスター(型番:TMC−R−5000、日本T.M.C社製)を用いて測定した。結果を表2に示す。
[Evaluation]
[Compressive strength of composite sheet]
The composite sheet was cut into a size of 12.7 mm in width and 152.4 mm in length and measured using a ring crush tester (model number: TMC-R-5000, manufactured by Nippon TM Co., Ltd.). The results are shown in Table 2.

実施例8および実施例12との比較より、ガラス繊維の繊維径が10μm以下の方が、圧縮強度が強い。また、実施例14と、実施例3および実施例15〜17との比較より、全繊維中のガラス繊維の含有量が80質量%以下の方が、圧縮強度が強い。   From the comparison with Example 8 and Example 12, the fiber diameter of the glass fiber is 10 μm or less, and the compressive strength is stronger. From the comparison between Example 14, Example 3 and Examples 15 to 17, the compression strength is stronger when the glass fiber content in the total fiber is 80% by mass or less.

[裏面材のシワ]
実施例25〜48および比較例8〜14で製造した建築部材について、製造時に発生する裏面材(複合シート)のシワを確認した。シワの評価は長さ1m、幅37cmの大きさの建築部材を用い、長さが30mm以上のシワに印を付けて長さを測り、全ての30mm以上のシワの長さの合計を算出した。シワの長さの合計が100mm未満であることが良好であり、80mm未満がさらに良い。結果を表3に示す。なお、シワが多いほど、製造時および経時での反りも発生し易くなる。
[Back surface wrinkles]
About the building member manufactured in Examples 25-48 and Comparative Examples 8-14, the wrinkles of the back surface material (composite sheet) which generate | occur | produce at the time of manufacture were confirmed. The wrinkle was evaluated by using a building member having a length of 1 m and a width of 37 cm, marking the length of a wrinkle with a length of 30 mm or more, and calculating the total length of all wrinkles with a length of 30 mm or more. . The total wrinkle length is preferably less than 100 mm, and more preferably less than 80 mm. The results are shown in Table 3. Note that the more wrinkles there are, the easier it is to warp during production and over time.

[裏面材の破断]
実施例25〜48および比較例8〜14で製造した建築部材の製造時に、意図的に硬質ポリウレタンフォームの原液の流し込み量を1.05倍に増やし、直ちに80℃のチャンバーに30分間入れて発泡と硬化を加速させ、硬質ポリウレタンフォームの膨張に伴う裏面材(複合シート)の破断の有無を確認した。なお、破断の評価は長さ1m、幅37cmの大きさの建築部材を用い、長さが5mm以上破断した部分の長さを測定した。結果を表3に示す。なお、破断しないことが良好である。
[Break of back material]
At the time of manufacturing the building members manufactured in Examples 25 to 48 and Comparative Examples 8 to 14, the amount of the hard polyurethane foam stock solution was intentionally increased by 1.05 times and immediately put into a chamber at 80 ° C. for 30 minutes for foaming. Curing was accelerated and the presence or absence of breakage of the back material (composite sheet) accompanying expansion of the rigid polyurethane foam was confirmed. In addition, evaluation of the fracture | rupture used the construction member of the magnitude | size of 1 m in length, and the width of 37 cm, and measured the length of the part to which the length broke 5 mm or more. The results are shown in Table 3. In addition, it is good not to fracture.

[裏面材の成形性]
実施例25〜48および比較例8〜14で製造した建築部材について、裏面材(複合シート)の成形性を確認した。成形性の評価は建築部材の製造時に、幅方向の一方の端から2〜3cmの間に深さ3mm、幅1cmの型を設けるために20kgf/cmの圧力でロールを通して行った。型がうまく成形されていないと、建築部材を施工するときに問題になることがある。形成させた幅1cmの型の両側の深さ(即ち、幅方向の一方の端から3cm(内側)および2cm(外側)のところの深さ)を測定した。成形性の評価は、長さ1m、幅37cmの大きさの建築部材を用い、長さ方向で一方の端から30、40、50、60、70cmの5箇所について測定し、その平均値で示した。結果を表3に示す。幅1cmの型の内側と外側の深さの差が0.5mm未満であり、且つ両側の深さのいずれもが2.0〜3.0mmであることが良く、2.5〜3.0mmであることがさらに良い。
[Formability of backside material]
About the building member manufactured in Examples 25-48 and Comparative Examples 8-14, the moldability of the back material (composite sheet) was confirmed. Evaluation of formability was carried out through a roll at a pressure of 20 kgf / cm 2 in order to provide a mold having a depth of 3 mm and a width of 1 cm between 2 and 3 cm from one end in the width direction at the time of manufacturing a building member. If the mold is not well formed, it can be a problem when constructing building components. The depth on both sides of the formed mold having a width of 1 cm (that is, the depth at 3 cm (inner side) and 2 cm (outer side) from one end in the width direction) was measured. The evaluation of formability was made using a building member with a length of 1 m and a width of 37 cm, measured at 5 locations of 30, 40, 50, 60, and 70 cm from one end in the length direction, and indicated by the average value It was. The results are shown in Table 3. The difference in depth between the inside and outside of the mold having a width of 1 cm is less than 0.5 mm, and the depths on both sides are preferably 2.0 to 3.0 mm, and 2.5 to 3.0 mm. Even better.

[建築部材の反り]
実施例25〜48および比較例8〜14の建築部材について、−20℃にて12時間、70℃60%RHで12時間、合計24時間を1サイクルとする冷熱サイクル試験を実施し、48サイクル後の試験前と試験後の反り量の差を測定した。なお、反りの評価は長さ1m、幅37cmの大きさの建築部材を用い、幅方向の中央部(即ち一方の端から18.5cm)における長さ方向で一方の端から20cm、50cm、80cmの3箇所について反りを測定し、反りの最大値、最小値を幅で記載した。結果を表3に示す。反りの最大値が1.5mm未満であることが良好であり、1.0mm未満であることがさらに良い。
[Warping of building components]
About the building member of Examples 25-48 and Comparative Examples 8-14, the thermal cycle test which makes 12 cycles at -20 degreeC for 12 hours, 70 degreeC 60% RH, and a total of 24 hours is implemented, 48 cycles The difference in warpage before and after the subsequent test was measured. In addition, the evaluation of the warp uses a building member having a length of 1 m and a width of 37 cm, and is 20 cm, 50 cm, and 80 cm from one end in the length direction at the center in the width direction (ie, 18.5 cm from one end). The warpage was measured at three locations, and the maximum value and the minimum value of the warpage were described in width. The results are shown in Table 3. The maximum value of the warp is preferably less than 1.5 mm, and more preferably less than 1.0 mm.

実施例25と比較例9との比較より、同じ不織布を用い、目付けがほぼ同じであっても、裏面材の圧縮強度が0.3kN/m未満であると、裏面材のシワの発生が多い。また、実施例27と比較例13および14との比較より、同じ不織布を用いても、破断強度の異なる合成樹脂フィルムを貼り合わせていない場合には、裏面材のシワの発生が多い。   From the comparison between Example 25 and Comparative Example 9, even when the same nonwoven fabric was used and the basis weight was substantially the same, if the compressive strength of the back material was less than 0.3 kN / m, the back material was often wrinkled. . Further, from the comparison between Example 27 and Comparative Examples 13 and 14, even when the same nonwoven fabric was used, when the synthetic resin films having different breaking strengths were not bonded together, the back material was often wrinkled.

実施例28および29と比較例10との比較より、裏面材の圧縮強度が1.00kN/mを超えると、裏面材が硬すぎるために裏面材の成形性が悪くなる。また、実施例26〜28および30と比較例11との比較より、貼り合わせる合成樹脂フィルムが同じであっても、裏面材の目付けが120g/mを超えると、裏面材が厚くなりすぎるために裏面材の成形性が悪くなる。また、比較例8と実施例25との比較より、裏面材の目付けが50g/m未満であると、裏面材の引張強度も低下するため、裏面材が破断し易い。 From the comparison between Examples 28 and 29 and Comparative Example 10, when the compressive strength of the back material exceeds 1.00 kN / m, the back material is too hard and the formability of the back material is deteriorated. Moreover, even if the synthetic resin film bonded together is the same from the comparison with Examples 26-28 and 30 and the comparative example 11, when the fabric weight of a back surface material exceeds 120 g / m < 2 >, since a back surface material becomes too thick. In addition, the formability of the back surface material becomes worse. Moreover, since the tensile strength of a back material also falls that the basis weight of a back material is less than 50 g / m < 2 > from the comparison with the comparative example 8 and Example 25, a back material is easy to fracture | rupture.

また、例えば、実施例27、38〜44と比較例12との比較より、ガラス繊維が含有されていないと、建築部材の反りの最大値が大きい(即ち、寸法安定性が悪い)。また、実施例27、38〜41と実施例44との比較より、全繊維中のガラス繊維の含有量が20質量%以上であると、寸法安定性がさらに良好である。また、実施例27、38〜40と実施例41との比較より、全繊維中のガラス繊維の含有量が40質量%以上であると、寸法安定性がさらに良好である。また、実施例27、39〜41、44と実施例38との比較より、全繊維中のガラス繊維の含有量が80質量%以下であると裏面材のシワが少なくなる。   Further, for example, from the comparison between Examples 27 and 38 to 44 and Comparative Example 12, when glass fiber is not contained, the maximum value of the warpage of the building member is large (that is, the dimensional stability is poor). Further, from comparison between Examples 27 and 38 to 41 and Example 44, the dimensional stability is further improved when the content of the glass fiber in the total fibers is 20% by mass or more. Further, from comparison between Examples 27 and 38 to 40 and Example 41, the dimensional stability is further improved when the glass fiber content in the total fibers is 40% by mass or more. Moreover, the comparison with Example 27, 39-41,44 and Example 38 WHEREIN: If the content of the glass fiber in all the fibers is 80 mass% or less, the wrinkles of a back surface material will decrease.

また、実施例32と35との比較より、ガラス繊維の繊維長が6mm以上であると寸法安定性が良好であり、建築部材の反りが小さい。実施例9と13との比較および実施例33と37との比較より、ガラス繊維の繊維長が20mmを超えると、裏面材の圧縮強度が低くなり、建築部材の製造時の裏面材のシワが多くなる傾向が見られた。   From comparison between Examples 32 and 35, when the fiber length of the glass fiber is 6 mm or more, the dimensional stability is good and the warpage of the building member is small. From the comparison with Examples 9 and 13 and the comparison with Examples 33 and 37, when the fiber length of the glass fiber exceeds 20 mm, the compressive strength of the back material is lowered, and the wrinkles of the back material at the time of manufacturing the building member are reduced. There was a tendency to increase.

また、実施例12と実施例3および8との比較、並びに実施例36と実施例27および32との比較より、ガラス繊維の繊維径が10μm以下であると、裏面材の圧縮強度が高くなり、建築部材の製造時の裏面材のシワも少ない。また、実施例34と、実施例27および32との比較より、ガラス繊維の繊維径が5μm以上であると、寸法安定性が良好であり、建築部材の反りが小さい。   In addition, the comparison between Example 12 and Examples 3 and 8 and the comparison between Example 36 and Examples 27 and 32 indicate that the compression strength of the back material is increased when the fiber diameter of the glass fiber is 10 μm or less. There are also few wrinkles of the back material at the time of manufacture of a building member. From comparison between Example 34 and Examples 27 and 32, when the fiber diameter of the glass fiber is 5 μm or more, the dimensional stability is good and the warpage of the building member is small.

[不織布22〜26の製造]
不織布22〜26は、傾斜ワイヤー式抄紙機と円網抄紙機がオンラインで設置されているコンビネーション抄紙機を用いて製造した。ガラス繊維分散液および木材パルプ分散液を、表4に示すガラス繊維/木材パルプ(G/P)質量比になるように、第1層用(傾斜ワイヤー式抄紙機用)および第2層用(円網抄紙機用)の貯蔵タンクに送り、混合した。表4の坪量になるように、混合した分散液をそれぞれ第一抄紙ヘッド(傾斜ワイヤー式抄紙機)および第二抄紙ヘッド(円網抄紙機)に送り、湿紙ウエッブの状態で抄き合わせた後にプレスを行い、第2層表面がヤンキードライヤー面に当たるようにして乾燥し、表4に示す2層からなる不織布22〜26を得た。
[Production of non-woven fabrics 22 to 26]
The nonwoven fabrics 22 to 26 were manufactured using a combination paper machine in which an inclined wire type paper machine and a circular net paper machine were installed online. The glass fiber dispersion and the wood pulp dispersion are used for the first layer (for the inclined wire type paper machine) and for the second layer so that the glass fiber / wood pulp (G / P) mass ratio shown in Table 4 is obtained. Sent to a storage tank (for a circular net paper machine) and mixed. The mixed dispersions are sent to the first papermaking head (tilted wire type papermaking machine) and the second papermaking head (circular papermaking machine), respectively, so that the basis weight shown in Table 4 is reached. After that, it was pressed and dried so that the surface of the second layer was in contact with the Yankee dryer surface, and nonwoven fabrics 22 to 26 having two layers shown in Table 4 were obtained.

なお、表4中に示した、略号の詳細は下記の通りである。
G:ガラス繊維
P:木材パルプ
The details of the abbreviations shown in Table 4 are as follows.
G: Glass fiber P: Wood pulp

[建築部材用複合シートの製造]
<実施例49〜53>
実施例3における不織布3の代わりに、不織布22〜26を用い、不織布22〜26の第1層側に破断強度の異なる2種類の合成樹脂フィルムを貼り合わせた以外は、実施例3と同様にして実施例49〜53の建築部材用複合シートを得た。
[Manufacture of composite sheets for building components]
<Examples 49 to 53>
Instead of the nonwoven fabric 3 in Example 3, the nonwoven fabrics 22 to 26 were used, and the same procedure as in Example 3 was performed except that two types of synthetic resin films having different breaking strengths were bonded to the first layer side of the nonwoven fabrics 22 to 26. Thus, composite sheets for building members of Examples 49 to 53 were obtained.

[評価]
[複合シートの圧縮強度]
実施例1〜24の建築部材用複合シートと同様にして測定した。結果を表5に示す。
[Evaluation]
[Compressive strength of composite sheet]
It measured similarly to the composite sheet for building members of Examples 1-24. The results are shown in Table 5.

[皮膚刺激性]
実施例27および実施例49〜53の建築部材用複合シートの不織布側の面を触り、下記の基準により皮膚刺激性を確認した。結果を表5に示す。
A:全く皮膚刺激性を感じない。
B:ほとんど皮膚刺激性を感じない。
C:わずかに皮膚に刺激がある。
なお、AまたはBが特に良好である。
[Skin irritation]
The surface on the nonwoven fabric side of the composite sheet for Example 27 and Examples 49 to 53 was touched, and skin irritation was confirmed according to the following criteria. The results are shown in Table 5.
A: No skin irritation is felt.
B: Almost no skin irritation is felt.
C: Slightly irritating to skin
A or B is particularly good.

実施例49〜51と、実施例27、52、53との比較より、不織布の合成樹脂発泡体からなる芯材と接する側の層が、ガラス繊維を含有しないか、または質量比でガラス繊維よりも木材パルプを多く含有していると、全くあるいはほとんど皮膚刺激性を感じなかった。従って、建築部材を製造する際の作業者へ悪影響を抑えることができるので特に良い。   From a comparison between Examples 49 to 51 and Examples 27, 52, and 53, the layer on the side in contact with the core made of the synthetic resin foam of the non-woven fabric does not contain glass fibers, or from glass fibers in a mass ratio. In the case of containing a large amount of wood pulp, no or little skin irritation was felt. Therefore, the adverse effect on the operator when manufacturing the building member can be suppressed, which is particularly good.

[建築部材の製造]
<実施例54〜58>
実施例25〜48における実施例1〜24で得た建築部材用複合シートの代わりに、実施例49〜53で得た建築部材用複合シートを用いた以外は、実施例25〜48と同様にして実施例54〜58の建築部材を製造した。
[Manufacture of building components]
<Examples 54 to 58>
In the same manner as in Examples 25 to 48 except that the composite sheet for building members obtained in Examples 49 to 53 was used instead of the composite sheet for building members obtained in Examples 1 to 24 in Examples 25 to 48. The building members of Examples 54 to 58 were manufactured.

[評価]
実施例54〜58で得られた建築部材を、実施例25〜48および比較例8〜14の建築部材と同様の方法にて、裏面材のシワ、裏面材の破断、裏面材の成形性、建築部材の反りを評価した。結果を表6に示す。
[Evaluation]
In the same manner as the building members of Examples 25 to 48 and Comparative Examples 8 to 14, the building members obtained in Examples 54 to 58 were creased on the back material, the back material was broken, and the back material was formable. The warpage of building members was evaluated. The results are shown in Table 6.

実施例54〜56と実施例57〜58との比較、特にガラス繊維の含有量がほぼ同じである、実施例55〜56と実施例58との比較より、不織布の合成樹脂フィルムと貼り合わせる側の層は木材パルプを含有しないか、または質量比で木材パルプよりもガラス繊維を多く含有していると、寸法安定性が良好であり、建築部材の反りが小さい。   Comparison between Examples 54 to 56 and Examples 57 to 58, in particular, the glass fiber content is substantially the same. Comparison between Examples 55 to 56 and Example 58 shows that the nonwoven fabric synthetic resin film is bonded to the side. If this layer does not contain wood pulp or contains more glass fibers than wood pulp by mass ratio, the dimensional stability is good and the warpage of the building member is small.

本発明の建築材料用複合シートは、金属サイディングや建築用パネル等の建築部材に用いられる裏面材等に好適に使用できる。   The composite sheet for building material of the present invention can be suitably used as a back material used for building members such as metal siding and building panels.

Claims (4)

合成樹脂発泡体からなる芯材の一方の面に表面材を、他方の面に裏面材を設けた建築部材の裏面材として用いられる建築部材用複合シートであって、建築部材用複合シートはガラス繊維を含有する不織布に破断強度の異なる少なくとも2種類の合成樹脂フィルムを貼り合わせてなり、且つ建築部材用複合シートの横方向の圧縮強度が0.30〜1.00kN/mであり、建築部材用複合シートの目付けが50〜120g/mであることを特徴とする建築部材用複合シート。 A composite sheet for building members used as a back material of a building member in which a surface material is provided on one surface of a core material made of a synthetic resin foam and a back material is provided on the other surface, the building material composite sheet being glass A composite member comprising at least two kinds of synthetic resin films having different breaking strengths bonded to a nonwoven fabric containing fibers, and the composite sheet for building members has a lateral compressive strength of 0.30 to 1.00 kN / m, and a building member A composite sheet for building members, wherein the basis weight of the composite sheet is 50 to 120 g / m 2 . 該不織布が、繊維径が5〜10μmであり、且つ繊維長が6〜20mmのガラス繊維を不織布の全繊維量に対して、20〜80質量%含有している請求項1記載の建築部材用複合シート。   2. The building member according to claim 1, wherein the nonwoven fabric contains 20 to 80 mass% of glass fibers having a fiber diameter of 5 to 10 μm and a fiber length of 6 to 20 mm based on the total fiber amount of the nonwoven fabric. Composite sheet. 該不織布は、ガラス繊維と木材パルプとを含有し、且つ2層以上の多層不織布であり、不織布の合成樹脂フィルムと貼り合わせる側の層は木材パルプを含有しないか、または質量比で木材パルプよりもガラス繊維を多く含有しており、不織布の合成樹脂発泡体からなる芯材と接する側の層は、ガラス繊維を含有しないか、または質量比でガラス繊維よりも木材パルプを多く含有する請求項1または2記載の建築部材用複合シート。   The nonwoven fabric contains glass fibers and wood pulp, and is a multilayer nonwoven fabric of two or more layers, and the layer on the side to be bonded to the synthetic resin film of the nonwoven fabric does not contain wood pulp or is made of wood pulp by mass ratio. The glass fiber is contained in a large amount, and the layer on the side in contact with the core made of the synthetic resin foam of the non-woven fabric does not contain glass fiber or contains more wood pulp than glass fiber by mass ratio. The composite sheet for building members according to 1 or 2. 合成樹脂発泡体からなる芯材の一方の面に、請求項1〜3のいずれか記載の建築部材用複合シートが設けられてなる建築部材。   The building member by which the composite sheet for building members in any one of Claims 1-3 is provided in one surface of the core material which consists of a synthetic resin foam.
JP2012124375A 2012-05-31 2012-05-31 Composite sheet for building member and building member Expired - Fee Related JP5848671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124375A JP5848671B2 (en) 2012-05-31 2012-05-31 Composite sheet for building member and building member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124375A JP5848671B2 (en) 2012-05-31 2012-05-31 Composite sheet for building member and building member

Publications (3)

Publication Number Publication Date
JP2013249619A true JP2013249619A (en) 2013-12-12
JP2013249619A5 JP2013249619A5 (en) 2014-09-04
JP5848671B2 JP5848671B2 (en) 2016-01-27

Family

ID=49848577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124375A Expired - Fee Related JP5848671B2 (en) 2012-05-31 2012-05-31 Composite sheet for building member and building member

Country Status (1)

Country Link
JP (1) JP5848671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153577A (en) * 2015-02-20 2016-08-25 凸版印刷株式会社 Backside material for siding board, siding board, and method of manufacturing backside material for siding board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726232B2 (en) * 1976-07-15 1982-06-03
JPS61150929U (en) * 1985-03-11 1986-09-18
JPH0236544U (en) * 1988-09-02 1990-03-09
JPH10168780A (en) * 1996-12-10 1998-06-23 Mitsubishi Paper Mills Ltd Duplex glass fiber nonwoven fabric for lining and its production
JP2000282618A (en) * 1999-03-29 2000-10-10 Dainippon Ink & Chem Inc Wall panel material and manufacture thereof
JP2002004548A (en) * 2000-06-16 2002-01-09 Toyo Tire & Rubber Co Ltd Metal siding
JP2013104136A (en) * 2011-11-11 2013-05-30 Mitsubishi Paper Mills Ltd Composite sheet for building member
JP2013194392A (en) * 2012-03-16 2013-09-30 Mitsubishi Paper Mills Ltd Composite sheet for building member and building member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726232B2 (en) * 1976-07-15 1982-06-03
JPS61150929U (en) * 1985-03-11 1986-09-18
JPH0236544U (en) * 1988-09-02 1990-03-09
JPH10168780A (en) * 1996-12-10 1998-06-23 Mitsubishi Paper Mills Ltd Duplex glass fiber nonwoven fabric for lining and its production
JP2000282618A (en) * 1999-03-29 2000-10-10 Dainippon Ink & Chem Inc Wall panel material and manufacture thereof
JP2002004548A (en) * 2000-06-16 2002-01-09 Toyo Tire & Rubber Co Ltd Metal siding
JP2013104136A (en) * 2011-11-11 2013-05-30 Mitsubishi Paper Mills Ltd Composite sheet for building member
JP2013194392A (en) * 2012-03-16 2013-09-30 Mitsubishi Paper Mills Ltd Composite sheet for building member and building member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153577A (en) * 2015-02-20 2016-08-25 凸版印刷株式会社 Backside material for siding board, siding board, and method of manufacturing backside material for siding board

Also Published As

Publication number Publication date
JP5848671B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
US9561638B2 (en) Method of manufacturing a piece of automotive vehicle equipment and associated piece of equipment
WO2020160360A1 (en) Methods of improving lofting agent retention using bicomponent fibers
JP2021178965A (en) Molding and method for manufacturing molding
JP2014000718A (en) Composite sheet for building component and building component
JP2015066681A (en) Composite sheet for building component, and building component
JP5809535B2 (en) Building materials
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JP5848671B2 (en) Composite sheet for building member and building member
JP5653683B2 (en) Reinforcing sheet and sheet-like structural material using the same
JP2007168292A (en) Base material for interior trim
US20200224345A1 (en) Liquid permeable body
JP5841507B2 (en) Base fabric for foamed plastic heat insulating surface material and method for producing the same
JP5615013B2 (en) Sheet for molding and sheet-like molded body using the same
JP5524592B2 (en) Reinforcing sheet and sheet-like structural material using the same
US6756099B2 (en) Laminated resin material
JP2007301774A (en) Base material for car trim material and car trim material
JP2013194392A (en) Composite sheet for building member and building member
JP5448719B2 (en) Sheet for molding and sheet-like molded body using the same
JP2012136808A (en) Sheet for molding and molding obtained from the same
JP2007301775A (en) Foamed laminated sheet for car trim material and car trim material
JP2008056186A (en) Foamed laminated sheet for vehicular interior material, and vehicular interior material
KR101673120B1 (en) Eco-friendly waterproofing non-woven composite sheet and waterproofing composite structure using the same
JP2010144452A (en) Tatami mat floor
JP2017137686A (en) Backing paper for floor material
JP7554196B2 (en) Lightweight reinforced thermoplastic composite articles containing bicomponent fibers - Patents.com

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151127

R150 Certificate of patent or registration of utility model

Ref document number: 5848671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees