JP2013245992A - Strain sensor and strain sensor system - Google Patents

Strain sensor and strain sensor system Download PDF

Info

Publication number
JP2013245992A
JP2013245992A JP2012118644A JP2012118644A JP2013245992A JP 2013245992 A JP2013245992 A JP 2013245992A JP 2012118644 A JP2012118644 A JP 2012118644A JP 2012118644 A JP2012118644 A JP 2012118644A JP 2013245992 A JP2013245992 A JP 2013245992A
Authority
JP
Japan
Prior art keywords
strain
amount
strain sensor
portions
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118644A
Other languages
Japanese (ja)
Other versions
JP5952641B2 (en
Inventor
Takanori Saito
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2012118644A priority Critical patent/JP5952641B2/en
Publication of JP2013245992A publication Critical patent/JP2013245992A/en
Application granted granted Critical
Publication of JP5952641B2 publication Critical patent/JP5952641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strain sensor in which a maximum strain amount of an object to be measured can be measured in arbitrary timing without requiring a measuring instrument for monitoring the object to be measured at all the time, and a strain sensor system.SOLUTION: A strain sensor comprises an outer frame part 16, a pressing part 17, beam parts 16a-16c of which both end portions are supported to the outer frame part 16 and which are arrayed at predetermined intervals in one direction with respect to the pressing part 17, main electrode parts 18a-18c formed on the beam parts 16a-16c, and a plurality of terminal parts 18d-18g formed on the outer frame part 16 and electrically connected with both end portions of the main electrode parts 18a-18c, respectively. When a strain amount of an object to be measured reaches a value specified by the predetermined intervals of the beam parts 16a-16c, the beam parts 16a-16c and the corresponding main electrode parts 18a-18c are destroyed successively from the side closer to the pressing part 17 in an irreversible manner by the pressing part 17.

Description

本発明は、被測定体に発生した歪を測定するための歪センサ及び歪センサシステムに関する。   The present invention relates to a strain sensor and a strain sensor system for measuring strain generated in a measurement object.

ビルや橋梁(道路や鉄道の高架等も含む)等の構造物の安全性を診断するために、これらの構造物の歪や応力を計測することが広く行われている。歪を計測するセンサの例としては、FBG(Fiber Bragg Grating)方式の光ファイバセンサ(例えば、特許文献1参照)や半導体ピエゾ抵抗を利用した半導体歪ゲージ(例えば、特許文献2参照)等が挙げられる。   In order to diagnose the safety of structures such as buildings and bridges (including roads and railway overpasses), it is widely performed to measure strain and stress of these structures. Examples of sensors for measuring strain include an FBG (Fiber Bragg Grating) type optical fiber sensor (for example, see Patent Document 1), a semiconductor strain gauge using a semiconductor piezoresistor (for example, see Patent Document 2), and the like. It is done.

FBGセンサは、光ファイバのコア部の屈折率を光の進行方向において周期的に変化させ、グレーティングとしたものである。FBGセンサのグレーティング部は、入射光のうち特定波長(ブラッグ波長という)の光を反射し、他の波長の光をそのまま透過させるようになっている。ブラッグ波長は、グレーティング部が受ける軸方向の歪み(圧縮、伸長)や温度変化に対して線形に変化する。従って、FBGセンサのグレーティング部を被測定体に固定した上でブラッグ波長の変化量を検出すれば、被測定体の歪量を計測することができる。   The FBG sensor is a grating in which the refractive index of the core portion of the optical fiber is periodically changed in the light traveling direction. The grating part of the FBG sensor reflects light of a specific wavelength (referred to as Bragg wavelength) out of incident light and transmits light of other wavelengths as it is. The Bragg wavelength changes linearly with respect to axial strain (compression, expansion) and temperature change that the grating section receives. Therefore, if the amount of change in the Bragg wavelength is detected after fixing the grating portion of the FBG sensor to the measurement object, the distortion amount of the measurement object can be measured.

半導体歪ゲージは、不純物がドープされたシリコンなどの半導体部分を有しており、FBGセンサと同様に被測定体に固定された状態で使用される。このゲージを用いれば、半導体部分が歪を受けて変形した時の抵抗変化から、被測定体の歪量を計測することができる。   The semiconductor strain gauge has a semiconductor portion such as silicon doped with impurities, and is used in a state of being fixed to a measured object in the same manner as the FBG sensor. By using this gauge, it is possible to measure the amount of strain of the measured object from the resistance change when the semiconductor portion is deformed due to strain.

特許第4868593号明細書Japanese Patent No. 4868593 特許第4566227号明細書Japanese Patent No. 4566227

構造物の安全性を診断する上では、その構造物に印加された歪量の最大値(最大歪量)を知ることが重要である。特許文献1や特許文献2に開示された従来の歪センサは、被測定体の歪量に従ってブラッグ波長や電気抵抗の値が変化するものであり、それらの変化は可逆的である。それ故に、従来の歪センサを用いて歪量を計測する計測システムは、最大歪量を得るために被測定体の常時監視を行わなければならず、歪センサが設置される構造物ごとに測定器が設置されることが必須となり、コストがかかるという課題があった。   In diagnosing the safety of a structure, it is important to know the maximum value (maximum strain amount) of the amount of strain applied to the structure. In the conventional strain sensors disclosed in Patent Document 1 and Patent Document 2, the Bragg wavelength and the value of electrical resistance change according to the amount of strain of the measured object, and these changes are reversible. Therefore, a measurement system that measures the amount of strain using a conventional strain sensor must constantly monitor the object to be measured in order to obtain the maximum amount of strain, and measures each structure where the strain sensor is installed. It was essential to install a vessel, and there was a problem that it was expensive.

また、従来の歪センサを用いた計測システムは、歪センサ自体が正常であっても、測定器が故障して測定が行われなかった場合には、測定器が故障していた期間の最大歪量が不明になってしまうという課題も有していた。   In addition, when a measurement system using a conventional strain sensor is normal, even if the strain sensor itself is normal, if the measurement device fails and no measurement is performed, the maximum strain during the period in which the measurement device has failed is measured. There was also a problem that the amount became unknown.

本発明は、このような従来の課題を解決するためになされたものであって、被測定体の常時監視を行うための測定器を必要とせず、被測定体の最大歪量を任意のタイミングで測定可能な歪センサ及び歪センサシステムを提供することを目的とする。   The present invention has been made in order to solve such a conventional problem, and does not require a measuring instrument for constantly monitoring the measured object, so that the maximum distortion amount of the measured object can be set at an arbitrary timing. An object of the present invention is to provide a strain sensor and a strain sensor system that can be measured by the above method.

上記課題を解決するために、本発明の請求項1の歪センサは、被測定体の表面に固定するための取り付け部、並びに、前記被測定体の歪量に応じて互いの対向距離が短くなる第1の対向部及び第2の対向部を有するベース板と、少なくとも一部が前記第1の対向部上に固定される最大歪量保持部、及び、少なくとも一部が前記第2の対向部上に固定される押圧部を有するセンサ部と、を備え、前記最大歪量保持部は、外枠部と、両端部が当該外枠部に支持され、前記押圧部に対して一方向に所定の間隔を設けて配列された少なくとも1つの梁部と、当該各梁部上に形成された主電極部と、前記外枠部上に形成され、前記各主電極部の両端部とそれぞれ電気的に接続された複数の端子部と、を有し、前記梁部及び対応する前記主電極部は、前記被測定体の歪量が前記梁部の前記所定の間隔により規定される値に到達したときに、前記押圧部により当該押圧部に近い側から順次不可逆的に破壊されることを特徴とする構成を有している。   In order to solve the above problems, the strain sensor according to claim 1 of the present invention has a mounting portion for fixing to the surface of the measured object, and the opposing distance is short according to the amount of strain of the measured object. A base plate having a first facing portion and a second facing portion, a maximum strain amount holding portion at least partially fixed on the first facing portion, and at least a portion facing the second facing A sensor part having a pressing part fixed on the part, and the maximum strain amount holding part is supported by the outer frame part and both end parts in one direction with respect to the pressing part. At least one beam portion arranged at a predetermined interval, a main electrode portion formed on each of the beam portions, and both ends of each main electrode portion formed on the outer frame portion, respectively. A plurality of terminal portions connected to each other, the beam portion and the corresponding main electrode portion, When the strain amount of the measuring body reaches a value defined by the predetermined interval of the beam portion, the pressing portion is sequentially and irreversibly destroyed from the side close to the pressing portion. Have.

この構成により、本発明の請求項1の歪センサは、被測定体に印加された最大歪量を不可逆的に保持する最大歪量保持部を有することにより、被測定体の常時監視を行うための測定器を用いずに、被測定体の最大歪量を任意のタイミングで測定することを可能とする。   With this configuration, the strain sensor according to the first aspect of the present invention has a maximum strain amount holding unit that irreversibly holds the maximum strain amount applied to the measured object, thereby constantly monitoring the measured object. It is possible to measure the maximum strain amount of the object to be measured at an arbitrary timing without using the measuring instrument.

また、本発明の請求項2の歪センサは、前記センサ部が、初期状態において前記押圧部を前記外枠部に連結して支持するとともに、前記被測定体の歪量が所定値に到達したときに不可逆的に破壊される支持部をさらに有することを特徴とする構成を有していてもよい。   Further, in the strain sensor according to claim 2 of the present invention, the sensor unit connects and supports the pressing portion to the outer frame portion in an initial state, and the strain amount of the measured object reaches a predetermined value. You may have the structure characterized by further having a support part broken sometimes irreversibly.

また、本発明の請求項3の歪センサは、前記センサ部がMEMS技術により一体形成されていることを特徴とする構成を有している。   The strain sensor according to a third aspect of the present invention has a configuration in which the sensor portion is integrally formed by a MEMS technique.

この構成により、本発明の請求項3の歪センサは、各梁部と押圧部の先端との距離を精度良く構成できるとともに、取得したい最大歪量に応じてそれらの距離を任意に設定することが可能である。   With this configuration, the strain sensor according to claim 3 of the present invention can accurately configure the distance between each beam portion and the tip of the pressing portion, and can arbitrarily set the distance according to the maximum strain amount to be acquired. Is possible.

また、本発明の請求項4の歪センサシステムは、上記の歪センサと、前記最大歪量保持部における前記各端子部に電気的に接続され、前記各主電極部の電気抵抗に基づいて前記被測定体の最大歪量を検出する最大歪量検出部と、を備えることを特徴とする構成を有している。   The strain sensor system according to claim 4 of the present invention is electrically connected to the above-described strain sensor and each of the terminal portions in the maximum strain amount holding portion, and based on the electrical resistance of each of the main electrode portions. And a maximum strain amount detection unit for detecting the maximum strain amount of the measurement object.

この構成により、本発明の請求項4の歪センサシステムは、被測定体に印加された最大歪量を不可逆的に保持する歪センサを備えることにより、被測定体の常時監視を行うための測定器を用いずに、最大歪量を任意のタイミングで測定することができる。   With this configuration, the strain sensor system according to claim 4 of the present invention includes a strain sensor that irreversibly holds the maximum amount of strain applied to the measured object, thereby performing measurement for constantly monitoring the measured object. The maximum distortion amount can be measured at an arbitrary timing without using an instrument.

本発明は、被測定体に印加された最大歪量を不可逆的に保持することにより、被測定体の常時監視を行うための測定器を必要とせず、被測定体の最大歪量を任意のタイミングで測定可能な歪センサ及び歪センサシステムを提供するものである。   The present invention irreversibly holds the maximum strain applied to the measured object, so that a measuring instrument for constantly monitoring the measured object is not required, and the maximum strain of the measured object can be set to an arbitrary value. A strain sensor and a strain sensor system that can be measured at timing are provided.

第1の実施形態に係る歪センサの構成を示す上面図The top view which shows the structure of the distortion sensor which concerns on 1st Embodiment. 第1の実施形態に係る歪センサの要部の構成を示す上面図The top view which shows the structure of the principal part of the strain sensor which concerns on 1st Embodiment. 図2に示す歪センサのA−A断面図AA sectional view of the strain sensor shown in FIG. 第1の実施形態に係る歪センサにおけるベース板の構成を示す上面図The top view which shows the structure of the base board in the strain sensor which concerns on 1st Embodiment. 第1の実施形態に係る歪センサを備えた歪センサシステム(その1)の構成図1 is a configuration diagram of a strain sensor system (part 1) including a strain sensor according to a first embodiment. 第1の実施形態に係る歪センサを備えた歪センサシステム(その2)の構成図Configuration diagram of a strain sensor system (part 2) including the strain sensor according to the first embodiment 第2の実施形態に係る歪センサの構成を示す上面図The top view which shows the structure of the distortion sensor which concerns on 2nd Embodiment. 第2の実施形態に係る歪センサにおける取り付けネジの取り付け箇所を示す説明図Explanatory drawing which shows the attachment location of the attachment screw in the strain sensor which concerns on 2nd Embodiment. 第3の実施形態に係る歪センサの構成を示す上面図The top view which shows the structure of the strain sensor which concerns on 3rd Embodiment. 第3の実施形態に係る歪センサにおけるベース板の構成を示す上面図The top view which shows the structure of the base plate in the strain sensor which concerns on 3rd Embodiment.

以下、本発明に係る歪センサ及び歪センサシステムの実施形態について図面を用いて説明する。なお、各図面上の各構成の寸法比は、実際の寸法比と必ずしも一致していない。   Hereinafter, embodiments of a strain sensor and a strain sensor system according to the present invention will be described with reference to the drawings. In addition, the dimensional ratio of each structure on each drawing does not necessarily correspond with the actual dimensional ratio.

(第1の実施形態)
まず、第1の実施形態に係る歪センサ1の構成について説明する。図1〜4に示すように、歪センサ1は、金属製のベース板11と、ベース板11上に設置されるセンサ部12と、を主に備える。
(First embodiment)
First, the configuration of the strain sensor 1 according to the first embodiment will be described. As shown in FIGS. 1 to 4, the strain sensor 1 mainly includes a metal base plate 11 and a sensor unit 12 installed on the base plate 11.

ベース板11は、被測定体10の表面に取り付けられることにより、被測定体10の外力あるいは温度による歪に応じて変形するようになっている。被測定体10としては、ビル、河川堤防等の各種堤体、地盤斜面、岩盤、橋梁(道路や鉄道の高架等も含む)等の構造物が挙げられる。図3、4に示すように、ベース板11は、歪センサ1を被測定体10の表面に取り付けるための取り付け面1a、及び、複数の取り付け穴13a、13bと、初期状態(被測定体10に歪がない状態)でX方向に所定の距離だけ離れて対向し、被測定体10の圧縮歪量に応じてその対向距離が短くなる第1の対向部14及び第2の対向部15と、を有する。   The base plate 11 is attached to the surface of the measured object 10 so as to be deformed according to the external force of the measured object 10 or the strain due to temperature. Examples of the object to be measured 10 include structures such as buildings, various levee bodies such as river embankments, ground slopes, bedrocks, bridges (including road and railroad overpasses, etc.). As shown in FIGS. 3 and 4, the base plate 11 includes an attachment surface 1 a for attaching the strain sensor 1 to the surface of the measurement object 10, a plurality of attachment holes 13 a and 13 b, and an initial state (the measurement object 10 The first facing portion 14 and the second facing portion 15 that face each other at a predetermined distance in the X direction and whose facing distance is shortened according to the amount of compressive strain of the object 10 to be measured. Have.

ここで、取り付け面1a及び取り付け穴13a、13bは、取り付け部を構成している。取り付け穴13aは第1の対向部14側に形成され、一方、取り付け穴13bは第2の対向部15側に形成される。なお、図3は、図1のA−A断面図であるが、取り付け穴13a、13bを介して被測定体10に取り付けネジ20a、20bがねじ込まれた状態を示している。   Here, the attachment surface 1a and the attachment holes 13a and 13b constitute an attachment portion. The mounting hole 13a is formed on the first facing portion 14 side, while the mounting hole 13b is formed on the second facing portion 15 side. FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1, and shows a state in which the mounting screws 20a and 20b are screwed into the measurement object 10 through the mounting holes 13a and 13b.

ここで、第1及び第2の対向部14、15はそれぞれベース板11の長手方向(X方向)に突出する突出部位14a、15aを有しており、これらの突出部位14a、15a上に接着剤によりセンサ部12が接着されるようになっている。ベース板11のX方向の長さDは、例えば100mmである。   Here, the first and second facing portions 14 and 15 have projecting portions 14a and 15a that project in the longitudinal direction (X direction) of the base plate 11, respectively, and are bonded onto these projecting portions 14a and 15a. The sensor unit 12 is bonded by the agent. The length D in the X direction of the base plate 11 is, for example, 100 mm.

センサ部12は、MEMS技術によりシリコン(Si)基板から一体形成されてなる。図2及び4に示すように、センサ部12は、略コの字状に形成され、少なくとも一部がベース板11の突出部位14a上に接着固定される外枠部16と、少なくとも一部がベース板11の突出部位15a上に接着固定される押圧部17と、両端部が外枠部16に支持されて梯子状に形成された梁部16a、16b、16cと、初期状態において押圧部17を外枠部16に連結して支持するとともに、被測定体10の歪量が所定値に到達したときに不可逆的に破壊される支持部17a、17b、17c、17dと、を有する。   The sensor unit 12 is integrally formed from a silicon (Si) substrate by MEMS technology. As shown in FIGS. 2 and 4, the sensor unit 12 is formed in a substantially U-shape, and at least a part thereof is bonded and fixed on the protruding portion 14 a of the base plate 11, and at least a part thereof. A pressing portion 17 that is bonded and fixed onto the protruding portion 15a of the base plate 11, beam portions 16a, 16b, and 16c formed in a ladder shape with both ends supported by the outer frame portion 16, and the pressing portion 17 in an initial state. And supporting portions 17a, 17b, 17c, and 17d that are irreversibly destroyed when the amount of strain of the measured object 10 reaches a predetermined value.

梁部16a〜16cは、押圧部17に近い方からこの順に、ベース板11の長手方向(X方向)に所定の間隔を設けて配列されている。ここでは、押圧部17の先端から梁部16aの中心までの距離をd、梁部16aと梁部16bの中心間距離をd、梁部16bと梁部16cの中心間距離をdとしている。各距離d〜dは例えば100μm程度の長さである。なお、距離d〜dは、全て同一である必要はなく、例えば押圧部17側から対数的に増加または減少するものであってもよい。また、梁部の個数は図2等に示した3個に限定されるものではなく、1個であってもよいし、4個以上であってもよい。 The beam portions 16 a to 16 c are arranged in this order from the side closer to the pressing portion 17 with a predetermined interval in the longitudinal direction (X direction) of the base plate 11. Here, d 1 the distance from the tip of the pressing portion 17 to the center of the beam portion 16a, the distance between the centers of the beam portion 16a and the beam section 16b d 2, the distance between the centers of the beam portion 16b and the beam portion 16c d 3 It is said. Each of the distances d 1 to d 3 has a length of about 100 μm, for example. The distances d 1 to d 3 do not have to be the same, and may be increased or decreased logarithmically from the pressing portion 17 side, for example. Further, the number of beam portions is not limited to three as shown in FIG. 2 and the like, and may be one or four or more.

即ち、押圧部17は、被測定体10の圧縮歪量に応じて支持部17a〜17dを破壊して、梁部16a〜16cに向かってX方向に移動するようになっている。そして、押圧部17は、被測定体10の圧縮歪量が所定値に到達すると梁部16aに接触し、さらに圧縮歪量が大きくなると遂には梁部16a〜16cを不可逆的に順次破壊するようになっている。   That is, the pressing portion 17 is configured to move in the X direction toward the beam portions 16a to 16c by destroying the support portions 17a to 17d in accordance with the amount of compressive strain of the measured object 10. The pressing portion 17 comes into contact with the beam portion 16a when the amount of compressive strain of the DUT 10 reaches a predetermined value, and finally the beam portions 16a to 16c are irreversibly sequentially broken when the amount of compressive strain further increases. It has become.

外枠部16及び梁部16a〜16cには電極18が形成されている。電極18は、各梁部16a〜16c上に金を蒸着することによって形成され、ベース板11の長手方向に垂直なY方向に延伸する主電極部18a、18b、18cと、外枠部16上に形成され、主電極部18a〜18cの両端部とそれぞれ電気的に接続された端子部18d、18e、18f、18gと、を有する。ここで、外枠部16、梁部16a〜16c、及び電極18は最大歪量保持部を構成する。   An electrode 18 is formed on the outer frame portion 16 and the beam portions 16a to 16c. The electrode 18 is formed by vapor-depositing gold on each beam portion 16 a to 16 c, and extends on the main electrode portions 18 a, 18 b and 18 c extending in the Y direction perpendicular to the longitudinal direction of the base plate 11, and on the outer frame portion 16. And terminal portions 18d, 18e, 18f, and 18g that are electrically connected to both ends of the main electrode portions 18a to 18c, respectively. Here, the outer frame portion 16, the beam portions 16a to 16c, and the electrode 18 constitute a maximum strain amount holding portion.

図2に示した例では、各主電極部18a、18b、18cに対応する端子部18d、18e、18fは、コの字形状の外枠部16の対向する辺の一方側に形成され、他方側に主電極部18a〜18cの共通電極としての端子部18gが形成されている。なお、主電極部18a〜18cと端子部18d〜18gとは、一体的に蒸着形成されたものであっても、別個に形成されたものであってもよい。   In the example shown in FIG. 2, the terminal portions 18d, 18e, 18f corresponding to the main electrode portions 18a, 18b, 18c are formed on one side of the opposite sides of the U-shaped outer frame portion 16, and the other A terminal portion 18g as a common electrode of the main electrode portions 18a to 18c is formed on the side. The main electrode portions 18a to 18c and the terminal portions 18d to 18g may be integrally formed by vapor deposition or may be formed separately.

このように構成された歪センサ1は、梁部16a〜16c及び対応する主電極部18a〜18cが破壊されることにより、被測定体10の圧縮歪量が、各梁部16a〜16cと押圧部17の先端との距離(d、d+d、d+d+d)によって規定される圧縮歪量St〜Stに到達したか否かを検出することができる。 In the strain sensor 1 configured as described above, when the beam portions 16a to 16c and the corresponding main electrode portions 18a to 18c are destroyed, the amount of compressive strain of the measured object 10 is pressed against each beam portion 16a to 16c. It is possible to detect whether or not the compression strain amounts St 1 to St 3 defined by the distances (d 1 , d 1 + d 2 , d 1 + d 2 + d 3 ) from the tip of the portion 17 have been reached.

次に、歪センサ1の被測定体10への取り付け手順について説明する。まず、ベース板11の突出部位14a(図4参照)上に、歪センサ1の外枠部16(図2参照)をエポキシ樹脂等の接着剤により接着固定する。この作業は工場の作業台で行われるとよい。次に、外枠部16が接着固定されたベース板11を被測定体10の表面に接着する。このとき、ベース板11の長手方向(X方向)は、被測定体10の圧縮歪量を測定したい方向に一致させることが望ましい。次に、取り付け穴13a、13bに取り付けネジ20a、20b(図3参照)をねじ込むことにより、ベース板11を被測定体10に固定する。最後に、ベース板11の突出部位15a上に押圧部17を接着固定する。   Next, a procedure for attaching the strain sensor 1 to the measured object 10 will be described. First, the outer frame portion 16 (see FIG. 2) of the strain sensor 1 is bonded and fixed to the protruding portion 14a (see FIG. 4) of the base plate 11 with an adhesive such as an epoxy resin. This work should be performed on a factory work table. Next, the base plate 11 to which the outer frame portion 16 is bonded and fixed is bonded to the surface of the measurement object 10. At this time, it is desirable that the longitudinal direction (X direction) of the base plate 11 coincides with the direction in which the amount of compressive strain of the DUT 10 is to be measured. Next, the base plate 11 is fixed to the DUT 10 by screwing the mounting screws 20a and 20b (see FIG. 3) into the mounting holes 13a and 13b. Finally, the pressing portion 17 is bonded and fixed on the protruding portion 15 a of the base plate 11.

なお、歪センサ1の被測定体10への取り付け手順は上記に限定されない。例えば、工場の作業台で突出部位15a上に押圧部17を接着固定した後に、押圧部17が接着固定されたベース板11を被測定体10の表面に接着し、最後に突出部位14a上に外枠部16を接着固定してもよい。   The procedure for attaching the strain sensor 1 to the measured object 10 is not limited to the above. For example, after the pressing portion 17 is bonded and fixed on the projecting portion 15a on a work table in a factory, the base plate 11 to which the pressing portion 17 is bonded and fixed is bonded to the surface of the measured object 10, and finally on the protruding portion 14a. The outer frame portion 16 may be bonded and fixed.

次に、本実施形態の歪センサ1を用いた被測定体10の圧縮歪量の測定方法について図5及び6を参照しながら説明する。この測定方法は、歪センサ1を備えた歪センサシステム40、50を用いるものである。   Next, a method for measuring the amount of compressive strain of the measurement object 10 using the strain sensor 1 of the present embodiment will be described with reference to FIGS. This measurement method uses strain sensor systems 40 and 50 each including the strain sensor 1.

図5に示すように、歪センサシステム40は、歪センサ1の各端子部18d〜18g(図2参照)に、それぞれ抵抗体R、R、Rを介して外部端子T、T、T、Tが電気的に接続された構成を有している。 As shown in FIG. 5, the strain sensor system 40 includes external terminals T 1 , T 3 connected to the terminal portions 18 d to 18 g (see FIG. 2) of the strain sensor 1 via resistors R 1 , R 2 , R 3 , respectively. 2 , T 3 , and T g are electrically connected.

図5の上段は、ベース板11に歪が加えられていない初期状態を示している。このとき、主電極部18a〜18cの電気抵抗は全てゼロであるため、外部端子Tと各外部端子T〜Tとの間の電気抵抗をデジタルマルチメータ等の測定手段(不図示)で測定すると、その測定結果は各抵抗体R〜Rの電気抵抗値に応じた所定の値となる。ここで、測定手段(不図示)と、抵抗体R〜Rと、外部端子T〜T、Tは、最大歪量検出部を構成している。 The upper part of FIG. 5 shows an initial state where the base plate 11 is not strained. At this time, the main electric resistance of the electrode portions 18a~18c are all zero, the external terminal T g and measuring means of the digital multimeter or the like electrical resistance between each external terminal T 1 through T 3 (not shown) The measurement result becomes a predetermined value corresponding to the electrical resistance value of each of the resistors R 1 to R 3 . Here, the measuring means (not shown), the resistors R 1 to R 3, and the external terminals T 1 to T 3 , T g constitute a maximum strain amount detection unit.

一方、図5の下段は、被測定体10の圧縮歪により、ベース板11が所定長さεだけX方向に収縮し、押圧部17に最も近い1本目の梁部16a(図2参照)が不可逆的に破壊された状態を示している。このとき、外部端子Tと外部端子T、Tとの間の電気抵抗は上記所定の値となるが、外部端子Tと外部端子Tとの間の電気抵抗(あるいは、主電極部18aの電気抵抗)は無限大となり、梁部16aが破壊されて主電極部18aに断線が生じたことが分かる。 On the other hand, in the lower part of FIG. 5, the base plate 11 contracts in the X direction by a predetermined length ε due to the compressive strain of the DUT 10, and the first beam portion 16 a (see FIG. 2) closest to the pressing portion 17. It shows a state of being irreversibly destroyed. At this time, the electrical resistance between the external terminal T g and the external terminal T 2, T 3 becomes the predetermined value, the electric resistance (or main electrodes between the external terminal T g and the external terminal T 1 The electrical resistance of the portion 18a becomes infinite, and it can be seen that the beam portion 16a is broken and the main electrode portion 18a is broken.

このように、外部端子Tと各外部端子T〜Tとの間の電気抵抗を測定することにより、被測定体10に加わった最大の圧縮歪量が、各梁部16a〜16cと押圧部17の先端との距離(d、d+d、d+d+d)によって規定される圧縮歪量St〜Stに到達したか否かを任意のタイミングで観測することが可能となる。 Thus, the maximum compressive strain amount by measuring the electrical resistance, which joined the object to be measured 10 between the external terminal T g and the external terminal T 1 through T 3 are, each beam portion 16a~16c Observing at an arbitrary timing whether or not the compression strain amount St 1 to St 3 defined by the distance (d 1 , d 1 + d 2 , d 1 + d 2 + d 3 ) with the tip of the pressing portion 17 has been reached. Is possible.

図6は、図5に示した外部端子T〜T、Tに代えて、梁部16a〜16c及び対応する主電極部18a〜18cの破壊状況を表示するLED等からなる表示ランプL、L、Lと、これらの表示ランプL〜Lに電力を供給するための電池19と、を備えた歪センサシステム50の構成を示している。ここで、抵抗体R〜Rと、表示ランプL〜Lと、電池19は最大歪量検出部を構成している。 6, in place of the external terminal T 1 ~T 3, T g shown in FIG. 5, an LED for displaying the breakdown status of the beam portion 16a~16c and the corresponding main electrode portion 18a~18c display lamp L 1 shows a configuration of a strain sensor system 50 including 1 , L 2 , L 3 and a battery 19 for supplying power to the display lamps L 1 to L 3 . Here, the resistors R 1 to R 3 , the display lamps L 1 to L 3, and the battery 19 constitute a maximum strain amount detection unit.

この構成によれば、梁部16a〜16c及び対応する主電極部18a〜18cがいずれも破壊されていない場合には、主電極部18a〜18cの電気抵抗は全てゼロであるため、表示ランプL〜Lのアノード側の電位とカソード側の電位はいずれもグラウンド電位となり、表示ランプL〜Lのいずれも点灯しない。しかしながら、一旦梁部16a〜16c及び対応する主電極部18a〜18cのいずれかが破壊されると、対応する表示ランプL〜Lのアノード側とカソード側に電位差が生じるため、対応する表示ランプL〜Lが点灯する。 According to this configuration, when none of the beam portions 16a to 16c and the corresponding main electrode portions 18a to 18c are destroyed, the electric resistances of the main electrode portions 18a to 18c are all zero. 1 anode potential and cathode potential of ~L 3 are all become the ground potential, none of the indicator lamps L 1 ~L 3 does not light. However, once one of the beam portion 16a~16c and the corresponding main electrode portion 18a~18c is broken, since a potential difference is generated on the anode side and the cathode side of the corresponding display lamp L 1 ~L 3, corresponding display Lamps L 1 to L 3 are lit.

例えば、押圧部17に近い側から1本目と2本目の梁部16a、16b(図2参照)が破壊されて、主電極部18a、18bに断線が生じた場合には、表示ランプL、Lに発光閾値電流以上の電流が印加されて表示ランプL、Lが点灯する。 For example, when the first and second beam portions 16a and 16b (see FIG. 2) are broken from the side close to the pressing portion 17 and the main electrode portions 18a and 18b are disconnected, the display lamps L 1 , display lamp L 1 L 2 to the light emission threshold current or more current is applied, L 2 is turned on.

このように、歪センサシステム50は、被測定体10の最大の圧縮歪量を目視で容易に確認できるという利点を有する。なお、図6に示した構成では、破壊された梁部に対応する表示ランプが点灯するとしたが、逆に、破壊されていない梁部に対応する表示ランプが常に点灯し、破壊された梁部に対応する表示ランプのみが消灯する構成であってもよい。   As described above, the strain sensor system 50 has an advantage that the maximum amount of compressive strain of the DUT 10 can be easily confirmed visually. In the configuration shown in FIG. 6, the display lamp corresponding to the broken beam portion is turned on. Conversely, the display lamp corresponding to the unbroken beam portion is always turned on and the broken beam portion is turned on. Only the display lamps corresponding to can be turned off.

以上説明したように、本実施形態に係る歪センサは、橋梁等の建造物に設置され、例えば地震が発生した際に建造物に印加された最大の圧縮歪量が、センサ部12の構成によって規定される圧縮歪量以上であったか否かを示す情報を不可逆的に保持することができる。従って、本実施形態に係る歪センサ及び歪センサシステムを用いれば、被測定体10に印加された最大の圧縮歪量の情報を地震が収まった後日に取得することが可能となる。   As described above, the strain sensor according to the present embodiment is installed in a building such as a bridge. For example, the maximum amount of compressive strain applied to the building when an earthquake occurs depends on the configuration of the sensor unit 12. It is possible to irreversibly hold information indicating whether or not the amount of compression strain is greater than the prescribed amount. Therefore, if the strain sensor and the strain sensor system according to the present embodiment are used, it is possible to acquire information on the maximum amount of compressive strain applied to the measured object 10 at a later date after the earthquake has stopped.

つまり、本実施形態に係る歪センサ及び歪センサシステムを用いれば、被測定体10の常時監視が不要となる。例えば複数の橋梁に本実施形態に係る歪センサを取り付けておき、測定者がデジタルマルチメータ等の簡易な測定器をそれぞれの橋梁に持参してその場で測定することにより、それぞれの橋梁に印加された最大の圧縮歪量を測定することが可能となる。このようにして、歪量を観測するための測定器が1つですむため、システム全体のコストが大幅に削減される。   That is, if the strain sensor and strain sensor system according to the present embodiment are used, it is not necessary to constantly monitor the measured object 10. For example, the strain sensors according to the present embodiment are attached to a plurality of bridges, and a measurer brings a simple measuring instrument such as a digital multimeter to each bridge and measures it on the spot, thereby applying to each bridge. It is possible to measure the maximum compression distortion amount. In this way, since only one measuring instrument is required for observing the amount of distortion, the cost of the entire system is greatly reduced.

また、本実施形態に係る歪センサは、センサ部12がMEMS技術により一体形成されるため、各梁部16a〜16cと押圧部17の先端との距離を精度良く構成できるとともに、取得したい最大歪量に応じてそれらの距離を任意に設定することが可能である。   In the strain sensor according to the present embodiment, since the sensor unit 12 is integrally formed by the MEMS technology, the distance between each beam unit 16a to 16c and the tip of the pressing unit 17 can be configured with high accuracy, and the maximum strain to be acquired is obtained. These distances can be arbitrarily set according to the amount.

なお、本実施形態では、センサ部12がMEMS技術により一体形成されるとしたが、センサ部12の外枠部16、押圧部17、梁部16a〜16c、支持部17a〜17dはそれぞれ別個に形成されたものであってもよい。なお、支持部17a〜17dを省略し、押圧部17が外枠部16と分離された構成であってもよい。   In the present embodiment, the sensor unit 12 is integrally formed by the MEMS technique. However, the outer frame unit 16, the pressing unit 17, the beam units 16a to 16c, and the support units 17a to 17d of the sensor unit 12 are separately provided. It may be formed. The support portions 17 a to 17 d may be omitted, and the pressing portion 17 may be separated from the outer frame portion 16.

また、押圧部17が梁部16a〜16cよりも十分に厚く形成されていると、押圧部17と梁部16a〜16cとが互いにZ方向に逆向きに歪んだ場合であっても、押圧部17による梁部16a〜16cの破壊に影響を与えにくくなるため好ましい。   Further, if the pressing portion 17 is formed to be sufficiently thicker than the beam portions 16a to 16c, even if the pressing portion 17 and the beam portions 16a to 16c are distorted in opposite directions in the Z direction, the pressing portion 17 is preferable because it hardly affects the destruction of the beam portions 16a to 16c due to 17.

また、押圧部17、支持部17a及び17c上(図2参照)にも、Y方向に延伸する主電極部と、外枠部16上に配置される端子部とが形成されていてもよい。この場合には、梁部16aが破壊されるまでに至らない微小な圧縮歪量を検出することも可能となる。   Moreover, the main electrode part extended | stretched to a Y direction and the terminal part arrange | positioned on the outer frame part 16 may be formed also on the press part 17 and the support parts 17a and 17c (refer FIG. 2). In this case, it is possible to detect a small amount of compressive strain that does not lead to destruction of the beam portion 16a.

なお、図2等に示した例では、梁部16a〜16cは、X方向の幅が一定となるストライプ状をなすものであるが、梁部16a〜16cは、破壊されやすいように適宜その幅が狭くなる箇所を設けたものであってもよい。   In the example shown in FIG. 2 and the like, the beam portions 16a to 16c have a stripe shape in which the width in the X direction is constant. However, the beam portions 16a to 16c have an appropriate width so as to be easily broken. It may be provided with a portion where becomes narrower.

(第2の実施形態)
本発明に係る歪センサの第2の実施形態を図面を参照しながら説明する。なお、第1の実施形態と同様の構成及び動作については適宜説明を省略する。第1の実施形態では、ベース板11は、Y方向に中心位置が揃うように配列された2つの取り付け穴13a、13bを有するものであった。
(Second Embodiment)
A second embodiment of the strain sensor according to the present invention will be described with reference to the drawings. Note that the description of the same configuration and operation as in the first embodiment will be omitted as appropriate. In the first embodiment, the base plate 11 has two mounting holes 13a and 13b arranged so that the center positions are aligned in the Y direction.

これに対して、図7に示すように本実施形態の歪センサ2におけるベース板21は、X方向に中心位置が揃った2つの取り付け穴を1組として、その組がX方向に複数配列された構成を有している。図7に示した例では、取り付け穴23a、23eの組、及び、取り付け穴23b、23fの組が第1の対向部14側に形成され、一方、取り付け穴23c、23gの組、及び、取り付け穴23d、23hの組が第2の対向部15側に形成される。   On the other hand, as shown in FIG. 7, the base plate 21 in the strain sensor 2 of the present embodiment has two mounting holes whose center positions are aligned in the X direction as a set, and a plurality of sets are arranged in the X direction. It has a configuration. In the example shown in FIG. 7, a set of mounting holes 23a and 23e and a set of mounting holes 23b and 23f are formed on the first facing portion 14 side, while a set of mounting holes 23c and 23g and a mounting A set of holes 23d and 23h is formed on the second facing portion 15 side.

取り付け穴23b(23f)と取り付け穴23c(23g)との中心間距離Dは例えば50mmであり、取り付け穴23a(23e)と取り付け穴23d(23h)との中心間距離Dは例えば100mmである。 Center distance D 1 of the the hole 23c (23 g) mounting the mounting hole 23b (23f) is 50mm for example, center distance D 2 of the hole 23d (23h) Installation and mounting holes 23a (23e) in 100mm example is there.

図8(a)に示すように、取り付けネジ24a、24d、24e、24hを外側の取り付け穴23a、23d、23e、23hにねじ込んで歪センサ2を被測定体10に固定する場合には、例えば1000μεの圧縮歪量がベース板21に加わると、押圧部17に最も近い1本目の梁部16a(図2参照)が破壊される。   As shown in FIG. 8A, when the mounting screws 24a, 24d, 24e, and 24h are screwed into the outer mounting holes 23a, 23d, 23e, and 23h to fix the strain sensor 2 to the measured object 10, for example, When a compressive strain amount of 1000 με is applied to the base plate 21, the first beam portion 16a (see FIG. 2) closest to the pressing portion 17 is broken.

一方、図8(b)に示すように、取り付けネジ24b、24c、24f、24gを内側の取り付け穴23b、23c、23f、23gにねじ込んで歪センサ2を被測定体10に固定する場合には、外側に取り付けネジをねじ込んだ場合よりも大きい、例えば2000μεの圧縮歪量がベース板21に加わると、押圧部17に最も近い1本目の梁部16a(図2参照)が破壊される。   On the other hand, as shown in FIG. 8B, when the mounting screws 24b, 24c, 24f, and 24g are screwed into the inner mounting holes 23b, 23c, 23f, and 23g, and the strain sensor 2 is fixed to the measured object 10. When a larger amount of compressive strain, for example, 2000 με, is applied to the base plate 21 than when a mounting screw is screwed outside, the first beam portion 16a (see FIG. 2) closest to the pressing portion 17 is destroyed.

従って、上記中心間距離D、Dや、取り付けネジ24a〜24hの取り付け箇所を調整すれば、被測定体10の歪量の検出感度を任意に調整することが可能となる。なお、取り付け穴の位置と個数、また、取り付けネジの取り付け箇所は、図7、8に示した例に限定されない。 Therefore, by adjusting the distances D 1 and D 2 between the centers and the mounting locations of the mounting screws 24a to 24h, it becomes possible to arbitrarily adjust the detection sensitivity of the strain amount of the measured object 10. In addition, the position and number of attachment holes, and the attachment location of attachment screws are not limited to the examples shown in FIGS.

(第3の実施形態)
本発明に係る歪センサの第3の実施形態を図面を参照しながら説明する。なお、第1及び第2の実施形態と同様の構成及び動作については適宜説明を省略する。第1及び第2の実施形態では、被測定体10の圧縮歪量を検出する構成を例に挙げて説明したが、本実施形態では被測定体10の圧縮歪量のみならず伸長歪量も検出できる構成を説明する。
(Third embodiment)
A third embodiment of the strain sensor according to the present invention will be described with reference to the drawings. Note that description of the configuration and operation similar to those of the first and second embodiments will be omitted as appropriate. In the first and second embodiments, the configuration for detecting the amount of compressive strain of the measured object 10 has been described as an example. A configuration that can be detected will be described.

図9、10に示すように、本実施形態の歪センサ3におけるベース板31は、センサ部12が接着固定される第1及び第2の対向部14、15からなる圧縮歪量を検出する構成に加えて、初期状態でX方向に所定の距離だけ離れて対向し、被測定体10の伸長歪量に応じてその対向距離が短くなる第1の対向部34及び第2の対向部35を有する。   As shown in FIGS. 9 and 10, the base plate 31 in the strain sensor 3 of the present embodiment is configured to detect the amount of compressive strain comprising the first and second facing portions 14 and 15 to which the sensor portion 12 is bonded and fixed. In addition, the first facing portion 34 and the second facing portion 35 that face each other at a predetermined distance in the X direction in the initial state and whose facing distance becomes shorter according to the amount of elongation strain of the measured object 10 are provided. Have.

ここで、第1及び第2の対向部34、35は、それぞれ略コの字状の部位を有して互い違いに配置される。また、第1及び第2の対向部34、35は、それぞれベース板11の長手方向(X方向)に突出する突出部位34a、35aを有している。突出部位34a上にはセンサ部12(図2参照)の外枠部16が接着固定され、一方、突出部位35a上にはセンサ部12の押圧部17が接着固定されるようになっている。   Here, the 1st and 2nd opposing parts 34 and 35 have a substantially U-shaped site | part, respectively, and are arrange | positioned alternately. Further, the first and second facing portions 34 and 35 have projecting portions 34 a and 35 a that project in the longitudinal direction (X direction) of the base plate 11, respectively. The outer frame portion 16 of the sensor portion 12 (see FIG. 2) is bonded and fixed on the protruding portion 34a, while the pressing portion 17 of the sensor portion 12 is bonded and fixed on the protruding portion 35a.

即ち、突出部位35a上に接着固定された押圧部17は、被測定体10の伸長歪量に応じて支持部17a〜17dを破壊して、梁部16a〜16cに向かってX方向に移動するようになっている。そして、突出部位35a上に接着固定された押圧部17は、被測定体10の伸長歪量が所定値に到達すると梁部16aに接触し、さらに伸長歪量が大きくなると遂には梁部16a〜16cを不可逆的に順次破壊するようになっている。   That is, the pressing portion 17 bonded and fixed on the protruding portion 35a breaks the support portions 17a to 17d in accordance with the amount of elongation strain of the measurement target 10, and moves in the X direction toward the beam portions 16a to 16c. It is like that. The pressing portion 17 bonded and fixed on the protruding portion 35a comes into contact with the beam portion 16a when the amount of elongation strain of the measured object 10 reaches a predetermined value, and finally when the amount of elongation strain increases, the beam portions 16a to 16a. 16c is irreversibly and sequentially destroyed.

センサ部12の構成及び機能は、既に説明した第1及び第2の実施形態のものと同一である。従って、本実施形態に係る歪センサ3は、被測定体の圧縮歪量のみならず伸長歪量も検出することができる。   The configuration and function of the sensor unit 12 are the same as those of the first and second embodiments already described. Therefore, the strain sensor 3 according to the present embodiment can detect not only the amount of compressive strain of the measured object but also the amount of extension strain.

1、2、3 歪センサ
1a 取り付け面(取り付け部)
10 被測定体
11、21、31 ベース板
12 センサ部
13a、13b、23a〜23h 取り付け穴(取り付け部)
14、34 第1の対向部
14a、15a、34a、35a 突出部位
15、35 第2の対向部
16 外枠部(最大歪量保持部)
16a、16b、16c 梁部(最大歪量保持部)
17 押圧部
17a、17b、17c、17d 支持部
18 電極
18a、18b、18c 主電極部(最大歪量保持部)
18d、18e、18f、18g 端子部(最大歪量保持部)
19 電池(最大歪量検出部)
20a、20b、24a〜24h 取り付けネジ
40、50 歪センサシステム
、T、T、T 外部端子(最大歪量検出部)
、R、R 抵抗体(最大歪量検出部)
、L、L 表示ランプ(最大歪量検出部)
1, 2, 3 Strain sensor 1a Mounting surface (mounting part)
10 to-be-measured object 11, 21, 31 base board 12 sensor part 13a, 13b, 23a-23h attachment hole (attachment part)
14, 34 1st opposing part 14a, 15a, 34a, 35a Protruding part 15, 35 2nd opposing part 16 Outer frame part (maximum distortion amount holding | maintenance part)
16a, 16b, 16c Beam part (maximum strain amount holding part)
17 Press part 17a, 17b, 17c, 17d Support part 18 Electrode 18a, 18b, 18c Main electrode part (maximum strain amount holding part)
18d, 18e, 18f, 18g Terminal part (maximum strain amount holding part)
19 Battery (Maximum strain detector)
20a, 20b, 24a through 24h mounting screws 40 and 50 the strain sensor system T 1, T 2, T 3 , T g external terminals (maximum distortion amount detecting unit)
R 1 , R 2 , R 3 resistors (maximum strain detector)
L 1 , L 2 , L 3 indicator lamps (maximum strain detector)

Claims (4)

被測定体(10)の表面に固定するための取り付け部(1a、13a、13b、23a〜23h)、並びに、前記被測定体の歪量に応じて互いの対向距離が短くなる第1の対向部(14、34)及び第2の対向部(15、35)を有するベース板(11)と、
少なくとも一部が前記第1の対向部上に固定される最大歪量保持部(16、16a〜16c、18a〜18g)、及び、少なくとも一部が前記第2の対向部上に固定される押圧部(17)を有するセンサ部(12)と、を備え、
前記最大歪量保持部は、外枠部(16)と、両端部が当該外枠部に支持され、前記押圧部に対して一方向に所定の間隔を設けて配列された少なくとも1つの梁部(16a〜16c)と、当該各梁部上に形成された主電極部(18a〜18c)と、前記外枠部上に形成され、前記各主電極部の両端部とそれぞれ電気的に接続された複数の端子部(18d〜18g)と、を有し、
前記梁部及び対応する前記主電極部は、前記被測定体の歪量が前記梁部の前記所定の間隔により規定される値に到達したときに、前記押圧部により当該押圧部に近い側から順次不可逆的に破壊されることを特徴とする歪センサ。
Attaching portions (1a, 13a, 13b, 23a to 23h) for fixing to the surface of the measured object (10), and a first facing where the facing distance is shortened according to the strain amount of the measured object A base plate (11) having a portion (14, 34) and a second facing portion (15, 35);
Maximum strain amount holding part (16, 16a to 16c, 18a to 18g) at least partly fixed on the first facing part, and pressing at least partly fixed on the second facing part A sensor part (12) having a part (17),
The maximum strain amount holding portion includes an outer frame portion (16) and at least one beam portion that is supported at both ends by the outer frame portion and arranged at a predetermined interval in one direction with respect to the pressing portion. (16a to 16c), main electrode portions (18a to 18c) formed on the respective beam portions, and formed on the outer frame portion, and electrically connected to both end portions of the main electrode portions, respectively. A plurality of terminal portions (18d to 18g),
When the amount of strain of the measured object reaches a value defined by the predetermined interval of the beam portion, the beam portion and the corresponding main electrode portion are closer to the pressing portion by the pressing portion. A strain sensor characterized by being irreversibly destroyed sequentially.
前記センサ部は、初期状態において前記押圧部を前記外枠部に連結して支持するとともに、前記被測定体の歪量が所定値に到達したときに不可逆的に破壊される支持部(17a〜17d)をさらに有することを特徴とする請求項1に記載の歪センサ。   In the initial state, the sensor unit supports the pressing unit by connecting to the outer frame unit, and irreversibly breaks when the amount of strain of the measured object reaches a predetermined value (17a to 17a). The strain sensor according to claim 1, further comprising 17d). 前記センサ部がMEMS技術により一体形成されていることを特徴とする請求項2に記載の歪センサ。   The strain sensor according to claim 2, wherein the sensor unit is integrally formed by MEMS technology. 請求項1から請求項3のいずれか一項に記載の歪センサ(1〜3)と、
前記最大歪量保持部における前記各端子部に電気的に接続され、前記各主電極部の電気抵抗に基づいて前記被測定体の最大歪量を検出する最大歪量検出部(T〜T、T、R〜R、L〜L、19)と、を備えることを特徴とする請求項1に記載の歪センサシステム。
The strain sensor (1-3) according to any one of claims 1 to 3,
A maximum strain amount detection unit (T 1 to T) that is electrically connected to each of the terminal portions in the maximum strain amount holding unit and detects the maximum strain amount of the object to be measured based on the electric resistance of each of the main electrode portions. 3 , T g , R 1 to R 3 , L 1 to L 3 , 19).
JP2012118644A 2012-05-24 2012-05-24 Strain sensor and strain sensor system Expired - Fee Related JP5952641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118644A JP5952641B2 (en) 2012-05-24 2012-05-24 Strain sensor and strain sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118644A JP5952641B2 (en) 2012-05-24 2012-05-24 Strain sensor and strain sensor system

Publications (2)

Publication Number Publication Date
JP2013245992A true JP2013245992A (en) 2013-12-09
JP5952641B2 JP5952641B2 (en) 2016-07-13

Family

ID=49845896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118644A Expired - Fee Related JP5952641B2 (en) 2012-05-24 2012-05-24 Strain sensor and strain sensor system

Country Status (1)

Country Link
JP (1) JP5952641B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015191143A3 (en) * 2014-03-26 2016-01-28 The Regents Of The University Of Michigan Strain amplification sensor
JP7467386B2 (en) 2021-05-26 2024-04-15 長野計器株式会社 Optical Fiber Sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178765A (en) * 1994-12-26 1996-07-12 Hiroaki Yanagida Sensor for detecting amount of maximum deformation
JPH095175A (en) * 1995-06-16 1997-01-10 Hitachi Ltd Stress measuring sensor
JPH0996576A (en) * 1995-09-29 1997-04-08 Nagano Keiki Seisakusho Ltd Maximum-value memory type sensor
JP2003227711A (en) * 2002-02-04 2003-08-15 Tadayoshi Watanabe Structure of movement width detection sensor
JP2007198756A (en) * 2006-01-23 2007-08-09 Univ Nagoya Maximum value memory type optical fiber sensor, unit of same, and system of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178765A (en) * 1994-12-26 1996-07-12 Hiroaki Yanagida Sensor for detecting amount of maximum deformation
JPH095175A (en) * 1995-06-16 1997-01-10 Hitachi Ltd Stress measuring sensor
JPH0996576A (en) * 1995-09-29 1997-04-08 Nagano Keiki Seisakusho Ltd Maximum-value memory type sensor
JP2003227711A (en) * 2002-02-04 2003-08-15 Tadayoshi Watanabe Structure of movement width detection sensor
JP2007198756A (en) * 2006-01-23 2007-08-09 Univ Nagoya Maximum value memory type optical fiber sensor, unit of same, and system of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015191143A3 (en) * 2014-03-26 2016-01-28 The Regents Of The University Of Michigan Strain amplification sensor
US9546917B2 (en) 2014-03-26 2017-01-17 The Regents Of The University Of Michigan Strain amplification sensor
JP7467386B2 (en) 2021-05-26 2024-04-15 長野計器株式会社 Optical Fiber Sensors

Also Published As

Publication number Publication date
JP5952641B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
US7379632B1 (en) Fiber optic Bragg grating strain gauge for application on structures with compliant surface covering
US9109883B2 (en) High resolution large displacement/crack sensor
JP5313608B2 (en) Optical fiber sensor
EP1124112A2 (en) Optical fiber sensor
CN103791850B (en) The self-compensating fiber Bragg grating strain sensor of integrated temperature and the method being used for monitoring Cable power thereof
KR101465156B1 (en) FBG sensor for measuring the maximum strain, manufacturing method thereof and operating method thereof
US8718419B2 (en) Frame foot loading measurement system using fiber optic sensing technique
WO2015032364A1 (en) Long gauge length carbon fiber strain sensing device and testing method therefor
KR100685186B1 (en) Acceleration and inclination measurement system based on fiber bragg gratings
US9689757B2 (en) Strain transmitter
EP2990756B1 (en) Strain sensor and strain sensor installation method
KR101220311B1 (en) Bending sensor apparatus
JP5952641B2 (en) Strain sensor and strain sensor system
EA024662B1 (en) Tensometric transducer
KR20170119283A (en) A strain gauge and a pressure sensor comprising thereof
KR100879601B1 (en) Equipment for measuring displacement for construction using optical fiber sensor and Method thereof
CN115371582A (en) Optical fiber F-P strain gauge and assembling method thereof
CN105091729B (en) A kind of extend Strain Extensometer of bar of invar steel that adopts
CN116697917B (en) Adjustable long gauge length optical fiber distributed strain monitoring device and monitoring and installing method thereof
KR100522935B1 (en) Instrumentation for the ground displacement and alarm system for wide area
KR101166182B1 (en) The clinometer/accelerometer using Optical fiber sensor
JP3821457B2 (en) Displacement detector
KR101825206B1 (en) Weight and displacement measuring device based on fiber bragg grating sensors
CN219829749U (en) Crack width monitoring device
RU2175117C1 (en) Sensor for measurement of longitudinal force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees