JP2013244027A - Muscular active mass measuring device - Google Patents

Muscular active mass measuring device Download PDF

Info

Publication number
JP2013244027A
JP2013244027A JP2012117400A JP2012117400A JP2013244027A JP 2013244027 A JP2013244027 A JP 2013244027A JP 2012117400 A JP2012117400 A JP 2012117400A JP 2012117400 A JP2012117400 A JP 2012117400A JP 2013244027 A JP2013244027 A JP 2013244027A
Authority
JP
Japan
Prior art keywords
muscle
muscle activity
myoelectric potential
activity amount
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012117400A
Other languages
Japanese (ja)
Other versions
JP6106822B2 (en
Inventor
Yasuhiro Nakajima
康博 中島
Shigeru Tadano
茂 但野
Tsukuhide Harada
証英 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Harada Electronics Industry Co Ltd
Original Assignee
Hokkaido University NUC
Harada Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Harada Electronics Industry Co Ltd filed Critical Hokkaido University NUC
Priority to JP2012117400A priority Critical patent/JP6106822B2/en
Publication of JP2013244027A publication Critical patent/JP2013244027A/en
Application granted granted Critical
Publication of JP6106822B2 publication Critical patent/JP6106822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a muscular active mass measuring device for measuring the distribution of the muscular active mass of the inside of the body and the muscular active mass for each of muscles from a surface myogenic potential signal in which the myogenic potential of many muscles overlaps.SOLUTION: A surface myogenic potential simulation value at the position of a surface electrode in a surface myogenic potential simulation section is calculated with the following in mind: (A) a myogenic block region obtained by dividing a circular cross section of a substantially cylindrical shape part of a body into small parts of ≤5 mm by finite element division, and (B) a virtual muscle fiber divided into small parts ≤1/2 of the muscle block and forming the muscle block.

Description

本発明は、身体の筋活動量の計測方法に係り、表面筋電位の強度や強度分布から身体内部の筋活動量を計測する装置に関する。 The present invention relates to a method for measuring the amount of muscle activity in the body, and relates to an apparatus for measuring the amount of muscle activity inside the body from the intensity and intensity distribution of surface myoelectric potential.

身体の筋活動量の計測手段として、筋が活動するときに発する生体電位(筋活動電位)を計測する筋電計がよく用いられている。筋電計の主な種類には、筋に電極針を挿入して計測する針筋電計や、筋の直上の皮膚に表面電極を貼り付けて計測する表面筋電計があるが、医療診断などの特殊な分野を除けば、非侵襲で痛みがなく簡易な表面筋電計による計測が望ましい。 As a means for measuring the amount of muscle activity in the body, an electromyograph that measures a bioelectric potential (muscle action potential) generated when the muscle is active is often used. The main types of electromyographs are needle electromyographs that measure by inserting an electrode needle into the muscle, and surface electromyographs that measure by attaching a surface electrode to the skin directly above the muscle. Except for special fields such as non-invasive, painless and simple surface electromyography is desirable.

筋活動量は、筋線維が発する筋活動電位の総和として電気的に計測できる。この総和は筋内部の筋線維の活動頻度を表し、筋収縮力とほぼ比例する。筋活動量は、筋活動電位の時間2乗平均平方根値、いわゆる実効値により算出されるのが一般的である。表面筋電位も筋活動量にほぼ比例して増大することので、同じ計算方法で表面筋電位から筋活動量を算出することができる。 The amount of muscle activity can be electrically measured as the sum of muscle action potentials generated by muscle fibers. This sum represents the activity frequency of muscle fibers inside the muscle and is approximately proportional to the muscle contraction force. The amount of muscle activity is generally calculated from the time root mean square value of the muscle action potential, the so-called effective value. Since the surface myoelectric potential increases in proportion to the amount of muscle activity, the amount of muscle activity can be calculated from the surface myoelectric potential using the same calculation method.

しかし、表面筋電計には、電極周辺にある筋の筋活動電位が全て重畳して計測されてしまう問題がある。特に、前腕や下腿のような多数の筋が狭い領域に密集する部位は重畳が大きくなり、特定の筋の計測が困難である。 However, the surface electromyograph has a problem that all the muscle action potentials of the muscles around the electrodes are superimposed and measured. In particular, a portion where many muscles such as the forearm and the lower leg are densely gathered in a narrow region has a large overlap, making it difficult to measure a specific muscle.

そこで、発明者らは、前腕や下腿のような身体の慨円柱状部位に多数の表面電極を環状に貼り付けて表面筋電位の分布を計測し、身体内の電気伝導シミュレーションモデルを用いて内部の筋活動量を計算する、特開平2011−30991号に記載の発明をした。この発明により、従来は困難だった表面筋電計による多数筋密集領域における個別筋活動計測を実現した。 Therefore, the inventors measured the distribution of the surface myoelectric potential by attaching a large number of surface electrodes in a circular columnar part of the body, such as the forearm and the lower leg, and measured the distribution of the surface myoelectric potential using an internal electrical conduction simulation model. The invention described in Japanese Patent Application Laid-Open No. 2011-30991 for calculating the amount of muscular activity was performed. According to the present invention, it has been possible to measure individual muscle activities in a dense muscle region using a surface electromyograph, which has been difficult in the past.

特開平2011−30991号JP 2011-30991 A

この特許文献1に記載の発明による電気伝導シミュレーションモデルでは、一つの筋は、その領域内の筋線維が均一に活動すると仮定していた。MRI等で計測部位を事前に撮影し、個々の筋の領域を特定し、筋線維の活動をこの仮定に基づいて計算していた。 In the electrical conduction simulation model according to the invention described in Patent Document 1, it is assumed that one muscle has a uniform activity of muscle fibers in the region. The measurement site | part was image | photographed in advance by MRI etc., the area | region of each muscle was specified, and the activity of the muscle fiber was calculated based on this assumption.

しかし、筋の解剖生理学においては、一本の筋が異なる神経に支配されている場合があることがわかっている。たとえば、深指屈筋は、正中神経と尺骨神経の、2つの異なる神経に支配されている。この場合、同じ筋の領域内において必ずしも均一に筋が活動するとは限らない。つまり、この発明の手法では、筋領域を事前に特定したとしても、モデルによるシミュレーションと実際の筋活動量の分布は異なっている場合があるという問題があった。 However, in the anatomical physiology of muscles, it has been found that one muscle may be controlled by different nerves. For example, the deep finger flexor is governed by two different nerves, the median nerve and the ulnar nerve. In this case, the muscles do not always work uniformly within the same muscle region. In other words, the method of the present invention has a problem that even if the muscle region is specified in advance, the simulation by the model and the actual distribution of the muscle activity amount may be different.

また、深層筋の筋活動量の計算がしばしば発散するという問題もあった。これは、深層筋の筋活動電位の伝導がきわめて微弱であることに起因している。この発散は、深層筋と表層筋の表面筋電位伝導量に極端な差があることが原因である。減衰が大きく微弱な深層筋の表面筋電位と、減衰が小さく強大な表層筋の表面筋電位の比が極端に異なるために、深層筋の計算が微小な計測ノイズにきわめて敏感になっていた。 There was also a problem that the calculation of muscle activity of deep muscles often diverges. This is because the conduction of the muscle action potential of the deep muscle is extremely weak. This divergence is caused by an extreme difference in the amount of surface myoelectric potential conduction between the deep muscle and the surface muscle. Since the ratio of the surface myoelectric potential of the deep muscle, which has a large attenuation, and the surface myoelectric potential of the surface muscle, which has a small and strong attenuation, is extremely different, the calculation of the deep muscle has become extremely sensitive to minute measurement noise.

そこで本発明では、これらの問題を解決するため、個々の筋の領域を特定せず、身体内部を細かな筋ブロック領域に分割することで筋活動量の分布を計測する筋活動量計測装置を提供する。 Therefore, in order to solve these problems, the present invention provides a muscle activity amount measuring apparatus that measures the distribution of muscle activity amount by dividing the inside of the body into fine muscle block regions without specifying individual muscle regions. provide.

本発明の第1の発明は、
身体の概円柱形状部位の周囲に環状に配列した表面電極と、
前記表面電極における表面筋電位を計測する表面筋電位計測部を有する筋活動量計測装置であって、
前記身体の概円柱状部位の前記表面電極を環状に配列した位置の横断面の筋の筋活動量から、前記表面電極の位置における表面筋電位シミュレーション値を計算する表面筋電位シミュレーション部と、
前記表面筋電位シミュレーション部で計算された前記表面電極の位置における表面筋電位シミュレーション値と、前記表面筋電位計測部で計測された前記表面電極の位置における表面筋電位とを概一致させるように前記横断面の筋活動量を調整し、概一致したときの筋活動量を身体内の筋活動量と推定する筋活動量推定部と、
を具備し、
表面筋電位シミュレーション部における前記表面電極の位置における表面筋電位シミュレーション値の計算は、
(ア)身体の概円柱形状部位の円断面を有限要素分割により5mm以下に細かく分割した筋ブロック領域と
(イ)前記筋ブロック領域を構成する、前記筋ブロック領域の幅の1/2以下に細かく分割した仮想筋線維と
を想定して、
前記仮想筋線維の筋活動量の時間2乗平均値から、前記仮想筋線維の筋活動による表面筋電位の時間2乗平均値を計算し、前記横断面内の筋ブロック領域について、前記仮想筋線維の筋活動量による表面筋電位の時間2乗平均値の総和の平方根をとることにより、前記表面筋電位シミュレーション値
を計算することを特徴とする筋活動量計測装置である。
The first invention of the present invention is:
A surface electrode arranged in a ring around the approximately cylindrical part of the body,
A muscle activity measuring device having a surface myoelectric potential measuring unit for measuring a surface myoelectric potential in the surface electrode,
A surface myoelectric potential simulation unit for calculating a surface myoelectric potential simulation value at the position of the surface electrode from a muscle activity amount of a muscle in a cross section at a position where the surface electrodes of the substantially cylindrical portion of the body are arranged in an annular shape;
The surface myoelectric potential simulation value at the position of the surface electrode calculated by the surface myoelectric potential simulation unit and the surface myoelectric potential at the position of the surface electrode measured by the surface myoelectric potential measurement unit are roughly matched. A muscle activity amount estimation unit that adjusts the amount of muscle activity in the cross section and estimates the muscle activity amount when roughly matching the muscle activity amount in the body;
Comprising
The calculation of the surface myoelectric potential simulation value at the position of the surface electrode in the surface myoelectric potential simulation unit is as follows.
(A) A muscle block region obtained by finely dividing a circular cross section of a substantially cylindrical part of the body into 5 mm or less by finite element division, and (b) less than ½ of the width of the muscle block region constituting the muscle block region. Assuming finely divided virtual muscle fibers,
The time square average value of the surface myoelectric potential due to the muscle activity of the virtual muscle fiber is calculated from the time square mean value of the muscle activity amount of the virtual muscle fiber, and the virtual muscle is calculated for the muscle block region in the transverse section. The muscle activity amount measuring apparatus is characterized in that the surface myoelectric potential simulation value is calculated by taking a square root of a sum of time square average values of surface myoelectric potentials based on fiber muscle activity amount.

本発明の第2の発明は、
前記筋活動量推定部が、前記表面電極の位置における表面筋電位シミュレーション値と前記表面電極の位置における表面筋電位が概一致したときの前記横断面内の仮想筋線維の筋活動量を、身体内の仮想筋線維の筋活動量と推定する第1の発明の筋活動量計測装置である。
The second invention of the present invention is:
The muscle activity amount estimation unit calculates a muscle activity amount of a virtual muscle fiber in the transverse section when a surface myoelectric potential simulation value at the position of the surface electrode and a surface myoelectric potential at the position of the surface electrode approximately coincide with each other. 1 is a muscle activity amount measuring apparatus according to a first aspect of the present invention, which estimates the amount of muscle activity of a virtual muscle fiber in the inside.

本発明の第3の発明は、前記筋活動量推定部が、前記仮想筋線維の筋活動量を調整するときに、同じ筋ブロック領域に属する仮想筋線維の筋活動量を同一にして、前記表面筋電位シミュレーション値を計算する第2の発明の筋活動量計算装置である。 According to a third aspect of the present invention, when the muscle activity amount estimating unit adjusts the muscle activity amount of the virtual muscle fiber, the muscle activity amount of the virtual muscle fibers belonging to the same muscle block region is made the same, It is a muscle activity amount calculation apparatus according to the second aspect of the invention for calculating a surface myoelectric potential simulation value.

本発明の第4の発明は、筋ブロック領域の大きさが、横断面の外周付近は細かく、概中心に向かうに従い大きくする本発明の第1〜3のいずれかの筋活動量計測装置である。 The fourth aspect of the present invention is the muscle activity measuring device according to any one of the first to third aspects of the present invention, wherein the size of the muscle block region is fine near the outer periphery of the cross section and increases toward the approximate center. .

本発明の第5の発明は、前記表面電極は2個の電極が対となったバイポーラ電極であり、前記2個の電極の間隔が異なる2以上のバイポーラ電極が、前記2個の電極の中心部を結ぶ線分の中点が概一致するよう配置された本発明の第1〜4のいずれかの筋活動量計測装置である。 According to a fifth aspect of the present invention, the surface electrode is a bipolar electrode in which two electrodes are paired, and two or more bipolar electrodes having different distances between the two electrodes are the centers of the two electrodes. It is the muscle activity amount measuring device according to any one of the first to fourth aspects of the present invention, which is arranged so that the midpoints of the line segments connecting the parts roughly coincide.

本発明によれば、筋からの筋電位が複雑に重畳した表面筋電位から、個々の筋の領域を特定せず、身体内部を細かな筋ブロック領域に分割した身体内の電気伝導シミュレーションモデルにより、身体内部の筋活動量の分布を求めることが可能となる。 According to the present invention, an electrical conduction simulation model in the body in which the inside of the body is divided into fine muscle block regions without specifying the individual muscle regions from the surface myoelectric potential in which the myoelectric potentials from the muscles are complicatedly superimposed. It becomes possible to determine the distribution of the amount of muscle activity inside the body.

前腕の横断面25上の表面筋電位の分布をバイポーラ電極で計測している模式図である。It is the model which has measured the distribution of the surface myoelectric potential on the cross section 25 of a forearm with the bipolar electrode. 横断面25における前腕の断面図である。FIG. 6 is a cross-sectional view of the forearm in the cross section 25. 前腕の電気伝導モデルの構築方法を示す模式図である。It is a schematic diagram which shows the construction method of the electrical conduction model of a forearm. 人の表面筋電位から前記シミュレーションモデルを用いて筋活動量を計算する方法のフローチャートである。It is a flowchart of the method of calculating a muscle activity amount using the said simulation model from a human surface myoelectric potential. 狭い電極のみを使った場合の筋活動量計測結果である。It is a muscle activity amount measurement result when only a narrow electrode is used. 前腕の横断面25上に、狭い間隔のバイポーラ電極と広い間隔のバイポーラ電極を配置し、前腕の横断面25上の表面筋電位の分布を計測している模式図である。FIG. 5 is a schematic diagram in which a bipolar electrode having a narrow interval and a bipolar electrode having a wide interval are arranged on a cross section 25 of the forearm and a distribution of surface myoelectric potentials on the cross section 25 of the forearm is measured. 従来のMRI撮影による筋領域の筋活動量計測結果である。It is a muscle activity amount measurement result of the muscle area | region by the conventional MRI imaging | photography. 狭い間隔と広い間隔の2種類の電極を使った場合の筋活動量計測結果である。It is a muscle activity amount measurement result at the time of using two types of electrodes of a narrow space | interval and a wide space | interval. 筋活動量計測装置のブロック図である。It is a block diagram of a muscular activity amount measuring device.

以下、実施例で本発明の実施形態を示す。 Hereinafter, embodiments of the present invention will be described by way of examples.

図1に本発明の筋活動量計測装置の一例を示す。
図1のように前腕の中心線26を概法線とする前腕の横断面25上の皮膚表面には、バイポーラ電極22が環状に配置されているものとする。バイポーラ電極とは、2つの単電極を一対としてその差動電圧を計測する電極であり、図1のバイポーラ電極22は、中心線26と概平行に並ぶ単電極が対をなしてバイポーラ電極となっている。バイポーラ電極は、前腕の周方向について概等間隔にn列配列されているものとする。筋活動量の計算精度を向上するには電極の配列数は多いほどよいが、計算精度を確保するには18ないし20以上が望ましい。このバイポーラ電極に、それぞれ便宜上の番号i=1…nを振る。
FIG. 1 shows an example of a muscle activity amount measuring apparatus of the present invention.
As shown in FIG. 1, it is assumed that the bipolar electrode 22 is annularly arranged on the skin surface on the cross section 25 of the forearm with the center line 26 of the forearm as a general line. The bipolar electrode is an electrode for measuring the differential voltage of a pair of two single electrodes. The bipolar electrode 22 of FIG. 1 is a bipolar electrode formed by a pair of single electrodes arranged in parallel with the center line 26. ing. The bipolar electrodes are arranged in n rows at approximately equal intervals in the circumferential direction of the forearm. In order to improve the calculation accuracy of the amount of muscle activity, it is better that the number of electrode arrangements is larger. Numbers i = 1... N are assigned to the bipolar electrodes for convenience.

バイポーラ電極には、電極ケーブル23を介して表面筋電計測部24が接続されており、これらにより横断面25上の表面筋電位が計測されている。 A surface myoelectric measurement unit 24 is connected to the bipolar electrode via an electrode cable 23, and the surface myoelectric potential on the cross section 25 is measured by these.

次に、身体内の電気伝導シミュレーションモデルの構築方法について説明する。被計測者の横断面25における前腕の周径を測定し、同一径の円断面を構成する。この時、前腕表面の外形線17から、キャリパなどで計測された皮膚脂肪厚さだけ内側に筋ブロック領域の外形線13−1を構成する。ここでは円断面の例を示しているが、前腕形状を模するのであれば、楕円断面や断層撮影による正確な横断面形状を用いてもよい。 Next, the construction method of the electrical conduction simulation model in the body will be described. The circumference of the forearm in the cross section 25 of the measurement subject is measured, and a circular section having the same diameter is formed. At this time, the outline 13-1 of the muscle block region is formed on the inner side by the skin fat thickness measured by a caliper or the like from the outline 17 on the forearm surface. Although an example of a circular cross section is shown here, an oval cross section or an accurate cross sectional shape obtained by tomography may be used as long as the forearm shape is simulated.

次に、筋ブロック領域の外形線13−1内を、表面から深層に向かうに従い徐々に大きくなるよう、細かく分割し、筋ブロック領域13を構成する。このとき、分割の大きさは概ね5mm以下とするのが望ましい。ただし、分割が細かすぎると計算速度の低下を招くことから、概ね1mm〜5mmの間とするのが望ましい。分割は、表層を概ね1mm程度、中心付近は5mm程度として大きさを表層から中心へと徐変すれば、さらに望ましい。電極−筋ブロック領域間距離は、表層では近く深層は遠い。この距離が遠いほど筋電位伝導量が急激に小さくなる。表層と深層で同じ大きさの筋ブロック領域を構成すると、表面電位への深層筋ブロック領域筋活動の寄与率が極端に小さくなり、筋活動量の計算が発散しやすくなる。そこで、深層の筋ブロック領域を大きくしてすることで表面電位への寄与率を増加し、筋活動量計算を容易にしている。筋ブロック領域の最大サイズを5mm程度としたのは、前腕内の最も小さな筋の幅にこのブロックが収まるようにするためである。
この筋ブロック領域は、例えば以下に示すVoronoi図により作成することができる。まず、表層の周上に等間隔、例えば1mmの間隔で均等に母点を配置する。次に、中心方向に向かって徐々に点間隔が広がりかつ均等に散在するように母点を配置する。この後、Voronoi図のアルゴリズムに従い、隣接する母点間を等分する垂直2等分線を作成し母点を中心とした領域に分割する、すなわち、平面内の領域が最寄りの母点に属するように分割する。
図2に、筋ブロック領域のVoronoi図の一例を示す。筋ブロック領域の分割は、表面は1mm、中心付近は4mmに、総計805個の筋ブロック領域に分割したものである。
Next, the muscle block region 13 is configured by finely dividing the outline 13-1 of the muscle block region so as to gradually increase from the surface toward the deep layer. At this time, it is desirable that the size of the division is approximately 5 mm or less. However, if the division is too fine, the calculation speed is reduced, so that it is preferably approximately 1 mm to 5 mm. The division is more preferable if the surface layer is approximately 1 mm and the vicinity of the center is approximately 5 mm and the size is gradually changed from the surface layer to the center. The distance between the electrode and the muscle block region is near in the surface layer and far in the deep layer. As this distance increases, the myoelectric potential conduction amount decreases rapidly. If muscle block regions having the same size are formed on the surface layer and the deep layer, the contribution rate of the deep muscle block region muscle activity to the surface potential becomes extremely small, and the calculation of the muscle activity amount is likely to diverge. Therefore, by increasing the deep muscle block region, the contribution rate to the surface potential is increased, and the muscle activity amount calculation is facilitated. The reason why the maximum size of the muscle block region is set to about 5 mm is to make the block fit within the width of the smallest muscle in the forearm.
This muscle block region can be created by, for example, the following Voronoi diagram. First, the mother points are arranged uniformly at equal intervals, for example, 1 mm, on the circumference of the surface layer. Next, the mother points are arranged so that the point intervals gradually spread toward the center direction and are evenly scattered. After this, according to the algorithm of the Voronoi diagram, a perpendicular bisector that equally divides between adjacent generating points is created and divided into regions centered on the generating points. That is, the region in the plane belongs to the nearest generating point. Divide like so.
FIG. 2 shows an example of a Voronoi diagram of the muscle block region. The muscle block area is divided into a total of 805 muscle block areas with a surface of 1 mm and a center area of 4 mm.

さらに、筋ブロック領域の外形線13−1内を、さらに細かいサイズの仮想筋線維14に分割する。
ここで、仮想筋線維としたのは、各筋ブロック領域はこの仮想筋線維が集合して形成していると仮定したからである。このとき、各筋ブロック領域内における仮想筋線維の活動量は等しいと仮定することができる。この分割の大きさは、実際の筋線維の直径である20μm〜2mmであり、筋ブロック領域の最小サイズに依存する。概ね、筋ブロック領域のサイズの1/2以下にするのが望ましい。ただし、分割が細かすぎると計算速度の低下を招くことから、概ね1/2〜1/10程度に分割するのが望ましい。例えば、筋ブロック領域の最小サイズが1mmのときは、仮想筋線維の分割は概ね0.1mmから0.5mmの間が望ましい。
仮想筋線維の大きさが大きいと、筋ブロック領域の形状を正しく表すことができず、好ましくない。また、小さいと、計算に必要なメモリや時間が膨大となり好ましくない。
図3は、外形線13−1内を筋ブロック領域13と仮想筋線維14に分割した状態を模式的に示したものである。
Further, the inside of the outline 13-1 of the muscle block region is divided into smaller sized virtual muscle fibers 14.
Here, the reason why the virtual muscle fiber is used is that it is assumed that each muscle block region is formed by aggregation of the virtual muscle fibers. At this time, it can be assumed that the amount of activity of virtual muscle fibers in each muscle block region is equal. The size of this division is 20 μm to 2 mm, which is the actual muscle fiber diameter, and depends on the minimum size of the muscle block region. In general, it is desirable to set it to 1/2 or less of the size of the muscle block region. However, if the division is too fine, the calculation speed is reduced. Therefore, it is desirable to divide the input into about 1/2 to 1/10. For example, when the minimum size of the muscle block region is 1 mm, it is desirable that the division of the virtual muscle fiber is approximately between 0.1 mm and 0.5 mm.
If the size of the virtual muscle fiber is large, the shape of the muscle block region cannot be expressed correctly, which is not preferable. On the other hand, if it is small, the memory and time required for calculation become enormous, which is not preferable.
FIG. 3 schematically shows a state in which the outline 13-1 is divided into the muscle block region 13 and the virtual muscle fiber 14. As shown in FIG.

次に、断面内の筋ブロック領域13と仮想筋線維14にそれぞれ番号を振る。仮に筋ブロック領域15の筋番号をjとし、その中にある仮想筋線維14の番号をkとして、筋j内の仮想筋線維kの位置ベクトルをxMjkとして表す。モデルの表面には、実際の前腕に配置したバイポーラ電極22の位置と同じ位置に仮想バイポーラ電極11があるものとし、身体に配置したバイポーラ電極と同じ番号を振る。仮に電極12の番号をiとして、その位置ベクトルをxEiとする。表面電極−仮想筋線維間距離16をLijkとすると、LijkはxMjkとxEiとベクトルのノルム記号||...||を用いて、数1のように表せる。このとき、表面電極−仮想筋線維間距離は、バイポーラ電極を構成するそれぞれの単電極の中心を結ぶ線分の中点から仮想筋線維の中心までの距離を指すものとする。以下、バイポーラ電極の位置を示したときは、前記の単電極の中心を結ぶ線分の中点を指すものとする。 Next, numbers are assigned to the muscle block region 13 and the virtual muscle fiber 14 in the cross section, respectively. Assuming that the muscle number of the muscle block region 15 is j, the number of the virtual muscle fiber 14 in the muscle block region 15 is k, and the position vector of the virtual muscle fiber k in the muscle j is represented as xMjk . On the surface of the model, the virtual bipolar electrode 11 is assumed to be located at the same position as the bipolar electrode 22 arranged on the actual forearm, and the same number as the bipolar electrode arranged on the body is assigned. Let the number of the electrode 12 be i and its position vector be xEi . When the surface electrode-virtual muscle fiber distance 16 is L ijk , L ijk is represented by x Mjk and x Ei and the vector norm symbol ||. . . Using ||, it can be expressed as in Equation 1. At this time, the distance between the surface electrode and the virtual muscle fiber refers to the distance from the midpoint of the line segment connecting the centers of the single electrodes constituting the bipolar electrode to the center of the virtual muscle fiber. Hereinafter, when the position of the bipolar electrode is indicated, it indicates the midpoint of a line segment connecting the centers of the single electrodes.

Figure 2013244027
Figure 2013244027

ここで、概円柱形状の身体部位において、部位内の筋線維の方向が中心軸方向に概ね揃っているとき、筋ブロックj内の仮想筋線維kが筋活動量の時間2乗平均値(以下、MS値とする)mjk で活動したときに表面電極i上に発生する表面筋電位の時間2乗平均値Vijk は、表面−仮想筋線維距離Lijkに対して累乗的に減衰するものとする。Vijk とmjk の関係は、数1とmjkとLijkおよびにLijk対する減衰乗数b,単位表面−仮想筋線維間距離L=1mmのときの単位筋活動量RMS値mjk=1における表面筋電位2乗平均平方根値(以下、RMS値とする)である係数Vを用いた伝達関数として次のように表される。なお、b、Vはバイポーラ電極を構成する各電極の間隔によって決まる定数であり、RMS値はMS値の平方根である。 Here, when the direction of the muscle fibers in the substantially cylindrical body part is substantially aligned with the direction of the central axis, the virtual muscle fiber k in the muscle block j is the time-square mean value of the amount of muscle activity (hereinafter referred to as the muscle activity amount). , MS value) The time-square mean value V ijk 2 of the surface myoelectric potential generated on the surface electrode i when active at m jk 2 is attenuated to the power with respect to the surface-virtual muscle fiber distance L ijk . It shall be. The relationship between V ijk 2 and m jk 2 is that the unit muscle activity amount RMS value m when the number 1, m jk , L ijk, and the attenuation multiplier b for L ijk , and the unit surface-virtual muscle fiber distance L 0 = 1 mm It is expressed as follows as a transfer function using a coefficient V 0 which is a root mean square value (hereinafter referred to as RMS value) of surface EMG at jk = 1. Note that b and V 0 are constants determined by the distance between the electrodes constituting the bipolar electrode, and the RMS value is the square root of the MS value.

Figure 2013244027
Figure 2013244027

ここで、同一筋ブロック領域にある仮想筋線維は全て同じ筋活動量をとると仮定し筋j内の仮想筋線維は全て同じRMS値mをとるとすると、電極iにおける筋jの表面筋電位MS値Vij は、Vijk の総和として数2より次のように計算できる。 Here, assuming that all virtual muscle fibers in the same muscle block region have the same amount of muscle activity, and all the virtual muscle fibers in the muscle j have the same RMS value m j , the surface muscle of the muscle j at the electrode i The potential MS value V ij 2 can be calculated as follows from Equation 2 as the sum of V ijk 2 .

Figure 2013244027
Figure 2013244027

数3のLSijを、筋jの電極iに対する総和伝達係数と呼ぶ。さらに,電極iの表面筋電位MS値V は全ての筋のMS値の総和となるため,数3より次式で表される。 L Sij in Expression 3 is referred to as a total transmission coefficient for the electrode i of the muscle j. Furthermore, since the surface myoelectric potential MS value V i 2 of the electrode i is the sum of the MS values of all the muscles, it is expressed by the following equation from Equation 3.

Figure 2013244027
Figure 2013244027

数4が、本発明の電気伝導シミュレーションモデルによる表面筋電位のシミュレーション計算式となる。これにより、各筋がそれぞれの筋活動量で活動したときの表面筋電位をモデル上で計算できる。 Formula 4 is a simulation calculation formula of the surface myoelectric potential by the electric conduction simulation model of the present invention. As a result, the surface myoelectric potential when each muscle is active at each muscle activity amount can be calculated on the model.

次に、人の表面筋電位と前記電気伝導シミュレーションモデルを用いて筋活動量を計算する方法を説明する。モデル上の仮想電極iに対応する被計測者の前腕上の表面電極iにより測定された表面筋電位MS値をVMi とする。 Next, a method for calculating the amount of muscle activity using a human surface myoelectric potential and the electric conduction simulation model will be described. The surface myoelectric potential MS value measured by the surface electrode i on the forearm of the measurement subject corresponding to the virtual electrode i on the model is defined as V Mi 2 .

以下、図4のフローチャートに沿って計算方法を説明する。計算の最初に、S21に示すように数4のモデル式における各筋の筋活動量mの初期値をあらかじめ適当に決めておく。mの初期値は、計算が発散しないよう0と理論上の最大値の間となるように考えて設定され、例えば最大値の10%程度となるようにしている。 Hereinafter, the calculation method will be described with reference to the flowchart of FIG. At the beginning of the calculation, the initial value of the muscle activity amount m j of each muscle in the model formula of Equation 4 is appropriately determined in advance as shown in S21. The initial value of m j is set so as to be between 0 and the theoretical maximum value so that the calculation does not diverge, for example, about 10% of the maximum value.

次に、S22に示すように数4のシミュレーション計算式によりシミュレーション表面筋電位RMS値Vを計算する。 Next, as shown in S22, the simulation surface myoelectric potential RMS value V i is calculated by the simulation formula of Formula 4.

ここから、人の前腕で測定した表面筋電位RMS値VMiとシミュレーション表面筋電位RMS値Vとの差eを、次のように計算する。 From this, the difference e i between the surface myoelectric potential RMS value V Mi measured on the human forearm and the simulated surface myoelectric potential RMS value V i is calculated as follows.

Figure 2013244027
Figure 2013244027

数5のeから,S23に示すように差の評価関数fをRMS値の差の2乗和として次のように計算する. Several 5 e i, is calculated as follows evaluation function f of the difference as shown to step S23 as the sum of squares of the difference between the RMS value.

Figure 2013244027
Figure 2013244027

評価関数fを計算し、S24に示すように、このfが概最小となったかを判定する。fが概最小でない場合はS25に示すように筋活動量mの値を適宜変更してS22に戻りシミュレーション表面筋電位RMS値Vを再計算することを繰り返す。fが概最小となったときは、人の前腕で測定した表面筋電位RMS値の分布とシミュレーション表面筋電位が概一致したとみなし、S26に示すように、モデルの筋活動量MS値mを人の前腕の筋活動量MS値とする。 The evaluation function f is calculated, and it is determined whether or not this f is almost minimum as shown in S24. f is If not approximate minimum repeated to recalculate the muscle activity m j value appropriately changed back to S22 by simulation EMG RMS values V i of, as shown in S25. When f is approximately the minimum, it is considered that the distribution of the surface myoelectric potential RMS value measured on the human forearm and the simulation surface myoelectric potential substantially coincide with each other, and as shown in S26, the muscle activity MS value m j of the model Is the MS activity value of the human forearm.

次に、本発明の筋活動量計測装置を用いて、図1のように前腕の横断面25上に電極間隔を10mmとしてバイポーラ電極(20列)を設置し筋活動量を測定した。ここで、筋ブロック領域は図2に示すようにVoronoi図を作成し、筋ブロック領域の分割は、表面は1mm、中心付近は4mmに、総計805個の筋ブロック領域に分割した。また、仮想筋線維の大きさは、0.2mmとした。
実験では、中指の近位指節関節へ屈曲負荷を与えた。前腕と手掌、中指基節をバンドで固定し、中指中節に紐をかけ手掌と反対の方向に一定荷重で引いた。このとき、被験者には荷重に対抗し、一定の姿勢で手指を静止するよう指示した。
結果を図5に示す。図中、筋活動量の大きさは黒白の濃淡で示され、白いほど活動量が大きい。この結果は、浅指屈筋と総指伸筋の領域の活性量が高いことを示すものであり、本発明の筋活動量計測装置で筋活動量を計測できることがわかる。
Next, using the muscular activity measuring apparatus of the present invention, as shown in FIG. 1, bipolar electrodes (20 rows) were installed on the cross section 25 of the forearm with an electrode interval of 10 mm, and the muscular activity was measured. Here, for the muscle block area, a Voronoi diagram was created as shown in FIG. 2, and the muscle block area was divided into a total of 805 muscle block areas with a surface of 1 mm and a central area of 4 mm. The size of the virtual muscle fiber was 0.2 mm.
In the experiment, bending load was applied to the proximal phalangeal joint of the middle finger. The forearm, palm, and middle finger base were fixed with a band, and the middle finger was tied at a constant load in a direction opposite to the palm. At this time, the test subject was instructed to stand the finger in a fixed posture against the load.
The results are shown in FIG. In the figure, the amount of muscle activity is indicated by shades of black and white, and the whiter the activity is. This result indicates that the amount of activity in the superficial digital flexor muscle and total finger extensor muscle regions is high, and it can be seen that the muscle activity amount can be measured by the muscle activity amount measuring device of the present invention.

実施例1において、電極間隔が1種類のバイポーラ電極を用いた筋活動量計算方法を示したが、電極間隔が異なる種類のバイポーラ電極を前腕の中心軸方向に複数配置すれば、実施例1より詳細な筋活動量計測ができる。 In the first embodiment, the muscle activity amount calculation method using a bipolar electrode having one kind of electrode interval has been described. However, if a plurality of types of bipolar electrodes having different electrode intervals are arranged in the central axis direction of the forearm, the first embodiment can be used. Detailed muscle activity can be measured.

本実施例では、図6に示すように、前腕21の横断面25上に狭い間隔のバイポーラ電極22aと、広い間隔のバイポーラ電極22bを配置し、それぞれのバイポーラ電極から得られる表面筋電位を表面筋電位計測部24で計測する。 In this embodiment, as shown in FIG. 6, a narrowly-spaced bipolar electrode 22a and a wide-spaced bipolar electrode 22b are arranged on the cross section 25 of the forearm 21, and the surface myoelectric potential obtained from each bipolar electrode is measured on the surface. Measurement is performed by the myoelectric potential measuring unit 24.

このとき、減衰乗数bと係数Vはバイポーラ電極の電極間隔によって決まる定数であり、バイポーラ電極の電極間隔が広くなるほど減衰が緩やかになることがわかっている。このとき、狭い電極間隔のバイポーラ電極における減衰乗数と係数をbとV0N、広い電極間隔のバイポーラ電極における減衰乗数と係数をbとV0Wとおく。 At this time, the attenuation multiplier b and the coefficient V 0 are constants determined by the electrode interval between the bipolar electrodes, and it is known that the attenuation becomes gentler as the electrode interval between the bipolar electrodes becomes wider. At this time, attenuation multipliers and coefficients for bipolar electrodes with a narrow electrode interval are set to b N and V 0N , and attenuation multipliers and coefficients for bipolar electrodes with a wide electrode interval are set to b W and V 0W .

シミュレーションモデル上の仮想電極を前腕21上のバイポーラ電極と同じ配置としたとき、仮想筋線維の筋活動量と表面筋電位との関係は、数2〜数4のbとVおよび総和伝達係数LSijを、狭い電極間隔のバイポーラ電極においてはbとV0NとLNSij、広い電極間隔のバイポーラ電極においてはbとV0WとLWSijに置き換えて計算できる。数2〜数4に対応する狭い電極間隔のバイポーラ電極における表面筋電位RMS値VNijk、VNij、VNiと、広い電極間隔のバイポーラ電極における表面筋電位RMS値VWijk、VWij、VWiは次式で表される。 When the virtual electrodes on simulation models were the same arrangement as the bipolar electrodes on the forearm 21, the relationship between muscle activity and surface myoelectric potential of the virtual muscle fibers, having 2 to number 4 b and V 0 and the sum transfer coefficient L Sij can be calculated by substituting b N , V 0N and L NSij for a bipolar electrode having a narrow electrode spacing, and b W , V 0W and L WSij for a bipolar electrode having a wide electrode spacing. Surface myoelectric potential RMS values V Nijk , V Nij , and V Ni in bipolar electrodes having a narrow electrode interval corresponding to Equations 2 to 4, and surface myoelectric potential RMS values V Wijk , V Wij , and V Wi in bipolar electrodes having a wide electrode interval. Is expressed by the following equation.

Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027

数9と数12が、狭い間隔のバイポーラ電極と、広い間隔のバイポーラ電極を配置したときの電気伝導シミュレーションモデルによる表面筋電位のシミュレーション計算式となる。 Equations (9) and (12) are the calculation formulas for the surface myoelectric potential based on the electrical conduction simulation model when the narrowly spaced bipolar electrodes and the widely spaced bipolar electrodes are arranged.

本実施例における人の前腕で測定した狭い間隔のバイポーラ電極表面筋電位RMS値VMNiとVNiとの差、および広い間隔のバイポーラ電極表面筋電位RMS値VMWiとVWiとの差eは次のように定義される。 The difference e i between the human of the difference between the bipolar electrode EMG RMS value V MNi and V Ni narrow interval as measured by forearm, and broad bipolar electrode EMG RMS value V MW i intervals and V Wi in this embodiment Is defined as:

Figure 2013244027
Figure 2013244027
Figure 2013244027
Figure 2013244027

以下は、実施例1における筋活動量を計算する方法と同一の方法により、人の前腕の筋活動量MS値を計算する。 In the following, the muscle activity amount MS value of the human forearm is calculated by the same method as the method of calculating the muscle activity amount in the first embodiment.

次に、本発明の筋活動量計測装置を用いて、図6のように前腕の横断面25上に、電極間隔を狭い間隔(15mm)と、広い間隔(45mm)でバイポーラ電極(それぞれ、20列)を設置し筋活動量を測定した。ここで、筋ブロック領域は図2に示すようにVoronoi図を作成し、筋ブロック領域の分割は、表面は1mm、中心付近は4mmに、総計805個の筋ブロック領域に分割した。また、仮想筋線維の大きさは、0.2mmとした。
実験は、実施例1に記載したのと同じ方法で中指の近位指節関節へ屈曲付加を与えた。
結果を図7に示す。図中、筋活動量の大きさは黒白の濃淡で示され、白いほど活動量が大きい。この結果は、浅指屈筋と総指伸筋の領域の活性量が高いことを示すものであり、本発明の筋活動量計測装置で筋活動量を計測できることが分かる。
この計算結果(図7)を、実施例1の電極間隔を狭い間隔(15mm)のみとした場合(図5)と比較すると、図5は表層に筋活動が集中し、内部の筋活動を低く算出している。対して、図7は、2種類の電極により、電極近傍と遠方のそれぞれの筋活動を的確に算出できることを示していることがわかる。
したがって、本実施例のように複数の電極間隔のバイポーラ電極を同時に用いると、狭い電極間隔のバイポーラ電極では減衰が大きいため電極近傍の筋の筋活動量を詳細に計算でき、広い電極間隔のバイポーラ電極では減衰が小さいため広範囲で深部の筋活動を計算できることで、詳細かつ広範囲な筋活動量の計測が可能となる。
Next, using the muscular activity measuring apparatus of the present invention, bipolar electrodes (20 and 20 mm, respectively) with a narrow interval (15 mm) and a wide interval (45 mm) on the cross section 25 of the forearm as shown in FIG. Column) and muscle activity was measured. Here, for the muscle block area, a Voronoi diagram was created as shown in FIG. 2, and the muscle block area was divided into a total of 805 muscle block areas with a surface of 1 mm and a central area of 4 mm. The size of the virtual muscle fiber was 0.2 mm.
The experiment applied flexion to the proximal phalangeal joint of the middle finger in the same manner as described in Example 1.
The results are shown in FIG. In the figure, the amount of muscle activity is indicated by shades of black and white, and the whiter the activity is. This result indicates that the amount of activity in the superficial digital flexor muscle and total finger extensor muscle regions is high, and it can be seen that the muscle activity amount can be measured by the muscle activity amount measuring device of the present invention.
When this calculation result (FIG. 7) is compared with the case (FIG. 5) in which the electrode interval of Example 1 is limited to a narrow interval (15 mm) (FIG. 5), FIG. Calculated. On the other hand, it can be seen that FIG. 7 shows that the muscle activity near and far from the electrodes can be accurately calculated by using two types of electrodes.
Therefore, when bipolar electrodes with a plurality of electrode intervals are used simultaneously as in this embodiment, the amount of muscle activity in the muscles near the electrodes can be calculated in detail because bipolar electrodes with a narrow electrode interval have a large attenuation. Since the attenuation of the electrode is small, the muscle activity in the deep part can be calculated in a wide range, so that a detailed and wide range of muscle activity can be measured.

次に、本発明の筋活動量計測装置による計測を、従来の筋活動量計測装置による計測(特開平2011−30991号)と比較した。
図8は従来方法、つまりMRI画像を基に筋領域を抽出して計測したもののであり、前腕の横断面25上に、電極間隔を狭い間隔(15mm)と、広い間隔(45mm)でバイポーラ電極(それぞれ、20列)を設置し筋活動量を測定した。実験は、実施例1に記載したのと同じ方法で中指の近位指節関節へ屈曲付加を与えたものである。
図5、7と図8とを比較すると、筋活動位置はほぼ一致しており、本発明の筋活動量計測装置の有効性を示している。すなわち、本発明の筋活動量計測装置を用いれば、MRI画像等のデータがなくとも、筋活動量を計測できることがわかる。
Next, the measurement by the muscle activity amount measuring device of the present invention was compared with the measurement by the conventional muscle activity amount measuring device (Japanese Patent Laid-Open No. 2011-30991).
FIG. 8 shows a conventional method, that is, a muscle region extracted on the basis of an MRI image and measured. On the cross-section 25 of the forearm, bipolar electrodes are separated at a narrow interval (15 mm) and a wide interval (45 mm). (Each 20 rows) was installed, and the amount of muscle activity was measured. In the experiment, bending was added to the proximal phalangeal joint of the middle finger in the same manner as described in Example 1.
Comparing FIGS. 5 and 7 with FIG. 8, the muscle activity positions are almost the same, indicating the effectiveness of the muscle activity amount measuring apparatus of the present invention. That is, it can be understood that the muscle activity amount can be measured without using data such as an MRI image by using the muscle activity amount measuring apparatus of the present invention.

主な実施形態を実施例1,2に述べたが、本発明の実施形態はこれらにとどまらない。例えば、身体内の電気伝導シミュレーションモデルの構築において被計測者の前腕横断面25の外形線17と各筋の外形線13を抽出する方法は、抽出に用いる断面画像にはCTやMRIのような人体の断層撮影装置や3次元画像撮影装置による被計測者の前腕断面画像を用いるのが望ましい。前記のような装置により被計測者を撮影できないときは、別人の断層画像や屍体の断層画像から外形線を抽出して、被計測者の前腕寸法に合わせて外形線を拡大縮小させたものを用いてもよい。 Although main embodiment was described in Example 1, 2, embodiment of this invention is not limited to these. For example, in the construction of the electrical conduction simulation model in the body, the method of extracting the contour line 17 of the forearm cross section 25 and the contour line 13 of each muscle is used for the cross-sectional image used for the extraction, such as CT or MRI. It is desirable to use a forearm cross-sectional image of a person to be measured by a tomographic apparatus of a human body or a three-dimensional image capturing apparatus. When the person to be measured cannot be photographed by the device as described above, the outline is extracted from the tomographic image of another person or the tomographic image of the skeleton, and the outline is enlarged or reduced in accordance with the forearm dimension of the person to be measured. It may be used.

筋断面の外形線13で囲まれた筋ブロック領域を仮想筋線維14に分割する場合において、仮想筋線維14の断面の幅と高さは、0.1mmの他、筋線維の平均径である20μmなどが考えられるが、断面形状を仮想筋線維で十分に再現できるサイズであればいずれでもよい。前腕では、仮想筋線維の分割サイズは断面形状を十分に再現できるサイズとして0.2mm以下が望ましい。断面形状は、三角断面、四角断面、六角断面などが考えられ、いずれを用いてもよいが、四角断面のうち正方形断面の方が分割は簡易で計算も容易なため望ましい。 When the muscle block region surrounded by the outline 13 of the muscle cross section is divided into the virtual muscle fibers 14, the width and height of the cross section of the virtual muscle fibers 14 are 0.1 mm and the average diameter of the muscle fibers. Although 20 micrometers etc. can be considered, any may be sufficient if a cross-sectional shape is fully reproducible with a virtual muscle fiber. In the forearm, the virtual muscle fiber division size is desirably 0.2 mm or less as a size that can sufficiently reproduce the cross-sectional shape. The cross-sectional shape may be a triangular cross-section, a square cross-section, a hexagonal cross-section, etc., and any of them may be used. Of the square cross-sections, a square cross-section is desirable because it can be easily divided and calculated.

実施例1、2では、身体の表面筋電位の計測においてはバイポーラ電極を配置しているが、バイポーラ電極以外にも小型電極を多数具備した電極アレイを配置してもよい。 In the first and second embodiments, the bipolar electrode is disposed in the measurement of the surface myoelectric potential of the body. However, in addition to the bipolar electrode, an electrode array including a large number of small electrodes may be disposed.

実施例2においては、狭い間隔と広い間隔の2種類のバイポーラ電極を前腕に配置する例を述べたが、バイポーラ電極の電極間隔をさらにふやし、3種類、4種類など他種類の電極間隔を持つバイポーラ電極を用いれば、さらに詳細な筋活動量計測を行える。 In the second embodiment, an example in which two types of bipolar electrodes having a narrow interval and a wide interval are arranged on the forearm has been described, but the electrode interval of the bipolar electrode is further increased to have other types of electrode intervals such as three types and four types. If bipolar electrodes are used, more detailed muscle activity measurement can be performed.

評価関数fをシミュレーションRMS値と測定表面筋電位RMS値の差の絶対値の2乗和としたが、これを絶対値の3乗和や4乗和、あるいは絶対値の和にしてもよいし、絶対値の正の実数乗の和としてもよい。あるいは、評価関数fをシミュレーションMS値と測定表面筋電位MS値の差の絶対値の和、絶対値の2乗和、3乗和、4乗和、あるいは正の実数乗の和としてもよい。また、評価関数にここに示した以外の関数を加えてもよい。 The evaluation function f is the sum of squares of the absolute values of the difference between the simulation RMS value and the measured surface myoelectric potential RMS value, but this may be the sum of the cubes of the absolute values, the sum of the fourths, or the sum of the absolute values. The absolute value may be the sum of positive real powers. Alternatively, the evaluation function f may be the sum of the absolute values of the difference between the simulation MS value and the measured surface myoelectric potential MS value, the sum of the squares of the absolute values, the sum of the third power, the sum of the fourth power, or the sum of the positive real powers. Further, functions other than those shown here may be added to the evaluation function.

実施例1、2では前腕における本発明の実施例を述べたが、本発明は前腕に限らず概円柱形の部位であれば適用できる。例えば、上腕、大腿、下腿、首のような部位にも適用できる。これらの部位で本発明を実施する場合は、前記した発明を実施するための形態および実施例において、前腕と記した部分を上腕、大腿、下腿、首と読み換えて実施する。 In the first and second embodiments, the embodiment of the present invention in the forearm has been described. For example, it can be applied to parts such as the upper arm, thigh, lower leg, and neck. When the present invention is carried out at these sites, the portion indicated as the forearm is read as the upper arm, thigh, lower leg, and neck in the embodiments and examples for carrying out the invention described above.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、筋電位計測装置の製造産業などに利用可能である。 The present invention can be used in the manufacturing industry of myoelectric potential measuring devices.

11 シミュレーションモデル上の表面電極
12 番号iの仮想表面電極
13−1 筋ブロック領域の外形線
13 筋ブロック領域
14 筋jの中にある番号kの仮想筋線維
15 仮想筋線維に分割された筋jの外形線
16 電極−仮想筋線維間距離
17 前腕断面の外形線
21 前腕
22 表面電極
22a 狭い電極間隔のバイポーラ電極を構成する各電極
22b 広い電極間隔のバイポーラ電極を構成する各電極
23 電極ケーブル
23a 狭い電極間隔のバイポーラ電極を構成する各電極に接続された電極ケーブル
23b 広い電極間隔のバイポーラ電極を構成する各電極に接続された電極ケーブル
24 表面筋電位計測部
25 前腕の断面線
26 前腕の中心線
11 Surface electrode 12 on simulation model No. i virtual surface electrode 13-1 Outline of muscle block region 13 Muscle block region 14 No. k virtual muscle fiber 15 in muscle j Muscle j divided into virtual muscle fibers Outline line 16 of electrode-virtual muscle fiber 17 Outline line of forearm cross section 21 Forearm 22 Surface electrode 22a Each electrode 22b constituting a bipolar electrode with a narrow electrode interval Each electrode 23 constituting a bipolar electrode with a wide electrode interval Electrode cable 23a Electrode cable 23b connected to each electrode constituting a bipolar electrode having a narrow electrode interval Electrode cable 24 connected to each electrode constituting a bipolar electrode having a wide electrode interval Surface myoelectric potential measuring section 25 Forearm cross-sectional line 26 Forearm center line

Claims (5)

身体の概円柱形状部位の周囲に環状に配列した表面電極と、
前記表面電極における表面筋電位を計測する表面筋電位計測部を有する筋活動量計測装置であって、
前記身体の概円柱状部位の前記表面電極を環状に配列した位置の横断面の筋の筋活動量から、前記表面電極の位置における表面筋電位シミュレーション値を計算する表面筋電位シミュレーション部と、
前記表面筋電位シミュレーション部で計算された前記表面電極の位置における表面筋電位シミュレーション値と、前記表面筋電位計測部で計測された前記表面電極の位置における表面筋電位とを概一致させるように前記横断面の筋活動量を調整し、概一致したときの筋活動量を身体内の筋活動量と推定する筋活動量推定部と、
を具備し、
表面筋電位シミュレーション部における前記表面電極の位置における表面筋電位シミュレーション値の計算は、
(ア)身体の概円柱形状部位の円断面を有限要素分割により5mm以下に細かく分割した筋ブロック領域と
(イ)前記筋ブロック領域を構成する、前記筋ブロック領域幅の1/2以下に細かく分割した仮想筋線維と
を想定して、
前記仮想筋線維の筋活動量の時間2乗平均値から、前記仮想筋線維の筋活動による表面筋電位の時間2乗平均値を計算し、前記横断面内の筋ブロック領域について、前記仮想筋線維の筋活動量による表面筋電位の時間2乗平均値の総和の平方根をとることにより、前記表面筋電位シミュレーション値
を計算することを特徴とする筋活動量計測装置。
A surface electrode arranged in a ring around the approximately cylindrical part of the body,
A muscle activity measuring device having a surface myoelectric potential measuring unit for measuring a surface myoelectric potential in the surface electrode,
A surface myoelectric potential simulation unit for calculating a surface myoelectric potential simulation value at the position of the surface electrode from a muscle activity amount of a muscle in a cross section at a position where the surface electrodes of the substantially cylindrical portion of the body are arranged in an annular shape;
The surface myoelectric potential simulation value at the position of the surface electrode calculated by the surface myoelectric potential simulation unit and the surface myoelectric potential at the position of the surface electrode measured by the surface myoelectric potential measurement unit are roughly matched. A muscle activity amount estimation unit that adjusts the amount of muscle activity in the cross section and estimates the muscle activity amount when roughly matching the muscle activity amount in the body;
Comprising
The calculation of the surface myoelectric potential simulation value at the position of the surface electrode in the surface myoelectric potential simulation unit is as follows:
(A) A muscle block region obtained by finely dividing a circular cross section of a substantially cylindrical portion of the body into 5 mm or less by finite element division, and (b) Finely less than ½ of the width of the muscle block region constituting the muscle block region. Assuming split virtual muscle fibers,
The time square average value of the surface myoelectric potential due to the muscle activity of the virtual muscle fiber is calculated from the time square mean value of the muscle activity amount of the virtual muscle fiber, and the virtual muscle is calculated for the muscle block region in the transverse section. A muscle activity amount measuring apparatus for calculating the surface myoelectric potential simulation value by taking a square root of a sum of time square mean values of surface myoelectric potentials based on fiber muscle activity amount.
前記筋活動量推定部が、前記表面電極の位置における表面筋電位シミュレーション値と前記表面電極の位置における表面筋電位が概一致したときの前記横断面内の仮想筋線維の筋活動量を、身体内の仮想筋線維の筋活動量と推定する請求項1に記載の筋活動量計測装置。 The muscle activity amount estimation unit calculates a muscle activity amount of a virtual muscle fiber in the transverse section when a surface myoelectric potential simulation value at the position of the surface electrode and a surface myoelectric potential at the position of the surface electrode approximately coincide with each other. The muscle activity amount measuring apparatus according to claim 1, wherein the muscle activity amount is estimated as a muscle activity amount of a virtual muscle fiber in the inside. 前記筋活動量推定部が、前記仮想筋線維の筋活動量を調整するときに、同じ筋ブロック領域に属する仮想筋線維の筋活動量を同一にして、前記表面筋電位シミュレーション値を計算する請求項2に記載の筋活動量計測装置。 The muscle activity amount estimation unit calculates the surface myoelectric potential simulation value by adjusting the muscle activity amount of virtual muscle fibers belonging to the same muscle block region when adjusting the muscle activity amount of the virtual muscle fiber. Item 3. A muscle activity measuring apparatus according to Item 2. 筋ブロック領域の大きさが、横断面の外周付近は細かく、概中心に向かうに従い大きくする請求項1〜3のいずれか1項に記載の筋活動量計測装置。 The muscle activity amount measuring apparatus according to any one of claims 1 to 3, wherein the muscle block region has a fine size near the outer periphery of the cross section and increases toward the approximate center. 前記表面電極は2個の電極が対となったバイポーラ電極であり、前記2個の電極の間隔が異なる2以上のバイポーラ電極が、前記2個の電極の中心部を結ぶ線分の中点が概一致するよう配置された請求項1〜4のいずれか1項に記載の筋活動量計測装置。 The surface electrode is a bipolar electrode in which two electrodes are paired, and two or more bipolar electrodes having different intervals between the two electrodes are arranged so that the midpoint of a line segment connecting the central portions of the two electrodes is The muscle activity measuring device according to any one of claims 1 to 4, wherein the muscle activity amount measuring device is arranged so as to be approximately coincident.
JP2012117400A 2012-05-23 2012-05-23 Muscle activity measuring device Active JP6106822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117400A JP6106822B2 (en) 2012-05-23 2012-05-23 Muscle activity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117400A JP6106822B2 (en) 2012-05-23 2012-05-23 Muscle activity measuring device

Publications (2)

Publication Number Publication Date
JP2013244027A true JP2013244027A (en) 2013-12-09
JP6106822B2 JP6106822B2 (en) 2017-04-05

Family

ID=49844309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117400A Active JP6106822B2 (en) 2012-05-23 2012-05-23 Muscle activity measuring device

Country Status (1)

Country Link
JP (1) JP6106822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751161A (en) * 2015-04-03 2015-07-01 燕山大学 Photonic crystal fiber property simulation system based on precise end face extraction and finite element method and simulation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532057A (en) * 1991-12-27 1993-02-09 Fuji Xerox Co Ltd Controlling method for recording apparatus
JPH0663026A (en) * 1992-08-21 1994-03-08 Nippon Koden Corp Simulator of electric phenomenon of heart
JP2002287869A (en) * 2001-03-26 2002-10-04 System Lsi Kk Discrimination system for myogenic potential signal, and input device using myogenic potential signal
JP2004024769A (en) * 2002-06-28 2004-01-29 Tokyo Metropolis Method and apparatus measuring muscular activity accompanying motion of forearm
WO2004023996A1 (en) * 2002-09-11 2004-03-25 National Institute Of Information And Communications Technology Incorporated Administrative Agency Active muscle display device
WO2011012988A1 (en) * 2009-07-30 2011-02-03 University Of Cape Town Non-invasive deep muscle electromyography
JP2011030991A (en) * 2009-07-29 2011-02-17 Hokkaido Research Organization Muscular active mass measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532057A (en) * 1991-12-27 1993-02-09 Fuji Xerox Co Ltd Controlling method for recording apparatus
JPH0663026A (en) * 1992-08-21 1994-03-08 Nippon Koden Corp Simulator of electric phenomenon of heart
JP2002287869A (en) * 2001-03-26 2002-10-04 System Lsi Kk Discrimination system for myogenic potential signal, and input device using myogenic potential signal
JP2004024769A (en) * 2002-06-28 2004-01-29 Tokyo Metropolis Method and apparatus measuring muscular activity accompanying motion of forearm
WO2004023996A1 (en) * 2002-09-11 2004-03-25 National Institute Of Information And Communications Technology Incorporated Administrative Agency Active muscle display device
JP2011030991A (en) * 2009-07-29 2011-02-17 Hokkaido Research Organization Muscular active mass measuring device
WO2011012988A1 (en) * 2009-07-30 2011-02-03 University Of Cape Town Non-invasive deep muscle electromyography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751161A (en) * 2015-04-03 2015-07-01 燕山大学 Photonic crystal fiber property simulation system based on precise end face extraction and finite element method and simulation method thereof

Also Published As

Publication number Publication date
JP6106822B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
Holobar et al. Blind source identification from the multichannel surface electromyogram
Guggisberg et al. Localization of cortico-peripheral coherence with electroencephalography
Del Vecchio et al. The relative strength of common synaptic input to motor neurons is not a determinant of the maximal rate of force development in humans
JP7136264B2 (en) STRESS DETERMINATION DEVICE, PROGRAM AND METHOD
Bächinger et al. Human motor fatigability as evoked by repetitive movements results from a gradual breakdown of surround inhibition
Staudenmann et al. Redundancy or heterogeneity in the electric activity of the biceps brachii muscle? Added value of PCA-processed multi-channel EMG muscle activation estimates in a parallel-fibered muscle
Muthuraman et al. The central oscillatory network of essential tremor
Yeh et al. Quantifying spasticity with limited swinging cycles using pendulum test based on phase amplitude coupling
Ancillao et al. Linear correlation between fractal dimension of surface EMG signal from Rectus Femoris and height of vertical jump
JP5387837B2 (en) Muscle activity measuring device
Merletti et al. Techniques for Information Extraction from the Surface EMG Signalhigh‐Density Surface EMG
Sudharsan et al. FPGA based peripheral myopathy monitoring using MFCV at dynamic contractions
JP6106822B2 (en) Muscle activity measuring device
Yao et al. Brain functional connectivity is different during voluntary concentric and eccentric muscle contraction
Zariffa et al. Localization of active pathways in peripheral nerves: a simulation study
Chen et al. ICA-based muscle–tendon units localization and activation analysis during dynamic motion tasks
JP6525767B2 (en) Muscle activity measuring device
Scheeren et al. Influence of subcutaneous fat on mechanomyographic signals at three levels of voluntary effort
Aljuaid A neuroergonomics study of brain EEG's activity during manual lifting tasks
Rahatabad et al. The relation between chaotic feature of surface eeg and muscle force: Case study report
Ma et al. Subject-specific EMG modeling with multiple muscles: A preliminary study
Rodriguez-Falces et al. Comparison of the duration and power spectral changes of monopolar and bipolar M waves caused by alterations in muscle fibre conduction velocity
Ngamsomphornpong et al. Development of Hybrid EEG-fEMG-based Stress Levels Classification and Biofeedback Training System
Khan et al. Emg data acquisition and flight control of quadcopter on different emg signals
Calder et al. A theoretical analysis of the electrogastrogram (EGG)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6106822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250