JP2013246397A - Optical unit and manufacturing method of optical unit - Google Patents

Optical unit and manufacturing method of optical unit Download PDF

Info

Publication number
JP2013246397A
JP2013246397A JP2012122012A JP2012122012A JP2013246397A JP 2013246397 A JP2013246397 A JP 2013246397A JP 2012122012 A JP2012122012 A JP 2012122012A JP 2012122012 A JP2012122012 A JP 2012122012A JP 2013246397 A JP2013246397 A JP 2013246397A
Authority
JP
Japan
Prior art keywords
circuit board
welding
welded
sleeve member
optical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012122012A
Other languages
Japanese (ja)
Inventor
Hiroshi Tateishi
博志 立石
Yuuji Nakura
裕二 那倉
Katsuhiro Kojima
勝弘 小島
Kiyoshi Kato
清 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2012122012A priority Critical patent/JP2013246397A/en
Publication of JP2013246397A publication Critical patent/JP2013246397A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical unit capable of fixing a sleeve member to a circuit board by welding while optically coupling a photoelectric conversion element to an optical fiber with high accuracy.SOLUTION: An optical unit includes: a circuit board 50 on which a photoelectric conversion element 20 is mounted; a sleeve member 30 fixed to the circuit board 50 and having a sleeve 32 into which a ferrule F attached to the end of an optical fiber F1 is fit; a welding member 60, made of a thermoplastic resin, provided on the circuit board 50 and welded to the sleeve member 30; and a positioning part 38, in the sleeve member 30, which is provided opposite to the circuit board 50 and comes into contact with the circuit board 50 when the welding member 60 is welded to the sleeve member 30.

Description

本発明は、光ユニットおよび光ユニットの製造方法に関する。   The present invention relates to an optical unit and a method for manufacturing the optical unit.

従来、光ファイバと光電変換素子とを光学的に結合させるための光ユニットとして、下記特許文献1に記載のものが知られている。この光ユニットは、回路基板に実装された光電変換素子と、この光電変換素子を囲うように位置決めされて回路基板に固定されるスリーブ部材とを備えて構成されている。スリーブ部材は、光透過性を有する樹脂からなり、光ファイバの端末に接続されるフェルールが嵌合されるスリーブと、スリーブと一体に形成された樹脂レンズとを有している。そして、スリーブ内にフェルールが嵌合されると、光電変換素子と光ファイバとが樹脂レンズを介して光結合され、光電変換素子によって電気信号と光信号とが相互に変換されることで通信が行われる。   Conventionally, an optical unit for optically coupling an optical fiber and a photoelectric conversion element is described in Patent Document 1 below. The optical unit includes a photoelectric conversion element mounted on a circuit board, and a sleeve member that is positioned so as to surround the photoelectric conversion element and is fixed to the circuit board. The sleeve member is made of a resin having optical transparency, and includes a sleeve into which a ferrule connected to the end of the optical fiber is fitted, and a resin lens formed integrally with the sleeve. When the ferrule is fitted in the sleeve, the photoelectric conversion element and the optical fiber are optically coupled via the resin lens, and the photoelectric conversion element converts the electrical signal and the optical signal to each other, thereby enabling communication. Done.

特開2010−224513号公報JP 2010-224513 A

ところで、近年、光電変換素子が実装された回路基板にスリーブ部材を固定する方法として、回路基板に設けられた溶着部材の上にスリーブ部材を載置して、溶着部材にレーザ光を照射することで、溶着部材とスリーブ部材とを一体に溶着固定する方法が検討されている。
ところが、レーザ光を照射することによって溶着部材を溶融して、溶着部材とスリーブ部材とを溶着固定しようとすると、溶着部材が溶融することで、樹脂レンズの高さ位置にずれが生じて、光電変換素子と光ファイバとを高精度に光結合させることができなくなってしまう。
By the way, in recent years, as a method of fixing the sleeve member to the circuit board on which the photoelectric conversion element is mounted, the sleeve member is placed on the welding member provided on the circuit board and the welding member is irradiated with laser light. Therefore, a method of integrally welding and fixing the welding member and the sleeve member has been studied.
However, when the welding member is melted by irradiating the laser beam and the welding member and the sleeve member are intended to be welded and fixed, the welding member is melted, resulting in a deviation in the height position of the resin lens. It becomes impossible to optically couple the conversion element and the optical fiber with high accuracy.

本発明は上記のような事情に基づいて完成されたものであって、光ユニットについて、光電変換素子と光ファイバとを高精度に光結合させつつ、回路基板に対してスリーブ部材を溶着固定する技術を提供することを目的とする。   The present invention has been completed based on the above-described circumstances, and in an optical unit, a sleeve member is welded and fixed to a circuit board while optically coupling a photoelectric conversion element and an optical fiber with high accuracy. The purpose is to provide technology.

上記の目的を達成するための手段として本発明は、光ユニットであって、光電変換素子が実装された回路基板と、前記回路基板に固定され、光ファイバの端末に装着されたフェルールが嵌合されるスリーブ部材と、前記回路基板に設けられ、前記スリーブ部材に溶着された熱可塑性樹脂からなる溶着部材と、前記スリーブ部材において前記回路基板に対向して設けられ、前記溶着部材が前記スリーブ部材に溶着される際に前記回路基板と当接した状態となる位置決め部とを備えているところに特徴を有する。   As means for achieving the above-mentioned object, the present invention is an optical unit, in which a circuit board on which a photoelectric conversion element is mounted and a ferrule fixed to the circuit board and attached to an end of an optical fiber are fitted. A sleeve member provided on the circuit board and made of a thermoplastic resin welded to the sleeve member, and the sleeve member is provided to face the circuit board, and the welding member is the sleeve member. And a positioning portion that comes into contact with the circuit board when it is welded to the circuit board.

このような構成の光ユニットによると、位置決め部と回路基板とが当接して、スリーブ部材が回路基板に対して当接方向に位置決めされた状態で、溶着部材とスリーブ部材とが溶着されているので、回路基板に実装された光電変換素子と光ファイバの端部との間の長さ寸法の精度を高くすることができる。これにより、光電変換素子と光ファイバとを高精度に光結合させつつ、回路基板に対してスリーブ部材を溶着固定させることができる。   According to the optical unit having such a configuration, the welding member and the sleeve member are welded in a state where the positioning portion and the circuit board are in contact with each other and the sleeve member is positioned in the contact direction with respect to the circuit board. Therefore, the accuracy of the length dimension between the photoelectric conversion element mounted on the circuit board and the end portion of the optical fiber can be increased. Accordingly, the sleeve member can be welded and fixed to the circuit board while optically coupling the photoelectric conversion element and the optical fiber with high accuracy.

また、本発明は、回路基板に設けられた熱可塑性の溶着部材に、フェルールが嵌合可能な光透過性を有するスリーブ部材を当接させて配置し、前記スリーブ部材を通してレーザ光を前記溶着部材に照射することにより、前記溶着部材と前記スリーブ部材とを溶着固定する光ユニットの製造方法であって、前記溶着部材と前記スリーブ部材とが溶着する際に、前記スリーブ部材における前記回路基板側に設けられた位置決め部が、前記回路基板と当接した状態になることで、前記回路基板に対して前記スリーブ部材を位置決めするところに特徴を有する。
このような光ユニットの製造方法によると、回路基板に位置決め部を当接させて、スリーブ部材を回路基板に対して当接方向に位置決めした状態でスリーブ部材を回路基板に溶着固定することができる。
また、光ユニットを製造する過程において、例えば、スリーブ部材を回路基板に対して接着剤などによって接着する場合には、塗布した接着剤が意図しない場所に付着しないようにするなど、取り扱いが煩雑になる虞がある。ところが、上記のような製造方法によると、スリーブ部材を通してレーザ光を溶着部材に照射して溶着部材とスリーブ部材とを溶着させることができるので、溶着部材を意図しない場所に付着させることがなく、スリーブ部材を固定する際の取り扱いに優れ、非常に有効である。
According to the present invention, a sleeve member having optical transparency that can be fitted with a ferrule is disposed in contact with a thermoplastic welding member provided on a circuit board, and laser light is transmitted through the sleeve member. The method of manufacturing an optical unit for welding and fixing the welding member and the sleeve member by irradiating to the circuit board side of the sleeve member when the welding member and the sleeve member are welded. The provided positioning portion is in a state of being in contact with the circuit board, whereby the sleeve member is positioned with respect to the circuit board.
According to such a method of manufacturing an optical unit, the sleeve member can be welded and fixed to the circuit board in a state where the positioning member is brought into contact with the circuit board and the sleeve member is positioned in the contact direction with respect to the circuit board. .
Also, in the process of manufacturing the optical unit, for example, when the sleeve member is bonded to the circuit board with an adhesive or the like, handling is complicated such as preventing the applied adhesive from adhering to an unintended place. There is a risk of becoming. However, according to the manufacturing method as described above, the welding member and the sleeve member can be welded by irradiating the welding member with laser light through the sleeve member, so that the welding member is not attached to an unintended place. It is excellent in handling when fixing the sleeve member and is very effective.

本発明の実施の態様として、以下の構成が好ましい。
前記溶着部材は、前記回路基板から前記スリーブ部材側に向かって突出して形成されており、前記スリーブ部材は、前記回路基板側に開口して形成され、前記溶着部材の突出端を奥部に当接させた状態で収容する被溶着部を備えており、前記位置決め部は、前記被溶着部の開口縁部に形成されている構成としてもよい。
このような構成によると、溶着部材の突出端と被溶着部の奥部とが溶着する際に、被溶着部の開口縁部が回路基板に当接することになるので、外方からスリーブ部材が回路基板に対して位置決めされる共に、溶着部材とスリーブ部材とが溶着したことを容易に確認することができる。
The following configuration is preferable as an embodiment of the present invention.
The welding member is formed so as to protrude from the circuit board toward the sleeve member side, and the sleeve member is formed to open to the circuit board side, and the protruding end of the welding member is abutted against the back part. It is good also as a structure provided with the to-be-welded part accommodated in the contacted state, and the said positioning part being formed in the opening edge part of the to-be-welded part.
According to such a configuration, when the protruding end of the welding member and the inner portion of the welded portion are welded, the opening edge of the welded portion comes into contact with the circuit board. While being positioned with respect to the circuit board, it can be easily confirmed that the welding member and the sleeve member are welded.

前記スリーブ部材は、前記回路基板側に向かって突出する被溶着部を備えており、前記溶着部材は、前記被溶着部の突出端を奥部に当接させた状態で収容する収容部を備えている構成としてもよい。
このような構成によると、被溶着部の突出端と収容部の奥部とが溶着する際に、溶融した溶着部材を収容部内に留めることができるので、溶着部材が回路基板上に流れ出て、回路基板の意図しない場所に溶着部材が付着することを防止することができる。
The sleeve member includes a welded portion that protrudes toward the circuit board side, and the weld member includes a housing portion that accommodates the projecting end of the welded portion in contact with a deep portion. It is good also as composition which has.
According to such a configuration, when the protruding end of the welded portion and the inner portion of the housing portion are welded, the melted welding member can be retained in the housing portion, so that the welding member flows out on the circuit board, It is possible to prevent the welding member from adhering to an unintended place on the circuit board.

前記位置決め部は、さらに前記溶着部材にも当接する構成としてもよい。
このような構成によると、位置決め部が溶着部材によっても位置決めされるので、スリーブ部材を回路基板に対して当接方向に確実に位置決めして溶着固定することができる。
The positioning portion may be configured to further contact the welding member.
According to such a configuration, since the positioning portion is also positioned by the welding member, the sleeve member can be reliably positioned and fixed in the contact direction with respect to the circuit board.

前記溶着部材は、前記スリーブ部材側に向かって突出して形成されており、前記スリーブ部材は、前記位置決め部が前記回路基板に当接した状態で、前記溶着部材の突出方向と交差する方向に沿って配されて前記溶着部材と溶着される被溶着部を備えている構成としてもよい。
このような構成によると、溶着部材と被溶着部とを溶着させる前から回路基板に対してスリーブ部材を当接方向に位置決めして、溶着部と被溶着部とを溶着部材の突出方向と交差する方向に溶着させることができるので、回路基板に対してスリーブ部材が当接方向に位置ずれして溶着固定されることを確実に防止することができる。これにより、光電変換素子と光ファイバとを高精度に光結合させつつ、回路基板に対してスリーブ部材を溶着固定することができる。
The welding member is formed so as to protrude toward the sleeve member, and the sleeve member extends along a direction intersecting a protruding direction of the welding member in a state where the positioning portion is in contact with the circuit board. It is good also as a structure provided with the to-be-welded part arrange | positioned and welded with the said welding member.
According to such a configuration, the sleeve member is positioned in the contact direction with respect to the circuit board before the welding member and the welded portion are welded, and the welded portion and the welded portion intersect with the protruding direction of the welded member. Therefore, it is possible to reliably prevent the sleeve member from being displaced and fixed in the contact direction with respect to the circuit board. Accordingly, the sleeve member can be welded and fixed to the circuit board while optically coupling the photoelectric conversion element and the optical fiber with high accuracy.

前記溶着部材は、前記回路基板に複数設けられている構成としてもよい。
このような構成によると、回路基板に対してスリーブ部材を当接方向だけでなく、スリーブ部材を当接方向と交差する複数の方向から位置決めすることができる。これにより、光電変換素子と光ファイバの端部との間の長さ寸法だけでなく、光電変換素子に対して光ファイバを軸方向に位置決めして固定することができる。
A plurality of the welding members may be provided on the circuit board.
According to such a configuration, the sleeve member can be positioned not only in the contact direction with respect to the circuit board but also in a plurality of directions intersecting the contact direction. Thereby, not only the length dimension between a photoelectric conversion element and the edge part of an optical fiber but an optical fiber can be positioned and fixed to an axial direction with respect to a photoelectric conversion element.

また、前記の製造方法であって、前記位置決め部は、前記溶着部材が溶融する前は前記回路基板から離れており、前記溶着部材が溶融する際に、前記回路基板に当接する構成としてもよい。
このような構成によると、位置決め部が回路基板に当接することを確認することで、溶着部材とスリーブ部材とが溶着したことを容易に確認することができる。
Further, in the manufacturing method, the positioning portion may be separated from the circuit board before the welding member is melted, and abuts on the circuit board when the welding member melts. .
According to such a configuration, it is possible to easily confirm that the welding member and the sleeve member are welded by confirming that the positioning portion contacts the circuit board.

本発明によれば、光電変換素子と光ファイバとを高精度に光結合させつつ、回路基板に対してスリーブ部材を溶着固定することができる。   According to the present invention, it is possible to weld and fix the sleeve member to the circuit board while optically coupling the photoelectric conversion element and the optical fiber with high accuracy.

実施形態1におけるスリーブ部材の斜視図The perspective view of the sleeve member in Embodiment 1. 同正面図Front view 同底面図Bottom view 実施形態1における光ユニットの断面図であって、図2のA−A線の位置において切断した断面に相当する断面図FIG. 3 is a cross-sectional view of the optical unit according to Embodiment 1 and corresponds to a cross section cut at the position of the line AA in FIG. 2. 図4の要部拡大断面図4 is an enlarged cross-sectional view of the main part of FIG. 実施形態1におけるスリーブ部材と溶着部材とが溶着される前の状態を示す要部拡大断面図The principal part expanded sectional view which shows the state before the sleeve member and welding member in Embodiment 1 are welded. 実施形態2におけるスリーブ部材の斜視図The perspective view of the sleeve member in Embodiment 2. 同正面図Front view 実施形態2における光ユニットの断面図であって、図8のB−B線の位置において切断した断面に相当する断面図Sectional drawing of the optical unit in Embodiment 2, Comprising: Sectional drawing corresponded in the cross section cut | disconnected in the position of the BB line of FIG. 図9の要部拡大断面図9 is an enlarged cross-sectional view of the main part of FIG. 実施形態2におけるスリーブ部材と溶着部材とが溶着される前の状態を示す要部拡大断面図The principal part expanded sectional view which shows the state before the sleeve member and welding member in Embodiment 2 are welded. 実施形態3における図5に相当する要部拡大断面図The principal part expanded sectional view equivalent to FIG. 5 in Embodiment 3. FIG.

<実施形態1>
本発明の実施形態1について図1乃至図6を参照して説明する。
本実施形態は、光ファイバF1と光電変換素子20とを光学的に結合させるための光ユニット10を例示している。光ユニット10は、図4に示すように、回路基板50の上面50Aに実装された光電変換素子20と、光電変換素子20の上部を囲うように回路基板50に固定されたスリーブ部材30とを備えて構成されている。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS.
This embodiment illustrates the optical unit 10 for optically coupling the optical fiber F1 and the photoelectric conversion element 20. As shown in FIG. 4, the optical unit 10 includes a photoelectric conversion element 20 mounted on the upper surface 50 </ b> A of the circuit board 50 and a sleeve member 30 fixed to the circuit board 50 so as to surround the upper part of the photoelectric conversion element 20. It is prepared for.

(回路基板50)
回路基板50には、プリント配線技術により図示しない導電路が形成されている。回路基板50の上面50Aには、図4及び図5に示すように、光電変換素子20が、例えばリフローはんだ付け等により導電路と接続されている。
また、回路基板50には、同回路基板50を上下方向に貫通する取付孔51が複数形成されており、各取付孔51には、溶着部材60がインサート成形されて固定されている。
(Circuit board 50)
A conductive path (not shown) is formed on the circuit board 50 by a printed wiring technique. As shown in FIGS. 4 and 5, the photoelectric conversion element 20 is connected to the conductive path on the upper surface 50 </ b> A of the circuit board 50 by, for example, reflow soldering.
The circuit board 50 is formed with a plurality of attachment holes 51 penetrating the circuit board 50 in the vertical direction, and a welding member 60 is insert-molded and fixed to each attachment hole 51.

(溶着部材60)
各溶着部材60は、レーザ光を吸収し易くするように、例えばカーボンなどの吸収体を含有する熱可塑性樹脂(例えば、PEI(ポリエーテルイミド樹脂),PC(ポリカーボネート樹脂),PMMA(ポリメタクリル酸メチル樹脂)等)からなり、例えば黒色に着色されている。また、各溶着部材60は、図4及び図5に示すように、回路基板50の上面50Aから上方に突出した略円柱形状に形成されており、各溶着部材60の上面は、フラットで回路基板50と平行な溶着面61とされている。
(Welding member 60)
Each welding member 60 is made of a thermoplastic resin containing an absorber such as carbon (for example, PEI (polyetherimide resin), PC (polycarbonate resin), PMMA (polymethacrylic acid) so as to easily absorb laser light. Methyl resin) and the like, for example, colored black. 4 and 5, each welding member 60 is formed in a substantially cylindrical shape protruding upward from the upper surface 50A of the circuit board 50. The upper surface of each welding member 60 is a flat circuit board. 50 is a welding surface 61 parallel to 50.

(光電変換素子20)
光電変換素子20は、ブロック状に形成されており、受光型または発光型のどちらか一方とされている。光電変換素子20の上部には、活性層が形成されており、この活性層において、光信号が電気信号に変換され、または、電気信号が光信号に変換されるようになっている。
(Photoelectric conversion element 20)
The photoelectric conversion element 20 is formed in a block shape and is either a light receiving type or a light emitting type. An active layer is formed on the photoelectric conversion element 20, and an optical signal is converted into an electric signal or an electric signal is converted into an optical signal in the active layer.

(スリーブ部材30)
スリーブ部材30は、少なくとも光通信に使用される光の光透過性を有する樹脂(例えば、PEI(ポリエーテルイミド樹脂),PC(ポリカーボネート樹脂),PMMA(ポリメタクリル酸メチル樹脂)等)によって形成されている。なお、ここでいう「光透過性」とは、光通信で使用する波長(例えば、0.4μm〜2μm)に対して、光透過率が90%以上のものである。また、スリーブ部材30は、図1乃至図4に示すように、光電変換素子20の上部を囲むように覆った囲部31と、囲部31の上部に一体に形成されたスリーブ32とを備えて構成されている。
(Sleeve member 30)
The sleeve member 30 is made of at least light-transmitting resin (for example, PEI (polyetherimide resin), PC (polycarbonate resin), PMMA (polymethyl methacrylate resin), etc.) used for optical communication. ing. Here, “light transmittance” means that the light transmittance is 90% or more with respect to a wavelength (for example, 0.4 μm to 2 μm) used in optical communication. As shown in FIGS. 1 to 4, the sleeve member 30 includes a surrounding portion 31 that covers the upper portion of the photoelectric conversion element 20 and a sleeve 32 that is integrally formed on the upper portion of the surrounding portion 31. Configured.

(囲部31)
囲部31は、底面視略矩形状をなし、下側に開口するフード状に形成されている。また、囲部31は、上方から光電変換素子20に被せるように回路基板50に組み付けられている。囲部31の下側開口縁部には、回路基板50の溶着部材60を個別に収容可能な被溶着部33が回路基板50の溶着部材60と対応する位置に複数形成されている。
(Enclosure 31)
The surrounding portion 31 has a substantially rectangular shape in a bottom view and is formed in a hood shape that opens downward. The surrounding portion 31 is assembled to the circuit board 50 so as to cover the photoelectric conversion element 20 from above. A plurality of welded portions 33 that can individually accommodate the welding members 60 of the circuit board 50 are formed at positions corresponding to the welding members 60 of the circuit board 50 at the lower opening edge of the surrounding portion 31.

(被溶着部33)
各被溶着部33は、囲部31の下側開口縁部における4辺のうち、3辺の中央部分にそれぞれ1つずつ配されており、各被溶着部33の配置は、略三角形の頂点部分に位置する、三角形配置とされている。また、被溶着部33は、囲部31の下側開口縁部における下端面から上方に向かって凹んだ丸孔を有しており、被溶着部33の内部には、溶着部材60が下方から挿入可能とされている。被溶着部33は、その内径寸法が溶着部材60の外径寸法よりも僅かに大きく形成されており、溶着部材60の周方向にクリアランスを有した状態で溶着部材60を個別に収容可能とされている。
(Welding part 33)
Each welded portion 33 is arranged one by one at the center of three sides of the four sides of the lower opening edge of the surrounding portion 31, and the positions of the welded portions 33 are substantially triangular vertices. It is a triangular arrangement located in the part. Further, the welded portion 33 has a round hole that is recessed upward from the lower end surface of the lower opening edge of the surrounding portion 31, and the welded member 60 is located inside the welded portion 33 from below. It can be inserted. The welded portion 33 has an inner diameter dimension slightly larger than an outer diameter dimension of the welding member 60, and can individually accommodate the welding members 60 with a clearance in the circumferential direction of the welding member 60. ing.

また、被溶着部33の奥部は、溶着部材60の溶着面61に対応してフラットな被溶着面34とされており、被溶着部33の深さ寸法は、溶着部材60が回路基板50から突出する寸法よりも僅かに小さく形成されている。このため、溶着部材60が被溶着部33に対して挿入されると、溶着部材60の溶着面61と被溶着部33の被溶着面34とが面接触した状態となって、被溶着部33から溶着部材60が僅かに突出した状態となる。溶着面61と被溶着面34とが接触した状態で、外部から囲部31を通してレーザ光Lを溶着部材60に照射すると、溶着部材60の溶着面61が溶融して、溶着面61と被溶着面34とが密着した状態となる。そして、溶着部材60が冷却されて硬化することで、回路基板50とスリーブ部材30とが一体に溶着固定されている。なお、ここで使用するレーザは、例えば、LD(半導体)レーザや波長1064nmの一般的なYAGレーザ(例えばネオジウム添加YAG(Nd−YAG)レーザ)などである。   The depth of the welded portion 33 is a flat welded surface 34 corresponding to the welded surface 61 of the welded member 60. The depth of the welded portion 33 is such that the welded member 60 has the circuit board 50. It is formed to be slightly smaller than the dimension protruding from. For this reason, when the welding member 60 is inserted into the welded portion 33, the welded surface 61 of the welded member 60 and the welded surface 34 of the welded portion 33 are brought into surface contact with each other, and the welded portion 33. Thus, the welding member 60 protrudes slightly. When the welding surface 61 is irradiated with the laser beam L from the outside through the surrounding portion 31 in a state where the welding surface 61 and the welding surface 34 are in contact with each other, the welding surface 61 of the welding member 60 is melted, and the welding surface 61 and the welding surface are welded. The surface 34 is in close contact. The circuit board 50 and the sleeve member 30 are integrally welded and fixed by cooling and curing the welding member 60. The laser used here is, for example, an LD (semiconductor) laser or a general YAG laser (for example, a neodymium-added YAG (Nd-YAG) laser) having a wavelength of 1064 nm.

(スリーブ32)
スリーブ32は、略円筒状をなし、囲部31から上方に延びて形成されている。スリーブ32の内部には、光ファイバF1の端末に装着されたフェルールFを内部に嵌合する有底の収容部35が設けられている。収容部35の底壁35Aにおける中央には、収容部35内に嵌合されるフェルールFの光ファイバF1との干渉を防ぐために逃がし穴36が設けられている。
(Sleeve 32)
The sleeve 32 has a substantially cylindrical shape and is formed to extend upward from the surrounding portion 31. Inside the sleeve 32, there is provided a bottomed accommodating portion 35 into which the ferrule F attached to the end of the optical fiber F1 is fitted. In the center of the bottom wall 35 </ b> A of the housing part 35, an escape hole 36 is provided to prevent interference of the ferrule F fitted in the housing part 35 with the optical fiber F <b> 1.

また、スリーブ32の上下方向略中央部には、光電変換素子20と光ファイバF1とを光学的に結合する略円形の凸レンズ37がスリーブ32と一体に形成されている。凸レンズ37は、下方に膨出した形態をなしており、凸レンズ37の軸心がスリーブ32の軸心とそれぞれ同軸となるように形成されている。また、凸レンズ37は、同凸レンズ37の軸心が回路基板50の光電変換素子20と一致するように配置され、光電変換素子20から発せられた出力光をフェルールF内の光ファイバF1に集光する、もしくは、光ファイバF1から発せられた出力光を光電変換素子20に対して集光する役割を果たしている。   Further, a substantially circular convex lens 37 that optically couples the photoelectric conversion element 20 and the optical fiber F <b> 1 is formed integrally with the sleeve 32 at a substantially central portion in the vertical direction of the sleeve 32. The convex lens 37 has a form bulging downward, and is formed such that the axis of the convex lens 37 is coaxial with the axis of the sleeve 32. The convex lens 37 is arranged so that the axis of the convex lens 37 coincides with the photoelectric conversion element 20 of the circuit board 50, and the output light emitted from the photoelectric conversion element 20 is condensed on the optical fiber F 1 in the ferrule F. Or, it plays a role of condensing output light emitted from the optical fiber F <b> 1 to the photoelectric conversion element 20.

(位置決め部38)
さて、スリーブ部材30の囲部31における下側開口縁部の下端面は、図4及び図5に示すように、フラットで回路基板50と平行な位置決め部38とされている。つまり、被溶着部33の開口縁部に位置決め部38が配された状態となっている。
(Positioning part 38)
Now, as shown in FIGS. 4 and 5, the lower end surface of the lower opening edge portion of the surrounding portion 31 of the sleeve member 30 is a flat positioning portion 38 parallel to the circuit board 50. That is, the positioning portion 38 is disposed at the opening edge of the welded portion 33.

位置決め部38は、溶着部材60の溶着面61と被溶着部33の被溶着面34とが溶着する前の状態では、図6に示すように、回路基板50の上面50Aから上方に離れた状態となっており、回路基板50に対してスリーブ部材30を固定する際に、レーザ光Lにより溶着部材60の溶着面61が溶融され、スリーブ部材30が回路基板50に近づくように下方に下がることで、図5に示すように、回路基板50の上面と上下方向に当接した状態となる。そして、この状態のまま、溶着部材60が冷却されて硬化することで、スリーブ部材30が回路基板50に固定されている。すなわち、位置決め部38は、スリーブ部材30と回路基板50とが一体に溶着固定された状態において、回路基板50の上面50Aと上下方向(当接方向)に接触した状態となっている。なお、位置決め部38が回路基板50の上面50Aに接触した状態における凸レンズ37と光電変換素子20との間の長さ寸法は、凸レンズ37によって光を集光する際の最も適した正規の長さ寸法とされている。   In the state before the welding surface 61 of the welding member 60 and the welding surface 34 of the welding portion 33 are welded, the positioning portion 38 is separated from the upper surface 50A of the circuit board 50 as shown in FIG. When the sleeve member 30 is fixed to the circuit board 50, the welding surface 61 of the welding member 60 is melted by the laser light L, and the sleeve member 30 is lowered downward so as to approach the circuit board 50. Thus, as shown in FIG. 5, the upper surface of the circuit board 50 is brought into contact with the upper and lower directions. And the sleeve member 30 is being fixed to the circuit board 50 because the welding member 60 is cooled and hardened | cured in this state. That is, the positioning portion 38 is in contact with the upper surface 50A of the circuit board 50 in the vertical direction (contact direction) in a state in which the sleeve member 30 and the circuit board 50 are integrally welded and fixed. The length dimension between the convex lens 37 and the photoelectric conversion element 20 in a state where the positioning portion 38 is in contact with the upper surface 50A of the circuit board 50 is a regular length most suitable for collecting light by the convex lens 37. It is a dimension.

(作用および効果)
本実施形態の光ユニット10は以上のような構成であって、続いて、スリーブ部材30を回路基板50に固定する際の作用・効果を説明する。
まず、光電変換素子20が実装されると共に、複数の溶着部材60が固定された回路基板50と、スリーブ部材30とを用意する。
(Function and effect)
The optical unit 10 of the present embodiment has the above-described configuration. Next, operations and effects when the sleeve member 30 is fixed to the circuit board 50 will be described.
First, a circuit board 50 on which the photoelectric conversion element 20 is mounted and a plurality of welding members 60 are fixed, and a sleeve member 30 are prepared.

光電変換素子20の上方をスリーブ部材30の囲部31によって覆うように、スリーブ部材30を回路基板50の上方に配置し、各溶着部材60が囲部31の被溶着部33に収容されるようにスリーブ部材30を溶着部材60上に載置する。ここで、回路基板50からの溶着部材60の突出寸法は被溶着部33の深さ寸法よりも大きく形成されていることから、図6に示すように、溶着部材60の溶着面61と被溶着部33の被溶着面34とが面接触した状態となると共に、囲部31の位置決め部38が回路基板50の上面50Aから上方に離れた状態となる。すなわち、位置決め部38と回路基板50の上面50Aとの間には隙間Sが形成された状態となっている。   The sleeve member 30 is disposed above the circuit board 50 so that the photoelectric conversion element 20 is covered by the surrounding portion 31 of the sleeve member 30, and each welding member 60 is accommodated in the welded portion 33 of the surrounding portion 31. The sleeve member 30 is placed on the welding member 60. Here, since the protruding dimension of the welding member 60 from the circuit board 50 is formed larger than the depth dimension of the welded portion 33, as shown in FIG. 6, the welding surface 61 and the welded surface of the welding member 60 are welded. The welded surface 34 of the portion 33 comes into surface contact with the positioning portion 38 of the surrounding portion 31 and is separated from the upper surface 50A of the circuit board 50 upward. That is, a gap S is formed between the positioning portion 38 and the upper surface 50A of the circuit board 50.

この状態で、外部から囲部31を通してレーザ光Lを溶着部材60の溶着面61に対して照射すると、レーザ光Lが溶着部材60に吸収されて溶着面61が溶融し、図5に示すように、溶着部材60の溶着面61と被溶着部33の被溶着面34とが密着した状態となる。また、溶融した溶着部材60が被溶着部33内のクリアランスC内に流れ込むことで、スリーブ部材30が回路基板50に近づくように下方に向かって徐々に下がって隙間Sが消失し、囲部31の位置決め部38が回路基板50の上面と上下方向に当接した状態となる。そして、この状態のまま、溶着部材60が冷却されて硬化し、スリーブ部材30と回路基板50とが一体に溶着固定されることで、図4に示すように、光ユニット10が完成する。   In this state, when the laser beam L is applied to the welding surface 61 of the welding member 60 from the outside through the surrounding portion 31, the laser beam L is absorbed by the welding member 60 and the welding surface 61 is melted, as shown in FIG. In addition, the welding surface 61 of the welding member 60 and the welded surface 34 of the welded portion 33 are in close contact with each other. Further, when the melted welding member 60 flows into the clearance C in the welded portion 33, the sleeve member 30 is gradually lowered downward so as to approach the circuit board 50, and the gap S disappears. The positioning portion 38 is in contact with the upper surface of the circuit board 50 in the vertical direction. In this state, the welding member 60 is cooled and cured, and the sleeve member 30 and the circuit board 50 are integrally welded and fixed, whereby the optical unit 10 is completed as shown in FIG.

ところで、本実施形態のような光ユニット10では、スリーブ32内の凸レンズ37によって、光を集光することから、凸レンズ37と回路基板50に実装された光電変換素子20との間の長さ寸法が長くなったり、短くになったりすると、凸レンズ37の焦点が光電変換素子20の位置からずれてしまう。このため、回路基板50に対してスリーブ部材30を正規の高さ位置に固定することが重要であるが、レーザ光Lの照射によって溶着部材60を溶融して、溶着部材60とスリーブ部材30とを一体に溶着固定する場合、溶着部材60が溶融することで、凸レンズ37の高さ位置にずれが生じて、光電変換素子20と凸レンズ37との長さ寸法が正規の長さ寸法からずれてしまうことが懸念される。   By the way, in the optical unit 10 like this embodiment, since the light is condensed by the convex lens 37 in the sleeve 32, the length dimension between the convex lens 37 and the photoelectric conversion element 20 mounted on the circuit board 50. If the length of the convex lens 37 becomes shorter or longer, the focal point of the convex lens 37 is shifted from the position of the photoelectric conversion element 20. For this reason, it is important to fix the sleeve member 30 to a normal height position with respect to the circuit board 50. However, the welding member 60 is melted by the irradiation of the laser light L, and the welding member 60, the sleeve member 30, and the like. When the welding member 60 is integrally welded and fixed, the welding member 60 is melted to cause a deviation in the height position of the convex lens 37, and the length dimension of the photoelectric conversion element 20 and the convex lens 37 is deviated from the normal length dimension. There is a concern that

ところが、本実施形態によると、レーザ光Lを照射することで溶融した溶着部材60が被溶着部33内のクリアランスC内に流れ込み、位置決め部38が回路基板50の上面に当接することで、スリーブ部材30を回路基板50に対して上下方向(高さ方向)に位置決めして固定することができる。つまり、回路基板50に実装された光電変換素子20と凸レンズ37との間の長さ寸法を正規の長さ寸法に一致させることで、光電変換素子20と光ファイバF1との間の長さ寸法を高精度に合わせることができる。すなわち、光電変換素子20と光ファイバF1とを高精度に光結合させつつ、回路基板50とスリーブ部材30とを一体に溶着固定することができる。   However, according to the present embodiment, the welding member 60 melted by irradiating the laser beam L flows into the clearance C in the welded portion 33, and the positioning portion 38 comes into contact with the upper surface of the circuit board 50. The member 30 can be positioned and fixed with respect to the circuit board 50 in the vertical direction (height direction). That is, by making the length dimension between the photoelectric conversion element 20 mounted on the circuit board 50 and the convex lens 37 coincide with the regular length dimension, the length dimension between the photoelectric conversion element 20 and the optical fiber F1. Can be adjusted with high accuracy. That is, the circuit board 50 and the sleeve member 30 can be integrally welded and fixed while optically coupling the photoelectric conversion element 20 and the optical fiber F1 with high accuracy.

また、本実施形態によると、溶着面61と被溶着面34とが溶着する部分が囲部31によって覆われているものの、位置決め部38が回路基板50の上面に当接して、隙間Sが消失することを外方から確認することで、光電変換素子20と凸レンズ37との間の長さ寸法が正規の長さ寸法となると共に、溶着面61と被溶着面34とが密着したことを同時に、かつ容易に確認することができる。   In addition, according to the present embodiment, the portion where the welding surface 61 and the welding surface 34 are welded is covered by the surrounding portion 31, but the positioning portion 38 is in contact with the upper surface of the circuit board 50 and the gap S disappears. By confirming from the outside, the length dimension between the photoelectric conversion element 20 and the convex lens 37 becomes a regular length dimension, and at the same time, the welding surface 61 and the welding surface 34 are in close contact with each other. And can be easily confirmed.

また本実施形態によると、位置決め部38が被溶着部33の開口縁部に隣接して配置されているので、位置決め部が溶着面61と被溶着面34とが溶着する位置から離れて形成されている場合に比べて、スリーブ部材30を回路基板50に対して確実に高さ方向に位置決めして固定させることができる。   Further, according to the present embodiment, since the positioning portion 38 is disposed adjacent to the opening edge portion of the welded portion 33, the positioning portion is formed away from the position where the welding surface 61 and the welded surface 34 are welded. Compared to the case, the sleeve member 30 can be reliably positioned and fixed with respect to the circuit board 50 in the height direction.

さらに、本実施形態によると、複数の溶着部材60および被溶着部33が三角形配置とされていることから、回路基板50に対してスリーブ部材30を上下方向(位置決め部38を回路基板50に当接する方向)だけでなく、スリーブ部材30を上下方向と直交する方向である3つの方向から位置決めすることができる。すなわち、凸レンズ37を光電変換素子20に対して軸方向に位置決めして固定することができる。   Further, according to the present embodiment, since the plurality of welding members 60 and the welded portions 33 are arranged in a triangle, the sleeve member 30 is moved vertically with respect to the circuit board 50 (the positioning portion 38 is placed on the circuit board 50). In addition to the contact direction, the sleeve member 30 can be positioned from three directions that are orthogonal to the vertical direction. That is, the convex lens 37 can be positioned and fixed with respect to the photoelectric conversion element 20 in the axial direction.

ところで、例えば、スリーブ部材を回路基板に対して固定する方法としては、スリーブ部材と回路基板とを接着剤などによって接着する方法が考えられるが、接着剤を用いてスリーブ部材を回路基板に固定する方法の場合、回路基板もしくはスリーブ部材に塗布した接着剤が意図しない場所に付着しないようにするなど、取り扱いが煩雑になってしまう。   By the way, for example, as a method of fixing the sleeve member to the circuit board, a method of bonding the sleeve member and the circuit board with an adhesive or the like is conceivable, but the sleeve member is fixed to the circuit board using an adhesive. In the case of the method, handling becomes complicated such as preventing the adhesive applied to the circuit board or the sleeve member from adhering to an unintended place.

しかしながら、上記のような製造方法によると、外部からレーザ光Lを溶着部材60に照射してスリーブ部材30と回路基板50とを一体に溶着固定させることができるので、溶着部材が意図しない場所に付着することがなく、スリーブ部材30を固定する前の取り扱いに優れ、非常に有効である。   However, according to the manufacturing method as described above, the sleeve member 30 and the circuit board 50 can be integrally fixed by irradiating the welding member 60 with the laser beam L from the outside, so that the welding member is not intended. It does not adhere, is excellent in handling before fixing the sleeve member 30, and is very effective.

<実施形態2>
次に、本発明の実施形態2について図7乃至図11を参照して説明する。
実施形態2の光ユニット110は、実施形態1における被溶着部33および溶着部材60の形状を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIGS.
The optical unit 110 according to the second embodiment is obtained by changing the shapes of the welded portion 33 and the welding member 60 according to the first embodiment, and the configuration, operation, and effect common to the first embodiment are duplicated. Description is omitted. The same reference numerals are used for the same configurations as those in the first embodiment.

実施形態2のスリーブ130の囲部31における被溶着部133は、図7乃至図9に示すように、実施形態1の被溶着部33と異なり、囲部31の開口縁部における下端面から下方に突出して形成されている。
被溶着部133は、実施形態1と同様に、囲部31の下側開口縁部における4辺のうち、3辺の中央部分にそれぞれ1つずつ配されており、各被溶着部133の配置は、略三角形の頂点部分に位置する、三角形配置とされている。また、被溶着部133は、略円柱形状をなしており、被溶着部133の下面は、フラットで回路基板50と平行な被溶着面134とされている。
As shown in FIGS. 7 to 9, the welded portion 133 in the surrounding portion 31 of the sleeve 130 according to the second embodiment differs from the welded portion 33 in the first embodiment from the lower end surface at the opening edge portion of the surrounding portion 31. Is formed to protrude.
As in the first embodiment, the welded portions 133 are arranged one by one at the center of the three sides of the four sides of the lower opening edge of the surrounding portion 31, and the positions of the welded portions 133 are arranged. Is a triangular arrangement located substantially at the apex of a triangle. The welded portion 133 has a substantially cylindrical shape, and the lower surface of the welded portion 133 is a flat welded surface 134 that is flat and parallel to the circuit board 50.

一方、実施形態2の溶着部材160は、回路基板50の取付孔51内に完全に収容され、溶着部材160の上面は回路基板50の上面と面一状態となっている。溶着部材160の上部における略中央部分には、被溶着部133を収容可能な収容部162が形成されている。収容部162は、回路基板50の上面と同じ高さ位置から下方に向かって丸孔状に凹んだ形態をなし、収容部162の内径寸法は、被溶着部133の外径寸法よりも僅かに大きく形成されている。そして、被溶着部133が収容部162内に上方から挿入可能とされると、被溶着部133の周方向にクリアランスCを有した状態で被溶着部133が収容部162内に収容されるようになっている。   On the other hand, the welding member 160 of the second embodiment is completely accommodated in the mounting hole 51 of the circuit board 50, and the upper surface of the welding member 160 is flush with the upper surface of the circuit board 50. An accommodating portion 162 that can accommodate the welded portion 133 is formed at a substantially central portion of the upper portion of the welding member 160. The accommodating portion 162 has a shape that is recessed in a round hole shape downward from the same height position as the upper surface of the circuit board 50, and the inner diameter dimension of the accommodating portion 162 is slightly smaller than the outer diameter dimension of the welded portion 133. Largely formed. When the welded part 133 can be inserted into the housing part 162 from above, the welded part 133 is housed in the housing part 162 with a clearance C in the circumferential direction of the welded part 133. It has become.

また、収容部162の深さ寸法は、被溶着部133の突出寸法よりも僅かに小さく形成されており、収容部162の奥部は、被溶着部133の被溶着面134に対応してフラットな溶着面161とされている。このため、被溶着部133が収容部162内に挿入されると、図11に示すように、被溶着部133の被溶着面134と収容部162の溶着面161とが面接触した状態となって、収容部162から被溶着部133が僅かに突出した状態となる。そして、溶着面161と被溶着面134とが接触した状態で、外部から囲部31を通してレーザ光Lを収容部162の溶着面161に照射することで、溶着部材160が溶融して、図10に示すように、溶着面161と被溶着面134とが密着した状態となる。また、溶融した溶着部材160は、クリアランスC内に流れ出て収容部162内に留められ、図示省略しているが、囲部31の位置決め部38が回路基板50の上面50Aと当接する。また、溶着部材160の上面が回路基板50の上面50と面一状態であることから、溶着部材160の上面と位置決め部38とが当接する。そして、溶着部材160が冷却されて硬化することで、回路基板50とスリーブ部材130とが一体に溶着固定される。すなわち、位置決め部38が溶着部材160の上面によっても上下方向に位置決めされるので、スリーブ部材130を回路基板50に対してさらに確実に位置決めすることができる。   Moreover, the depth dimension of the accommodating part 162 is formed slightly smaller than the protruding dimension of the welded part 133, and the inner part of the accommodating part 162 is flat corresponding to the welded surface 134 of the welded part 133. The welding surface 161 is the same. For this reason, when the welded portion 133 is inserted into the housing portion 162, the welded surface 134 of the welded portion 133 and the welded surface 161 of the housing portion 162 are in surface contact as shown in FIG. Thus, the welded portion 133 slightly protrudes from the accommodating portion 162. Then, in a state where the welding surface 161 and the welding surface 134 are in contact with each other, the welding member 160 is melted by irradiating the welding surface 161 of the housing portion 162 with the laser light L through the surrounding portion 31 from the outside. As shown in FIG. 2, the welding surface 161 and the welding surface 134 are in close contact with each other. Further, the melted welding member 160 flows out into the clearance C and is retained in the accommodating portion 162, and although not illustrated, the positioning portion 38 of the surrounding portion 31 contacts the upper surface 50 </ b> A of the circuit board 50. Further, since the upper surface of the welding member 160 is flush with the upper surface 50 of the circuit board 50, the upper surface of the welding member 160 and the positioning portion 38 come into contact with each other. The circuit board 50 and the sleeve member 130 are integrally welded and fixed by cooling and hardening the welding member 160. That is, since the positioning portion 38 is positioned in the vertical direction also by the upper surface of the welding member 160, the sleeve member 130 can be positioned more reliably with respect to the circuit board 50.

ところで、溶着部材にレーザ光を照射することで溶着部材が大量に溶融する場合、溶融した溶着部材を収容する部分がないと、溶融した溶着部材が回路基板50上に流れ出て、溶着部材が回路基板50上の意図しない場所に付着する虞がある。   By the way, when the welding member is melted in a large amount by irradiating the welding member with laser light, if there is no portion for accommodating the molten welding member, the molten welding member flows out on the circuit board 50, and the welding member becomes a circuit. There is a risk of adhering to an unintended location on the substrate 50.

ところが、本実施形態によると、溶融した溶着部材160を収容部162内に留めることができるので、溶着部材160が回路基板50上の意図しない場所に付着することを防止することができるようになっている。   However, according to the present embodiment, since the melted welding member 160 can be retained in the accommodating portion 162, the welding member 160 can be prevented from adhering to an unintended location on the circuit board 50. ing.

<実施形態3>
次に、本発明の実施形態3について図12を参照して説明する。
実施形態3の光ユニット210は、実施形態1における被溶着部33および溶着部材60の形状を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
<Embodiment 3>
Next, Embodiment 3 of the present invention will be described with reference to FIG.
The optical unit 210 of the third embodiment is obtained by changing the shapes of the welded portion 33 and the welding member 60 in the first embodiment, and the configuration, operation, and effect common to the first embodiment are duplicated. Description is omitted. The same reference numerals are used for the same configurations as those in the first embodiment.

実施形態3の被溶着部233は、実施形態1の被溶着部33とは異なり、実施形態1の被溶着部33が形成された位置における囲部31の下側開口縁部の下端部全体とされている。また、被溶着部233における内側および外側の両側面が被溶着面234(囲部31の下側開口縁部の下端部における内側面および外側面)とされている。   The welded portion 233 of the third embodiment is different from the welded portion 33 of the first embodiment, and the entire lower end portion of the lower opening edge of the surrounding portion 31 at the position where the welded portion 33 of the first embodiment is formed. Has been. In addition, both inner and outer side surfaces of the welded portion 233 are welded surfaces 234 (inner and outer surfaces at the lower end of the lower opening edge of the surrounding portion 31).

一方、実施形態3の溶着部材260は、実施形態1と同様に、回路基板50の上面50Aから上方に向かって突出して形成されており、被溶着部233を内側と外側から挟むように被溶着部233に沿うように配されている。
溶着部材260において、被溶着部233の被溶着面234に沿って配される部分は溶着面261とされ、この溶着面261にレーザ光Lを照射することで、溶着部材260が被溶着部233を内外から挟むように溶着固定されるようになっている。
On the other hand, the welding member 260 of the third embodiment is formed so as to protrude upward from the upper surface 50A of the circuit board 50 as in the first embodiment, and is welded so as to sandwich the welded portion 233 from the inner side and the outer side. It is arranged along the part 233.
In the welding member 260, a portion disposed along the welding surface 234 of the welded portion 233 is a welding surface 261, and the welding member 260 is irradiated with the laser light L so that the welding member 260 is welded 233. Is fixed by welding so as to be sandwiched from inside and outside.

つまり、本実施形態によると、溶着部材260と被溶着部233とを溶着させる前から位置決め部38を回路基板50の上面50Aに当接させて、回路基板50に対してスリーブ部材230を上下方向(当接方向)に位置決めした状態で、溶着部材260と被溶着部233とを溶着させることができるので、回路基板50に対してスリーブ部材230が上下方向に位置ずれして溶着固定されることを確実に防止することができる。これにより、光電変換素子20と光ファイバF1とを高精度に光結合させつつ、回路基板50に対してスリーブ部材230を溶着固定することができる。   That is, according to the present embodiment, the positioning member 38 is brought into contact with the upper surface 50 </ b> A of the circuit board 50 before the welding member 260 and the welded part 233 are welded, and the sleeve member 230 is moved in the vertical direction with respect to the circuit board 50. Since the welding member 260 and the welded portion 233 can be welded in a state of being positioned in the (contact direction), the sleeve member 230 is displaced in the vertical direction with respect to the circuit board 50 and is fixed by welding. Can be reliably prevented. Thereby, the sleeve member 230 can be welded and fixed to the circuit board 50 while optically coupling the photoelectric conversion element 20 and the optical fiber F1 with high accuracy.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、位置決め部38を回路基板50に対して平行なフラットな形状に構成したが、本発明はこのような態様に限定されるものではなく、例えば、位置決め部を、丸みを帯びた形状や尖った形状に構成してもよい。
(2)上記実施形態では、溶着部材60,160,260を黒色に構成したが、本発明はこのような態様に限定されるものではなく、例えば、レーザ光を吸収しやすい紺色や濃い灰色などに構成してもよい。
(3)上記実施形態では、囲部31に1本のスリーブ32が形成された構成としたが、本発明はこのような態様に限定されるものではなく、例えば、囲部31に受光用と発光用の一対のスリーブが形成されてもよい。
(4)上記実施形態3では、被溶着部233を溶着部材260によって内側と外側とから挟んで溶着する構成としたが、本発明はこのような態様に限定されるものではなく、例えば、囲部の角部に設けられた被溶着部に溶着部材を直交して配置し、溶着部材を直交する2方向から被溶着部に溶着させてもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above-described embodiment, the positioning portion 38 is configured in a flat shape parallel to the circuit board 50. However, the present invention is not limited to such a mode. For example, the positioning portion is rounded. You may comprise in a tinged shape or a pointed shape.
(2) In the above embodiment, the welding members 60, 160, and 260 are configured to be black. However, the present invention is not limited to such a mode, and for example, amber or dark gray that easily absorbs laser light. You may comprise.
(3) In the above embodiment, the sleeve 31 is formed in the surrounding portion 31. However, the present invention is not limited to such an embodiment. A pair of sleeves for light emission may be formed.
(4) In the third embodiment, the welded portion 233 is welded by being sandwiched between the inner side and the outer side by the welding member 260, but the present invention is not limited to such an embodiment. Alternatively, the welding member may be disposed orthogonally to the welded part provided at the corner of the part, and the welded member may be welded to the welded part from two orthogonal directions.

10,110,210:光ユニット
20:光電変換素子
30,130,230:スリーブ部材
33,133,233:被溶着部
38:位置決め部
50:回路基板
60,160,260:溶着部材
162:収容部
F:フェルール
F1:光ファイバ
L:レーザ光
10, 110, 210: Optical unit 20: Photoelectric conversion elements 30, 130, 230: Sleeve members 33, 133, 233: Welded portion 38: Positioning portion 50: Circuit boards 60, 160, 260: Welding member 162: Housing portion F: Ferrule F1: Optical fiber L: Laser light

Claims (8)

光電変換素子が実装された回路基板と、
前記回路基板に固定され、光ファイバの端末に装着されたフェルールが嵌合されるスリーブ部材と、
前記回路基板に設けられ、前記スリーブ部材に溶着された熱可塑性樹脂からなる溶着部材と、
前記スリーブ部材において前記回路基板に対向して設けられ、前記溶着部材が前記スリーブ部材に溶着される際に前記回路基板と当接した状態となる位置決め部とを備えている光ユニット。
A circuit board on which a photoelectric conversion element is mounted;
A sleeve member fixed to the circuit board and fitted with a ferrule attached to an end of an optical fiber;
A welding member made of a thermoplastic resin provided on the circuit board and welded to the sleeve member;
An optical unit provided with a positioning portion that is provided in the sleeve member so as to face the circuit board and is in contact with the circuit board when the welding member is welded to the sleeve member.
前記溶着部材は、前記回路基板から前記スリーブ部材側に向かって突出して形成されており、
前記スリーブ部材は、前記回路基板側に開口して形成され、前記溶着部材の突出端を奥部に当接させた状態で収容する被溶着部を備えており、
前記位置決め部は、前記被溶着部の開口縁部に形成されている請求項1に記載の光ユニット。
The welding member is formed to protrude from the circuit board toward the sleeve member side,
The sleeve member is formed to be open on the circuit board side, and includes a welded portion that is accommodated in a state in which the protruding end of the welding member is in contact with the inner portion,
The optical unit according to claim 1, wherein the positioning portion is formed at an opening edge portion of the welded portion.
前記スリーブ部材は、前記回路基板側に向かって突出する被溶着部を備えており、
前記溶着部材は、前記被溶着部の突出端を奥部に当接させた状態で収容する収容部を備えている請求項1に記載の光ユニット。
The sleeve member includes a welded portion that protrudes toward the circuit board side,
The optical unit according to claim 1, wherein the welding member includes a housing portion that houses the protruding end of the welded portion in contact with a back portion.
前記位置決め部は、さらに前記溶着部材にも当接する請求項3に記載の光ユニット。   The optical unit according to claim 3, wherein the positioning portion further abuts on the welding member. 前記溶着部材は、前記スリーブ部材側に向かって突出して形成されており、
前記スリーブ部材は、前記位置決め部が前記回路基板に当接した状態で、前記溶着部材の突出方向と交差する方向に沿って配されて前記溶着部材と溶着される被溶着部を備えている請求項1に記載の光ユニット。
The welding member is formed to protrude toward the sleeve member side,
The sleeve member includes a welded portion that is disposed along a direction intersecting a protruding direction of the welding member and is welded to the welding member in a state where the positioning portion is in contact with the circuit board. Item 4. The optical unit according to Item 1.
前記溶着部材は、前記回路基板に複数設けられている請求項1乃至請求項5の何れか一項に記載の光ユニット。   The optical unit according to claim 1, wherein a plurality of the welding members are provided on the circuit board. 回路基板に設けられた熱可塑性の溶着部材に、フェルールが嵌合可能な光透過性を有するスリーブ部材を当接させて配置し、前記スリーブ部材を通してレーザ光を前記溶着部材に照射することにより、前記溶着部材と前記スリーブ部材とを溶着固定する光ユニットの製造方法であって、
前記溶着部材と前記スリーブ部材とが溶着する際に、前記スリーブ部材における前記回路基板側に設けられた位置決め部が、前記回路基板と当接した状態になることで、前記回路基板に対して前記スリーブ部材を位置決めする光ユニットの製造方法。
A thermoplastic welding member provided on the circuit board is placed in contact with a sleeve member having optical transparency that can be fitted with a ferrule, and laser light is irradiated to the welding member through the sleeve member. A method of manufacturing an optical unit for welding and fixing the welding member and the sleeve member,
When the welding member and the sleeve member are welded, a positioning portion provided on the circuit board side of the sleeve member is in contact with the circuit board so that the circuit board is in contact with the circuit board. An optical unit manufacturing method for positioning a sleeve member.
前記位置決め部は、前記溶着部材が溶融する前は前記回路基板から離れており、前記溶着部材が溶融する際に、前記回路基板に当接する請求項7に記載の光ユニットの製造方法。   The method of manufacturing an optical unit according to claim 7, wherein the positioning portion is separated from the circuit board before the welding member melts, and contacts the circuit board when the welding member melts.
JP2012122012A 2012-05-29 2012-05-29 Optical unit and manufacturing method of optical unit Pending JP2013246397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122012A JP2013246397A (en) 2012-05-29 2012-05-29 Optical unit and manufacturing method of optical unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122012A JP2013246397A (en) 2012-05-29 2012-05-29 Optical unit and manufacturing method of optical unit

Publications (1)

Publication Number Publication Date
JP2013246397A true JP2013246397A (en) 2013-12-09

Family

ID=49846185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122012A Pending JP2013246397A (en) 2012-05-29 2012-05-29 Optical unit and manufacturing method of optical unit

Country Status (1)

Country Link
JP (1) JP2013246397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811891B1 (en) * 2019-08-08 2021-01-13 三菱電機株式会社 Optical sensor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811891B1 (en) * 2019-08-08 2021-01-13 三菱電機株式会社 Optical sensor module
WO2021024453A1 (en) * 2019-08-08 2021-02-11 三菱電機株式会社 Optical sensor module

Similar Documents

Publication Publication Date Title
US7280724B2 (en) Optical subassembly and optical transceiver installing the same
JP5622060B2 (en) Light assembly
JP2006338018A (en) Optical assembly
JP2013109311A (en) Optical module
JP2005311363A (en) Optical assembly with enhanced electrostatic breakdown withstand voltage
JP2007199461A (en) Optical module
JP2016206427A (en) Optical module and method of manufacturing the same
JP2011002477A (en) Optical communication module
JP2010078806A (en) Optical module, optical transmission device, and surface optical device
JP2010199302A (en) Optical semiconductor device
JP2013246397A (en) Optical unit and manufacturing method of optical unit
JP2011201237A (en) Housing assembly structure and housing assembling method
JP2007189030A (en) Semiconductor laser device
JP2007072199A (en) Optical module and optical transmission device
JP2010160401A (en) Optical transceiver and method of manufacturing the same
JP2010244974A (en) Projection lens mounting structure for projector type lamp, and projector type lamp using the same
WO2019012607A1 (en) Optical module
KR20070113651A (en) Passively aligned optical subassembly and manufacturing method thereof
JP6085218B2 (en) Optical module
JP2010204278A (en) Optical transmitting device
JP2008003168A (en) Optical module
JP6421557B2 (en) Optical module and optical cable
JP2014025976A (en) Optical assembly and optical connector
JP2013057809A (en) Optical fiber, optical fiber module and method of manufacturing optical fiber
JP4085919B2 (en) Optical module