JP2013247815A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2013247815A
JP2013247815A JP2012121340A JP2012121340A JP2013247815A JP 2013247815 A JP2013247815 A JP 2013247815A JP 2012121340 A JP2012121340 A JP 2012121340A JP 2012121340 A JP2012121340 A JP 2012121340A JP 2013247815 A JP2013247815 A JP 2013247815A
Authority
JP
Japan
Prior art keywords
stator core
frame
iron loss
peripheral surface
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012121340A
Other languages
Japanese (ja)
Inventor
Shigehachiro Oka
茂八郎 岡
Masato Ezono
正人 榎園
Takashi Todaka
孝 戸高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITA KEN SANGYOSOZOKIKO
OITA-KEN SANGYOSOZOKIKO
Original Assignee
OITA KEN SANGYOSOZOKIKO
OITA-KEN SANGYOSOZOKIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITA KEN SANGYOSOZOKIKO, OITA-KEN SANGYOSOZOKIKO filed Critical OITA KEN SANGYOSOZOKIKO
Priority to JP2012121340A priority Critical patent/JP2013247815A/en
Publication of JP2013247815A publication Critical patent/JP2013247815A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electric motor enabling reduction in core loss of a stator core.SOLUTION: An annular core loss reduction groove of which depth gradually increases from an intermediate portion in the axial direction of a frame toward both ends is formed throughout the entire area in the peripheral direction of the frame in a region opposing to an outer peripheral face of a stator core out of an inner peripheral face of the frame. Thus, an interfere gradually decreases from the intermediate portion to both ends, so as to gradually reduce compressive stress applied to a surface contact region of the stator core with the frame from the intermediate portion toward both ends. Therefore, compared to conventional cases, compressive stress of outer peripheral portions of both ends of the stator core is eased, and compressive stress of an inner face part of an intermediate portion of each tooth is also reduced. As a result, core loss of the stator core can be reduced.

Description

この発明は、電動モータ、詳しくはステータコアの外周面に円筒形状のフレームが、フレームの締め付け力により保持されてステータコアの内部空間でロータが回転する電動モータに関する。   The present invention relates to an electric motor, and more particularly to an electric motor in which a cylindrical frame is held on an outer peripheral surface of a stator core by a clamping force of the frame and a rotor rotates in an internal space of the stator core.

インナーロータ型の電動モータ(電動回転機)は、円筒形状のフレームと、フレームの内部空間に挿入され、かつ外周面をフレームの内周面と面接触させてフレームの締め付け力により保持されるステータコアと、ステータコアの内部空間で回転するロータとを備えている。ステータコアをフレームに固定する方法は各種存在するが、小型の電動モータの場合には、しめ代をもってステータコアをフレームに嵌め合う「焼きバメ」が一般的である。焼きバメには、ステータコアの外径より内径が小さいフレームを使用し、嵌め合う直前にフレームを加熱してこれを熱膨張により拡径し、この状態でフレームの内部空間にステータコアを挿入後、フレームを冷やす。こうして縮径したフレームには、ステータコアとの面接触領域に引張応力が作用し、フレームからの圧縮応力がステータコアに発生して、両部材は締りバメ状態となる。   An inner rotor type electric motor (electric rotating machine) includes a cylindrical frame, a stator core that is inserted into the inner space of the frame, and is held by the tightening force of the frame by bringing the outer peripheral surface into surface contact with the inner peripheral surface of the frame. And a rotor that rotates in the internal space of the stator core. There are various methods for fixing the stator core to the frame. However, in the case of a small electric motor, a “shrink fit” in which the stator core is fitted to the frame with a crimping margin is generally used. For shrinking, use a frame whose inner diameter is smaller than the outer diameter of the stator core, heat the frame just before fitting, expand the diameter by thermal expansion, insert the stator core into the inner space of the frame in this state, Cool down. Tensile stress acts on the surface contact area with the stator core in the frame thus reduced in diameter, compressive stress from the frame is generated in the stator core, and both members are in a tightened state.

しかしながら、この焼きバメによりステータコアに発生する圧縮応力が、ステータコアの特性を劣化させて鉄損を増加し、電動モータの効率を低下させていた。特にステータコアの外周面のフレームと嵌り合う部分のうち、ステータコアの軸線方向の両端部(以下、単に両端部という場合がある)に発生する圧縮応力は、ステータコアの半径方向にも大きな応力であるばかりでなく、ステータコアの両端部の外周面側からステータコアの中心部へ向かう押し曲げ応力も発生していた。これは、フレームの収縮力がステータコア両端部では、ステータコアの中心部に向かう力が発生するためである。   However, the compressive stress generated in the stator core due to this shrinkage deteriorates the characteristics of the stator core, increases the iron loss, and decreases the efficiency of the electric motor. In particular, the compressive stress generated at both end portions in the axial direction of the stator core (hereinafter sometimes simply referred to as both end portions) in the portion that fits the frame on the outer peripheral surface of the stator core is not only large in the radial direction of the stator core. Not only that, but also a bending stress is generated from the outer peripheral surface side of both ends of the stator core toward the center of the stator core. This is because the contraction force of the frame generates a force toward the center of the stator core at both ends of the stator core.

そこで、これを解消する従来技術として、例えば、特許文献1の「回転機」などが知られている。具体的には、特許文献1では、フレームの内周面のステータコアとの面接触領域のうち、フレームの両端部にフレームの周方向に沿った切り欠き部をそれぞれ設け、ステータコアに発生する圧縮応力を緩和させ、ステータコアの鉄損を減少させる。この切り欠き部は、その軸線方向(長さ方向)の全域にわたって深さが一定の溝である。   Therefore, as a conventional technique for solving this problem, for example, “Rotating machine” of Patent Document 1 is known. Specifically, in Patent Document 1, in the surface contact area between the inner peripheral surface of the frame and the stator core, notch portions along the circumferential direction of the frame are provided at both ends of the frame, respectively, and compressive stress generated in the stator core To reduce the iron loss of the stator core. This notch is a groove having a constant depth over the entire area in the axial direction (length direction).

特開2010−119157号公報JP 2010-119157 A

このように、特許文献1の回転機においては、ステータコアの両端部に発生する圧縮応力を緩和するため、フレームの内周面のステータコアとの面接触領域のうち、フレームの両端部に、周方向に沿って環状の切り欠き部をそれぞれ形成していた。これにより、あたかもその目的が達成されたかのように見える。しかしながら、切り欠き部は、その軸線方向の全域にわたり深さが一定の溝であるため、実際は、互いの接触面の面積が縮小しただけで、ステータコアの外周面のフレームとの面接触部分のうち、ステータコアの両端部には、従前と同様の圧縮応力が集中し、高い鉄損が発生して回転機の効率を低下させていた。   As described above, in the rotating machine of Patent Document 1, in order to relieve the compressive stress generated at both ends of the stator core, in the surface contact area between the inner peripheral surface of the frame and the stator core, An annular cutout portion was formed along each. This makes it look as if the purpose has been achieved. However, since the notch is a groove having a constant depth over the entire area in the axial direction, in actuality, the area of the contact surface of each of the stator cores is reduced, and the part of the surface contact with the frame on the outer peripheral surface of the stator core. The same compressive stress was concentrated at both ends of the stator core, causing high iron loss and reducing the efficiency of the rotating machine.

また、特許文献1の回転機の場合、上述したステータコアの両端部のフレームとの面接触領域に作用する応力集中を原因として、各ティース部においても、ステータコアの両端部の外周面側からの押し曲げ力が作用し、各ティース部のうち、その長さ方向(ステータコアの軸線方向)の中間部の内面部分で圧縮応力が高まっていた。その結果、ステータコアの鉄損がさらに増大していた。   Further, in the case of the rotating machine of Patent Document 1, due to the stress concentration acting on the surface contact area with the frame at both ends of the stator core described above, each tooth portion also pushes from the outer peripheral surface side of both ends of the stator core. A bending force was applied, and compressive stress was increased at the inner surface portion of the intermediate portion in the length direction (axial direction of the stator core) of each tooth portion. As a result, the iron loss of the stator core was further increased.

そこで、発明者らは、鋭意研究の結果、フレームの内周面のうち、少なくともステータコアの外周面との対向領域のうち、フレームの軸線方向の両端部分に、フレームの周方向の全域にわたって、その(鉄損低減用溝の)軸線方向の中間部からその軸線方向の対応する端部へ向かって徐々に深さが増大する円環状の鉄損低減用溝を形成すればよいことに想到した。すなわち、この構成を採用すれば、フレームとステータコアとのしめ代が、その軸線方向の中間部に比べて、その両端部の方が徐々に小さくなる。これにより、ステータコアの軸線方向の両端部の応力集中が緩和され、その結果、上述した問題が全て解消されることを知見し、この発明を完成させた。   Therefore, as a result of intensive studies, the inventors have determined that, in the inner peripheral surface of the frame, at least the region facing the outer peripheral surface of the stator core, at both ends in the axial direction of the frame, over the entire region in the circumferential direction of the frame. It has been conceived that an annular iron loss reducing groove whose depth gradually increases from an intermediate portion in the axial direction (of the iron loss reducing groove) toward a corresponding end portion in the axial direction may be formed. That is, if this configuration is adopted, the interference between the frame and the stator core is gradually reduced at both end portions as compared with the intermediate portion in the axial direction. As a result, it was found that the stress concentration at both ends of the stator core in the axial direction was alleviated, and as a result, all the problems described above were solved, and the present invention was completed.

この発明は、フレームとステータコアとの嵌め合いを原因としたステータコアの軸線方向の両端部の外周部分に作用する圧縮応力、および、各ティース部のうち、その長さ方向の中間部の内面部分に発生する圧縮応力をそれぞれ緩和し、これによりステータコアの軸線方向およびその周方向の鉄損を低減することができる電動モータを提供することを目的としている。   The present invention relates to compressive stress acting on the outer peripheral portion of both ends in the axial direction of the stator core due to the fit between the frame and the stator core, and the inner surface portion of the intermediate portion in the length direction of each tooth portion. An object of the present invention is to provide an electric motor that can alleviate the generated compressive stress and thereby reduce the iron loss in the axial direction and the circumferential direction of the stator core.

請求項1に記載の発明は、円筒形状のフレームと、該フレームの内部空間に挿入され、かつ外周面を該フレームの内周面と面接触させて該フレームの締め付け力により保持されるステータコアと、該ステータコアの内部空間で回転するロータとを備えた電動モータにおいて、前記フレームの内周面のうち、前記ステータコアの外周面との対向領域には、前記フレームの周方向の全域にわたり円環状の鉄損低減用溝が形成され、該鉄損低減用溝は、該鉄損低減用溝の軸線方向の中間部から該鉄損低減用溝の両端部に向かって徐々に深さが増大する電動モータである。   The invention according to claim 1 is a cylindrical frame, and a stator core that is inserted into the inner space of the frame and that is held by the clamping force of the frame by bringing the outer peripheral surface into surface contact with the inner peripheral surface of the frame. In the electric motor including a rotor that rotates in the inner space of the stator core, an annular region is formed in the region facing the outer peripheral surface of the stator core in the inner peripheral surface of the frame over the entire circumferential direction of the frame. An iron loss reducing groove is formed, and the iron loss reducing groove has a depth that gradually increases from an axially intermediate portion of the iron loss reducing groove toward both ends of the iron loss reducing groove. It is a motor.

従来の電動モータの場合、フレームの内周面のステータコアとの対向領域が、その軸線方向の全長にわたって平面(完全な円筒面)であったため、フレームとステータコアとの嵌め合い時(締りバメ時)において、ステータコアの両端部のフレームとの接触部分に応力集中が発生し、これを原因として、その接触部分の圧縮応力が高まるとともに、各ティース部においても、ステータコアの両端部の外周面側からの押し曲げ力が作用して、各ティース部のうち、その長さ方向の中間部の内面部分で圧縮応力が高まっていた。   In the case of a conventional electric motor, the area facing the stator core on the inner peripheral surface of the frame is a plane (complete cylindrical surface) over the entire length in the axial direction, so when the frame and the stator core are fitted (when tightening) In this case, stress concentration occurs at the contact portions with the frames at both ends of the stator core, and as a result of this, the compressive stress at the contact portions increases, and each tooth portion also has a stress from the outer peripheral surface side of both ends of the stator core. A compressive stress was increased at the inner surface portion of the intermediate portion in the length direction of each tooth portion due to the pressing and bending force.

これを解消するため、本発明では、フレームの内周面のうち、ステータコアの外周面との対向領域に、フレームの周方向の全域にわたり、鉄損低減用溝の軸線方向(以下、溝軸方向という場合がある)の中間部から溝軸方向の両端部に向かって徐々に深さが増大する円環状の鉄損低減用溝を形成した。
これにより、嵌め合い時、フレームとステータコアとのしめ代は、ステータコアの軸線方向の中間部からその両端部に向かって徐々に小さくなる。その結果、嵌め合いによりステータコアのフレームとの面接触領域に作用する圧縮応力が、ステータコアの軸線方向の中間部から両端部に向かって徐々に減少し、このステータコアの両端部の外周部分に作用する圧縮応力が従来に比べて緩和される。これに伴い、各ティース部においても、ステータコアの両端部の外周面側からの押し曲げ力が減少し、各ティース部のうち、その長さ方向の中間部の内面部分に作用する圧縮応力も従来に比べて緩和される。これらにより、ステータコアの軸線方向およびその周方向の鉄損を低減することができる。
In order to solve this problem, in the present invention, the axial direction of the iron loss reducing groove (hereinafter referred to as the groove axial direction) is formed in the region facing the outer peripheral surface of the stator core in the inner peripheral surface of the frame over the entire circumferential direction of the frame. An annular iron loss reducing groove having a depth that gradually increases from the middle part to the both end parts in the groove axis direction is formed.
Thereby, at the time of fitting, the interference margin of a flame | frame and a stator core becomes small gradually toward the both ends from the intermediate part of the axial direction of a stator core. As a result, the compressive stress acting on the surface contact region of the stator core with the frame due to the fitting gradually decreases from the intermediate portion in the axial direction of the stator core toward both ends, and acts on the outer peripheral portions of both ends of the stator core. Compressive stress is relieved compared to the conventional case. Along with this, also in each tooth portion, the pushing and bending force from the outer peripheral surface side of both ends of the stator core is reduced, and the compressive stress acting on the inner surface portion of the intermediate portion in the length direction of each tooth portion is also conventionally increased. Compared to As a result, the iron loss in the axial direction of the stator core and in the circumferential direction thereof can be reduced.

電動モータは、インナーロータ型のものである。電動モータは、ステータコアの外周面のフレームの内周面との対向領域のうち、ステータコアの軸線方向の少なくとも中間部が、ステータコアの周方向の全域にわたってフレームと面接触するように構成されている。
ここでいう「ステータコアの外周面のフレームの内周面との対向領域のうち、ステータコアの軸線方向の少なくとも中間部」とは、フレームとの面接触領域が、例えばステータコアの外周面のフレームの内周面との対向領域のうち、ステータコアの軸線方向の中間部のみでもよいし、ステータコアの外周面のフレームの内周面との対向領域の全部でもよいことを意味する。別の見方で言えば、鉄損低減用溝のフレームの軸線方向の両端の深さ(最大深さ)は、しめ代より大きくても、小さくてもよい。
なお、上記ステータコアの軸線方向の中間部のみが、ステータコアの周方向の全域にわたってフレームと面接触(面接触領域)している場合、この中間部のみでも、ステータコアをフレームに固定する役割は十分に果たせる。よって、本発明のようにフレームの内周面に鉄損低減用溝を加工しさえすれば、ステータコアの固定の目的と、フレームからステータコアに圧縮応力が緩和されることよる鉄損低減の効果が得られる。
The electric motor is of an inner rotor type. The electric motor is configured such that at least an intermediate portion in the axial direction of the stator core in the region facing the inner peripheral surface of the frame on the outer peripheral surface of the stator core is in surface contact with the frame throughout the entire circumferential direction of the stator core.
As used herein, “at least an intermediate portion in the axial direction of the stator core in the region facing the inner peripheral surface of the frame on the outer peripheral surface of the stator core” means that the surface contact region with the frame is, for example, the inner surface of the frame on the outer peripheral surface of the stator core. It means that only the intermediate portion in the axial direction of the stator core in the region facing the peripheral surface may be used, or the entire region facing the inner peripheral surface of the frame on the outer peripheral surface of the stator core may be used. From another viewpoint, the depth (maximum depth) at both ends in the axial direction of the frame of the iron loss reducing groove may be larger or smaller than the interference allowance.
In addition, when only the intermediate portion in the axial direction of the stator core is in surface contact (surface contact region) with the frame over the entire circumferential direction of the stator core, the role of fixing the stator core to the frame is sufficient even with only the intermediate portion. I can do it. Therefore, as long as the iron loss reducing groove is machined on the inner peripheral surface of the frame as in the present invention, the purpose of fixing the stator core and the effect of reducing the iron loss by reducing the compressive stress from the frame to the stator core are achieved. can get.

フレームの素材としては、例えば、各種のアルミニウム合金を採用することができる。
フレームの内径は、締りバメを行うしめ代の分だけ、ステータコアの外径より小さい。これは、フレームを高温に加熱してステータコアに組み付ける焼きバメ、ステータコアを冷やしてフレームに組み付ける冷やしバメ、若干のしめ代によりフレームにステータコアを固定する圧入れなどの嵌め合いを行い、フレームをステータコアに所定の締め付け力により保持するためである。フレームの厚さは電動モータの大きさにより適宜異なる。
ステータコアの素材としては、電磁鋼板を積層したものを採用することができる。
ステータコアの種類としては、例えば、薄肉な電磁鋼板を多数枚重ね合わせた積層電磁鋼板型のものを採用することができる。ステータコアの内周部には、コイルを巻回する多数のティース部が、ステータコアの周方向に所定ピッチで、かつステータコアの軸線方向にその長さ方向を揃えて配設されている。
As the frame material, for example, various aluminum alloys can be employed.
The inner diameter of the frame is smaller than the outer diameter of the stator core by the amount of the interference for tightening. This is done by fitting the frame to the stator core by heating the frame to a high temperature and fitting it into the stator core, cooling the stator core to cool it and assembling it into the frame, and press fitting to fix the stator core to the frame with a slight amount of interference. This is for holding with a predetermined tightening force. The thickness of the frame varies depending on the size of the electric motor.
As a material for the stator core, a laminate of electromagnetic steel sheets can be employed.
As the type of the stator core, for example, a laminated electrical steel sheet type in which a large number of thin electrical steel sheets are superposed can be adopted. On the inner peripheral portion of the stator core, a large number of teeth portions around which coils are wound are arranged at a predetermined pitch in the circumferential direction of the stator core and aligned in the length direction in the axial direction of the stator core.

ステータコアとフレームとの(軸線方向の)長さ関係は、フレームの方がステータコアより長い。なお、フレームとステータコアとの長さが同一の場合でも、本発明の効果は発現される。
「鉄損低減用溝」としては、フレームを、その軸線を含む垂直面で(縦に)2分割した断面において(それぞれがフレームの軸線と平行で、かつ180°間隔で対向した2つの分割線に沿って半分割した断面において)、背面(奥面、底面、巾面)の溝軸方向の中間部が外方へ突出した凸型の円弧溝、または、背面の溝軸方向の中間を頂上(山頂)とし、かつ背面の溝軸方向の両側部にそれぞれ斜面部を有した山形溝などを採用することができる。このうち、鉄損低減用溝の背面が断面円弧状の鉄損低減溝の場合には、ステータコアの軸線方向の応力分布が両端部に向かうほど徐々に緩和され、接触部が段階的に変化することによる応力集中も発生しない。
The length relationship (in the axial direction) between the stator core and the frame is longer in the frame than in the stator core. Even when the lengths of the frame and the stator core are the same, the effect of the present invention is exhibited.
“Iron loss reduction groove” means that the frame is divided into two sections (vertically) along the vertical plane including the axis (each of which is parallel to the axis of the frame and opposed to each other at 180 ° intervals) (In the cross-section divided in half), a convex arc groove in which the middle part in the groove axis direction on the back (back, bottom, width) protrudes outward, or the middle in the groove axis direction on the back It is possible to employ a chevron groove that has a (mountain peak) and has slope portions on both sides in the groove axial direction on the back surface. Of these, when the iron loss reducing groove has a circular arc cross section on the back surface, the stress distribution in the axial direction of the stator core is gradually relaxed toward both ends, and the contact portion changes stepwise. There is no stress concentration.

また、前記背面の断面円弧の曲率半径は、フレームの内径の5〜35倍である。5倍を下回れば、フレームとステータコアの固定が十分にできない。また、35倍を超えれば、従来のステータコアの場合とフレームのしめ代はほとんど変わらず、ステータコアの両端部で鉄損が増加する。鉄損低減用溝の背面の好ましい曲率半径は7〜15倍である。この範囲であれば、ステータコアのバックヨークの両端部およびティース部においても、ステータコアを固定するには十分で、さらに応力分布が均一でかつ小さくなって、鉄損が低減する。
鉄損低減用溝の背面が断面山形の場合、背面の鉄損低減用溝の軸線方向の中間部には、鉄損低減用溝の軸線方向の全長にわたって内径が一定となる平面部を形成してもよい。その際、この背面の前記断面形状は台形となる。
また、鉄損低減用溝は、互いに一致するフレームおよびステータコアの軸線から、鉄損低減用溝の背面の軸線方向の中間点(鉄損低減用溝の最内周縁)までの最短距離が、これら軸線からフレームの内周面(鉄損低減用溝を除く)までの最短距離と同一でも、それより短くてもよい。
ロータとしては、例えば、一般的なインナーロータを採用することができる。
The radius of curvature of the cross-sectional arc on the back surface is 5 to 35 times the inner diameter of the frame. If it is less than 5 times, the frame and the stator core cannot be fixed sufficiently. Further, if it exceeds 35 times, the interference of the frame is almost the same as that of the conventional stator core, and the iron loss increases at both ends of the stator core. A preferable radius of curvature of the back surface of the iron loss reducing groove is 7 to 15 times. Within this range, it is sufficient to fix the stator core at both end portions and teeth portions of the back yoke of the stator core, and the stress distribution is uniform and small, and iron loss is reduced.
When the back surface of the iron loss reducing groove has a mountain-shaped cross section, a flat portion having a constant inner diameter is formed in the axial direction intermediate portion of the iron loss reducing groove on the back surface in the axial direction. May be. At that time, the cross-sectional shape of the back surface is a trapezoid.
Further, the iron loss reducing groove has the shortest distance from the axial line of the frame and the stator core that coincide with each other to the intermediate point in the axial direction of the back surface of the iron loss reducing groove (the innermost peripheral edge of the iron loss reducing groove). The distance may be the same as or shorter than the shortest distance from the axis to the inner peripheral surface of the frame (excluding the iron loss reducing groove).
As the rotor, for example, a general inner rotor can be adopted.

請求項2に記載の発明は、前記鉄損低減用溝の最大深さは、前記フレームと前記ステータコアとのしめ代の最大値の0.1〜1倍である請求項1に記載の電動モータである。   According to a second aspect of the present invention, in the electric motor according to the first aspect, the maximum depth of the iron loss reducing groove is 0.1 to 1 times the maximum value of the interference between the frame and the stator core. It is.

請求項2に記載の発明によれば、鉄損低減用溝の最大深さを、嵌め合わせる前のフレームとステータコアとのしめ代の最大値以下としたため、ステータコアの軸端部では、圧縮応力やステータコアの中心部へ向かう応力が小さくなり、全体として鉄損が低減される。
鉄損低減用溝の最大深さ(鉄損低減用溝のうち、フレームの軸線方向の両端の深さ)の値は、フレームとステータコアとのしめ代の最大値と同一(1倍)からそれより小さい0.1倍までである。この範囲であれば、ステータコアの軸端部では圧縮応力やステータコアの中心部へ向かう応力が小さくなり、鉄損が低減される。また、鉄損低減用溝の最大深さをしめ代の最大値と同一にした場合には、嵌め合い時、ステータコアの軸端部では、ステータコアの外径とフレームの内径が同一(中間バメの状態)となり、圧縮応力やステータコアの中心部へ向かう応力が発生せず、全体として鉄損が低減する。
ここで、フレームとステータコアとのしめ代が最大値となるのは、鉄損低減用溝の軸線方向の中間部に該当する、フレームとステータコアとの対向部分(ステータコアの軸線方向の中間部)である。
According to the second aspect of the present invention, since the maximum depth of the iron loss reducing groove is set to be equal to or less than the maximum value of the interference margin between the frame and the stator core before fitting, at the shaft end portion of the stator core, compressive stress and The stress toward the center of the stator core is reduced, and the iron loss is reduced as a whole.
The maximum depth of the iron loss reduction groove (the depth of both ends in the axial direction of the frame of the iron loss reduction groove) is the same as the maximum value of the interference allowance between the frame and the stator core (1 time). It is up to 0.1 times smaller. If it is this range, a compressive stress and the stress which goes to the center part of a stator core will become small in the axial end part of a stator core, and an iron loss will be reduced. Also, if the maximum depth of the iron loss reducing groove is the same as the maximum value of the interference allowance, the outer diameter of the stator core and the inner diameter of the frame are the same at the shaft end portion of the stator core during fitting (the intermediate State), compressive stress and stress toward the center of the stator core are not generated, and the iron loss is reduced as a whole.
Here, the maximum amount of interference between the frame and the stator core corresponds to an intermediate portion in the axial direction of the iron loss reducing groove, which is an opposing portion of the frame and the stator core (an intermediate portion in the axial direction of the stator core). is there.

請求項1に記載の発明によれば、フレームの内周面のうち、ステータコアの外周面との対向領域に、フレームの周方向の全域にわたって、鉄損低減用溝の軸線方向の中間部からその両端部に向かって徐々に深さが増大する円環状の鉄損低減用溝を形成する構成を採用した。これにより、ステータコアとフレームとの嵌め合い時、フレームとステータコアとのしめ代は、ステータコアの軸線方向の中間部からその両端部に向かって徐々に小さくなる。その結果、ステータコアのフレームとの面接触領域に作用する圧縮応力が、ステータコアの軸線方向の中間部から両端部に向かって徐々に減少し、従来に比べてステータコアの両端部の外周部分に作用する圧縮応力が緩和される。しかも、これに伴い、各ティース部では、ステータコアの両端部の外周面側からの押し曲げ力が小さくなって、各ティース部の中間部の内面部分での圧縮応力が従来より低下する。以上のことから、ステータコアの軸線方向およびその周方向の鉄損を低減することができる。   According to the first aspect of the present invention, in the region of the inner peripheral surface of the frame facing the outer peripheral surface of the stator core, from the intermediate portion in the axial direction of the iron loss reducing groove across the entire circumferential direction of the frame The structure which forms the groove | channel for annular | circular shaped iron loss reduction which depth increases gradually toward both ends was employ | adopted. As a result, when the stator core and the frame are fitted together, the interference between the frame and the stator core gradually decreases from the intermediate portion in the axial direction of the stator core toward both ends thereof. As a result, the compressive stress acting on the surface contact area of the stator core with the frame gradually decreases from the intermediate portion in the axial direction of the stator core toward both ends, and acts on the outer peripheral portions at both ends of the stator core as compared with the conventional case. Compressive stress is relieved. In addition, along with this, in each tooth portion, the pushing and bending force from the outer peripheral surface side of both end portions of the stator core is reduced, and the compressive stress in the inner surface portion of the intermediate portion of each tooth portion is reduced as compared with the related art. From the above, the iron loss in the axial direction of the stator core and in the circumferential direction thereof can be reduced.

請求項2に記載の発明によれば、鉄損低減用溝の最大深さをフレームとステータコアとのしめ代の最大値の0.1〜1倍としている。この範囲であれば、ステータコアの軸端部では、圧縮応力やステータコアの中心部へ向かう応力が従来より小さくなり、全体として鉄損が低減する。   According to the second aspect of the present invention, the maximum depth of the iron loss reducing groove is 0.1 to 1 times the maximum value of the interference between the frame and the stator core. If it is this range, in the axial end part of a stator core, the compressive stress and the stress which goes to the center part of a stator core will become smaller than before, and an iron loss will reduce as a whole.

この発明の実施例1に係る電動モータの一部を構成するフレームとステータコアとの嵌め合い状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the fitting state of the flame | frame which comprises some electric motors which concern on Example 1 of this invention, and a stator core. この発明の実施例1に係る電動モータの一部を構成する冷却前のフレームとステータコアとの嵌め合い状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the fitting state of the frame before cooling which comprises some electric motors which concern on Example 1 of this invention, and a stator core. この発明の実施例1に係る電動モータの一部を構成するフレームとステータコアとの嵌め合い状態でのステータコアの鉄損低減用溝の形成壁およびティース部の応力分布を示す要部拡大縦断面図である。The principal part expansion longitudinal cross-sectional view which shows the stress distribution of the formation wall of the iron core reduction groove | channel of a stator core in the fitting state of the frame which comprises a part of electric motor which concerns on Example 1 of this invention, and a stator core, and a teeth part It is. この発明の実施例1に係る電動モータの一部を構成するステータコアおよび従来の電動モータの一部を構成するステータコアにおいて、電磁鋼板の積層後と、本発明の焼きバメ後と、従来の焼きバメ後とにおけるステータコアの軸線方向での鉄損の変移を示すグラフである。In the stator core that forms part of the electric motor according to Embodiment 1 of the present invention and the stator core that forms part of the conventional electric motor, after lamination of the electromagnetic steel sheets, after shrinking according to the present invention, and conventional shrinking It is a graph which shows the transition of the iron loss in the axial direction of the stator core after and after. (a)は、従来手段に係る電動モータの一部を構成するフレームの上半分とステータコアの上半分との嵌め合い状態での応力分布を示す要部斜視断面図である。(b)は、この発明の実施例1に係る電動モータの一部を構成するフレームの上半分とステータコアの上半分との嵌め合い状態での応力分布を示す要部斜視断面図である。(A) is a principal part perspective sectional view which shows stress distribution in the fitting state of the upper half of the frame which comprises a part of electric motor which concerns on the conventional means, and the upper half of a stator core. (B) is a principal part perspective sectional view which shows stress distribution in the fitting state of the upper half of the frame which comprises a part of electric motor which concerns on Example 1 of this invention, and the upper half of a stator core.

以下、この発明の実施例を具体的に説明する。ここでは、フレームとステータコアとが、焼きバメ法の締りバメにより嵌め合わされた電動モータを例にとる。   Examples of the present invention will be specifically described below. Here, an electric motor in which the frame and the stator core are fitted together by a shrinking shrinkage method is taken as an example.

図1および図2において、10はこの発明の実施例1に係る電動モータ(以下、回転機)である。この回転機10は、円筒形状のフレーム11と、フレーム11の内部空間に挿入され、かつ外周面をフレーム11の内周面と面接触させてフレーム11の焼きバメによる締め付け力によって保持されるステータコア12と、ステータコア12の内部空間で回転する図示しないロータとを備えている。   1 and 2, reference numeral 10 denotes an electric motor (hereinafter referred to as a rotating machine) according to Embodiment 1 of the present invention. The rotating machine 10 includes a cylindrical frame 11 and a stator core that is inserted into the inner space of the frame 11 and that is held by the tightening force of the frame 11 by shrinking the frame 11 with the outer peripheral surface being in surface contact with the inner peripheral surface of the frame 11. 12 and a rotor (not shown) that rotates in the internal space of the stator core 12.

以下、これらの構成体を具体的に説明する。
回転機10は出力数kW程度のものである。
フレーム11は、アルミニウム合金(A2027)からなり、内径Ra、外径Rb(厚さt)、軸線方向の長さがLfの円筒体である。
ステータコア12は、薄肉で円環形状の電磁鋼板を軸線方向に多数枚重ね合わせた積層式円筒体である。ステータコア12の内周部の全域には、ステータコア12の軸線に向かってそれぞれ放射状に突出した多数のティース部13が、ステータコア12の周方向に所定ピッチで配設されている。ステータコア12のティース部13を除く本体部分の内径はRc、本体部分の外径はRa+0.6mm、本体部分の厚さT、本体部分の軸線方向の長さはLsである。これにより、フレーム11とステータコア12との(焼きバメ前の)しめ代aは、後述する鉄損低減用溝14の背面14aの形状の影響により、ステータコア12の軸線方向の長さの中間位置が最大(一例として0.6mm)となるとともに、ステータコア12の軸端部のしめ代aは、例えば0.1mm、0.2mmのように、焼きバメの条件に応じて適宜小さくなる。
ステータコア12の内部空間には、図示しないロータが、その軸線回りに回転自在に収納されている。ロータとしては、汎用品のインナーロータが使用されている。
Hereinafter, these components will be specifically described.
The rotating machine 10 has an output of about several kW.
The frame 11 is made of an aluminum alloy (A2027), and is a cylindrical body having an inner diameter Ra, an outer diameter Rb (thickness t), and an axial length Lf.
The stator core 12 is a laminated cylindrical body in which a large number of thin and annular electromagnetic steel plates are stacked in the axial direction. A large number of teeth 13 projecting radially toward the axis of the stator core 12 are arranged at a predetermined pitch in the circumferential direction of the stator core 12 over the entire inner peripheral portion of the stator core 12. The inner diameter of the main body portion excluding the tooth portion 13 of the stator core 12 is Rc, the outer diameter of the main body portion is Ra + 0.6 mm, the thickness T of the main body portion, and the axial length of the main body portion is Ls. As a result, the interference margin “a” (before shrinking) of the frame 11 and the stator core 12 has an intermediate position in the axial direction of the stator core 12 due to the influence of the shape of the back surface 14 a of the iron loss reducing groove 14 described later. In addition to the maximum (for example, 0.6 mm), the interference margin a of the shaft end portion of the stator core 12 is appropriately reduced according to shrinkage conditions, such as 0.1 mm and 0.2 mm.
A rotor (not shown) is housed in the internal space of the stator core 12 so as to be rotatable about its axis. A general-purpose inner rotor is used as the rotor.

次に、図1を参照して、前記フレーム11を詳細に説明する。
フレーム11には、その内周面のうち、ステータコア12の外周面との対向領域に、フレーム11の周方向の全域にわたって、フレーム11の軸線方向の中間部からフレーム11の両端部に向かって徐々に深さが増大する円環状の鉄損低減用溝14が形成されている。ここでいう「ステータコア12の外周面との対向領域」とは、フレーム11の内周面のうち、フレーム11の軸線方向の両端部を除く部分である。嵌め合い(焼きバメ)時、フレーム11とステータコア12とは、互いに一致した軸線上で、それぞれの軸線方向の長さの中間点が重なり合っている。
Next, the frame 11 will be described in detail with reference to FIG.
In the frame 11, the inner surface of the frame 11 is opposed to the outer surface of the stator core 12, and is gradually extended from the intermediate portion in the axial direction of the frame 11 toward both ends of the frame 11 over the entire circumferential direction of the frame 11. An annular iron loss reducing groove 14 having an increased depth is formed. The “region facing the outer peripheral surface of the stator core 12” here is a portion of the inner peripheral surface of the frame 11 excluding both ends in the axial direction of the frame 11. At the time of fitting (shrinking), the frame 11 and the stator core 12 are overlapped at the midpoints of the lengths in the axial direction on the mutually matching axes.

鉄損低減用溝14は、フレーム11を、その軸線を含む垂直面で2分割した断面において、溝軸方向の中間部が外方へ突出した凸型円弧状の背面14aを有するものである(焼きバメ前の状態)。背面14aの軸線方向の中間点は、フレーム11の軸線と直交する断面において、フレーム11の内周面と同心円上に配置されている。鉄損低減用溝14は、その軸線方向の長さが、ステータコア12の軸線方向の長さより0.2mm(上下に0.1mmずつ)長く、かつ焼きバメ前において、鉄損低減用溝14の軸線方向の両端の深さが、鉄損低減用溝14の最大深さbとなる。最大溝深さbは、しめ代aの最大値の0.5倍の0.3mm、焼きバメ後の最大深さcは0.6mmである。
なお、例えば鉄損低減用溝14の最大深さbを、しめ代aの最大値と同一の0.6mmとしてもよい。この場合、鉄損低減用溝14の背面14aの断面円弧の曲率半径は、フレーム11の内径の5.6倍である。このとき、ステータコア12の軸端部ではしめ代が存在しない。
The iron loss reducing groove 14 has a convex arcuate back surface 14a in which a middle portion in the groove axis direction protrudes outward in a cross section obtained by dividing the frame 11 into two perpendicular planes including the axis thereof ( State before shrinking). An intermediate point in the axial direction of the back surface 14 a is arranged concentrically with the inner peripheral surface of the frame 11 in a cross section orthogonal to the axis of the frame 11. The iron loss reducing groove 14 has a length in the axial direction that is 0.2 mm longer than the axial length of the stator core 12 (up and down by 0.1 mm), and before the shrinkage, The depth at both ends in the axial direction is the maximum depth b of the iron loss reducing groove 14. The maximum groove depth b is 0.5 mm, which is 0.5 times the maximum value of the interference allowance a, and the maximum depth c after shrinking is 0.6 mm.
For example, the maximum depth b of the iron loss reducing groove 14 may be set to 0.6 mm, which is the same as the maximum value of the interference allowance a. In this case, the radius of curvature of the cross-sectional arc of the back surface 14 a of the iron loss reducing groove 14 is 5.6 times the inner diameter of the frame 11. At this time, there is no interference margin at the shaft end of the stator core 12.

このように構成される回転機10の製造時には、焼きバメによりフレーム11とステータコア12とが嵌め合わされる。このとき、フレーム11の内周面のうち、ステータコア12の外周面との対向領域およびそれより上下に0.1mmずつの領域に、鉄損低減用溝14が形成され、かつこの鉄損低減用溝14は、上述したようにフレーム11の周方向の全域にわたって、軸線方向の中間部から両端部に向かって徐々に深さが増大し、最大深さbが0.3mmとなっている。そのため、焼きバメ時、ステータコア12の外周面のフレーム11の内周面との対向領域のうち、ステータコア12の軸線方向の中間部が最もしめ代aが大きくなり(しめ代aの最大値)、ステータコア12の上下端に進むにしたがってしめ代aが徐々に小さくなる。また、焼きバメ後のフレーム11とステータコア12とのしめ代cは、フレーム11の内周面とステータコア12の外周面との対向領域の全域にわたって、0.6mmとなる(図1)。このとき、フレーム11の内周面とステータコア12の外周面との面接触領域は、この対向領域と同一となる。   At the time of manufacturing the rotating machine 10 configured as described above, the frame 11 and the stator core 12 are fitted together by shrinkage shrinkage. At this time, a core loss reducing groove 14 is formed in the inner peripheral surface of the frame 11 in a region facing the outer peripheral surface of the stator core 12 and a region 0.1 mm above and below it. As described above, the depth of the groove 14 gradually increases from the intermediate portion in the axial direction toward both ends over the entire circumferential direction of the frame 11, and the maximum depth b is 0.3 mm. For this reason, during shrinkage, among the regions of the outer peripheral surface of the stator core 12 facing the inner peripheral surface of the frame 11, the intermediate portion in the axial direction of the stator core 12 has the largest interference allowance a (the maximum value of the interference allowance a). As the stator core 12 moves to the upper and lower ends, the interference margin a gradually decreases. Further, the interference c between the frame 11 and the stator core 12 after shrinking is 0.6 mm over the entire area of the opposed area between the inner peripheral surface of the frame 11 and the outer peripheral surface of the stator core 12 (FIG. 1). At this time, the surface contact region between the inner peripheral surface of the frame 11 and the outer peripheral surface of the stator core 12 is the same as this facing region.

このように、しめ代aがステータコア12の軸線方向の中間部からその両端部に向かって徐々に小さくなるため、ステータコア12のフレーム11との面接触領域に作用する圧縮応力は、この面接触領域付近のステータコア12の上下端部を含めて、ステータコア12の軸線方向の中間部から両端部に向かって徐々に減少する(図3)。そのため、フレーム11とステータコア12との焼きバメ時にステータコア12の両端部の外周部分に作用する圧縮応力は、従来の回転機に比べて緩和される(図4のグラフ)。しかも、これに伴って各ティース部13では、ステータコア12の両端部の外周面側からの押し曲げ力が小さくなり、各ティース部13の長さ方向の中間部の内面部分において、圧縮応力も従来より小さくなる(図3)。
なお、例えば鉄損低減用溝14の最大深さbを、しめ代aの最大値と同一の0.6mmとした場合、ステータコア12の軸端部ではしめ代がない中間バメ状態となる。これにより、ステータコア12の軸端部では、圧縮応力やステータコア12の中心部へ向かう応力が発生せず、全体として鉄損が低減される。仮に、鉄損低減用溝14の最大深さbを、しめ代aの最大値より大きくした場合には、ステータコア12の軸端部ではフレーム11の内周面との間に隙間が現出し、フレーム11の内周面とステータコア12の外周面との面接触領域は前記対向領域より小さくなる。この場合でも、しめ代aはステータコア12の軸線方向の中間部からその両端部に向かって徐々に小さくなっているため、ステータコア12の軸端部での鉄損の低減が図れる。
In this way, the interference allowance a gradually decreases from the intermediate portion in the axial direction of the stator core 12 toward both end portions thereof, so that the compressive stress acting on the surface contact region with the frame 11 of the stator core 12 is reduced in the surface contact region. Including the upper and lower ends of the nearby stator core 12, the stator core 12 gradually decreases from the middle in the axial direction toward both ends (FIG. 3). Therefore, the compressive stress acting on the outer peripheral portions of both end portions of the stator core 12 when shrinking the frame 11 and the stator core 12 is reduced as compared with the conventional rotating machine (graph in FIG. 4). In addition, along with this, in each tooth portion 13, the pushing and bending force from the outer peripheral surface side of both end portions of the stator core 12 is reduced, and compressive stress is also conventionally applied to the inner surface portion of the intermediate portion in the length direction of each tooth portion 13. It becomes smaller (FIG. 3).
For example, when the maximum depth b of the iron loss reducing groove 14 is set to 0.6 mm, which is the same as the maximum value of the interference allowance a, the shaft end portion of the stator core 12 is in an intermediate swallow state having no interference allowance. As a result, no compressive stress or stress toward the central portion of the stator core 12 is generated at the shaft end portion of the stator core 12, and the iron loss is reduced as a whole. If the maximum depth b of the iron loss reducing groove 14 is made larger than the maximum value of the interference allowance a, a gap appears between the shaft end of the stator core 12 and the inner peripheral surface of the frame 11, A surface contact region between the inner peripheral surface of the frame 11 and the outer peripheral surface of the stator core 12 is smaller than the facing region. Even in this case, since the interference allowance a gradually decreases from the intermediate portion in the axial direction of the stator core 12 toward both ends thereof, the iron loss at the shaft end portion of the stator core 12 can be reduced.

ここで、図5を参照して、実際に、本発明(実施例1)の電動モータおよび従来の電動モータにおける、フレームとステータコアとの嵌め合い部分の応力解析を実施した結果を報告する。なお、本発明の電動モータと従来の電動モータとの構造上の違いは、フレームの内周面に鉄損低減用溝を有するか否かのみである。
図5(a)に示すように、従来の電動モータの場合には、焼きバメ時に発生するステータコアの両端部の外周部分に作用する圧縮応力、および、各ティース部の長さ方向の中間部の内面部分にそれぞれ作用する圧縮応力が大きかった。
これに対して、図5(b)に示すように、本発明では、フレーム11とステータコア12とのしめ代aが、ステータコア12の軸線方向の中間部からその両端部に向かって徐々に小さくなった。その結果、焼きバメ時に発生するステータコア12の両端部の外周部分に作用する圧縮応力が緩和した。これに伴い、各ティース部13の長さ方向における中間部の内面部分にそれぞれ作用する圧縮応力も緩和した。よって、ステータコア12の軸線方向およびその周方向の鉄損を、従来機の場合に比べて低減することができた。
Here, with reference to FIG. 5, the result of actually performing the stress analysis of the fitting part of a flame | frame and a stator core in the electric motor of this invention (Example 1) and the conventional electric motor is reported. The only structural difference between the electric motor of the present invention and the conventional electric motor is whether or not the inner peripheral surface of the frame has a core loss reducing groove.
As shown in FIG. 5 (a), in the case of the conventional electric motor, the compressive stress that acts on the outer peripheral portion of both ends of the stator core that occurs during shrinkage, and the intermediate portion in the length direction of each tooth portion. The compressive stress acting on the inner surface part was large.
On the other hand, as shown in FIG. 5B, in the present invention, the interference allowance a between the frame 11 and the stator core 12 gradually decreases from the intermediate portion in the axial direction of the stator core 12 toward both ends thereof. It was. As a result, the compressive stress acting on the outer peripheral portions of both end portions of the stator core 12 generated during shrinkage was relaxed. In connection with this, the compressive stress which acts on the inner surface part of the intermediate part in the length direction of each teeth part 13 was also relieved. Therefore, the iron loss in the axial direction and the circumferential direction of the stator core 12 could be reduced as compared with the case of the conventional machine.

この発明は、電動モータのステータコアの鉄損低減として有用な技術である。   The present invention is a technique useful for reducing iron loss of a stator core of an electric motor.

10 電動モータ、
11 フレーム、
12 ステータコア、
14 鉄損低減用溝、
a しめ代。
10 Electric motor,
11 frames,
12 stator core,
14 Iron loss reduction groove,
a Crushing cost.

Claims (2)

円筒形状のフレームと、
該フレームの内部空間に挿入され、かつ外周面を該フレームの内周面と面接触させて該フレームの締め付け力により保持されるステータコアと、
該ステータコアの内部空間で回転するロータとを備えた電動モータにおいて、
前記フレームの内周面のうち、前記ステータコアの外周面との対向領域には、前記フレームの周方向の全域にわたり円環状の鉄損低減用溝が形成され、
該鉄損低減用溝は、該鉄損低減用溝の軸線方向の中間部から該鉄損低減用溝の両端部に向かって徐々に深さが増大する電動モータ。
A cylindrical frame;
A stator core that is inserted into the inner space of the frame and that is held by the clamping force of the frame by bringing the outer peripheral surface into surface contact with the inner peripheral surface of the frame;
In an electric motor comprising a rotor that rotates in the internal space of the stator core,
Of the inner peripheral surface of the frame, in the region facing the outer peripheral surface of the stator core, an annular iron loss reducing groove is formed over the entire circumferential direction of the frame,
The iron loss reducing groove is an electric motor that gradually increases in depth from an intermediate portion in the axial direction of the iron loss reducing groove toward both ends of the iron loss reducing groove.
前記鉄損低減用溝の最大深さは、前記フレームと前記ステータコアとのしめ代の最大値の0.1〜1倍である請求項1に記載の電動モータ。   2. The electric motor according to claim 1, wherein a maximum depth of the iron loss reducing groove is 0.1 to 1 times a maximum value of a fastening margin between the frame and the stator core.
JP2012121340A 2012-05-28 2012-05-28 Electric motor Pending JP2013247815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012121340A JP2013247815A (en) 2012-05-28 2012-05-28 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121340A JP2013247815A (en) 2012-05-28 2012-05-28 Electric motor

Publications (1)

Publication Number Publication Date
JP2013247815A true JP2013247815A (en) 2013-12-09

Family

ID=49847194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121340A Pending JP2013247815A (en) 2012-05-28 2012-05-28 Electric motor

Country Status (1)

Country Link
JP (1) JP2013247815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122405A1 (en) * 2014-02-13 2015-08-20 株式会社豊田自動織機 Rotating electrical machine
WO2019031050A1 (en) * 2017-08-09 2019-02-14 日本電産株式会社 Motor and motor manufacturing method
WO2019215826A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Rotary electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122405A1 (en) * 2014-02-13 2015-08-20 株式会社豊田自動織機 Rotating electrical machine
JP2015154550A (en) * 2014-02-13 2015-08-24 株式会社豊田自動織機 Rotary electric machine
WO2019031050A1 (en) * 2017-08-09 2019-02-14 日本電産株式会社 Motor and motor manufacturing method
WO2019215826A1 (en) * 2018-05-09 2019-11-14 三菱電機株式会社 Rotary electric machine
JPWO2019215826A1 (en) * 2018-05-09 2020-10-22 三菱電機株式会社 Rotating machine

Similar Documents

Publication Publication Date Title
US9300179B2 (en) Electric rotating machine
US9735636B2 (en) Rotor and dynamo-electric machine having the same
US10333360B2 (en) Iron core member with divided yoke and tooth portions with V-shaped end joint portions
JP6103559B1 (en) Rotating electric machine
JP5774255B1 (en) Method for manufacturing cage rotor and cage rotor
JP2007252088A (en) Rotary-electric machine and manufacturing method thereof
JP2006296010A (en) Closed compressor
JP2010148329A (en) Stator core structure of rotating electric machine
JP2011135634A (en) Stator and motor with the stator
JP5326642B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
US20080088197A1 (en) Dynamoelectric machine
JP2013247815A (en) Electric motor
JP2015204667A (en) Rotary electric machine, and manufacturing method of rotary electric machine
JP6324812B2 (en) Press fitting structure for rotating electrical machine and stator
JP2007166754A (en) Rotary electric machine with split core and its manufacturing process
JP2010017003A (en) Stator core of rotating electric machine
JP2016116421A (en) Rotary electric machine
JP5900180B2 (en) Rotor core of rotating electrical machine
JP2013143805A (en) Rotor of rotary electric machine, and rotary electric machine with the same
JP2012147547A (en) Stator for outer rotor type rotary electric machine
JP2007124742A (en) Rotor with permanent magnet, and motor using the same
JP2014045641A (en) Stator core of dynamo-electric machine
JP7226088B2 (en) stator assembly and motor
JP2007259676A (en) Stator
JP2012217279A (en) Stator core for rotary electric machine, the rotary electric machine, and manufacturing method of the stator core for the rotary electric machine