JP2013245860A - Vacuum cooling apparatus - Google Patents

Vacuum cooling apparatus Download PDF

Info

Publication number
JP2013245860A
JP2013245860A JP2012119113A JP2012119113A JP2013245860A JP 2013245860 A JP2013245860 A JP 2013245860A JP 2012119113 A JP2012119113 A JP 2012119113A JP 2012119113 A JP2012119113 A JP 2012119113A JP 2013245860 A JP2013245860 A JP 2013245860A
Authority
JP
Japan
Prior art keywords
heat exchanger
vacuum
cooling
air
cooling tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012119113A
Other languages
Japanese (ja)
Other versions
JP6075747B2 (en
Inventor
Nobumoto Akio
伸基 明尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2012119113A priority Critical patent/JP6075747B2/en
Publication of JP2013245860A publication Critical patent/JP2013245860A/en
Application granted granted Critical
Publication of JP6075747B2 publication Critical patent/JP6075747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent trouble occurring in a vacuum generation device and to improve cooling capability by sufficiently separating moisture by condensing steam from suction air while minimizing an increase in a footprint, and thereby reducing the amount of moisture sent to the vacuum generation device 1.SOLUTION: A vacuum cooling apparatus includes a cooling tank 2 housing a body to be cooled and a vacuum generation device 1 sucking air in the cooling tank, and cools the body to be cooled by vacuumizing the cooling tank. The vacuum cooling apparatus further includes a plurality of heat exchangers 5 installed between the cooling tank 2 and vacuum generation device 1. In order that air sucked from the cooling tank 2 is cooled by upstream-side heat exchangers A, B and then cooled by a downstream-side heat exchanger C, the heat exchangers are connected in series, the upstream-side heat exchangers A, B are connected together so that the sucked air flows in parallel, and the downstream-side heat exchanger C is connected so that the sucked air flows in a single stream.

Description

本発明は、真空発生装置にて冷却槽内を減圧し、冷却槽内の被冷却物を気化熱によって冷却する真空冷却装置に関するものである。 The present invention relates to a vacuum cooling device that depressurizes a cooling tank with a vacuum generator and cools an object to be cooled in the cooling tank by heat of vaporization.

特開2005−134085号公報に記載があるように、食品を冷却する装置として真空冷却装置がある。真空冷却装置は、冷却槽内に冷却する食品を収容しておき、水エジェクタや真空ポンプなどからなる真空発生装置によって冷却槽内を真空化し、飽和蒸気温度を低下させることによって食品中の水分を気化させ、食品を冷却するものである。真空冷却の場合、食品内部から急速に冷却することができるため、短時間で冷却を行うことができる。 As described in JP-A-2005-134085, there is a vacuum cooling device as a device for cooling food. The vacuum cooling device contains the food to be cooled in the cooling tank, and the cooling tank is evacuated by a vacuum generator comprising a water ejector, a vacuum pump, etc., and the water content in the food is reduced by lowering the saturated vapor temperature. It vaporizes and cools food. In the case of vacuum cooling, since it can be rapidly cooled from the inside of the food, it can be cooled in a short time.

被冷却物内の水分を気化させることで被冷却物の温度を低下させている真空冷却装置では、気化して蒸気となった水分は空気とともに真空発生装置が吸引する。しかし、水は蒸気になると体積が大幅に大きくなるため、蒸気の状態で真空発生装置に吸引させると、真空発生装置での負荷が大きくなる。そこで、真空冷却装置では冷却槽と真空発生装置をつなぐ真空配管部の途中に熱交換器を設け、蒸気を冷却して凝縮させることで体積を縮小している。熱交換器は複数設け、多段的に冷却することで、空気からより多くの熱を奪うことができ、蒸気の凝縮によって空気の体積をより小さくすることができる。排出しなければならない空気の体積が小さくなれば、真空発生装置では冷却槽内の空気をより早く大量に排出することができるため、冷却能力を高めることができる。 In a vacuum cooling device that lowers the temperature of an object to be cooled by evaporating moisture in the object to be cooled, the moisture generated by vaporization and vapor is sucked together with air by the vacuum generator. However, since the volume of water becomes significantly large when it becomes steam, if the vacuum generator sucks it in the state of steam, the load on the vacuum generator increases. Therefore, in the vacuum cooling device, a heat exchanger is provided in the middle of the vacuum pipe portion connecting the cooling tank and the vacuum generator, and the volume is reduced by cooling and condensing the steam. By providing a plurality of heat exchangers and cooling them in multiple stages, more heat can be taken from the air, and the volume of the air can be reduced by condensing the steam. If the volume of air that must be discharged is reduced, the vacuum generator can discharge a large amount of air in the cooling tank earlier, and thus the cooling capacity can be increased.

また、真空発生装置がドライルーツ式真空ポンプであった場合、真空ポンプでは、ケーシング内部で互いに反対方向に回転する2つの3葉ロータが、ケーシング内壁及びロータ間にわずかなすき間を保って回転し、排気動作を行う構造となっている。そのため、真空ポンプ内に多量の蒸気(水分)が流入すると、ギヤ室とロータのある排気室を区切るオイルシールの破損招くことがある。さらに、水分をポンプ内部に残したまま長時間運転を停止すると、ロータとケーシングが固着し、次回運転開始時に起動できない場合もある。 When the vacuum generator is a dry roots type vacuum pump, in the vacuum pump, the two three-leaf rotors rotating in opposite directions inside the casing rotate with a slight gap between the casing inner wall and the rotor. It has a structure that performs an exhaust operation. Therefore, if a large amount of steam (water) flows into the vacuum pump, the oil seal that separates the gear chamber and the exhaust chamber with the rotor may be damaged. Furthermore, if the operation is stopped for a long time while moisture remains in the pump, the rotor and the casing may stick to each other and cannot be started at the start of the next operation.

そのため、ドライルーツ式真空ポンプの一次側において、吸引している空気に含まれている蒸気をドレン化して分離することが必要であり、真空配管部には容量の大きな熱交換器を設けて水分の除去を行ってた。しかし、大きな熱交換器を設けると、装置の設置面積が大きくなるということが問題になる。 For this reason, it is necessary to drain and separate the vapor contained in the sucked air at the primary side of the dry roots vacuum pump, and the vacuum pipe section is provided with a large-capacity heat exchanger. Was removed. However, when a large heat exchanger is provided, there is a problem that the installation area of the apparatus becomes large.

特開2005−134085号公報JP 2005-134085 A

本発明が解決しようとする課題は、設置面積の増加は最小限に抑えつつ、吸引空気から蒸気を凝縮させることで水分を十分に分離し、真空発生装置に送られる水分量を減少することで真空発生装置での不具合を防止するとともに、冷却能力を向上させることのできる真空冷却装置を提供することにある。 The problem to be solved by the present invention is to reduce the amount of moisture sent to the vacuum generator by sufficiently separating the moisture by condensing the vapor from the suction air while minimizing the increase in the installation area. An object of the present invention is to provide a vacuum cooling device capable of preventing problems in the vacuum generator and improving the cooling capacity.

請求項1に記載の発明は、被冷却物を収容する冷却槽と冷却槽内の空気を吸引する真空発生装置を持ち、冷却槽内を真空化することによって被冷却物の冷却を行う真空冷却装置において、冷却槽と真空発生装置の間に複数の熱交換器を設置しており、冷却槽から吸引した空気は上流側の熱交換器で冷却した後に下流側の熱交換器で冷却を行うように直列に接続しているとともに、上流側の熱交換器は吸引してきた空気が並列に流れるように熱交換器を連結し、下流側の熱交換器では吸引してきた空気が単列で流れるように熱交換器を連結していることを特徴とする。 The invention according to claim 1 has a cooling tank for storing an object to be cooled and a vacuum generator for sucking air in the cooling tank, and cooling the object to be cooled by evacuating the inside of the cooling tank. In the device, a plurality of heat exchangers are installed between the cooling tank and the vacuum generator, and the air sucked from the cooling tank is cooled by the upstream heat exchanger and then cooled by the downstream heat exchanger. The upstream heat exchanger connects the heat exchanger so that the sucked air flows in parallel, and the sucked air flows in a single row in the downstream heat exchanger. In this way, the heat exchangers are connected.

請求項2に記載の発明は、前記の真空冷却装置において、各熱交換器は横長の外殻を持ち、各熱交換器の中心軸は水平方向に対して傾斜を設けることで一方の端部は他方の端部より低くなるように設置したものであって、熱交換器は複数個の熱交換器を上下方向に積み重ねてるようにして設置しており、各熱交換器の低くした側の下部壁面にドレン抜き用のドレン配管を接続していることを特徴とする。 According to a second aspect of the present invention, in the vacuum cooling apparatus, each heat exchanger has a horizontally long outer shell, and the center axis of each heat exchanger is inclined at one end with respect to the horizontal direction. Is installed so that it is lower than the other end, and the heat exchanger is installed such that a plurality of heat exchangers are stacked in the vertical direction, and the lower side of each heat exchanger is installed. A drain pipe for draining is connected to the lower wall surface.

請求項3に記載の発明は、前記の真空冷却装置において、熱交換器同士をつなぐ配管は、熱交換器の中心軸に対して直角となるように接続していることを特徴とする。 The invention described in claim 3 is characterized in that, in the vacuum cooling apparatus, the pipe connecting the heat exchangers is connected so as to be perpendicular to the central axis of the heat exchanger.

本発明を実施することで、装置の設置面積や製造コストの増加は最小限に抑えながら、真空発生装置に達する水分量を減少することができ、真空発生装置での不具合を防止するとともに、冷却能力を向上させることができる。 By implementing the present invention, it is possible to reduce the amount of moisture reaching the vacuum generator while minimizing the increase in the installation area and manufacturing cost of the apparatus, preventing problems with the vacuum generator and cooling. Ability can be improved.

本発明を実施している真空冷却装置の構成概要図Configuration schematic diagram of a vacuum cooling apparatus implementing the present invention 本発明を実施している真空発生装置の熱交換器部分の接続構造説明図Explanatory drawing of the connection structure of the heat exchanger part of the vacuum generator implementing the present invention 本発明を実施している真空発生装置の熱交換器部分のフロー説明図Flow explanatory drawing of the heat exchanger part of the vacuum generator which is implementing this invention

本発明の一実施例を図面を用いて説明する。図1は本発明を実施している真空冷却装置の構成概要図、図2は本発明を実施している真空発生装置の熱交換器部分の接続構造説明図、図3は本発明を実施している真空発生装置の熱交換器部分のフロー説明図である。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a configuration of a vacuum cooling apparatus embodying the present invention, FIG. 2 is an explanatory diagram of a connection structure of a heat exchanger part of a vacuum generating apparatus embodying the present invention, and FIG. It is a flow explanatory view of the heat exchanger part of the vacuum generator which is.

真空冷却装置は、被冷却物を収容する冷却槽2、冷却槽2の空気を吸引する真空発生装置1、冷却槽2と真空発生装置1の間をつなぐ真空配管部9などからなる。冷却槽2は、側面に扉を持った略直方体の容器であり、中に被冷却物を収容して密閉することができるようにしている。真空発生装置1としては、水や蒸気を使用して空気の吸引を行うエジェクタや、ロータの回転によって空気を吸引する真空ポンプが使用される。ここでは装置構成を単純にすることができるドライ式の真空ポンプを使用するものとしている。 The vacuum cooling device includes a cooling tank 2 that accommodates an object to be cooled, a vacuum generator 1 that sucks air from the cooling tank 2, a vacuum pipe section 9 that connects the cooling tank 2 and the vacuum generator 1, and the like. The cooling tank 2 is a substantially rectangular parallelepiped container having a door on its side surface, and allows an object to be cooled to be accommodated and sealed. As the vacuum generator 1, an ejector that sucks air using water or steam, or a vacuum pump that sucks air by rotation of a rotor is used. Here, it is assumed that a dry-type vacuum pump that can simplify the apparatus configuration is used.

真空冷却装置は、冷却槽内を減圧することで被冷却物内の水分を蒸発させ、被冷却物の冷却を行うものであるため、吸引した空気には蒸気を含んでいる。そのままでは、大量の蒸気を真空発生装置1へ送ることになるため、途中の真空配管部9で蒸気の除去を行う。
吸引空気からの蒸気の分離は、吸引空気を冷却することによって蒸気を凝縮させて行うため、真空配管部9の途中には、複数の熱交換器5を設けておく。熱交換器5には、チラー4で製造し、冷却水タンク3にためておいた冷却用水を供給するようにしておき、冷却槽2から吸引してきた空気と冷却用水の間で熱交換を行うことで、吸引空気の冷却を行う。
Since the vacuum cooling device is for depressurizing the inside of the cooling tank to evaporate moisture in the object to be cooled and cool the object to be cooled, the sucked air contains steam. As it is, a large amount of steam is sent to the vacuum generator 1, so the steam is removed by the vacuum piping section 9 on the way.
Separation of the steam from the suction air is performed by condensing the steam by cooling the suction air. Therefore, a plurality of heat exchangers 5 are provided in the middle of the vacuum pipe section 9. The heat exchanger 5 is supplied with cooling water that is manufactured by the chiller 4 and stored in the cooling water tank 3, and heat is exchanged between the air sucked from the cooling tank 2 and the cooling water. In this way, the suction air is cooled.

熱交換器5は、横長の円筒形容器と容器内に設けた熱交換部からなり、熱交換部の一方の面には吸引空気を流し、他方の面には冷却用水を流すことで熱交換を行う。熱交換器は複数個であって、上下方向に積み重ねるようにして設置しており、熱交換器5は上部から順に、熱交換器A・熱交換器B・熱交換器Cと名付けておく。積み重ねている熱交換器5の下方には、熱交換器5で発生したドレンをためるドレンタンク8を設置し、熱交換器5とドレンタンク8の間はドレン配管7をつないでおき、熱交換器5のドレンはドレン配管7を通してドレンタンク8へ流れ落ちるようにしている。 The heat exchanger 5 includes a horizontally long cylindrical container and a heat exchange section provided in the container. Heat exchange is performed by flowing suction air on one surface of the heat exchange section and cooling water on the other surface. I do. There are a plurality of heat exchangers that are stacked in the vertical direction, and the heat exchanger 5 is named heat exchanger A, heat exchanger B, and heat exchanger C in order from the top. A drain tank 8 for accumulating the drain generated in the heat exchanger 5 is installed below the stacked heat exchangers 5, and a drain pipe 7 is connected between the heat exchanger 5 and the drain tank 8 for heat exchange. The drain of the vessel 5 flows down to the drain tank 8 through the drain pipe 7.

複数設置している各熱交換器は、それぞれの熱交換器間では平行に設置しているが、各熱交換器では長手方向の中心軸が水平に対して少し傾斜するようにして設置する。そのため、各熱交換器の一方の端部は他方の端部よりも位置が高くなる。熱交換器Aの設置高さが高い側の上部壁面には、冷却槽2と熱交換器Aをつなぐ冷却槽配管6を接続し、冷却槽配管6と熱交換器A内はつなげておく。そして、熱交換器Aの設置高さが高い側の下部壁面には、熱交換器Bでの設置位置が高い側の上部壁面と接続した並列用配管10を設置し、熱交換器A内と熱交換器B内は並列用配管10によってつなぐ。 The plurality of installed heat exchangers are installed in parallel between the respective heat exchangers, but in each heat exchanger, the center axis in the longitudinal direction is installed with a slight inclination with respect to the horizontal. Therefore, the position of one end of each heat exchanger is higher than the other end. The cooling tank pipe 6 that connects the cooling tank 2 and the heat exchanger A is connected to the upper wall surface on the side where the installation height of the heat exchanger A is high, and the cooling tank pipe 6 and the heat exchanger A are connected. And, on the lower wall surface on the side where the installation height of the heat exchanger A is high, the parallel pipe 10 connected to the upper wall surface on the side where the installation position in the heat exchanger B is high is installed, The inside of the heat exchanger B is connected by a parallel pipe 10.

また、各熱交換器の設置高さが低い側の端部付近には、熱交換器で発生したドレンをドレンタンク8へ送るドレン配管7を接続している。ドレン配管7は、各熱交換器内をつなぐように設置しており、各熱交換器で発生したドレンはドレン配管7を通して下段の熱交換器内へ流れ落ち、流れ落ちた下段側の熱交換器で発生したドレンと合流した後にさらに下段側の熱交換器へ流れ落ちていき、最終的にはドレンタンク8へ入る。そして熱交換器Cの設置高さが高い側の上部壁面には、真空発生装置1と熱交換器Cをつなぐ真空発生装置配管11を接続しており、真空発生装置1は真空発生装置配管11を通じて熱交換器C内とつながっている。 Further, a drain pipe 7 for sending the drain generated by the heat exchanger to the drain tank 8 is connected near the end portion on the side where the installation height of each heat exchanger is low. The drain pipe 7 is installed so as to connect the inside of each heat exchanger, and the drain generated in each heat exchanger flows down into the lower heat exchanger through the drain pipe 7, and the lower heat exchanger that has flowed down. After merging with the generated drain, it flows down to the lower heat exchanger and finally enters the drain tank 8. Then, a vacuum generator pipe 11 that connects the vacuum generator 1 and the heat exchanger C is connected to the upper wall surface on the side where the installation height of the heat exchanger C is high. The vacuum generator 1 is connected to the vacuum generator pipe 11. Through the heat exchanger C.

真空発生装置1にて空気の吸引を行うと、真空発生装置1は真空配管部9を通して冷却槽2内の空気を吸引することになる。冷却槽2内の空気は、冷却槽配管6を通して熱交換器に入り、熱交換器5を通った後に真空発生装置配管11を通して真空発生装置1へと流れる。熱交換器5の部分では、熱交換器Aと熱交換器B間、及び熱交換器Bと熱交換器C間をドレン配管7でつないでいるため、冷却槽2から熱交換器5に入った空気は、熱交換器の下端部に接続しているドレン配管7を通して下流側の熱交換器へ流れる。そして最下段の熱交換器Cに達した空気は、熱交換器Cの上端部に接続している真空発生装置配管11を通して真空発生装置1へと流れる。 When air is sucked by the vacuum generator 1, the vacuum generator 1 sucks air in the cooling tank 2 through the vacuum pipe portion 9. The air in the cooling tank 2 enters the heat exchanger through the cooling tank pipe 6, passes through the heat exchanger 5, and then flows to the vacuum generator 1 through the vacuum generator pipe 11. In the heat exchanger 5 portion, the heat exchanger A and the heat exchanger B and the heat exchanger B and the heat exchanger C are connected by the drain pipe 7, so that the heat exchanger 5 enters the heat exchanger 5 from the cooling tank 2. The air flows to the downstream heat exchanger through the drain pipe 7 connected to the lower end of the heat exchanger. The air reaching the lowermost heat exchanger C flows to the vacuum generator 1 through the vacuum generator pipe 11 connected to the upper end of the heat exchanger C.

また、熱交換器Aと熱交換器Bは、並列用配管10でつないでいるため、熱交換器A内に入った空気は、熱交換器A内を横断して熱交換器Bと接続しているドレン配管7へ向けて流れるとともに、熱交換器Aを縦断して熱交換器Bと接続している並列用配管10へ向けても流れる。そして、並列用配管10を通して熱交換器Bへ入った空気は、熱交換器Bと熱交換器Cをつなぐドレン配管7へ向けて流れるため、熱交換器B内を横断して流れる。そのため、冷却槽配管6を通ってきた冷却槽2からの空気は、熱交換器Aと熱交換器Bの両方を並列に流れることになる。 Moreover, since the heat exchanger A and the heat exchanger B are connected by the parallel pipe 10, the air that has entered the heat exchanger A crosses the heat exchanger A and is connected to the heat exchanger B. It flows toward the drain pipe 7 and also flows toward the parallel pipe 10 that is cut through the heat exchanger A and connected to the heat exchanger B. Since the air that has entered the heat exchanger B through the parallel pipe 10 flows toward the drain pipe 7 that connects the heat exchanger B and the heat exchanger C, the air flows across the heat exchanger B. Therefore, the air from the cooling tank 2 that has passed through the cooling tank pipe 6 flows through both the heat exchanger A and the heat exchanger B in parallel.

熱交換器Aの終端に達した空気は、熱交換器Aと熱交換器Bをつなぐドレン管7を通して熱交換器B内へ入る。熱交換器Bの出口は、熱交換器Bと熱交換器Cをつなぐドレン配管7のみであるため、熱交換器Aと熱交換器Bを並列に流れた空気は、熱交換器Bで合流して熱交換器Cへ流れることになる。熱交換器Cでは、空気は真空発生装置配管11を通して真空発生装置1へと流れるため、熱交換器Bから熱交換器Cへ入った空気は、真空発生装置配管11を目指して熱交換器Cを横断する。 The air that has reached the end of the heat exchanger A enters the heat exchanger B through the drain pipe 7 connecting the heat exchanger A and the heat exchanger B. Since the outlet of the heat exchanger B is only the drain pipe 7 connecting the heat exchanger B and the heat exchanger C, the air flowing in parallel through the heat exchanger A and the heat exchanger B joins in the heat exchanger B. Then, it flows to the heat exchanger C. In the heat exchanger C, since air flows to the vacuum generator 1 through the vacuum generator pipe 11, the air that has entered the heat exchanger C from the heat exchanger B aims at the vacuum generator pipe 11. To cross.

熱交換器5の部分での空気流は、熱交換器Aと熱交換器Bでは並列に流し、熱交換器Cでは合流させて流すようにしているのは、以下の理由からである。熱交換器5では、効率的な熱交換を行うために空気の流路面積を小さくしている。そして、冷却槽2から吸引してきたばかりであって、冷却前の空気が流れる上流側の熱交換器では、大量の蒸気を含んでいるために体積が大きくなっている。そのため、上流側の熱交換器では空気流の抵抗が大きくなる。しかし、上流側の熱交換器で冷却を行うことである程度の蒸気を凝縮させた後の空気が流れる下流側の熱交換器では、蒸気量が少なくなっているために体積が小さくなっている。そのため、下流側の熱交換器では熱交換効率が低くなる。上流側は二つの熱交換器で並列に流し、下流側では一つ熱交換器へ合流させて流すことで、空気流の抵抗を増加することなく効率的に空気の冷却を行うことができる。 The air flow in the heat exchanger 5 is caused to flow in parallel in the heat exchanger A and the heat exchanger B, and merged in the heat exchanger C for the following reason. In the heat exchanger 5, the air flow path area is reduced in order to perform efficient heat exchange. The upstream heat exchanger that has just been sucked from the cooling bath 2 and flows air before cooling has a large volume because it contains a large amount of steam. Therefore, the resistance of the air flow is increased in the upstream heat exchanger. However, in the downstream heat exchanger in which air after condensing a certain amount of steam by cooling in the upstream heat exchanger flows, the volume is small because the amount of steam is small. Therefore, the heat exchange efficiency is low in the downstream heat exchanger. The upstream side allows the two heat exchangers to flow in parallel, and the downstream side allows the air to flow into one heat exchanger, thereby efficiently cooling the air without increasing the air flow resistance.

吸引空気の冷却を行うと、空気中の蒸気が凝縮してドレンとなり、ドレンは熱交換器の底部に落下する。熱交換器5は傾斜させて設置しているため、熱交換器の底部に達したドレンは熱交換器の低い側へ向けて流れ、熱交換器の下端部に設けているドレン配管7へ向かう。熱交換器Aで発生したドレンは、熱交換器Aと熱交換器Bをつなぐドレン配管7を通って熱交換器B内に入り、熱交換器Bで発生したドレンと合流する。熱交換器Bで合流したドレンも、熱交換器Bと熱交換器Cをつなぐドレン配管7を通って熱交換器Cに入り、熱交換器Cで発生したドレンと合流する。熱交換器Cで合流したドレンは、熱交換器Cとドレンタンク8をつないでいるドレン配管7を通ってドレンタンク8にためられる。 When the suction air is cooled, the vapor in the air condenses into a drain, and the drain falls to the bottom of the heat exchanger. Since the heat exchanger 5 is inclined and installed, the drain that has reached the bottom of the heat exchanger flows toward the lower side of the heat exchanger, and goes to the drain pipe 7 provided at the lower end of the heat exchanger. . The drain generated in the heat exchanger A enters the heat exchanger B through the drain pipe 7 connecting the heat exchanger A and the heat exchanger B, and joins the drain generated in the heat exchanger B. The drain merged in the heat exchanger B enters the heat exchanger C through the drain pipe 7 connecting the heat exchanger B and the heat exchanger C, and merges with the drain generated in the heat exchanger C. The drain merged in the heat exchanger C is accumulated in the drain tank 8 through the drain pipe 7 connecting the heat exchanger C and the drain tank 8.

熱交換器5で蒸気を凝縮させて分離することで、真空発生装置1内に入る水分量を減少することができる。また、蒸気が凝縮すると体積は大幅に縮小するため、空気の量を少なくすることができる。真空発生装置1で吸引する空気の量が少なくなることで、冷却槽2内の減圧速度を高めることと、より高い真空度まで減圧することができ、真空冷却に要する時間の短縮と、最終の冷却温度をより低くすることができる。 By condensing and separating the steam in the heat exchanger 5, the amount of moisture entering the vacuum generator 1 can be reduced. Further, when the vapor condenses, the volume is greatly reduced, so that the amount of air can be reduced. By reducing the amount of air sucked by the vacuum generator 1, it is possible to increase the pressure reduction speed in the cooling tank 2, to reduce the pressure to a higher degree of vacuum, shorten the time required for vacuum cooling, and finally The cooling temperature can be further lowered.

各熱交換器では、中心軸を水平方向に対して少し傾斜させて設置するのは、ドレンの排出を行いやすくするためであるが、ドレン配管7及び並列用配管10については中心軸が垂直であっても、垂直方向に対して少し傾斜するものであっても、ドレン排出等においては大きな違いはない。しかし、製造時において、熱交換器5とドレン配管7及び並列用配管10を溶接結合する場合、熱交換器5とドレン配管7等は、直角に交わるようにする方が製造は容易になるという利点がある。ドレン配管7等が床面に対して垂直になるように熱交換器5と結合しようとすると、個々の熱交換器5が傾斜しているために熱交換器5との接合面は傾斜を設けなければならず、手間が掛かることになる。ドレン配管7等は床面に対して垂直である必要はないため、ドレン配管7等は床面に対しは垂直から少し傾斜することになるが、熱交換器5とドレン配管7等は直角に交わるようすると、製造が容易になるために製造コストを削減することができる。 In each heat exchanger, the central axis is installed with a slight inclination with respect to the horizontal direction in order to facilitate drainage. However, the drain pipe 7 and the parallel pipe 10 have a central axis that is vertical. Even if it is slightly inclined with respect to the vertical direction, there is no significant difference in drain discharge or the like. However, when the heat exchanger 5 is connected to the drain pipe 7 and the parallel pipe 10 by welding at the time of manufacture, it is easier to manufacture the heat exchanger 5 and the drain pipe 7 etc. if they intersect at right angles. There are advantages. When the drain pipe 7 or the like is connected to the heat exchanger 5 so as to be perpendicular to the floor surface, the individual heat exchangers 5 are inclined, so that the joint surfaces with the heat exchangers 5 are inclined. It is necessary and time-consuming. Since the drain pipe 7 and the like do not have to be perpendicular to the floor surface, the drain pipe 7 and the like are slightly inclined from the vertical to the floor surface, but the heat exchanger 5 and the drain pipe 7 and the like are at right angles. If it crosses, since manufacture becomes easy, manufacturing cost can be reduced.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 真空発生装置
2 冷却槽
3 冷却水タンク
4 チラー
5 熱交換器
6 冷却槽配管
7 ドレン配管
8 ドレンタンク
9 真空配管部
10 並列用配管
11 真空発生装置配管
DESCRIPTION OF SYMBOLS 1 Vacuum generator 2 Cooling tank 3 Cooling water tank 4 Chiller 5 Heat exchanger 6 Cooling tank piping 7 Drain piping
8 Drain tank 9 Vacuum piping 10 Parallel piping 11 Vacuum generator piping

Claims (3)

被冷却物を収容する冷却槽と冷却槽内の空気を吸引する真空発生装置を持ち、冷却槽内を真空化することによって被冷却物の冷却を行う真空冷却装置において、冷却槽と真空発生装置の間に複数の熱交換器を設置しており、冷却槽から吸引した空気は上流側の熱交換器で冷却した後に下流側の熱交換器で冷却を行うように直列に接続しているとともに、上流側の熱交換器は吸引してきた空気が並列に流れるように熱交換器を連結し、下流側の熱交換器では吸引してきた空気が単列で流れるように熱交換器を連結していることを特徴とする真空冷却装置。 In a vacuum cooling apparatus having a cooling tank for storing an object to be cooled and a vacuum generator for sucking air in the cooling tank and cooling the object to be cooled by evacuating the cooling tank, the cooling tank and the vacuum generator A plurality of heat exchangers are installed in between, and the air sucked from the cooling tank is connected in series so that the air is cooled by the upstream heat exchanger and then cooled by the downstream heat exchanger. The upstream heat exchanger connects the heat exchanger so that the sucked air flows in parallel, and the downstream heat exchanger connects the heat exchanger so that the sucked air flows in a single row. A vacuum cooling device characterized by comprising: 請求項1に記載の真空冷却装置において、各熱交換器は横長の外殻を持ち、各熱交換器の中心軸は水平方向に対して傾斜を設けることで一方の端部は他方の端部より低くなるように設置したものであって、熱交換器は複数個の熱交換器を上下方向に積み重ねてるようにして設置しており、各熱交換器の低くした側の下部壁面にドレン抜き用のドレン配管を接続していることを特徴とする真空冷却装置。 2. The vacuum cooling device according to claim 1, wherein each heat exchanger has a horizontally long outer shell, and the center axis of each heat exchanger is inclined with respect to the horizontal direction so that one end is the other end. The heat exchanger is installed such that a plurality of heat exchangers are stacked in the vertical direction, and drainage is removed from the lower wall on the lower side of each heat exchanger. A vacuum cooling device characterized by connecting a drain pipe for use. 請求項2に記載の真空冷却装置において、熱交換器同士をつなぐ配管は、熱交換器の中心軸に対して直角となるように接続していることを特徴とする真空冷却装置。

3. The vacuum cooling device according to claim 2, wherein the pipe connecting the heat exchangers is connected so as to be perpendicular to the central axis of the heat exchanger.

JP2012119113A 2012-05-25 2012-05-25 Vacuum cooling device Expired - Fee Related JP6075747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119113A JP6075747B2 (en) 2012-05-25 2012-05-25 Vacuum cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119113A JP6075747B2 (en) 2012-05-25 2012-05-25 Vacuum cooling device

Publications (2)

Publication Number Publication Date
JP2013245860A true JP2013245860A (en) 2013-12-09
JP6075747B2 JP6075747B2 (en) 2017-02-08

Family

ID=49845780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119113A Expired - Fee Related JP6075747B2 (en) 2012-05-25 2012-05-25 Vacuum cooling device

Country Status (1)

Country Link
JP (1) JP6075747B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010790A (en) * 2013-07-01 2015-01-19 株式会社サムソン Vacuum cooling equipment
JP2017095173A (en) * 2015-11-17 2017-06-01 インクケム コーポレーション Thermal transfer printer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52161554U (en) * 1976-06-01 1977-12-07
US4295341A (en) * 1978-09-05 1981-10-20 A.P.V. Spiro-Gills Limited Water chilling plant
JPH06189727A (en) * 1992-12-25 1994-07-12 Nishiyodo Kuuchiyouki Kk Vacuum cooler
JP2005134085A (en) * 2003-10-31 2005-05-26 Samson Co Ltd Vacuum cooling device with heat exchanger for water vapor condensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52161554U (en) * 1976-06-01 1977-12-07
US4295341A (en) * 1978-09-05 1981-10-20 A.P.V. Spiro-Gills Limited Water chilling plant
JPH06189727A (en) * 1992-12-25 1994-07-12 Nishiyodo Kuuchiyouki Kk Vacuum cooler
JP2005134085A (en) * 2003-10-31 2005-05-26 Samson Co Ltd Vacuum cooling device with heat exchanger for water vapor condensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010790A (en) * 2013-07-01 2015-01-19 株式会社サムソン Vacuum cooling equipment
JP2017095173A (en) * 2015-11-17 2017-06-01 インクケム コーポレーション Thermal transfer printer

Also Published As

Publication number Publication date
JP6075747B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5669259B2 (en) Vacuum cooling device
JP6670196B2 (en) Gas-liquid separator for compression refrigerators
CN201837266U (en) High-efficient vacuumizing condensation unit
JP2019507310A (en) HEAT PUMP HAVING EXTERNAL GAS RECOVERY SPACE, HEAT PUMP OPERATION METHOD, AND HEAT PUMP MANUFACTURING METHOD
JP2021508812A (en) Systems and methods for purging chiller systems
JP6075747B2 (en) Vacuum cooling device
JP6196824B2 (en) Vacuum cooling device
CN206315497U (en) A kind of cooling driers air cleaner
KR20190099392A (en) Evaporators and Methods for Evaporating Materials in Evaporators
JP5924584B2 (en) Fresh water generator
JP6043644B2 (en) Vacuum cooling device
SE531701C2 (en) Liquid separator for a vaporization system
JP6116282B2 (en) Vacuum cooling device
FR3020453A1 (en) MEANS FOR EXCHANGING THERMAL LIQUID / GAS, IN PARTICULAR WATER / AIR, AND SYSTEM FOR PRODUCING WATER FROM HUMIDITY OF THE AIR COMPRISING SUCH MEANS
CN104019590B (en) Ammonia refrigeration gas-liquid separator
JP4553775B2 (en) Power generation device and lubricating oil recovery method
JP6533750B2 (en) Reactor containment cooling system
WO2017063508A1 (en) Air extraction device and lithium bromide apparatus group
JP6017856B2 (en) Vacuum cooling device
KR102315693B1 (en) Multi stage compressor for vapor recirculation
CN104896989A (en) Oil cooling system and oil cooler
CN106979699A (en) A kind of even distribution type multi-stage, efficient condensing unit
CN204768125U (en) Compressed gas condensation water trap
CN210683817U (en) Leather vacuum drying control system
CN207605383U (en) MVR evaporation structures with integral type vapor-liquid separating structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170105

R150 Certificate of patent or registration of utility model

Ref document number: 6075747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees