JP2013242058A - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- JP2013242058A JP2013242058A JP2012114372A JP2012114372A JP2013242058A JP 2013242058 A JP2013242058 A JP 2013242058A JP 2012114372 A JP2012114372 A JP 2012114372A JP 2012114372 A JP2012114372 A JP 2012114372A JP 2013242058 A JP2013242058 A JP 2013242058A
- Authority
- JP
- Japan
- Prior art keywords
- humidity
- storage
- refrigerator
- door
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02B40/32—
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
本発明は、庫内の収納状態を検知する手段を備えた冷蔵庫に関するものである。 The present invention relates to a refrigerator provided with means for detecting a storage state in a warehouse.
近年の家庭用冷蔵庫は、冷気をファンで冷蔵庫内に循環させる間接冷却方式が一般的である。従来の冷蔵庫では、庫内温度の検知結果に応じて温調制御することにより、庫内の温度を適温に保っている。例えば、庫内温度を均一に保つ冷蔵庫として、可動式の冷気吐出装置を設けた冷蔵庫がある(特許文献1参照)。 In recent years, household refrigerators generally use an indirect cooling method in which cold air is circulated in the refrigerator with a fan. In a conventional refrigerator, the temperature in the refrigerator is kept at an appropriate temperature by controlling the temperature according to the detection result of the temperature in the refrigerator. For example, there is a refrigerator provided with a movable cold air discharge device as a refrigerator that keeps the inside temperature uniform (see Patent Document 1).
図10は、特許文献1に記載された従来の冷蔵庫の冷蔵室の正面図を示すものである。図10に示すように、冷蔵庫500の冷蔵室101内に設けられた可動式の冷気吐出装置102が左右に冷気を供給し庫内温度の均一化を図っている。 FIG. 10 shows a front view of a refrigerator compartment of a conventional refrigerator described in Patent Document 1. As shown in FIG. As shown in FIG. 10, a movable cold air discharge device 102 provided in the refrigerator compartment 101 of the refrigerator 500 supplies cold air to the left and right to make the internal temperature uniform.
しかしながら、前記従来の構成では、収納された食品の量や配置といった収納状態の影響については、考慮されないという課題を有していた。 However, the conventional configuration has a problem that the influence of the storage state such as the amount and arrangement of the stored food is not considered.
本発明は、前記従来の課題を解決するもので、冷蔵庫内部の収納状態に応じた冷却、あるいは出力制御が可能な冷蔵庫を提供することを目的とする。 This invention solves the said conventional subject, and it aims at providing the refrigerator which can be cooled according to the accommodation state in a refrigerator, or output control is possible.
前記従来の課題を解決するために、本発明の冷蔵庫は、断熱壁と断熱扉によって区画され収納物を収納する収納室と、前記収納室を冷却するための冷却器と、前記収納室へ冷気を供給する冷却ファンと、前記収納室への冷気量を制御するダンパーと、前記収納室の断熱扉の開閉を検知する扉開閉検知手段と、前記収納室の湿度を検知する湿度検知手段と、前記湿度検知手段の検知結果を演算処理する演算制御部とを備え、前記演算制御部は、前記扉開閉検知手段の検知結果と前記湿度検知手段の検知結果に基づいて、前記収納室の収納量を推定するものである。 In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a storage chamber that is partitioned by a heat insulating wall and a heat insulating door to store storage items, a cooler for cooling the storage chamber, and cool air to the storage chamber. A cooling fan for supplying the air, a damper for controlling the amount of cool air to the storage room, a door open / close detection means for detecting the opening / closing of the heat insulation door of the storage room, a humidity detection means for detecting the humidity of the storage room, A calculation control unit that calculates the detection result of the humidity detection unit, and the calculation control unit stores the storage amount of the storage chamber based on the detection result of the door opening / closing detection unit and the detection result of the humidity detection unit. Is estimated.
これによって、収納物から出る水分に基づいて、収納室の収納量を推定することができ、収納量の変化を精度良く検知することができる。 Accordingly, the storage amount of the storage chamber can be estimated based on the moisture that comes out of the storage item, and the change in the storage amount can be detected with high accuracy.
また、収納室に静電霧化装置を備えたことにより、収納量に応じたラジカル量の制御や、特に野菜室においては静電霧化装置で湿度検知が可能になる。 Further, by providing the electrostatic atomizer in the storage room, it is possible to control the amount of radicals according to the storage amount, and in particular in the vegetable room, the humidity can be detected by the electrostatic atomizer.
本発明の冷蔵庫は、収納量の推定精度を高めることができるので、冷蔵庫内部の収納状態に応じた冷却、あるいは出力制御が可能となる。 Since the refrigerator according to the present invention can improve the estimation accuracy of the storage amount, cooling according to the storage state inside the refrigerator or output control can be performed.
さらに、静電霧化装置を備えることにより、冷蔵庫内部の抗菌性を高め、野菜等の保鮮性を向上させることができる。 Furthermore, by providing an electrostatic atomizer, the antibacterial properties inside the refrigerator can be improved and the freshness of vegetables and the like can be improved.
第1の発明は、断熱壁と断熱扉によって区画され収納物を収納する収納室と、前記収納室を冷却するための冷却器と、前記収納室へ冷気を供給する冷却ファンと、前記収納室への冷気量を制御するダンパーと、前記収納室の断熱扉の開閉を検知する扉開閉検知手段と、前記収納室の湿度を検知する湿度検知手段と、前記湿度検知手段の検知結果を演算処理する演算制御部とを備え、前記演算制御部は、前記扉開閉検知手段の検知結果と前記湿度検知手段の検知結果に基づいて前記収納室の収納量を推定するものであり、収納物から出る水分に基づいて、収納量の推定精度を高めることができ、冷蔵庫内部の収納物の収納状態に応じた冷却、あるいは機能部品の出力が可能となる。 A first invention includes a storage chamber that is partitioned by a heat insulating wall and a heat insulating door and stores storage items, a cooler for cooling the storage chamber, a cooling fan that supplies cold air to the storage chamber, and the storage chamber A damper for controlling the amount of cold air to the door, a door opening / closing detection means for detecting the opening / closing of the heat insulation door of the storage room, a humidity detection means for detecting the humidity of the storage room, and a detection result of the humidity detection means An arithmetic control unit that estimates a storage amount of the storage chamber based on a detection result of the door opening / closing detection unit and a detection result of the humidity detection unit, and comes out of the stored item. Based on the moisture, the estimation accuracy of the storage amount can be increased, and cooling according to the storage state of the storage items inside the refrigerator or the output of the functional components can be performed.
第2の発明は、第1の発明において、前記演算制御部は、前記扉開閉検知手段により前記断熱扉の閉状態が検知された時から所定期間経過した後の前記湿度検知手段の検知結果に基づいて、収納量を推定することにより、扉開閉直後の外気の庫内浸入での温湿度の外乱要因が排除でき、収納量の推定精度を高めることができる。 According to a second invention, in the first invention, the calculation control unit uses the detection result of the humidity detection means after a predetermined period has elapsed since the closed state of the heat insulating door was detected by the door opening / closing detection means. Based on this, by estimating the storage amount, it is possible to eliminate a disturbance factor of temperature and humidity due to intrusion of outside air immediately after opening and closing the door, and it is possible to improve the estimation accuracy of the storage amount.
第3の発明は、第1または第2の発明において、前記収納室は野菜室であることにより、特に野菜は水分蒸散が盛んで、収納量と湿度の関係が顕著に検知できるので、収納量の推定精度をさらに高めて野菜を鮮度よく保存することができる。 According to a third invention, in the first or second invention, since the storage room is a vegetable room, in particular, vegetables have a high moisture transpiration, and the relationship between the storage amount and humidity can be detected significantly. It is possible to preserve the vegetables with a high freshness by further improving the estimation accuracy.
第4の発明は、第1から第3のいずれか1つの発明において、前記収納室は静電霧化装置を備えたことにより、推定した収納量が増加したときにラジカルを噴霧することが可能になり、収納量に変動がない場合の不要な静電霧化装置の動作を削減して、保鮮性を向上することができる。 According to a fourth invention, in any one of the first to third inventions, the storage chamber is equipped with an electrostatic atomizer, so that radicals can be sprayed when the estimated storage amount increases. Thus, the unnecessary operation of the electrostatic atomizer when there is no change in the storage amount can be reduced, and the freshness can be improved.
第5の発明は、第4の発明において、前記演算制御部で推定された収納量に応じて、前記静電霧化装置の能力を可変することにより、収納量に応じたラジカル量の制御が可能となり、静電霧化装置への不必要な電力供給が削減でき、特に野菜の保鮮性を更に向上させることができる。 According to a fifth invention, in the fourth invention, by controlling the capacity of the electrostatic atomizer according to the storage amount estimated by the arithmetic control unit, the radical amount can be controlled according to the storage amount. It becomes possible, unnecessary power supply to the electrostatic atomizer can be reduced, and in particular, the freshness of vegetables can be further improved.
第6の発明は、第4または第5の発明において、前記湿度検知手段は前記静電霧化装置の放電電流を検知する放電電流検知部であることにより、庫内湿度と放電電流が正比例の関係から、静電霧化装置の自己完結した保鮮制御が可能になるばかりでなく、湿度検知手
段の廃止で安価なシステムで構成することができる。
According to a sixth invention, in the fourth or fifth invention, the humidity detecting means is a discharge current detecting unit that detects a discharge current of the electrostatic atomizer, so that the humidity inside the container and the discharge current are directly proportional to each other. From the relationship, not only can self-contained freshness control of the electrostatic atomizer be possible, but also an inexpensive system can be configured by eliminating the humidity detecting means.
以下、本発明の実施の形態をについて、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は本発明の第1の実施の形態における冷蔵庫の断面図である。図2は、同冷蔵庫の制御ブロック図である。図3は、同冷蔵庫の収納状態を検知する動作の制御フローを示すフローチャートである。図4は、同冷蔵庫の収納状態を検知する際の特性図である。図5は、同冷蔵庫の野菜室の収納状態を検知する動作の制御フローを示すフローチャートである。図6は、同冷蔵庫の野菜室の収納状態を検知する際の特性図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of the refrigerator in the first embodiment of the present invention. FIG. 2 is a control block diagram of the refrigerator. FIG. 3 is a flowchart showing a control flow of an operation for detecting the storage state of the refrigerator. FIG. 4 is a characteristic diagram when detecting the storage state of the refrigerator. FIG. 5: is a flowchart which shows the control flow of the operation | movement which detects the accommodation state of the vegetable compartment of the refrigerator. FIG. 6 is a characteristic diagram when detecting the storage state of the vegetable compartment of the refrigerator.
図1に示すように、冷蔵庫本体はウレタン等の断熱材を内部に発泡充填された断熱箱体1と、この本体の上部に設けられた冷蔵室2と、冷蔵室2の下に設けられた切替室3と、冷蔵室2の下で切替室3に並列に設けられた製氷室(図示せず)と、本体下部に設けられた野菜室5と、並列に設置された切替室3及び製氷室と野菜室5の間に設けられた冷凍室4で構成されている。そして、冷蔵室2と切替室3および製氷室とは断熱性のある仕切り壁6aで区画され、以下同様に、切替室3および製氷室と冷凍室4とは仕切り壁6b、冷凍室4と野菜室5とは仕切り壁6cで区画されている。 As shown in FIG. 1, the refrigerator main body is provided with a heat insulating box body 1 in which a heat insulating material such as urethane is foam-filled, a refrigerator compartment 2 provided at the top of the main body, and a refrigerator compartment 2. The switching chamber 3, an ice making chamber (not shown) provided in parallel with the switching chamber 3 under the refrigeration chamber 2, a vegetable chamber 5 provided in the lower part of the main body, the switching chamber 3 and ice making installed in parallel It is composed of a freezing room 4 provided between the room and the vegetable room 5. The refrigerating room 2, the switching room 3, and the ice making room are partitioned by a partition wall 6a having heat insulation properties. Similarly, the switching room 3, the ice making room, and the freezing room 4 are divided by the partition wall 6b, the freezing room 4, and the vegetables. The chamber 5 is partitioned by a partition wall 6c.
また、各収納室の開口部には、断熱箱体1と同様にウレタン等の断熱材を内部に発泡充填された断熱扉が設けられ、冷蔵室2は断熱扉7a、切替室は断熱扉7b、冷凍室4は断熱扉7c、野菜室5は断熱扉7dでそれぞれ開閉自在に閉塞されている。断熱扉としては、最上段にある冷蔵室2用の断熱扉7aが観音開き式で、その他の断熱扉7b〜dが引き出し式であることが一般的である。 Moreover, the opening part of each storage room is provided with the heat insulation door which foamed and filled heat insulation materials, such as urethane, like the heat insulation box 1, and the refrigerator compartment 2 is the heat insulation door 7a, and the switching room is the heat insulation door 7b. The freezer compartment 4 is closed with a heat insulating door 7c, and the vegetable compartment 5 is closed with a heat insulating door 7d. As the heat insulating door, it is common that the heat insulating door 7a for the refrigerator compartment 2 in the uppermost stage is a double door type, and the other heat insulating doors 7b to 7d are a drawer type.
さらに、各断熱扉と断熱箱体との間には、扉の開閉状態を検知する扉開閉検知手段13a〜dが設けられ、冷蔵室2用で13a、切替室3用で13b、冷凍室4用で13c、野菜室5用で7dが設置されている。扉開閉検知手段13a〜dの具体的なデバイスとしては、ホールIC、MR素子、リードスイッチなどと磁石を利用した方式や、プッシュスイッチのように機械式な接点で検知する方式がある。 Furthermore, between each heat insulation door and the heat insulation box, door open / close detection means 13a to 13d for detecting the open / closed state of the door are provided, 13a for the refrigerator compartment 2, 13b for the switching compartment 3, and the freezer compartment 4 13c for use and 7d for the vegetable room 5 are provided. Specific devices for the door open / close detection means 13a to 13d include a method using a Hall IC, MR element, reed switch, etc. and a magnet, or a method using a mechanical contact such as a push switch.
また、冷蔵室2には室内の湿度を検知する湿度検知手段14a、野菜室5には湿度検知手段14bが任意の場所に固定されている。冷凍温度帯では湿度検知不可能であるため、冷凍室4、冷凍設定の切替室3には設置していない。湿度検知手段14a〜bとしては、抵抗式や容量式の湿度センサを用いれば良く、好ましくはセンサ部が結露しない場所への取付けが良い。 The refrigerator compartment 2 is fixed with humidity detecting means 14a for detecting indoor humidity, and the vegetable compartment 5 is fixed with humidity detecting means 14b at an arbitrary place. Since the humidity cannot be detected in the freezing temperature zone, it is not installed in the freezing room 4 or the freezing setting switching room 3. As the humidity detection means 14a-b, a resistance type or capacitance type humidity sensor may be used, and preferably the sensor unit is attached to a place where the sensor unit is not condensed.
断熱箱体1の天面部は、冷蔵庫の背面方向に向かって階段状に凹みを設けて機械室があり、圧縮機8と、水分除去を行うドライヤ(図示せず)と、コンデンサ(図示せず)と、放熱用の放熱パイプ(図示せず)等が格納されている。圧縮機8を基点として、キャピラリチューブ9と、冷却器10とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することも出来る。 The top surface portion of the heat insulating box 1 has a machine room with a stepped recess toward the back of the refrigerator, and has a compressor 8, a dryer (not shown) for removing moisture, and a condenser (not shown). ) And a heat radiating pipe (not shown) for heat radiating. With the compressor 8 as a base point, the refrigerant is sealed in a refrigeration cycle in which the capillary tube 9 and the cooler 10 are sequentially connected in an annular manner, and a cooling operation is performed. In recent years, a flammable refrigerant is often used as the refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional parts can be arranged in the machine room.
また、冷却器10は冷凍室4の奥にある冷却風路内にあり、冷却器10の上方には冷却ファン11が配設され、冷却器10で生成した冷気を冷却ファン11が各収納室へ送風する。さらに、ダンパー12が冷蔵室2付近の冷却風路内に設置され、冷却器10で生成した冷凍温度帯の非常に冷たい冷気が直接、冷蔵室2に流れ込まないように、風路開度を調
整して最適な風量制御を行う。
In addition, the cooler 10 is in a cooling air passage at the back of the freezer compartment 4, and a cooling fan 11 is disposed above the cooler 10, and the cooling fan 11 stores the cool air generated by the cooler 10 in each storage chamber. To blow. Furthermore, the damper 12 is installed in the cooling air passage near the refrigerator compartment 2, and the air passage opening is adjusted so that the very cold cold air in the freezing temperature zone generated by the cooler 10 does not flow directly into the refrigerator compartment 2. And optimal air flow control.
このような構造と冷凍サイクルで、冷蔵室2は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃、冷凍室4は通常−22℃〜−18℃(冷凍保存状態向上のために−30℃〜−25℃もある)、野菜室5は冷蔵室2と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。尚、切替室3は冷凍〜冷蔵の温度帯を自由に設定すれば良く、パーシャル、チルド、氷温等の細かな温度設定や、冷凍食品の使用頻度が多い近年では冷凍温度帯固定にしても良い。 With such a structure and refrigeration cycle, the refrigerator compartment 2 is normally 1 ° C to 5 ° C at the lower limit of the temperature at which it is not frozen for refrigerated storage, and the refrigerator compartment 4 is usually -22 ° C to -18 ° C (to improve the frozen storage state). In addition, the vegetable room 5 is often set to a temperature setting of 2 ° C. to 7 ° C. which is equal to or slightly higher than that of the refrigerator room 2. The switching chamber 3 may be set to a freezing to refrigeration temperature range freely. It may be set to a fine temperature setting such as partial, chilled, or ice temperature, or in the freezing temperature range fixed in recent years when frozen foods are frequently used. good.
次に図2に示すように、扉開閉検知手段13a〜dで検知された扉の開閉状態は、信号S1として演算制御部15に入力される。さらに、湿度検知手段14a〜bで検知された収納室の湿度は、信号S2として演算制御部15に入力され、信号S1とS2から収納量が演算推定される。 Next, as shown in FIG. 2, the door open / closed state detected by the door open / close detecting means 13a to 13d is input to the arithmetic control unit 15 as a signal S1. Further, the humidity of the storage chamber detected by the humidity detection means 14a-b is input to the calculation control unit 15 as a signal S2, and the storage amount is calculated and estimated from the signals S1 and S2.
以上のように構成された冷蔵庫について、以下まず冷蔵室2での動作、作用を図3のフローチャート、図4の特性図を用いて説明する。 With regard to the refrigerator configured as described above, the operation and action in the refrigerator compartment 2 will be described first with reference to the flowchart of FIG. 3 and the characteristic diagram of FIG.
ステップ1で収納量検知が開始されると、続いてステップ2として扉開閉検知手段13aで冷蔵室2の断熱扉7aの開閉状態が検知され、断熱扉7aが閉であればステップ3で閉状態と判断し、扉開閉検知手段13aから信号S1を演算制御部15に出力して論理をステップ2に戻す。一方、ステップ2で断熱扉7aが開であれば、ステップ4へ論理を進めて開状態と判断し、扉開閉検知手段13aから信号S1を演算制御部15に出力して論理をステップ5に移す。次にステップ5で再度、扉開閉検知手段13aで冷蔵室2の断熱扉7aの開閉状態が検知され、断熱扉7aが開であれば閉になるまでステップ5を繰り返す。そして、断熱扉7aの閉が検知されると、信号S1を演算制御部15に入力して論理をステップ6に進める。すなわちステップ2〜5の間で、扉開閉があって収納物が冷蔵室2に収納された可能性があることを推測している。 When the storage amount detection is started in step 1, the door opening / closing detection means 13a detects the opening / closing state of the heat insulating door 7a of the refrigerator compartment 2 in step 2, and if the heat insulating door 7a is closed, the door is closed in step 3. And the signal S1 is output from the door opening / closing detection means 13a to the arithmetic control unit 15 and the logic is returned to Step 2. On the other hand, if the heat insulating door 7a is open in step 2, the logic advances to step 4 to determine that it is in the open state, and the signal S1 is output from the door opening / closing detection means 13a to the arithmetic control unit 15 to transfer the logic to step 5. . Next, in step 5, the door open / close detection means 13a detects the open / close state of the heat insulating door 7a of the refrigerator compartment 2 again. If the heat insulating door 7a is open, step 5 is repeated until the door is closed. When the closing of the heat insulating door 7a is detected, the signal S1 is input to the arithmetic control unit 15 and the logic advances to Step 6. That is, it is estimated that there is a possibility that the stored item is stored in the refrigerator compartment 2 because the door is opened and closed between Steps 2 to 5.
次にステップ6で時間のカウントを開始するとともに、湿度検知手段14aで冷蔵室2の湿度を検知して、信号S2として演算制御部15に入力し、湿度をRとして記憶して論理をステップ7に進める。このステップ6の時点が、図4の特性図に示す時間t1(収納なしの場合)、あるいは時間t3(収納有りの場合)にあたる。尚、湿度検知の測定タイミングでは冷却制御のための機能部品が動作していると、庫内の温湿度の変動が大きいため、具体的にはダンパー12を閉状態(冷蔵室2に風量を送り込まない)、冷却ファン11を停止(冷気を循環させない)、あるいは圧縮機8を停止(庫内温度を変動させない)させる等で、湿度のバラツキ要因を排除することができる。更に、この機能部品の停止状態から所定時間経過後に測定すれば、温湿度は安定しており精度の良い検知が行える。以下の説明での湿度検知の測定タイミングは、上述と同様に機能部品を停止させて行うものとする。 Next, at step 6, time counting is started, the humidity in the refrigerator compartment 2 is detected by the humidity detecting means 14a, and is input to the arithmetic control unit 15 as a signal S2, and the humidity is stored as R and the logic is set at step Proceed to The time point of Step 6 corresponds to time t1 (when no storage is performed) or time t3 (when storage is performed) shown in the characteristic diagram of FIG. In addition, if the functional component for cooling control is operating at the humidity detection measurement timing, the temperature and humidity fluctuations in the cabinet are large, and specifically, the damper 12 is closed (the air volume is sent into the refrigerator compartment 2). The cooling fan 11 is stopped (cool air is not circulated), or the compressor 8 is stopped (the internal temperature is not changed). Furthermore, if measurement is performed after a predetermined time has elapsed from the stop state of the functional component, the temperature and humidity are stable and accurate detection can be performed. In the following description, the humidity detection measurement timing is performed by stopping the functional components in the same manner as described above.
続いてステップ7で、カウントを開始した時間が予め決定しておいた所定期間Δaを経過したか否かが判定され、経過していなければ時間がΔa経過するまでステップ7を繰り返し、時間がΔa経過すれば論理をステップ8に進める。尚、この所定期間Δaの時間としては、断熱扉7aが開閉されただけで収納物が冷蔵室2に投入されたなった場合に、一旦外気流入影響で上がった温湿度が、断熱扉7a開閉前の数値に戻る時間を設定すれば良い。 Subsequently, in step 7, it is determined whether or not a predetermined period Δa that has been determined in advance has elapsed. If not, step 7 is repeated until the time Δa elapses, and the time Δa If so, the logic advances to step 8. The predetermined period Δa is such that the temperature and humidity once increased due to the inflow of outside air when the stored item is put into the refrigerator compartment 2 just by opening and closing the heat insulating door 7a. What is necessary is just to set the time to return to the previous value.
次にステップ8では、図4の特性図に示す時間t2(収納なしの場合)、あるいは時間t4(収納有りの場合)の時点で、再度、湿度検知手段14aで冷蔵室2の湿度を検知して、信号S2として演算制御部15に入力し、前に記憶したステップ6での湿度Rと比較
する。そして、湿度がRよりも大きければ論理をステップ9に進めて、収納量が増加したと判断し、そうでなければ論理をステップ10に進めて、収納量は変化なしか減少したと判断する。
Next, at step 8, the humidity in the refrigerator compartment 2 is detected again by the humidity detecting means 14a at the time t2 (when not stored) or at the time t4 (when stored) shown in the characteristic diagram of FIG. Then, the signal is input to the arithmetic control unit 15 as the signal S2, and compared with the humidity R stored in step 6 previously stored. If the humidity is higher than R, the logic advances to step 9 to determine that the storage amount has increased. Otherwise, the logic advances to step 10 to determine that the storage amount has decreased or not changed.
すなわち図4の特性図の時間t4で、湿度が扉開閉の前の数値Rに戻っていなければ、確実に水分を含有した収納物が投入されたことになり、収納物の増加を判断することができる。尚、このとき庫内温度の経過も参考に図4の特性図に示しているが、冷蔵庫は庫内温度を目標温度に合わせる制御を行うので、温度での判断では時間が経てば収納量を誤判定してしまう可能性が大きい(図4の時間t5の時点)。 That is, if the humidity does not return to the numerical value R before opening / closing the door at time t4 in the characteristic diagram of FIG. Can do. At this time, the progress of the internal temperature is also shown in the characteristic diagram of FIG. 4 for reference. However, since the refrigerator performs control to adjust the internal temperature to the target temperature, the amount of storage will be reduced over time in the judgment by temperature. There is a high possibility of erroneous determination (at time t5 in FIG. 4).
なお、図4の特性図の湿度変化は、模式的に示したもので、実際には、冷却器10で除湿された冷気がダンパー12の開状態で冷蔵室2に流入することで、湿度検知手段14aでの検出湿度は徐々に低下し、所定の温度に冷却されダンパー12が閉状態となることで湿度検知手段14aでの検出湿度は徐々に上昇する変化を繰り返すもので、平均湿度を表したものである。 Note that the humidity change in the characteristic diagram of FIG. 4 is schematically shown. Actually, the cold air dehumidified by the cooler 10 flows into the refrigerating chamber 2 with the damper 12 open, thereby detecting the humidity. The humidity detected by the means 14a gradually decreases, and when the damper 12 is cooled to a predetermined temperature and the damper 12 is closed, the humidity detected by the humidity detecting means 14a repeats a gradually increasing change, and represents the average humidity. It is a thing.
最後にステップ11で、例えば収納量が増加した時には圧縮機8や冷却ファン11の能力をアップさせて急冷運転させたり、収納量に変化ない時や減少した時には現状運転の維持や能力をダウンさせた節電運転に切換える等の冷凍サイクルの最適運転を行う。 Finally, in step 11, for example, when the storage capacity increases, the capacity of the compressor 8 and the cooling fan 11 is increased to perform a rapid cooling operation, or when the storage capacity does not change or decreases, the current operation is maintained and the capacity is decreased. Optimize the refrigeration cycle, such as switching to power saving mode.
合わせて収納量増加時には、脱臭や除菌効果のある機能部品の能力アップや運転時間延長等で、収納量に応じた最適な保鮮性向上を行う。具体的には、脱臭触媒を通過させる風量制御、イオナイザーやオゾナイザー等の運転時間変更、静電霧化装置のラジカル循環量の可変制御等を行えば良い。 At the same time, when the storage amount is increased, the optimum freshness improvement according to the storage amount is performed by increasing the capacity of functional parts having deodorizing and sterilizing effects and extending the operation time. Specifically, it is sufficient to perform control of the amount of air passing through the deodorizing catalyst, change of the operation time of the ionizer, ozonizer, etc., variable control of the radical circulation amount of the electrostatic atomizer.
続いて野菜室5での動作、作用を図5のフローチャート、図6の特性図を用いて説明する。なお、図6の特性図の湿度変化も図4の特性図の湿度変化と同様に平均湿度を模式的に表したものである。 Next, the operation and action in the vegetable compartment 5 will be described using the flowchart of FIG. 5 and the characteristic diagram of FIG. The humidity change in the characteristic diagram of FIG. 6 is also a schematic representation of the average humidity, similar to the humidity change in the characteristic diagram of FIG.
ステップ12で収納量検知が開始されると、続いてステップ13として扉開閉検知手段13dで野菜室5の断熱扉7dの開閉状態が検知され、断熱扉7dが閉であればステップ4で閉状態と判断し、扉開閉検知手段13dから信号S1を演算制御部15に出力して論理をステップ13に戻す。一方、ステップ13で断熱扉7dが開であれば、ステップ15へ論理を進めて開状態と判断し、扉開閉検知手段13dから信号S1を演算制御部15に出力して論理をステップ16に移す。次にステップ16で再度、扉開閉検知手段13dで野菜室5の断熱扉7dの開閉状態が検知され、断熱扉7dが開であれば閉になるまでステップ16を繰り返す。そして、断熱扉7dの閉が検知されると、信号S1を演算制御部15に入力して論理をステップ17に進める。すなわちステップ13〜16の間で、扉開閉があって収納物(野菜類)が野菜室5に収納された可能性があることを推測している。 When the storage amount detection starts in step 12, the door opening / closing detection means 13d detects the opening / closing state of the heat insulating door 7d of the vegetable compartment 5 in step 13, and if the heat insulating door 7d is closed, the door is closed in step 4. And the signal S1 is output from the door opening / closing detection means 13d to the arithmetic control unit 15 and the logic is returned to step 13. On the other hand, if the heat insulating door 7d is open in step 13, the logic advances to step 15 to determine that it is in the open state, the signal S1 is output from the door opening / closing detection means 13d to the arithmetic control unit 15 and the logic moves to step 16. . Next, in step 16, the door open / close detection means 13d detects the open / close state of the heat insulating door 7d of the vegetable compartment 5 again, and if the heat insulating door 7d is open, step 16 is repeated. When the closing of the heat insulating door 7d is detected, the signal S1 is input to the arithmetic control unit 15 and the logic advances to Step 17. That is, it is assumed that there is a possibility that the stored items (vegetables) are stored in the vegetable compartment 5 due to the door opening / closing between steps 13-16.
次にステップ17で時間のカウントを開始するとともに、湿度検知手段14bで野菜室5の湿度を検知して、信号S2として演算制御部15に入力し、湿度をR0として記憶して論理をステップ18に進める。このステップ17の時点が、図6の特性図に示す時間t6(収納なしの場合)、あるいは時間t8(収納有りの場合)にあたる。 Next, in step 17, time counting is started, the humidity in the vegetable compartment 5 is detected by the humidity detecting means 14b, and is input to the arithmetic control unit 15 as the signal S2, and the humidity is stored as R0 and the logic is step 18 Proceed to The time point of step 17 corresponds to time t6 (when storage is not performed) or time t8 (when storage is performed) shown in the characteristic diagram of FIG.
続いてステップ18で、カウントを開始した時間が予め決定しておいた所定期間Δaを経過したか否かが判定され、経過していなければ時間がΔa経過するまでステップ18を繰り返し、時間がΔa経過すれば論理をステップ19に進める。尚、この所定期間Δaの時間としては、先述した冷蔵室2の場合と同様に設定すれば良い。 Subsequently, in step 18, it is determined whether or not a predetermined period Δa that has been determined in advance has elapsed. If not, step 18 is repeated until the time Δa has elapsed, and the time Δa If so, the logic advances to step 19. In addition, what is necessary is just to set the time of this predetermined period (DELTA) a similarly to the case of the refrigerator compartment 2 mentioned above.
次にステップ19では、図6の特性図に示す時間t7(収納なしの場合)、あるいは時間t9(収納有りの場合)の時点で、再度、湿度検知手段14bで野菜室5の湿度を検知して、信号S2として演算制御部15に入力し、前に記憶したステップ17での湿度R0と比較する。そして、湿度がR0よりも大きければ論理をステップ20に進めて、収納量が増加したと判断して時間のカウントを開始し、そうでなければ論理をステップ21に進めて、収納量は変化なしか減少したと判断する。 Next, in step 19, the humidity of the vegetable compartment 5 is detected again by the humidity detecting means 14b at the time t7 (when not stored) or at the time t9 (when stored) shown in the characteristic diagram of FIG. Then, it is input to the arithmetic control unit 15 as the signal S2, and compared with the humidity R0 in step 17 stored previously. If the humidity is higher than R0, the logic advances to step 20, and it is determined that the storage amount has increased, and counting of the time is started. Otherwise, the logic advances to step 21 and the storage amount does not change. However, it is judged that it decreased.
すなわち図6の特性図の時間t9で、湿度が扉開閉の前の数値R0に戻っていなければ、確実に水分を含有した収納物(野菜類)が投入されたことになり、収納物の増加を判断することができる。ここまでの動作の流れは先述の冷蔵室2の場合と同様である。 That is, if the humidity does not return to the numerical value R0 before opening and closing the door at the time t9 in the characteristic diagram of FIG. 6, the stored goods (vegetables) containing moisture are surely added, and the stored goods increase. Can be judged. The flow of operation up to this point is the same as that in the refrigerator compartment 2 described above.
次に収納量が増加と判断された場合のステップ20では、図6の特性図に示す時間t9の時点で別の時間のカウントを開始する。そしてステップ22で、カウントを開始した時間が予め決定しておいた所定期間Δbを経過したか否かが判定され、経過していなければ時間がΔb経過するまでステップ22を繰り返し、時間がΔb経過すれば論理をステップ23に進める(図6の時間t9の時点)。尚、この所定期間Δbの時間としては、庫内の温湿度が一旦安定し(図6の時間t10の時点)、収納物(野菜類)からの水分蒸散が平衡になると推測する時間を、予め設定するものである。 Next, in step 20 when it is determined that the storage amount is increased, counting of another time is started at time t9 shown in the characteristic diagram of FIG. Then, in step 22, it is determined whether or not the predetermined time Δb that has been determined in advance has elapsed. If not, step 22 is repeated until the time Δb has elapsed, and the time Δb has elapsed. Then, the logic advances to step 23 (at time t9 in FIG. 6). In addition, as the time of this predetermined period Δb, the time for estimating that the temperature and humidity in the storage are once stabilized (at the time t10 in FIG. 6) and the water evaporation from the stored items (vegetables) is in equilibrium is preliminarily set. It is to set.
次にステップ23では、湿度検知手段14bで野菜室5の湿度を検知して、信号S2として演算制御部15に入力し、ステップ17で記憶した湿度R0と比較される。具体的には、収納量に応じて蒸散される水分量から予め決定された湿度R1、R2、R3と比較して、ステップ24で、R0<湿度≦R1ならば収納量は少ない、R1<湿度≦R2ならば収納量は中くらい、R2<湿度≦R3ならが収納量は多いと判断される。 Next, in step 23, the humidity of the vegetable compartment 5 is detected by the humidity detecting means 14b, input to the arithmetic control unit 15 as a signal S2, and compared with the humidity R0 stored in step 17. Specifically, compared with the humidity R1, R2, and R3 determined in advance from the amount of water evaporated according to the storage amount, in step 24, if R0 <humidity ≦ R1, the storage amount is small, R1 <humidity If ≦ R2, the storage amount is medium, and if R2 <humidity ≦ R3, the storage amount is determined to be large.
そして、最後にステップ25で、例えば収納量が多いときには圧縮機8や冷却ファン11の能力をアップさせて強冷運転させたり、収納量が中くらいでは通常運転、少ないときには弱冷運転させるように、冷凍サイクルの最適化を行う。 Finally, in step 25, for example, when the storage amount is large, the compressor 8 and the cooling fan 11 are increased in capacity to perform a strong cooling operation, or when the storage amount is medium, the normal operation is performed, and when the storage amount is small, the cooling operation is performed. Optimize the refrigeration cycle.
以上のように、本実施の形態においては、冷蔵室2の断熱扉7aの開閉を検知する扉開閉検知手段13aと、冷蔵室2の湿度を検知する湿度検知手段14aと、湿度検知手段14aの検知結果を演算処理する演算制御部15とを備え、演算制御部15は扉開閉検知手段13aの検知結果と湿度検知手段14aの検知結果に基づいて、収納物からの水分蒸散量による庫内湿度変動で冷蔵室2の収納量を推定することにより、誤検知要因の大きい温度検出よりも推定精度を安価な湿度センサを追加するだけで高めることができ、冷蔵庫内部に収納物の収納状態に応じた冷却が可能となり、収納量の少ない時の節電運転や、収納量の多い時の急冷運転に対応することができる。 As described above, in the present embodiment, the door opening / closing detecting means 13a for detecting the opening / closing of the heat insulating door 7a of the refrigerator compartment 2, the humidity detecting means 14a for detecting the humidity of the refrigerator compartment 2, and the humidity detecting means 14a. A calculation control unit 15 for calculating the detection result, and the calculation control unit 15 is based on the detection result of the door opening / closing detection means 13a and the detection result of the humidity detection means 14a, and the humidity in the cabinet due to the amount of moisture transpiration from the stored items. By estimating the amount of storage in the refrigerator compartment 2 due to fluctuations, it is possible to increase the estimation accuracy by simply adding an inexpensive humidity sensor rather than temperature detection, which has a large error detection factor. Cooling is possible, and it is possible to cope with power saving operation when the storage amount is small and rapid cooling operation when the storage amount is large.
また、本実施の形態では、演算制御部15は扉開閉検知手段13aにより断熱扉7aの閉状態が検知された時から所定期間経過した後に、湿度検知手段14aの検知結果に基づいて収納量を推定するので、冷蔵庫設置環境の温湿度が高くて扉開閉直後に暖気が庫内に流入した時の外乱要因が排除でき、収納量の推定精度を高めることができる。 In the present embodiment, the calculation control unit 15 determines the storage amount based on the detection result of the humidity detection unit 14a after a predetermined period has elapsed since the door open / close detection unit 13a detects the closed state of the heat insulating door 7a. Since it is estimated, the disturbance factor when the temperature and humidity of the refrigerator installation environment is high and warm air flows into the cabinet immediately after opening and closing the door can be eliminated, and the estimation accuracy of the storage amount can be improved.
また、本発明の形態の収納室を野菜室5とし、湿度検知手段14bを内部に備え、演算制御部15は扉開閉検知手段13dの検知結果と湿度検知手段14bの検知結果に基づいて、収納物からの水分蒸散量による庫内湿度変動で冷蔵室2の収納量を推定することにより、特に収納量と水分蒸散量の関係が顕著な野菜室5の推定収納量の精度が上がり、鮮度維持で冷却運転の影響を受けやすい野菜室の保鮮性を高めた保存が行える。 Further, the storage room of the embodiment of the present invention is a vegetable room 5 and is provided with humidity detection means 14b, and the arithmetic control unit 15 stores based on the detection result of the door opening / closing detection means 13d and the detection result of the humidity detection means 14b. Estimating the amount of storage in the refrigerator compartment 2 based on the humidity in the cabinet due to the amount of moisture transpiration from the food, the accuracy of the estimated storage amount of the vegetable compartment 5 where the relationship between the amount of storage and the amount of moisture transpiration is particularly significant is increased, and the freshness is maintained. It can be preserved with improved freshness in a vegetable room that is susceptible to cooling operation.
なお、湿度検知手段14a、14bでの湿度検出は、ダンパーでの開閉により変化する
ので、たとえばダンパー12が閉状態となってから所定時間後に測定することが望ましい。さらには、ダンパー12が閉状態となってから所定時間後の一定時間の平均値を測定してもよい。
It should be noted that the humidity detection by the humidity detecting means 14a, 14b changes depending on the opening / closing of the damper, and therefore, for example, it is desirable to measure after a predetermined time since the damper 12 is closed. Furthermore, you may measure the average value of the fixed time after predetermined time, after the damper 12 becomes a closed state.
(実施の形態2)
図7は本発明の第2の実施の形態における冷蔵庫の野菜室に静電霧化装置を設置した要部断面図である。図8は、同冷蔵庫の静電霧化装置を動作する制御フローを示すフローチャートである。図9は、同冷蔵庫の静電霧化装置の放電電流と湿度との関係を示す特性図である。
(Embodiment 2)
FIG. 7: is principal part sectional drawing which installed the electrostatic atomizer in the vegetable compartment of the refrigerator in the 2nd Embodiment of this invention. FIG. 8 is a flowchart showing a control flow for operating the electrostatic atomizer of the refrigerator. FIG. 9 is a characteristic diagram showing the relationship between the discharge current and humidity of the electrostatic atomizer of the refrigerator.
図7に示すように、静電霧化装置16は冷却ピン17、霧化電極18、対向電極19、保持枠20の霧化部で構成され、保持枠20には湿度供給とラジカルのミスト噴霧のための開口部22が設けられ、格納ケース21とともに野菜室5の天面に固定されている。霧化電極18はアルミニウムやステンレスなどの良熱伝導部材からなる伝熱冷却部材である冷却ピン17に固定されており、冷却ピン17は仕切り壁6cに挿入されて上部冷凍室4の通常−22℃〜−18℃の冷気によって冷却され、霧化電極18は先端が結露する程度に冷やされている。さらに、制御手段23、能力可変手段24、高圧電源25、放電電流検知部26は静電霧化装置16の回路部であり、高圧電源25の直流電圧の一端が霧化電極18、他端が対向電極19に電気的に接続されている。印加する高圧電源25の極性は正負どちらでも可能で、霧化電極18の先端に結露した水滴の表面表力以上の静電気力が発生できる電圧で、例えばその電位差は3〜7kVあれば良い。 As shown in FIG. 7, the electrostatic atomizer 16 includes a cooling pin 17, an atomizing electrode 18, a counter electrode 19, and an atomizing portion of a holding frame 20. Humidity supply and radical mist spraying are held in the holding frame 20. Is provided on the top surface of the vegetable compartment 5 together with the storage case 21. The atomizing electrode 18 is fixed to a cooling pin 17 that is a heat transfer cooling member made of a good heat conducting member such as aluminum or stainless steel. The cooling pin 17 is inserted into the partition wall 6c and is normally −22 in the upper freezer compartment 4. The atomization electrode 18 is cooled to such an extent that the tip is dew-condensed by being cooled by cold air at a temperature of from deg. Furthermore, the control means 23, the capacity variable means 24, the high voltage power supply 25, and the discharge current detection unit 26 are circuit parts of the electrostatic atomizer 16, and one end of the DC voltage of the high voltage power supply 25 is the atomization electrode 18, and the other end is The counter electrode 19 is electrically connected. The polarity of the high voltage power supply 25 to be applied can be either positive or negative, and can be a voltage that can generate an electrostatic force that is greater than the surface force of the water droplets condensed on the tip of the atomizing electrode 18.
また、制御手段23は演算制御部15から推定された収納量を信号S3として入力し、能力可変手段24に収納量に応じた制御信号を信号S5として高圧電源25に出力する。高圧電源25から対向電極19に接続される接続線には、ラジカルが霧化する時のコロナ放電の放電電流を入力とする放電電流検知部26が接続され、そこで検知した放電電流を信号S6として制御手段23に入力している。 Further, the control unit 23 inputs the storage amount estimated from the calculation control unit 15 as a signal S3, and outputs a control signal corresponding to the storage amount to the capacity variable unit 24 as a signal S5 to the high voltage power supply 25. A connection line connected from the high voltage power supply 25 to the counter electrode 19 is connected to a discharge current detection unit 26 that receives the discharge current of corona discharge when radicals are atomized. The detected discharge current is used as a signal S6. Input to the control means 23.
以上のように構成された冷蔵庫について、以下その動作、作用を図8のフローチャートを用いて説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below using the flowchart of FIG.
ステップ26で野菜室の保鮮運転が開始されると、ステップ27へ論理を移行して演算制御部15で推定された収納量が信号S3として制御手段23に入力される。次にステップ28では収納量に応じたラジカル量のミスト噴霧能力が制御手段23で設定され、信号S4として能力可変手段24に出力し、続いてステップ29で具体的に収納量に応じた静電霧化装置16の能力を設定する。収納量が少ない時にはラジカル量も少ない例えば放電電流を1μA程度、収納量が中くらいの時にはラジカル量も中間の例えば放電電流を2μA程度、収納量が多い時にはラジカル量も多い例えば放電電流を3μA程度に設定すれば良い。これは静電霧化装置16が放電電流を制御することで、ラジカル量を任意に可変設定できることを利用するものである。 When the freshening operation of the vegetable room is started at step 26, the logic shifts to step 27 and the storage amount estimated by the arithmetic control unit 15 is input to the control means 23 as a signal S3. Next, in step 28, the mist spraying ability of the radical amount corresponding to the storage amount is set by the control means 23, and is output to the capacity variable means 24 as a signal S4. Subsequently, in step 29, the electrostatic capacity specifically corresponding to the storage amount is set. The ability of the atomizer 16 is set. When the storage amount is small, the radical amount is small, for example, the discharge current is about 1 μA. When the storage amount is medium, the radical amount is intermediate, for example, about 2 μA. When the storage amount is large, the radical amount is large, for example, about 3 μA. Should be set. This utilizes the fact that the amount of radicals can be variably set by the electrostatic atomizer 16 controlling the discharge current.
次にステップ30では、設定した放電電流値になるように、高圧電源25から高電圧を霧化電極18と対向電極19の間に印加し、静電霧化装置16を動作させる。この時、放電電流検知部26は高圧印加回路内の電流を、例えばシャント抵抗器のような手段で検知し、電流値を信号S6として制御手段23に入力し、目標電流値になるようにいわゆるフィードバック制御を行う。 Next, in step 30, a high voltage is applied from the high voltage power supply 25 between the atomizing electrode 18 and the counter electrode 19 so that the set discharge current value is obtained, and the electrostatic atomizing device 16 is operated. At this time, the discharge current detection unit 26 detects the current in the high voltage application circuit by means such as a shunt resistor, and inputs the current value to the control means 23 as a signal S6 so that it becomes a target current value. Perform feedback control.
次にステップ31として、扉開閉検知手段13dで野菜室5の断熱扉7dの開閉状態が検知され、断熱扉7dが閉であれば論理をステップ30に戻し静電霧化装置16の動作を継続する。一方、ステップ31で断熱扉7dが開であれば、ステップ32へ論理を進めて
静電霧化装置16を停止させる。更にステップ33で再度、断熱扉7dの開閉状態を検知し、断熱扉7dが開であれば論理をステップ32に戻し静電霧化装置16の停止を継続し、断熱扉7dが閉であれば論理をステップ27に戻して保鮮運転を継続させる。このステップ31〜33の動作は、扉開閉時での暖気流入等の外乱要因での庫内温湿度の不安定状態では、静電霧化装置16も安定動作しないため、停止させることで無駄な電力を削減するためである。
Next, at step 31, the door open / close detection means 13d detects the open / close state of the heat insulating door 7d of the vegetable compartment 5, and if the heat insulating door 7d is closed, the logic is returned to step 30 and the operation of the electrostatic atomizer 16 is continued. To do. On the other hand, if the heat insulating door 7d is opened in step 31, the logic is advanced to step 32 and the electrostatic atomizer 16 is stopped. Further, in step 33, the open / close state of the heat insulating door 7d is detected again. If the heat insulating door 7d is open, the logic is returned to step 32 to stop the electrostatic atomizer 16 and if the heat insulating door 7d is closed. The logic is returned to step 27 and the freshening operation is continued. The operations of Steps 31 to 33 are useless by stopping the electrostatic atomizer 16 because the electrostatic atomizer 16 does not operate stably in an unstable state of the internal temperature and humidity due to disturbance factors such as inflow of warm air when the door is opened and closed. This is to reduce power.
ここで、静電霧化装置16が動作している時の放電電流と野菜室内の湿度の関係について、図9の特性図を用いて説明する。 Here, the relationship between the discharge current when the electrostatic atomizer 16 is operating and the humidity in the vegetable compartment will be described with reference to the characteristic diagram of FIG.
静電霧化装置16の霧化電極18は、冷凍室4温度で冷却される冷却ピン17からの熱伝導によって、常時−10℃〜0℃程度の低温状態が維持される。この時、野菜室5の庫内温度は2℃〜7℃程度であるため、霧化電極18が露点温度以下になれば必要な結露水が生成される。すなわち野菜室5の庫内湿度に比例して結露水の量が増減するので、野菜量が多いと野菜からの蒸散も多く庫内は多湿で結露水が豊富で、逆に野菜量が少ないと庫内は乾燥方向で結露水も不足する状況になる。 The atomization electrode 18 of the electrostatic atomizer 16 is always maintained at a low temperature of about −10 ° C. to 0 ° C. by heat conduction from the cooling pin 17 cooled at the temperature of the freezer compartment 4. At this time, since the internal temperature of the vegetable compartment 5 is about 2 ° C. to 7 ° C., the necessary dew condensation water is generated when the atomizing electrode 18 is at or below the dew point temperature. In other words, the amount of dew condensation water increases and decreases in proportion to the humidity inside the vegetable compartment 5, so if the amount of vegetables is large, there is a lot of transpiration from the vegetables, and the inside of the chamber is humid and rich in dew condensation water. The inside of the warehouse is in the dry direction and the condensed water is insufficient.
次に静電霧化の原理では、一定の高電圧が印加された状態で霧化電極18の先端の結露が始まると、その結露水のテーラーコーン(静電気力で引っ張られる水滴の形)の成長に比例して放電電流が増加して行く。そして、一定の結露量に達すると安定したテーラーコーン状態が継続し、その放電電流値も高圧電源25の能力により一定となる。 Next, according to the principle of electrostatic atomization, when dew condensation starts at the tip of the atomization electrode 18 in a state where a constant high voltage is applied, the tailor cone of the dew condensation water (the shape of water droplets pulled by electrostatic force) grows. The discharge current increases in proportion to. When a constant amount of dew condensation is reached, a stable tailor cone state continues, and the discharge current value becomes constant due to the capability of the high-voltage power supply 25.
上記の動作をまとめると図9に示すように、野菜室5の湿度がR1以下の時は、静電霧化装置16の放電電流はA1以下となる。従って、放電電流がA1以下の時は湿度が低いので、野菜からの蒸散量も少なく収納量は少量と判断できる。尚、湿度R1の値は野菜室5の容積に応じて、使用者が少量と判断する任意の値に設定すれば良い。 When the above operations are summarized, as shown in FIG. 9, when the humidity of the vegetable compartment 5 is R1 or less, the discharge current of the electrostatic atomizer 16 is A1 or less. Therefore, when the discharge current is A1 or less, the humidity is low, so that the amount of transpiration from the vegetable is small and the storage amount can be determined to be small. In addition, what is necessary is just to set the value of humidity R1 to the arbitrary value which a user judges as a small quantity according to the volume of the vegetable compartment 5.
同様に、放電電流値がA1〜A2の間では収納量は中量、放電電流値がA2以上では収納量は多量と判断することができる。尚、湿度がR3以上では十分に結露水が確保でき、安定した霧化で放電電流値がA3を継続していることは前述した通りである。 Similarly, it can be determined that the storage amount is medium when the discharge current value is between A1 and A2, and the storage amount is large when the discharge current value is A2 or more. As described above, the dew condensation water can be sufficiently secured when the humidity is equal to or higher than R3, and the discharge current value continues to A3 with stable atomization.
以上のように、本実施の形態においては、収納室に静電霧化装置16を備えたので、推定した収納量が増加したときにラジカルを霧化することが可能になり、収納物に付着した菌の繁殖を積極的に抑えることで収納室の保鮮性の向上が図れる。さらに、収納量に変動がない場合には、静電霧化装置16を停止させるので電力削減も可能になる。 As described above, in the present embodiment, since the storage room is equipped with the electrostatic atomizer 16, radicals can be atomized when the estimated storage amount increases and adhere to the storage items. It is possible to improve the freshness of the storage room by actively suppressing the growth of the bacteria. Further, when there is no change in the storage amount, the electrostatic atomizer 16 is stopped, so that power can be reduced.
更に、実施の形態1で説明した冷蔵室2と組み合わせて、冷蔵室2の収納物が増加した時に、野菜室5の静電霧化装置16を動作させると全室の保鮮性が向上できる。これは冷気が各収納室を循環しており、ダンパー12が開状態(収納量が多くて冷却必要)になれば野菜室5で生成されたラジカルが、冷蔵室2にも送り込まれるからである。 Furthermore, when the stored items in the refrigerator compartment 2 increase in combination with the refrigerator compartment 2 described in the first embodiment, the freshness of all the rooms can be improved by operating the electrostatic atomizer 16 in the vegetable compartment 5. This is because cold air circulates through the storage chambers, and radicals generated in the vegetable compartment 5 are also sent into the refrigerator compartment 2 when the damper 12 is in an open state (a large amount of storage and requires cooling). .
また、本実施の形態では、演算制御部15で推定された収納量に応じて、静電霧化装置16の能力を可変することにより、収納量に応じたラジカル量の制御が可能となり、静電霧化装置16への必要以上の電力供給が削減でき、特に野菜の保鮮性を更に向上させることができる。 Further, in the present embodiment, by changing the capacity of the electrostatic atomizer 16 according to the storage amount estimated by the arithmetic control unit 15, it becomes possible to control the radical amount according to the storage amount. The power supply more than necessary to the electroatomizer 16 can be reduced, and in particular, the freshness of vegetables can be further improved.
また、本実施の形態の湿度検知手段14bを静電霧化装置16の放電電流を検知する放電電流検知部26とすることにより、庫内湿度と放電電流が正比例の関係から、特に水分蒸散が顕著である野菜に対して、放電電流値からその収納量が把握できるだけでなく、湿度検知手段14bを使用することなく自己完結した保鮮制御が可能になる。すなわち、野
菜の収納量が多いときにはラジカル量も多く、逆に収納量が少ないときにはラジカル量を少なくする最適保鮮を、静電霧化装置16が自動制御するので、面倒な制御アルゴリズムの構築が不要になる。
In addition, by using the humidity detection means 14b of the present embodiment as the discharge current detection unit 26 that detects the discharge current of the electrostatic atomizer 16, the moisture in the chamber and the discharge current are in direct proportion, and in particular, moisture transpiration occurs. For notable vegetables, not only can the amount of storage be determined from the discharge current value, but also self-contained freshness control can be performed without using the humidity detecting means 14b. That is, when the amount of vegetables stored is large, the amount of radicals is large, and conversely, when the amount of storage is small, the electrostatic atomizer 16 automatically controls the optimal freshness that reduces the amount of radicals, so there is no need to construct a cumbersome control algorithm. become.
以上のように、本発明にかかる冷蔵庫は、冷蔵庫内部の収納物の収納量に応じた冷却が可能であるという格別な効果を奏することができるので、庫内の収納物の収納量を検知する手段を備えたあらゆる冷却機器等に適用できる。 As described above, since the refrigerator according to the present invention can achieve a special effect that cooling according to the amount of stored items inside the refrigerator is possible, the amount of stored items in the refrigerator is detected. The present invention can be applied to any cooling equipment provided with means.
1 断熱箱体
2 冷蔵室
3 切替室
4 冷凍室
5 野菜室
6a、6b、6c、6d 仕切り壁
7a、7b、7c、7d 断熱扉
8 圧縮機
9 キャピラリチューブ
10 冷却器
11 冷却ファン
12 ダンパー
13a、13b、13c、13d 扉開閉検知手段
14a、14b 湿度検知手段
15 演算制御部
16 静電霧化装置
17 冷却ピン
18 霧化電極
19 対向電極
20 保持枠
21 格納ケース
22 開口部
23 制御手段
24 能力可変手段
25 高圧電源
26 放電電流検知部
DESCRIPTION OF SYMBOLS 1 Heat insulation box 2 Refrigerating room 3 Switching room 4 Freezing room 5 Vegetable room 6a, 6b, 6c, 6d Partition wall 7a, 7b, 7c, 7d Thermal insulation door 8 Compressor 9 Capillary tube 10 Cooler 11 Cooling fan 12 Damper 13a, 13b, 13c, 13d Door open / close detection means 14a, 14b Humidity detection means 15 Calculation control section 16 Electrostatic atomizer 17 Cooling pin 18 Atomization electrode 19 Counter electrode 20 Holding frame 21 Storage case 22 Opening section 23 Control means 24 Capability variable Means 25 High-voltage power supply 26 Discharge current detector
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012114372A JP5927427B2 (en) | 2012-05-18 | 2012-05-18 | refrigerator |
PCT/JP2013/003110 WO2013172027A1 (en) | 2012-05-18 | 2013-05-16 | Refrigerator |
CN201380025932.5A CN104321601B (en) | 2012-05-18 | 2013-05-16 | Freezer |
EP13791589.8A EP2851636B1 (en) | 2012-05-18 | 2013-05-16 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012114372A JP5927427B2 (en) | 2012-05-18 | 2012-05-18 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013242058A true JP2013242058A (en) | 2013-12-05 |
JP5927427B2 JP5927427B2 (en) | 2016-06-01 |
Family
ID=49843110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012114372A Active JP5927427B2 (en) | 2012-05-18 | 2012-05-18 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5927427B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015229497A (en) * | 2014-06-03 | 2015-12-21 | 東洋製罐グループホールディングス株式会社 | Package and use method thereof |
JP2017133702A (en) * | 2016-01-25 | 2017-08-03 | シャープ株式会社 | refrigerator |
JP2018154409A (en) * | 2018-06-12 | 2018-10-04 | 東洋製罐グループホールディングス株式会社 | Using method of packaging body |
CN110044127A (en) * | 2019-05-27 | 2019-07-23 | 长沙学院 | The control method of functional circuit in a kind of refrigerator |
US10486387B2 (en) | 2015-12-01 | 2019-11-26 | Toyo Seikan Group Holdings, Ltd. | Package for storage under low temperature environment and method using same |
CN114739083A (en) * | 2022-04-13 | 2022-07-12 | 四川虹美智能科技有限公司 | Intelligent refrigerator system and control method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06213548A (en) * | 1993-01-18 | 1994-08-02 | Hitachi Ltd | Refrigerator |
JPH08247608A (en) * | 1994-11-30 | 1996-09-27 | Samsung Electronics Co Ltd | Equipment and method of controlling cold-air discharge for refrigerator |
JPH11294934A (en) * | 1998-04-16 | 1999-10-29 | Matsushita Refrig Co Ltd | Controller for freezing refrigerator |
JP2003185326A (en) * | 2001-12-14 | 2003-07-03 | Matsushita Electric Ind Co Ltd | Food storage |
JP2007079918A (en) * | 2005-09-14 | 2007-03-29 | Matsushita Electric Ind Co Ltd | Article retrieval system and method |
JP2011043263A (en) * | 2009-08-19 | 2011-03-03 | Mitsubishi Electric Corp | Refrigerator |
JP2011099579A (en) * | 2009-11-04 | 2011-05-19 | Mitsubishi Electric Corp | Refrigerator |
WO2011111382A1 (en) * | 2010-03-09 | 2011-09-15 | パナソニック株式会社 | Refrigerator |
-
2012
- 2012-05-18 JP JP2012114372A patent/JP5927427B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06213548A (en) * | 1993-01-18 | 1994-08-02 | Hitachi Ltd | Refrigerator |
JPH08247608A (en) * | 1994-11-30 | 1996-09-27 | Samsung Electronics Co Ltd | Equipment and method of controlling cold-air discharge for refrigerator |
JPH11294934A (en) * | 1998-04-16 | 1999-10-29 | Matsushita Refrig Co Ltd | Controller for freezing refrigerator |
JP2003185326A (en) * | 2001-12-14 | 2003-07-03 | Matsushita Electric Ind Co Ltd | Food storage |
JP2007079918A (en) * | 2005-09-14 | 2007-03-29 | Matsushita Electric Ind Co Ltd | Article retrieval system and method |
JP2011043263A (en) * | 2009-08-19 | 2011-03-03 | Mitsubishi Electric Corp | Refrigerator |
JP2011099579A (en) * | 2009-11-04 | 2011-05-19 | Mitsubishi Electric Corp | Refrigerator |
WO2011111382A1 (en) * | 2010-03-09 | 2011-09-15 | パナソニック株式会社 | Refrigerator |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015229497A (en) * | 2014-06-03 | 2015-12-21 | 東洋製罐グループホールディングス株式会社 | Package and use method thereof |
US10486387B2 (en) | 2015-12-01 | 2019-11-26 | Toyo Seikan Group Holdings, Ltd. | Package for storage under low temperature environment and method using same |
JP2017133702A (en) * | 2016-01-25 | 2017-08-03 | シャープ株式会社 | refrigerator |
JP2018154409A (en) * | 2018-06-12 | 2018-10-04 | 東洋製罐グループホールディングス株式会社 | Using method of packaging body |
CN110044127A (en) * | 2019-05-27 | 2019-07-23 | 长沙学院 | The control method of functional circuit in a kind of refrigerator |
CN114739083A (en) * | 2022-04-13 | 2022-07-12 | 四川虹美智能科技有限公司 | Intelligent refrigerator system and control method thereof |
CN114739083B (en) * | 2022-04-13 | 2023-05-23 | 四川虹美智能科技有限公司 | Intelligent refrigerator system and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5927427B2 (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927427B2 (en) | refrigerator | |
WO2013172027A1 (en) | Refrigerator | |
US20160356539A1 (en) | Refrigerator and method for controlling the same | |
US11668512B2 (en) | Refrigerator and method for controlling the same | |
JP6334146B2 (en) | refrigerator | |
CN106605112B (en) | Refrigerator | |
US11268751B2 (en) | Refrigerator and method for controlling the same | |
US10921044B2 (en) | Refrigerator and method for controlling the same | |
TWI391618B (en) | Control method of cooling storage and its compressor | |
JP2009543017A (en) | Refrigerator with temperature control room | |
JP2006266585A (en) | Refrigerator | |
KR20100065472A (en) | Refrigerator and controlling method therefo | |
JP4998108B2 (en) | refrigerator | |
JP2009115376A (en) | Refrigerator | |
JP2014048001A (en) | Refrigerator | |
WO2017056212A1 (en) | Refrigerator | |
JP5630106B2 (en) | refrigerator | |
JP2019191841A (en) | Temperature controller for warm/cold storage | |
JP4151742B1 (en) | refrigerator | |
JP5927425B2 (en) | refrigerator | |
JP5927426B2 (en) | refrigerator | |
JP4151740B1 (en) | refrigerator | |
JP4151741B1 (en) | refrigerator | |
JP5927428B2 (en) | refrigerator | |
JP2015007510A (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160222 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5927427 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |