JP2013244672A - Ir reflecting laminate and method for manufacturing the same - Google Patents

Ir reflecting laminate and method for manufacturing the same Download PDF

Info

Publication number
JP2013244672A
JP2013244672A JP2012120426A JP2012120426A JP2013244672A JP 2013244672 A JP2013244672 A JP 2013244672A JP 2012120426 A JP2012120426 A JP 2012120426A JP 2012120426 A JP2012120426 A JP 2012120426A JP 2013244672 A JP2013244672 A JP 2013244672A
Authority
JP
Japan
Prior art keywords
film
thin film
silver
dlc thin
based metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012120426A
Other languages
Japanese (ja)
Other versions
JP5900855B2 (en
Inventor
Kazuo Fukuda
和生 福田
Yoshiro Murofushi
義郎 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP2012120426A priority Critical patent/JP5900855B2/en
Publication of JP2013244672A publication Critical patent/JP2013244672A/en
Application granted granted Critical
Publication of JP5900855B2 publication Critical patent/JP5900855B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an IR reflecting laminate which is composed of a combination of a DLC thin film and a silver-based metal film so as to reflect heat rays and allow visible light to transmit efficiently and is usable as a window material; and a DLC thin film manufacturing method which reduces light absorption of the DLC thin film in short wavelengths, prevents the thin film from being tinged with a brown color tone and allows inexpensive production with high mass productivity.SOLUTION: An IR reflecting laminate has a silver-based metal film 16 and a diamond-like carbon film having a light absorption coefficient at a wavelength of 400 nm of ≤3/μm and a thickness of 20-100 nm on a transparent substrate 14 in this order.

Description

本発明は、光透過性に優れたダイヤモンド状炭素(DLC)薄膜を用いた赤外線反射積層体及びその製造方法に関するものである。   The present invention relates to an infrared reflective laminate using a diamond-like carbon (DLC) thin film excellent in light transmittance and a method for producing the same.

具体的には、DLC薄膜と銀系金属膜と組み合わせた積層体であり、熱線を反射して可視光を透過する窓材として利用可能な赤外線反射積層体およびその効率的な製造方法に関するものである。   Specifically, it is a laminate that combines a DLC thin film and a silver-based metal film, and relates to an infrared reflective laminate that can be used as a window material that reflects heat rays and transmits visible light, and an efficient manufacturing method thereof. is there.

近年、DLC薄膜による耐磨耗性や包装材料としてのガスバリア性の効果が注目されてきた。DLC薄膜の製造方法としては化学気相成長(CVD)法を用いることが多く、水素を含むことで可視光線透過率が高くなり、透明な光透過性の光学薄膜としての用途も期待されている。   In recent years, attention has been paid to the effects of wear resistance by a DLC thin film and gas barrier properties as a packaging material. The chemical vapor deposition (CVD) method is often used as a method for producing a DLC thin film, and the visible light transmittance is increased by containing hydrogen, and the use as a transparent light-transmitting optical thin film is also expected. .

ところで、DLC薄膜は可視光域における短波長側の光の吸収があるため、膜厚が厚くなるほど茶色の色調となる傾向があった。このように、DLC薄膜の光線透過率は、長波長側に較べて短波長側で低い傾向があるため、短波長側の光線透過率を向上させることが課題であった。   By the way, since the DLC thin film absorbs light on the short wavelength side in the visible light region, it tends to have a brown color tone as the film thickness increases. Thus, since the light transmittance of the DLC thin film tends to be lower on the short wavelength side than on the long wavelength side, it has been a problem to improve the light transmittance on the short wavelength side.

この課題に対して、高透明化する試みもなされて一定の成果が見られている。スパッタ法において、スパッタガスに窒素を用い、DLC薄膜中に窒素を混入させ、後から焼成すると高透明化する方法(特許文献1)、減圧CVD法において非常に遅い成膜速度で膜を形成する方法などである(非特許文献1)。   In response to this problem, attempts have been made to make it highly transparent, and certain results have been seen. In sputtering, nitrogen is used as the sputtering gas, nitrogen is mixed into the DLC thin film, and the film is formed at a very slow film formation rate in the low pressure CVD method (Patent Document 1), which is made highly transparent when fired later. And the like (Non-Patent Document 1).

この様に、従来の方法においては、高光線透過率のDLC薄膜を得るとしても、スパッタ法や減圧CVD法を用いるため、真空引きの時間や遅い成膜速度により、工業的な生産を行う場合には生産性の問題が生じていた。   As described above, in the conventional method, even if a DLC thin film having a high light transmittance is obtained, the sputtering method or the low pressure CVD method is used. Had a productivity problem.

ところで、熱線を反射して可視光を透過する窓材としての赤外線反射積層体は、銀系金属膜による反射膜と高屈折率の透明層を積層して作られていた。図2では透明基体上に銀系金属膜による反射膜、続いて透明層を形成したものを例示している。また、図3のように透明基体上に透明層、銀系金属膜による反射膜、透明層を形成したものもある。高屈折率透明層としては酸化インジウムスズ(ITO)、酸化チタン(TiO)、酸化亜鉛(ZnO)などの金属酸化物層が用いられる。製造方法としては主にスパッタ法が用いられていた。銀系金属膜による反射膜の成膜は、銀系金属膜の膜厚が薄いこと、銀系金属材料のスパッタ成膜速度が早いことなどから比較的生産性は良いが、金属酸化物のスパッタ法による成膜速度は低く、生産性が低かった。また、金属酸化物層から遊離した酸素が銀系反射膜を酸化して信頼性を低くするという問題点もあった。これに対して、DLC薄膜を金属酸化物の代わりにして酸化による劣化を防ぐ事も試みられたが(非特許文献2)、グラファイトターゲットをスパッタする場合の成膜速度が著しく遅く、生産性を大きく下げていた。また、可視光線透過率が低く、特に短波長側の光の吸収があるために茶色の色調となりやすく、窓材としては適切でなかった。 By the way, an infrared reflection laminated body as a window material that reflects heat rays and transmits visible light is made by laminating a reflective film made of a silver-based metal film and a transparent layer having a high refractive index. FIG. 2 shows an example in which a reflective film made of a silver-based metal film and then a transparent layer are formed on a transparent substrate. Further, as shown in FIG. 3, there is a case where a transparent layer, a reflective film made of a silver-based metal film, and a transparent layer are formed on a transparent substrate. As the high refractive index transparent layer, a metal oxide layer such as indium tin oxide (ITO), titanium oxide (TiO 2 ) or zinc oxide (ZnO) is used. As a manufacturing method, a sputtering method was mainly used. Although the reflective film is formed by a silver-based metal film, the productivity is relatively good because the silver-based metal film is thin and the sputtering speed of the silver-based metal material is high. The deposition rate by the method was low and the productivity was low. There is also a problem that oxygen liberated from the metal oxide layer oxidizes the silver-based reflective film to reduce reliability. In contrast, attempts have been made to prevent deterioration due to oxidation by using a DLC thin film instead of a metal oxide (Non-Patent Document 2), but the deposition rate when sputtering a graphite target is extremely slow, and productivity is reduced. It was greatly lowered. In addition, the visible light transmittance is low, and particularly, since the light on the short wavelength side is absorbed, the color tone tends to be brown, which is not suitable as a window material.

特開2004-315854号公報JP 2004-315854 A

S. Yamamoto et al., Diamond & Related Materials 14 (2005) 1112-1115S. Yamamoto et al., Diamond & Related Materials 14 (2005) 1112-1115 K. Chiba et al., Applied Surface Science 246 (2005) 48-51K. Chiba et al., Applied Surface Science 246 (2005) 48-51

本発明の課題は、DLC薄膜と銀系金属膜と組み合わせることにより熱線を反射して可視光を効率よく透過できる窓材として利用可能な赤外線反射積層体を提供することであり、またこのためのDLC薄膜を製造するに際し、DLC薄膜の短波長における光吸収を減少させ、茶色系の色調になる事を避けながら、かつ量産性を高く安価に生産する製造方法を提供することである。   It is an object of the present invention to provide an infrared reflective laminate that can be used as a window material that can efficiently transmit visible light by reflecting heat rays by combining a DLC thin film and a silver-based metal film. In producing a DLC thin film, the present invention is to provide a production method that reduces the light absorption at a short wavelength of the DLC thin film and avoids a brownish color tone, and is high in mass productivity and inexpensive.

本発明は、上記課題を解決するため、透明基体上に、銀系金属膜および波長400nmにおける光の吸収係数が3/μm以下であり、厚さが20〜100nmの範囲にあるダイヤモンド状炭素膜がこの順に積層された赤外線反射積層体を提供する。   In order to solve the above problems, the present invention provides a silver-based metal film and a diamond-like carbon film having a light absorption coefficient of 3 / μm or less at a wavelength of 400 nm and a thickness in the range of 20 to 100 nm on a transparent substrate. Provide an infrared reflective laminate laminated in this order.

また、透明基体上に、ダイヤモンド状炭素薄膜、銀系金属膜およびダイヤモンド状炭素薄膜がこの順に積層され、それぞれのダイヤモンド状炭素薄膜の波長400nmにおける光の吸収係数が3/μm以下であり、厚さが20〜100nmの範囲にあることを特徴とする赤外線反射積層体を提供する。   In addition, a diamond-like carbon thin film, a silver-based metal film, and a diamond-like carbon thin film are laminated in this order on the transparent substrate, and each diamond-like carbon thin film has an absorption coefficient of light of 3 / μm or less at a wavelength of 400 nm. The infrared reflective laminate is characterized in that the thickness is in the range of 20 to 100 nm.

さらに、このためのDLC薄膜を生産するための方法として、常圧の雰囲気下において、対向する電極間に電圧を印加して低温プラズマを発生させ、窒素により1〜40体積%の濃度に希釈されたアセチレンを分解することで反応生成物を堆積させる方法により、波長400nmにおける光の吸収係数が3/μm以下であるDLC薄膜を積層することを特徴とする赤外線反射積層体の製造方法を見出した。   Furthermore, as a method for producing a DLC thin film for this purpose, a low-temperature plasma is generated by applying a voltage between opposing electrodes under an atmospheric pressure, and diluted to a concentration of 1 to 40% by volume with nitrogen. And a method of depositing a reaction product by decomposing acetylene, and a method for producing an infrared reflective laminate, comprising laminating a DLC thin film having a light absorption coefficient of 3 / μm or less at a wavelength of 400 nm. .

本発明により、高い生産性を維持しつつ高い可視光線透過率を持つDLC薄膜を製造する事が可能になる。   The present invention makes it possible to produce a DLC thin film having a high visible light transmittance while maintaining high productivity.

また、本発明の製造方法によるDLC薄膜を銀系金属膜の反射膜と組み合わせれば、高い赤外線反射率を維持したまま、可視光において高い光線透過率を持ち、特に短波長側の高い光線透過率により茶色系の着色のない赤外線反射積層体を高い生産性で製造することができる。   In addition, when the DLC thin film according to the production method of the present invention is combined with a silver-based metal film reflective film, it has a high light transmittance in visible light while maintaining a high infrared reflectance, and particularly has a high light transmittance on the short wavelength side. Depending on the ratio, it is possible to produce an infrared reflective laminate having no brown coloration with high productivity.

本発明に用いられる製造装置の一例である。It is an example of the manufacturing apparatus used for this invention. 本発明を適用した赤外線反射積層体の構成である。It is the structure of the infrared reflective laminated body to which this invention is applied. 本発明を適用した赤外線反射積層体の他の構成である。It is another structure of the infrared reflective laminated body to which this invention is applied.

図1には本発明に用いる常圧CVDの装置の一例を示す。装置は常圧の大気中に置かれており、基体は外部から連続した空間である対向電極1、2の間に入っていく。対向電極1は接地されており、対向電極2には高周波電圧が印加されて、誘電体3を通して対向電極1との間に高電界を形成し、低温プラズマを生じる。雰囲気ガス供給配管5より供給されたアセチレンと窒素の混合気体である雰囲気ガスはプラズマ化して、対向電極1、2に間に設置した基体4の上にDLC薄膜を堆積させる。   FIG. 1 shows an example of an atmospheric pressure CVD apparatus used in the present invention. The apparatus is placed in atmospheric pressure, and the substrate enters between the counter electrodes 1 and 2 which are continuous spaces from the outside. The counter electrode 1 is grounded, and a high frequency voltage is applied to the counter electrode 2 to form a high electric field with the counter electrode 1 through the dielectric 3 to generate low temperature plasma. The atmospheric gas that is a mixed gas of acetylene and nitrogen supplied from the atmospheric gas supply pipe 5 is turned into plasma, and a DLC thin film is deposited on the substrate 4 placed between the counter electrodes 1 and 2.

雰囲気ガス供給管5と窒素供給配管9から流入し、排気配管8に吸入される気体の流れが周辺の空気が放電部に流入するのを防ぐエアカーテンを構成し、対向電極1、2間の空間において雰囲気ガスの純度を保っている。   An air curtain that flows in from the atmospheric gas supply pipe 5 and the nitrogen supply pipe 9 and that sucks into the exhaust pipe 8 prevents the surrounding air from flowing into the discharge portion, and is formed between the counter electrodes 1 and 2. The atmosphere gas purity is maintained in the space.

なお、DLC薄膜とは、炭素原子の混成軌道であるsp結合とsp結合が混在する炭素薄膜を言う。その割合としては、ラマン分光のピーク面積比でsp結合が20〜85%の範囲とされている(「DLC成膜とその応用」名古屋大学大学院工学研究科 大竹尚登 ウェブバージョン2008)。 Note that the DLC thin film refers to a carbon thin film in which sp 2 bonds and sp 3 bonds, which are hybrid orbitals of carbon atoms, are mixed. As the ratio, the sp 3 bond is in the range of 20 to 85% by the peak area ratio of Raman spectroscopy (“DLC film formation and its application”, Naoto Otake web version 2008, Graduate School of Engineering, Nagoya University).

雰囲気ガスとして、アセチレンを含む窒素との混合ガスを用いる。電極1と2の間に交流あるいは矩形パルス電圧を印加してプラズマ7を発生させてアセチレンを分解する。   A mixed gas with nitrogen containing acetylene is used as the atmospheric gas. An AC or rectangular pulse voltage is applied between the electrodes 1 and 2 to generate a plasma 7 to decompose acetylene.

具体的には、雰囲気ガスがアセチレンを1〜40体積%の比率で含有しているものである。この場合、残りの99〜60体積%の比率は、窒素成分が占めることとなる。   Specifically, the atmospheric gas contains acetylene at a ratio of 1 to 40% by volume. In this case, the remaining 99 to 60% by volume is occupied by the nitrogen component.

アセチレンは、分子中の炭素比率が炭化水素の中でも高く、被膜形成速度が高いため、雰囲気ガスにアセチレンが原料ガス成分として含有されることにより、被膜形成効率が向上する。雰囲気ガスにおけるアセチレンガスの濃度としては、低いほど短波長側の光線透過率が高くなるが、同時に被膜形成効率が下がるため、1体積%を下限とする。また逆にアセチレンの濃度が高いほど短波長側の光線透過率は下がるので、40体積%を上限とする。被膜形成速度と光線透過率のバランスからは、2〜15体積%が望ましい。   Since acetylene has a high carbon ratio in the molecule among hydrocarbons and a high film formation rate, the film formation efficiency is improved by containing acetylene as a raw material gas component in the atmospheric gas. The lower the acetylene gas concentration in the atmospheric gas, the higher the light transmittance on the short wavelength side, but at the same time the film formation efficiency decreases. Conversely, the higher the acetylene concentration, the lower the light transmittance on the short wavelength side, so 40 vol% is the upper limit. From the balance between the film formation speed and the light transmittance, 2 to 15% by volume is desirable.

前記雰囲気ガスの希釈ガスは、窒素である。原料ガスの反応に影響を及ぼさないように化学的活性が低く、アーク放電を抑えて放電電圧を下げるガスなら使用可能であるが、特に窒素はこの様な条件を満たしている上に安価で、形成される被膜に粒子を発生させにくく、多孔質化を防止して均一被膜を形成するのに好適である。これらを考慮してさらに最適化のために、窒素には他のアルゴンやヘリウムなどの不活性ガスを30体積%以内で混合しても良い。   The dilution gas of the atmospheric gas is nitrogen. The chemical activity is low so as not to affect the reaction of the raw material gas, and any gas that suppresses arc discharge and lowers the discharge voltage can be used, but especially nitrogen satisfies such conditions and is inexpensive. It is suitable for forming a uniform film by preventing the formation of particles in the formed film and preventing the formation of a porous film. In consideration of these, for further optimization, nitrogen may be mixed with other inert gas such as argon or helium within 30% by volume.

この様な雰囲気ガスの調整により、波長400nmにおける光の吸収係数を3/μm以下とでき、本願発明の目的とする赤外線反射積層体として用いる際のDLC薄膜の代表的な膜厚である波長400nmにおける光線透過率を、DLC薄膜単独で80%以上に保つことができる。波長400nmにおける光の吸収係数が3/μmを越えると、波長400nmにおける光線透過率が下がり、黄色みが急激に強くなるため、赤外線反射積層体として使用することができなくなる。   By adjusting the atmospheric gas in this manner, the light absorption coefficient at a wavelength of 400 nm can be reduced to 3 / μm or less, and the wavelength is 400 nm, which is a typical film thickness of a DLC thin film when used as an infrared reflective laminate intended for the present invention. The light transmittance in can be maintained at 80% or more with the DLC thin film alone. When the absorption coefficient of light at a wavelength of 400 nm exceeds 3 / μm, the light transmittance at a wavelength of 400 nm is lowered and the yellowness is rapidly increased, so that it cannot be used as an infrared reflecting laminate.

常圧とは、大気圧若しくはその近傍の圧力をいい、具体的には、絶対圧として50k〜150kPaの圧力範囲を指すものとする。この圧力範囲においては、真空容器および真空ポンプからなる大がかりな排気システムが不要である。また、大気圧中で成膜部から外部に向かう雰囲気ガスの流れにより成膜部分への外気の流入を防ぎ、雰囲気ガスの純度を維持することが可能となるため、複雑なシール機構を設けることなく、外部から連続的に成膜領域に基体を搬送でき、高い生産性が実現できる。また、常圧の高い分子密度を持つ事により、大量の雰囲気ガス分子が分解されて高い成膜速度が得られる。   The normal pressure refers to atmospheric pressure or a pressure in the vicinity thereof, and specifically refers to a pressure range of 50 to 150 kPa as an absolute pressure. In this pressure range, a large exhaust system consisting of a vacuum vessel and a vacuum pump is unnecessary. In addition, it is possible to prevent the inflow of outside air to the film forming part by the flow of the atmospheric gas from the film forming part to the outside at atmospheric pressure, and to maintain the purity of the atmospheric gas. In addition, the substrate can be continuously transferred from the outside to the film forming region, and high productivity can be realized. In addition, by having a high molecular density at normal pressure, a large amount of atmospheric gas molecules are decomposed and a high film formation rate can be obtained.

低温プラズマとは、放電等により気体の一部が電離して電子のみがエネルギーの高い高温状態にあり、気体分子は室温と同等な状態をいう。常圧において低温プラズマを安定して発生させるには、一部の場所に放電が集中するアーク放電を防ぐ必要があり、雰囲気ガスの選択、すなわち窒素を主成分とする雰囲気ガスとすること、電極の少なくとも一方を誘電体覆うことが重要であり、さらには印加電圧の波形にも注意する必要がある。   Low temperature plasma means a state in which part of a gas is ionized by discharge or the like and only electrons are in a high temperature state where energy is high, and gas molecules are in a state equivalent to room temperature. In order to stably generate low-temperature plasma at normal pressure, it is necessary to prevent arc discharge in which discharge is concentrated in some places. Selection of atmospheric gas, that is, atmospheric gas mainly composed of nitrogen, electrode It is important to cover at least one of them with a dielectric, and it is also necessary to pay attention to the waveform of the applied voltage.

電極部に誘電体を用いているので直流は使用せず、高周波を用いる。高周波電圧は、矩形波、正弦波または三角波の電圧波形を有することが好ましい。アーク放電の発生を防止するために、上記矩形波としては、具体的には、周波数2kHz〜20kHz、パルス幅2〜10μs、デューティ比(波形の半周期とパルス幅との時間の比)0.01〜0.2のパルス波であることが好ましい。一方、上記正弦波または三角波は、所定のパルス幅とデューティ比を有する断続的なパルス波であってもよく、また、連続波であってもよいが、無電界時にイオンと電子とが再結合することによるダストの発生を抑制しつつ放電を維持する観点から、周波数10kHz〜50kHzの連続波であることが好ましい。   Since a dielectric is used for the electrode part, direct current is not used, but high frequency is used. The high-frequency voltage preferably has a rectangular, sine, or triangular voltage waveform. In order to prevent the occurrence of arc discharge, the rectangular wave specifically includes a frequency of 2 kHz to 20 kHz, a pulse width of 2 to 10 μs, a duty ratio (ratio of time between half cycle of waveform and pulse width). A pulse wave of 01 to 0.2 is preferable. On the other hand, the sine wave or triangular wave may be an intermittent pulse wave having a predetermined pulse width and duty ratio, or may be a continuous wave, but ions and electrons are recombined when there is no electric field. From the viewpoint of maintaining discharge while suppressing the generation of dust due to the operation, a continuous wave with a frequency of 10 kHz to 50 kHz is preferable.

図1において、基体4は対向電極の一方の電極側に置き、他方の電極に向いた側に膜を形成する。基体が厚い場合は、放電領域を狭めて放電を阻害しない様に、対向電極の間隔を広げて高電圧を印加すればよい。   In FIG. 1, the substrate 4 is placed on one electrode side of the counter electrode, and a film is formed on the side facing the other electrode. When the substrate is thick, a high voltage may be applied by widening the interval between the counter electrodes so that the discharge region is narrowed and the discharge is not hindered.

本発明における基体材料としては、本発明の目的である透明性を活かすため、光線透過率の高い事が望ましい。プラスチックフィルムとしては、ポリエチレン、ポリプロピレン、ナイロン66などのポリアミド樹脂、ポリエチレンテレフテレート、ポリブチレンテレフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、アクリル樹脂などを用いることができる。この中で、強度、耐熱性も備えているポリエチレンテレフテレートなどポリエステル樹脂は適している。   The substrate material in the present invention preferably has a high light transmittance in order to make use of the transparency that is the object of the present invention. As the plastic film, polyamide resin such as polyethylene, polypropylene, nylon 66, polyester resin such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate resin, polyarylate resin, polyacetal resin, polyphenylene sulfide resin, acrylic resin, etc. may be used. it can. Of these, polyester resins such as polyethylene terephthalate having strength and heat resistance are suitable.

また、無機材料としては、硼酸珪酸ガラス、ソーダライムガラスなど量産性を備えて薄板化可能なガラスが用いられる。   In addition, as the inorganic material, glass that can be thinned with mass productivity such as boric acid silicate glass and soda lime glass is used.

プラスチックフィルムの場合は、成膜時の熱負荷を低減するために、1回当たりの成膜膜厚を薄くしておき、複数回に分けて成膜して望む膜厚としても良い。ガラスなど無機材料においては、熱の問題は考慮せず成膜可能である。   In the case of a plastic film, in order to reduce the thermal load at the time of film formation, the film thickness per time may be reduced and the film thickness may be divided into a plurality of times to obtain a desired film thickness. An inorganic material such as glass can be formed without considering the heat problem.

本願発明のDLC薄膜の製造方法を、銀系金属膜の反射膜と組み合わせて可視光透過率の高い赤外線反射積層体を高い生産性にて製造することができる。銀系金属膜と高屈折率の透明膜との積層において、スパッタ法により作成した高屈折透明膜である金属酸化物のの代わりに、上記の方法で製造したDLC薄膜を使用すれば、製造工程の中で成膜速度の低いことが問題であった高屈折率透明膜の生産性が飛躍的に増大する。銀系金属膜は従来の技術のままのスパッタ法を用いて形成される。   By combining the method for producing a DLC thin film of the present invention with a reflective film of a silver-based metal film, an infrared reflective laminate having a high visible light transmittance can be produced with high productivity. If the DLC thin film manufactured by the above method is used in place of the metal oxide, which is a high refractive transparent film prepared by sputtering, in the lamination of the silver metal film and the high refractive index transparent film, the manufacturing process Among them, productivity of a high refractive index transparent film, which has been a problem of low film formation speed, is dramatically increased. The silver-based metal film is formed using the sputtering method as in the prior art.

すなわち、図2の構成の場合には、スパッタ法により透明基体14の上に銀系金属膜16を形成した後、本発明によるDLC薄膜15を形成する。銀系金属膜16がDLC膜15で覆われるため、信頼性に対しては有利であるが、要求される信頼性のレベルによっては形成の順は逆であっても良い。図3の構成においては、透明基体上14に本発明のDLC薄膜15を形成した後、スパッタ法により銀系金属膜16を形成し、その上に本発明によるDLC薄膜15を形成する。   That is, in the case of the configuration of FIG. 2, after the silver-based metal film 16 is formed on the transparent substrate 14 by sputtering, the DLC thin film 15 according to the present invention is formed. Since the silver-based metal film 16 is covered with the DLC film 15, it is advantageous for reliability, but the order of formation may be reversed depending on the required level of reliability. In the configuration of FIG. 3, after the DLC thin film 15 of the present invention is formed on the transparent substrate 14, the silver-based metal film 16 is formed by sputtering, and the DLC thin film 15 of the present invention is formed thereon.

さらに本発明の赤外線反射積層体は、これらDLC薄膜を積層した後に、通常のウェットコート手法により、アクリル系に代表されるハードコートによる保護層を必要に応じて積層しても良い。   Furthermore, in the infrared reflective laminate of the present invention, after laminating these DLC thin films, a protective layer with a hard coat typified by acrylic may be laminated as required by a normal wet coat technique.

銀系金属膜16の膜厚としては、遠赤外線反射能を有するためにある程度の領域で連続性を持つ必要があることから、5nm以上であることが好ましく、充分な遠赤外線反射能を有するためには、10nm以上がより好ましい。さらに、透明性の点から50nm以下が好ましく、より透明性を増すには、20nm以下がより好ましい。   The film thickness of the silver-based metal film 16 is preferably 5 nm or more because it needs to have continuity in a certain region in order to have far infrared reflectivity, and has sufficient far infrared reflectivity. Is more preferably 10 nm or more. Furthermore, 50 nm or less is preferable from the viewpoint of transparency, and 20 nm or less is more preferable for increasing transparency.

銀系金属膜は純銀であっても良いが、化学的安定性を高める目的でAu、Pt、Pd、Cu、Bi、Ni、Nd、Mg、Zn、Alなどとの単独や2種以上との合金であっても良い。混入量としては、その効果と銀の反射率の低下とのバランスで決めればよいが、5%以下が望ましく、10%は超えないことが望ましい。   The silver-based metal film may be pure silver, but for the purpose of enhancing chemical stability, it may be used alone or in combination with Au, Pt, Pd, Cu, Bi, Ni, Nd, Mg, Zn, Al, etc. An alloy may be used. The mixing amount may be determined by a balance between the effect and the reduction of the reflectance of silver, but is preferably 5% or less, and preferably 10% or less.

DLC薄膜15の膜厚は可視光域での光線透過率を向上させるために20〜100nmの範囲にあることが必要であり、30〜90nmがより好ましい。前述の、DLC薄膜により銀系金属膜を挟む構成においては、DLC薄膜のそれぞれの厚さが20〜100nmの範囲にあることが必要である。   The film thickness of the DLC thin film 15 needs to be in the range of 20 to 100 nm in order to improve the light transmittance in the visible light region, and more preferably 30 to 90 nm. In the above-described configuration in which the silver-based metal film is sandwiched between the DLC thin films, the thickness of each DLC thin film needs to be in the range of 20 to 100 nm.

これらの膜を形成するにあたって、透明基体14には予め付着特性や耐久性を改良するためのアンカーコートなどを形成しておいても良い。また、銀系金属膜16やDLC薄膜15形成後に保護コートやさらに光学特性を改良するための複数の銀系金属膜や透明膜を形成しても良い。銀系金属膜16の上下には化学的劣化を防ぐため、銀への酸素の到達を防ぐための金属膜、あるいはそれ自身が酸化することで酸素の透過を防ぐ犠牲層など、銀の反射特性を劣化させない程度の薄いTi、Sn、Zn、Al、Ni、Crなどの金属層を付加してもよい。   In forming these films, the transparent substrate 14 may be previously formed with an anchor coat or the like for improving adhesion characteristics and durability. Further, a protective coat and a plurality of silver metal films or transparent films for improving optical characteristics may be formed after the silver metal film 16 and the DLC thin film 15 are formed. Reflective characteristics of silver, such as a metal film for preventing oxygen from reaching the silver or a sacrificial layer for preventing oxygen from permeating by oxidizing itself to prevent chemical deterioration above and below the silver-based metal film 16 A thin metal layer of Ti, Sn, Zn, Al, Ni, Cr, or the like that does not deteriorate the thickness may be added.

この製造方法により、可視光線の短波長側の吸収の少ないDLC薄膜による透明層が形成されるため、光線透過率が高く色調が茶色系に偏らない高品質の赤外線反射積層体が高い生産性で製造できる。   This manufacturing method forms a transparent layer with a DLC thin film that absorbs less visible light on the short wavelength side. Therefore, a high-quality infrared reflective laminate that has high light transmittance and is not biased to brown is highly productive. Can be manufactured.

(条件1)
図1の装置を用いた。対向電極1、2の放電部面積は500cm(幅(図の奥行きに相当)500mm×長さ100mm)である。電極間の隙間は1.0mmとした。基体4には190×300mm、厚さ125μmのPETフィルム(東レ“ルミラー”T60)を用い、速度3.6m/minで電極1の上を通した。雰囲気ガスとして、アセチレン4体積%を含む窒素との混合ガスを雰囲気ガス供給配管5より供給して排気配管8より吸入した。電極1と2の間に電圧 15kV、幅3μsの矩形パルスを周波数30kHzで印加してプラズマ7を発生させてアセチレンを分解し、膜厚40nmのDLC薄膜を得た。膜厚は、エポキシ樹脂中に埋め込んで補強したサンプルを、ライカマイクロシステムズ社製ウルトラミクロトームUC−7により切断して露出させた断面を、走査式電子顕微鏡((株)日立ハイテクノロジーズS−4800)にて加速電圧を5kVとして測定した。電極の長さを送り速度で割って算出した成膜時間は約2秒であった。
分光光度計により測定した波長400nmでの光線透過率T、光線反射率R、基体の光線透過率T、同光線反射率R、DLC薄膜の厚さdより下記の近似的な式1、2により吸収係数aを求めた。
(Condition 1)
The apparatus of FIG. 1 was used. The area of the discharge part of the counter electrodes 1 and 2 is 500 cm 2 (width (corresponding to the depth in the figure) 500 mm × length 100 mm). The gap between the electrodes was 1.0 mm. A PET film (Toray “Lumirror” T60) having a size of 190 × 300 mm and a thickness of 125 μm was used as the substrate 4 and passed over the electrode 1 at a speed of 3.6 m / min. A mixed gas with nitrogen containing 4% by volume of acetylene was supplied from the atmospheric gas supply pipe 5 and sucked from the exhaust pipe 8 as the atmospheric gas. A rectangular pulse having a voltage of 15 kV and a width of 3 μs was applied between electrodes 1 and 2 at a frequency of 30 kHz to generate plasma 7 to decompose acetylene, thereby obtaining a DLC thin film having a thickness of 40 nm. The film thickness was measured by embedding and reinforcing a sample embedded in an epoxy resin with an ultramicrotome UC-7 manufactured by Leica Microsystems. The acceleration voltage was measured at 5 kV. The film formation time calculated by dividing the length of the electrode by the feed rate was about 2 seconds.
From the light transmittance T, the light reflectance R, the light transmittance T F of the substrate, the light reflectance R F , and the thickness d of the DLC thin film measured by a spectrophotometer, the following approximate expression 1 The absorption coefficient a was determined from 2.

式1において、100%の入射光から光線反射率R(%)を除いたDLC薄膜に入射した光(100%−R)は、DLC膜の厚さd、吸収係数aによる吸収と、基体による吸収Aの結果、光線透過率T(%)となる。厳密には光線反射率R(%)は、DLC薄膜表面、DLC薄膜と基材界面、基材裏面とで多重に反射した光を含み、DLC薄膜表面からの反射以外はDLC膜やフィルムの吸収を受けるが、ここでは光線透過率の高い領域を対象とするので、式1による近似とした。フィルムによる吸収Aは式2の関係から、基材単独で測定した光線透過率TF、光線反射率RFの測定値より算出される。そして、成膜に要した時間とともに表1にまとめた。 In Equation 1, light (100% -R) incident on the DLC thin film obtained by removing the light reflectance R (%) from 100% incident light is absorbed by the thickness d of the DLC film, the absorption coefficient a, and the substrate. As a result of the absorption AF , the light transmittance T (%) is obtained. Strictly speaking, the light reflectivity R (%) includes light reflected multiple times on the surface of the DLC thin film, the interface between the DLC thin film and the base material, and the back surface of the base material. However, since the region having a high light transmittance is targeted here, the approximation according to Equation 1 is adopted. The absorption A F by the film is calculated from the measured value of the light transmittance T F and the light reflectance R F measured by the base material alone from the relationship of Equation 2. The results are summarized in Table 1 together with the time required for film formation.

測定器 島津製作所 分光光度計 MPC−3100PC
測定条件 波長範囲 380nm〜2500nm、サンプリングピッチ 1nm、スキャン速度 中速、絶対反射モード
Measuring instrument Shimadzu spectrophotometer MPC-3100PC
Measurement conditions Wavelength range: 380 nm to 2500 nm, sampling pitch: 1 nm, scan speed: medium speed, absolute reflection mode

Figure 2013244672
Figure 2013244672

Figure 2013244672
Figure 2013244672

(条件2、3)
条件1において、アセチレンの濃度を35体積%(条件2)、45体積%(条件3)とし、膜厚を合わせる様に送り速度を調整した以外はすべて実施例1と同じ条件とした。
波長400nmでの吸収係数はそれぞれ2.6/μmと3.4/μmとなった。成膜時間は実施例1と同様に短い。
(Conditions 2 and 3)
In condition 1, the same conditions as in Example 1 were applied except that the concentration of acetylene was 35% by volume (condition 2) and 45% by volume (condition 3), and the feed rate was adjusted to match the film thickness.
The absorption coefficients at a wavelength of 400 nm were 2.6 / μm and 3.4 / μm, respectively. The film formation time is as short as in Example 1.

(条件4)
DLC薄膜を作成する方法を以下のように変更した。
マグネトロンスパッタ装置のチャンバー中に基材フィルムをセットして1.5×10−4Paまで70分かけて真空引きした後、アルゴンガスに水素を4体積%導入したスパッタガスを流し0.3Paの圧力として、グラファイトターゲット(56mm×212mm×5mmt)を装着したカソードに直流電力200Wを印加して搬送速度0.1m/minにてDLC薄膜を成膜した。波長400nmでの吸収係数は4.3/μmと大きくなった上に、成膜時間が長く生産性を低くする条件である。
(Condition 4)
The method for producing the DLC thin film was changed as follows.
A base film was set in a chamber of a magnetron sputtering apparatus and evacuated to 1.5 × 10 −4 Pa over 70 minutes, and then a sputtering gas in which 4% by volume of hydrogen was introduced into argon gas was allowed to flow to 0.3 Pa. As a pressure, a DLC thin film was formed at a transfer speed of 0.1 m / min by applying DC power of 200 W to a cathode equipped with a graphite target (56 mm × 212 mm × 5 mmt). The absorption coefficient at a wavelength of 400 nm is as large as 4.3 / μm, and the film formation time is long and the productivity is lowered.

(実施例1)
アクリル系ハードコートを有するフィルムとして東レフィルム加工(株)製“タフトップ”C0T0(100μm厚)をスパッタ装置にセットして、到達圧力8×10−3Paまで真空引きした後、アルゴンガスを流し圧力0.5Paとした。Ag合金ターゲット(56mm×212mm×5mmt:1質量%Au含有)に直流電力210Wを印加して、搬送速度0.3m/minにて、非ハードコート面に厚さ14nmの銀系金属膜を形成した。
次に条件1の方法にて膜厚40nmのDLC薄膜を積層した。
続いて、アクリル系ハードコート剤としてJSR(株)製“オプスター”Z7535を希釈溶媒にメチルエチルケトンを用いて固形分濃度7.5質量%に希釈し、バーコーター(番手No.10)を用いて塗布し、80℃で3分乾燥した後、UV硬化(水銀ランプ使用、670mJ/cm)させた。ハードコート層の膜厚は0.6μmであった。
このように作成した赤外線反射積層体の分光光度計により測定した波長400nmでの光線透過率と2.5μmでの光線反射率を表1にまとめた。波長400nmでの光線透過率は59%とこの種の用途としては高い値となった。また2.5μmにおける光線反射率は80%と高い値となった。
Example 1
“Tough Top” C0T0 (100 μm thickness) manufactured by Toray Film Processing Co., Ltd. as an acrylic hard coat film is set in a sputtering device and evacuated to an ultimate pressure of 8 × 10 −3 Pa. The pressure was 0.5 Pa. A direct current power of 210 W is applied to an Ag alloy target (containing 56 mm × 212 mm × 5 mmt: 1 mass% Au), and a silver-based metal film having a thickness of 14 nm is formed on the non-hard coat surface at a conveyance speed of 0.3 m / min. did.
Next, a DLC thin film having a thickness of 40 nm was laminated by the method of Condition 1.
Subsequently, “OPSTAR” Z7535 manufactured by JSR Co., Ltd. as an acrylic hard coat agent was diluted to 7.5% by mass using methyl ethyl ketone as a diluent solvent, and applied using a bar coater (counter No. 10). After drying at 80 ° C. for 3 minutes, UV curing (using a mercury lamp, 670 mJ / cm 2 ) was performed. The film thickness of the hard coat layer was 0.6 μm.
Table 1 summarizes the light transmittance at a wavelength of 400 nm and the light reflectance at 2.5 μm, which were measured with a spectrophotometer of the infrared reflective laminate thus prepared. The light transmittance at a wavelength of 400 nm was 59%, which was a high value for this type of application. The light reflectance at 2.5 μm was as high as 80%.

(実施例2)
実施例1と同様の方法で銀系金属膜を形成した上に、条件2によるDLC薄膜を形成した以外は、実施例1と同様の方法にて赤外線反射積層体を作成した。
(Example 2)
An infrared reflective laminate was prepared in the same manner as in Example 1 except that a silver-based metal film was formed by the same method as in Example 1 and a DLC thin film was formed under Condition 2.

(実施例3)
アクリル系ハードコートを有するフィルムとして東レフィルム加工(株)製“タフトップ”C0T0(100μm厚)の非ハードコート面に、条件1の方法にて膜厚40nmのDLC薄膜を得た。次に、スパッタ装置にセットして、到達圧力8×10−3Paまで真空引きした後、アルゴンガスを流し圧力0.5Paとした。Ag合金ターゲット(56mm×212mm×5mmt:1質量%Au含有)に直流電力210Wを印加して、搬送速度0.3m/minにて銀系金属膜を厚さ14nm形成した。
さらに条件1の方法にて膜厚40nmのDLC膜を得た。
続いて、アクリル系ハードコート剤としてJSR(株)製“オプスター”Z7535を希釈溶媒にメチルエチルケトンを用いて固形分濃度7.5質量%に希釈し、バーコーター(番手No.10)を用いて塗布し、80℃で3分乾燥した後、UV硬化(水銀ランプ使用、670mJ/cm)させた。ハードコート層の膜厚は0.6μmであった。
分光光度計により測定した波長400nmでの光線透過率と2.5μmでの光線反射率を表1にまとめた。波長400nmでの光線透過率は55%とこの種の用途としては高い値となった。
(Example 3)
A DLC thin film having a film thickness of 40 nm was obtained by the method of Condition 1 on the non-hard coat surface of “Tough Top” C0T0 (100 μm thickness) manufactured by Toray Film Processing Co., Ltd. as a film having an acrylic hard coat. Next, after setting to a sputtering apparatus and evacuating to an ultimate pressure of 8 × 10 −3 Pa, argon gas was flowed to a pressure of 0.5 Pa. A direct current power of 210 W was applied to an Ag alloy target (56 mm × 212 mm × 5 mmt: containing 1 mass% Au) to form a silver-based metal film with a thickness of 14 nm at a transfer speed of 0.3 m / min.
Further, a DLC film having a thickness of 40 nm was obtained by the method of Condition 1.
Subsequently, “OPSTAR” Z7535 manufactured by JSR Co., Ltd. as an acrylic hard coat agent was diluted to 7.5% by mass using methyl ethyl ketone as a diluent solvent, and applied using a bar coater (counter No. 10). After drying at 80 ° C. for 3 minutes, UV curing (using a mercury lamp, 670 mJ / cm 2 ) was performed. The film thickness of the hard coat layer was 0.6 μm.
Table 1 summarizes the light transmittance at a wavelength of 400 nm and the light reflectance at 2.5 μm measured by a spectrophotometer. The light transmittance at a wavelength of 400 nm was 55%, which was a high value for this type of application.

(実施例4)
実施例1と同様の方法で銀系金属膜を形成した上に、条件1によるDLC薄膜の2回の成膜を続けて行い、DLC薄膜を80nm形成した以外は、実施例1と同様の方法にて赤外線反射積層体を作成した。
Example 4
The same method as in Example 1 except that a silver-based metal film was formed by the same method as in Example 1 and then the DLC thin film was formed twice under the condition 1 to form a DLC thin film of 80 nm. Infrared reflecting laminate was prepared.

(比較例1)
実施例1と同様の方法で銀系金属膜を形成した上に、条件4によりスパッタリングでDLC薄膜を形成した以外は、実施例1と同様の方法にて赤外線反射積層体を作成した。
DLC薄膜の黄色みが強く、波長400nmでの光線透過率は31%と、低いものとなった。
(Comparative Example 1)
An infrared reflective laminate was prepared in the same manner as in Example 1 except that a silver-based metal film was formed by the same method as in Example 1 and a DLC thin film was formed by sputtering under Condition 4.
The yellow color of the DLC thin film was strong, and the light transmittance at a wavelength of 400 nm was as low as 31%.

(比較例2)
実施例1と同様の方法で銀系金属膜を形成した上に、条件3によりスパッタリングでDLC薄膜を形成した以外は、実施例1と同様の方法にて赤外線反射積層体を作成した。
DLC薄膜の黄色みが強く、波長400nmでの光線透過率は43%と、不十分なものであった。
(Comparative Example 2)
An infrared reflective laminate was prepared in the same manner as in Example 1 except that a silver-based metal film was formed by the same method as in Example 1 and a DLC thin film was formed by sputtering under Condition 3.
The yellow color of the DLC thin film was strong, and the light transmittance at a wavelength of 400 nm was insufficient at 43%.

(比較例3)
実施例1と同様の方法で銀系金属膜を形成した上に、条件1により、15m/minの基材搬送速度でDLC薄膜の成膜を行い、DLC薄膜を10nm形成した以外は、実施例1と同様の方法にて赤外線反射積層体を作成した。
波長400nmでの光線透過率は45%と、不十分なものであった。
(Comparative Example 3)
Example 1 A silver-based metal film was formed by the same method as in Example 1 and then a DLC thin film was formed at a substrate transport speed of 15 m / min under condition 1 to form a DLC thin film with a thickness of 10 nm. 1 was used to prepare an infrared reflective laminate.
The light transmittance at a wavelength of 400 nm was insufficient at 45%.

(比較例4)
実施例1と同様の方法で銀系金属膜を形成した上に、条件1によるDLC薄膜の4回の成膜を続けて行い、DLC薄膜を160nm形成した以外は、実施例1と同様の方法にて赤外線反射積層体を作成した。
(Comparative Example 4)
The same method as in Example 1 except that a silver-based metal film was formed by the same method as in Example 1 and then the DLC thin film was formed four times under the condition 1 to form a 160 nm DLC thin film. Infrared reflecting laminate was prepared.

Figure 2013244672
Figure 2013244672

1、2 対向電極
3 誘電体
4 基体
5 雰囲気ガス供給配管
6 雰囲気ガス
7 プラズマ化雰囲気ガス
8 排気配管
9 窒素供給配管
10 高周波電源
11 雰囲気ガス供給装置
12 窒素供給装置
13 ガス吸気装置
14 透明基体
15 DLC薄膜
16 銀系金属膜
DESCRIPTION OF SYMBOLS 1, 2 Opposite electrode 3 Dielectric material 4 Base | substrate 5 Atmosphere gas supply piping 6 Atmosphere gas 7 Plasmaization atmosphere gas 8 Exhaust piping 9 Nitrogen supply piping 10 High frequency power supply 11 Atmospheric gas supply device 12 Nitrogen supply device 13 Gas intake device 14 DLC thin film 16 Silver metal film

Claims (3)

透明基体上に、銀系金属膜および波長400nmにおける光の吸収係数が3/μm以下であり、厚さが20〜100nmの範囲にあるダイヤモンド状炭素膜がこの順に積層された赤外線反射積層体。 An infrared reflective laminate in which a silver-based metal film and a diamond-like carbon film having a light absorption coefficient of 3 / μm or less at a wavelength of 400 nm and a thickness of 20 to 100 nm are laminated in this order on a transparent substrate. 透明基体上に、ダイヤモンド状炭素薄膜、銀系金属膜およびダイヤモンド状炭素薄膜がこの順に積層され、それぞれのダイヤモンド状炭素薄膜の波長400nmにおける光の吸収係数が3/μm以下であり、厚さが20〜100nmの範囲にあることを特徴とする赤外線反射積層体。 A diamond-like carbon thin film, a silver-based metal film, and a diamond-like carbon thin film are laminated in this order on a transparent substrate, and the light absorption coefficient at a wavelength of 400 nm of each diamond-like carbon thin film is 3 / μm or less, and the thickness is An infrared reflective laminate having a thickness in the range of 20 to 100 nm. 請求項1または2に記載の赤外線反射積層体の製造方法であって、常圧の雰囲気下において、対向する電極間に電圧を印加して低温プラズマを発生させ、窒素により1〜40体積%の濃度に希釈されたアセチレンを分解することで反応生成物を堆積させる方法によりダイヤモンド状炭素膜を積層することを特徴とする赤外線反射積層体の製造方法。 It is a manufacturing method of the infrared rays reflective laminated body of Claim 1 or 2, Comprising: Under normal-pressure atmosphere, a voltage is applied between the electrodes which oppose, a low-temperature plasma is generated, and 1-40 volume% with nitrogen A method for producing an infrared reflective laminate, comprising laminating a diamond-like carbon film by a method of depositing a reaction product by decomposing acetylene diluted to a concentration.
JP2012120426A 2012-05-28 2012-05-28 Infrared reflective laminate and manufacturing method thereof Expired - Fee Related JP5900855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120426A JP5900855B2 (en) 2012-05-28 2012-05-28 Infrared reflective laminate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120426A JP5900855B2 (en) 2012-05-28 2012-05-28 Infrared reflective laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013244672A true JP2013244672A (en) 2013-12-09
JP5900855B2 JP5900855B2 (en) 2016-04-06

Family

ID=49844829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120426A Expired - Fee Related JP5900855B2 (en) 2012-05-28 2012-05-28 Infrared reflective laminate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5900855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549887A (en) * 2021-07-26 2021-10-26 吉林大学 Infrared reflection composite coating and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301743A (en) * 1992-04-24 1993-11-16 Asahi Glass Co Ltd Glass with hard carbon film and heat ray reflecting glass
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2005271495A (en) * 2004-03-26 2005-10-06 Kiyoshi Chiba Laminate
JP2008050670A (en) * 2006-08-25 2008-03-06 Okuma Engineering:Kk Carbon based film forming device and forming method therefor
JP2011214085A (en) * 2010-03-31 2011-10-27 Nagoya Univ Method for manufacturing base material with diamond-like carbon film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301743A (en) * 1992-04-24 1993-11-16 Asahi Glass Co Ltd Glass with hard carbon film and heat ray reflecting glass
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2005271495A (en) * 2004-03-26 2005-10-06 Kiyoshi Chiba Laminate
JP2008050670A (en) * 2006-08-25 2008-03-06 Okuma Engineering:Kk Carbon based film forming device and forming method therefor
JP2011214085A (en) * 2010-03-31 2011-10-27 Nagoya Univ Method for manufacturing base material with diamond-like carbon film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549887A (en) * 2021-07-26 2021-10-26 吉林大学 Infrared reflection composite coating and preparation method and application thereof

Also Published As

Publication number Publication date
JP5900855B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5895687B2 (en) Gas barrier film
JP3821844B2 (en) Double-sided reflective film
JP4876918B2 (en) Transparent conductive film
JP4269261B2 (en) Method for producing transparent gas barrier film
WO2010004937A1 (en) Method for manufacture of touch panel, and film formation apparatus
JP2011173764A (en) Low radiation film
JP5900855B2 (en) Infrared reflective laminate and manufacturing method thereof
JP2009226918A (en) Laminate
JP2011037255A (en) Laminate
JP5598080B2 (en) Method for producing gas barrier sheet
TWI604751B (en) Electronic device and electronic device sealing method
JP2012228786A (en) Gas barrier film, and method for manufacturing the same
JP2008221732A (en) Laminate
JP2014174459A (en) Reflector and manufacturing method thereof
JP5376307B2 (en) Ion plating method and apparatus, and gas barrier film forming method by ion plating
JP5110723B1 (en) Transparent insulation sheet
KR101719520B1 (en) Multilayer barrier film including fluorocarbon thin film and Method of Manufacturing The Same
JP5506275B2 (en) Heat ray shielding film
JP2005353656A (en) Transparent electromagnetic wave shield film and its manufacturing method, and front filter for plasma display panel using the same and plasma display
JPS6362846B2 (en)
JP2015022282A (en) Reflector and method for manufacturing the same
JP2013226758A (en) Method for manufacturing gas barrier film
JPH10278159A (en) Production of transparent conductive membrane laminate
KR101334725B1 (en) Transparent conductivity film for touch screen panel by roll to roll chemical vapor deposition and method for manufacturing thereof
JP2010184194A (en) Photocatalyst element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5900855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees