JP2013241849A - Exhaust device for internal combustion engine - Google Patents

Exhaust device for internal combustion engine Download PDF

Info

Publication number
JP2013241849A
JP2013241849A JP2012114197A JP2012114197A JP2013241849A JP 2013241849 A JP2013241849 A JP 2013241849A JP 2012114197 A JP2012114197 A JP 2012114197A JP 2012114197 A JP2012114197 A JP 2012114197A JP 2013241849 A JP2013241849 A JP 2013241849A
Authority
JP
Japan
Prior art keywords
exhaust
passage
combustion engine
internal combustion
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012114197A
Other languages
Japanese (ja)
Inventor
Takanobu Sugiyama
孝伸 杉山
Takayuki Hamamoto
高行 濱本
Takao Ito
高生 伊藤
Kengo Yonekura
賢午 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012114197A priority Critical patent/JP2013241849A/en
Publication of JP2013241849A publication Critical patent/JP2013241849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust device for an internal combustion engine capable of suppressing exhaust interference.SOLUTION: An exhaust device for an internal combustion engine 1 with in-line four-cylinders includes: an exhaust passage 21; a recirculation passage 41 that recirculates some exhaust gas in the exhaust passage into an intake passage; a recirculation valve 42 that opens and closes the recirculation passage; a cooler 43 that cools the exhaust gas recirculating into the recirculation passage; and a helmholtz type resonator 60 including the cooler as a volume chamber.

Description

本発明は、内燃機関の排気装置に関するものである。   The present invention relates to an exhaust device for an internal combustion engine.

外部EGR(排気ガス還流)通路に共鳴管と共鳴容積と逆止弁とを設け、排気の圧力変動を共鳴効果によって高くし、逆止弁により吸気系に排気を流入させることで排気再循環性能を高めるようにしたEGR装置が知られている(特許文献1)。   Resonance pipe, resonance volume, and check valve are provided in the external EGR (exhaust gas recirculation) passage, exhaust pressure fluctuation is increased by the resonance effect, and exhaust gas flows into the intake system by the check valve. There is known an EGR device that enhances (Patent Document 1).

特開平1−177446号公報JP-A-1-177446

しかしながら、十分なレゾネータ効果を得ようとするとレゾネータが大型化し、或いは、十分な大きさのレゾネータを設けることができない場合にレゾネータ効果が低下してしまうといった問題がある。   However, there is a problem that if a sufficient resonator effect is obtained, the resonator becomes large, or the resonator effect is lowered when a sufficiently large resonator cannot be provided.

本発明が解決しようとする課題は、大型化させることなく十分なレゾネータ効果が得られる内燃機関の排気装置を提供することである。   The problem to be solved by the present invention is to provide an exhaust device for an internal combustion engine that can provide a sufficient resonator effect without increasing the size.

本発明は、直列4気筒を含む内燃機関の排気通路の排気ガスの一部を吸気通路に再循環させる再循環通路に、再循環通路を開閉する再循環バルブ及びガス冷却器に加えて、ガス冷却器を容積室として含むヘルムホルツ式レゾネータを設けることによって上記課題を解決する。   The present invention provides a recirculation passage for recirculating a part of exhaust gas in an exhaust passage of an internal combustion engine including in-line four cylinders to an intake passage, a recirculation valve for opening and closing the recirculation passage, and a gas cooler. The above problem is solved by providing a Helmholtz resonator including a cooler as a volume chamber.

本発明によれば、再循環バルブを閉じている場合には、ガス冷却器を容積室として含む再循環通路がヘルムホルツ式レゾネータになり、冷却効果によって音速が低下して圧力脈動到達時間が遅れるので、小さい容積でレゾネータ効果を実現することができる。   According to the present invention, when the recirculation valve is closed, the recirculation passage including the gas cooler as a volume chamber becomes a Helmholtz resonator, and the sound velocity is lowered by the cooling effect and the pressure pulsation arrival time is delayed. The resonator effect can be realized with a small volume.

本発明の一実施の形態に係る排気装置を適用した内燃機関を示すブロック図である。1 is a block diagram showing an internal combustion engine to which an exhaust device according to an embodiment of the present invention is applied. 本発明の一実施の形態に係る排気装置を示す模式図である。It is a schematic diagram which shows the exhaust apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る再循環通路を示す図である。It is a figure which shows the recirculation channel | path which concerns on one embodiment of this invention. 本発明の他の実施の形態に係る排気装置を示す模式図である。It is a schematic diagram which shows the exhaust apparatus which concerns on other embodiment of this invention. 本発明のさらに他の実施の形態に係る排気装置を示す模式図である。It is a schematic diagram which shows the exhaust apparatus which concerns on other embodiment of this invention. 本発明のさらに他の実施の形態に係る排気装置を示す模式図である。It is a schematic diagram which shows the exhaust apparatus which concerns on other embodiment of this invention. 本発明の一実施の形態に係る排気装置を適用した内燃機関を示す斜視図である。1 is a perspective view showing an internal combustion engine to which an exhaust device according to an embodiment of the present invention is applied.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施の形態に係る排気装置を適用した直列4気筒内燃機関1を示すブロック図であり、内燃機関1の吸気通路11には、エアーフィルタ12、吸入空気流量を検出するエアフローメータ13、吸入空気流量を制御するスロットルバルブ14およびコレクタ15が設けられている。なお、本発明に係る排気装置が適用できる内燃機関1は直列4気筒を含むものであればよく、V型8気筒内燃機関等であってもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an in-line four-cylinder internal combustion engine 1 to which an exhaust system according to an embodiment of the present invention is applied. In an intake passage 11 of the internal combustion engine 1, an air filter 12 and an intake air flow rate are detected. An air flow meter 13 for controlling the intake air flow rate, a throttle valve 14 for controlling the intake air flow rate, and a collector 15 are provided. The internal combustion engine 1 to which the exhaust system according to the present invention can be applied is not limited as long as it includes in-line four cylinders, and may be a V-type eight cylinder internal combustion engine or the like.

スロットルバルブ14には、当該スロットルバルブ14の開度を検出するスロットルセンサと、第1スロットルバルブ14の開度をDCモータ等のアクチュエータにより制御することができるスロットルバルブ制御装置とが設けられている。このスロットルバルブ制御装置は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成するように、コントロールユニット50からの駆動信号に基づき、スロットルバルブ14の開度を電子制御する。   The throttle valve 14 is provided with a throttle sensor that detects the opening degree of the throttle valve 14 and a throttle valve control device that can control the opening degree of the first throttle valve 14 by an actuator such as a DC motor. . The throttle valve control device electronically controls the opening degree of the throttle valve 14 based on a drive signal from the control unit 50 so as to achieve a required torque calculated based on a driver's accelerator pedal operation amount or the like.

内燃機関1の各気筒の燃焼室16に臨ませて、燃料噴射バルブ17が設けられている。燃料噴射バルブ17は、コントロールユニット50において設定される駆動パルス信号によって開弁駆動され、燃料ポンプ(不図示)から圧送されてプレッシャレギュレータ(不図示)により所定圧力に制御された燃料を燃焼室16内に直接噴射する。なお、直接噴射式に代えて燃料噴射ポートへ燃料を噴射してもよい。点火プラグ20は、各気筒の燃焼室16に臨んで装着され、コントロールユニット50からの点火信号に基づいて吸入混合気に対して点火を行う。   A fuel injection valve 17 is provided facing the combustion chamber 16 of each cylinder of the internal combustion engine 1. The fuel injection valve 17 is driven to open by a drive pulse signal set in the control unit 50, and pressure is supplied from a fuel pump (not shown) and is controlled to a predetermined pressure by a pressure regulator (not shown). Inject directly into. Note that fuel may be injected into the fuel injection port instead of the direct injection type. The spark plug 20 is mounted facing the combustion chamber 16 of each cylinder, and ignites the intake air-fuel mixture based on an ignition signal from the control unit 50.

一方、排気通路21には、排気を浄化するための排気浄化触媒24,25が設けられている。この排気浄化触媒24,25としては、ストイキ(理論空燃比,λ=1、空気重量/燃料重量=14.7)近傍において排気中の一酸化炭素COと炭化水素HCを酸化するとともに、窒素酸化物NOxの還元を行って排気を浄化することができる三元触媒、或いは排気中の一酸化炭素COと炭化水素HCの酸化を行う酸化触媒を用いることができる。排気浄化触媒24は内燃機関1に近接して設けられる一方で、排気浄化触媒25は車体の床裏などに設けられる。この部分の詳細は後述する。なお、図1において23はマフラである。   On the other hand, exhaust purification catalysts 24 and 25 for purifying the exhaust are provided in the exhaust passage 21. The exhaust purification catalysts 24 and 25 oxidize carbon monoxide CO and hydrocarbon HC in the exhaust in the vicinity of stoichiometric (theoretical air-fuel ratio, λ = 1, air weight / fuel weight = 14.7), and nitrogen oxidation. It is possible to use a three-way catalyst that can purify exhaust gas by reducing product NOx, or an oxidation catalyst that oxidizes carbon monoxide CO and hydrocarbon HC in the exhaust gas. The exhaust purification catalyst 24 is provided in the vicinity of the internal combustion engine 1, while the exhaust purification catalyst 25 is provided on the floor of the vehicle body. Details of this part will be described later. In FIG. 1, reference numeral 23 denotes a muffler.

本実施形態の内燃機関1は、排気浄化触媒24の下流側の排気ガスを吸気通路11に再循環させる排気ガス再循環機構(EGR)40を備え、所定の運転条件、たとえば低負荷領域において吸気通路11に排気ガスを再循環させ、排気ガス温度の低下や燃費向上を図る。一方、上記所定の運転条件以外、たとえば低回転・高負荷領域においては、排気ガス再循環機構40を停止する。   The internal combustion engine 1 of the present embodiment includes an exhaust gas recirculation mechanism (EGR) 40 that recirculates exhaust gas downstream of the exhaust purification catalyst 24 to the intake passage 11 and performs intake air in a predetermined operating condition, for example, in a low load region. The exhaust gas is recirculated through the passage 11 to lower the exhaust gas temperature and improve the fuel consumption. On the other hand, the exhaust gas recirculation mechanism 40 is stopped, for example, in a low rotation / high load region other than the predetermined operating conditions.

本例の排気ガス再循環機構40は、排気浄化触媒24の下流の排気通路21と、スロットルバルブ14の下流の吸気通路11とを連通する再循環通路41と、当該再循環通路41に設けられ、再循環する排気ガスの流量を調節すべく開閉する再循環バルブ42と、再循環させる排気ガスを冷却する冷却器43とを備える。再循環バルブ42はコントロールユニット50からの制御信号によりその開閉動作が制御される。また、冷却器42は、筐体内部に熱交換室を備える冷却器であって、再循環させる排気ガスを冷却する冷媒が循環し、排気ガスとの間で熱交換を行うことにより冷却した排気ガスを吸気通路11へ再循環させる。   The exhaust gas recirculation mechanism 40 of this example is provided in the recirculation passage 41, which connects the exhaust passage 21 downstream of the exhaust purification catalyst 24 and the intake passage 11 downstream of the throttle valve 14, and the recirculation passage 41. A recirculation valve 42 that opens and closes to adjust the flow rate of the recirculated exhaust gas, and a cooler 43 that cools the recirculated exhaust gas. The opening / closing operation of the recirculation valve 42 is controlled by a control signal from the control unit 50. Further, the cooler 42 is a cooler having a heat exchange chamber inside the casing, and a refrigerant that cools the exhaust gas to be recirculated circulates and exhausts cooled by exchanging heat with the exhaust gas. The gas is recirculated to the intake passage 11.

次に、内燃機関1本体の気筒から下流側の排気通路21の構成について説明する。図2は、本発明の一実施の形態に係る排気通路21の構成を示す模式図であり、内燃機関1は直列に配列された4つの気筒31〜34(各気筒に2つの吸気バルブと2つの排気バルブを有する16バルブ式エンジン)を有する。すなわち図2における左側から右側に向かって第1気筒31,第2気筒32,第3気筒33及び第4気筒34は直列に配置され、第1気筒31⇒第3気筒33⇒第4気筒34⇒第2気筒32の順序で点火し、第1気筒31と第4気筒34及び第2気筒32と第3気筒33は互いに排気行程が連続しない気筒となる。   Next, the configuration of the exhaust passage 21 downstream from the cylinder of the main body of the internal combustion engine 1 will be described. FIG. 2 is a schematic diagram showing the configuration of the exhaust passage 21 according to an embodiment of the present invention. The internal combustion engine 1 includes four cylinders 31 to 34 arranged in series (two intake valves and two in each cylinder). 16-valve engine with two exhaust valves). That is, the first cylinder 31, the second cylinder 32, the third cylinder 33, and the fourth cylinder 34 are arranged in series from the left side to the right side in FIG. 2, and the first cylinder 31⇒the third cylinder 33⇒the fourth cylinder 34⇒. The second cylinder 32 is ignited in the order, and the first cylinder 31, the fourth cylinder 34, and the second cylinder 32, the third cylinder 33 are cylinders whose exhaust strokes are not continuous with each other.

内燃機関1のシリンダヘッドの裏面(シリンダブロックとの接合面)には、各気筒31〜34に対応する位置に2対ずつ排気ポートが形成されている。すなわち、第1気筒31に対応する位置には2つの排気ポート211が形成され、第2気筒32に対応する位置には2つの排気ポート212が形成され、第3気筒33に対応する位置には2つの排気ポート213が形成され、第4気筒34に対応する位置には2つの排気ポート214が形成されている。さらに、排気ポート211の出口端部には排気ブランチ管215が接続され、排気ポート212の出口端部には排気ブランチ管216が接続され、排気ポート213の出口端部には排気ブランチ管217が接続され、排気ポート214の出口端部には排気ブランチ管218が接続されている。   Two pairs of exhaust ports are formed at positions corresponding to the cylinders 31 to 34 on the back surface of the cylinder head of the internal combustion engine 1 (joint surface with the cylinder block). That is, two exhaust ports 211 are formed at a position corresponding to the first cylinder 31, two exhaust ports 212 are formed at a position corresponding to the second cylinder 32, and at a position corresponding to the third cylinder 33. Two exhaust ports 213 are formed, and two exhaust ports 214 are formed at positions corresponding to the fourth cylinder 34. Further, an exhaust branch pipe 215 is connected to the outlet end of the exhaust port 211, an exhaust branch pipe 216 is connected to the outlet end of the exhaust port 212, and an exhaust branch pipe 217 is connected to the outlet end of the exhaust port 213. An exhaust branch pipe 218 is connected to the outlet end of the exhaust port 214.

そして、排気ブランチ管216と排気ブランチ管217は、シリンダヘッドの出口直後において一つの第1排気通路219に集合し、ここに排気浄化触媒24の一方の流路が接続されている。また、排気ブランチ管215と排気ブランチ管218も、シリンダヘッドの出口直後において一つの第2排気通路220に集合し、ここに排気浄化触媒24の他方の流路が接続されている。なお、同図に示す排気浄化触媒24は、内部の流路が左右2つに仕切られ、第1排気通路219が左側の流路に接続され、第2排気通路220が右側の流路に接続されている。第1排気通路219と第2排気通路220とは、排気浄化触媒24の下流側において所定の長さだけそのままデュアル長を保持したのち、一つの第3排気通路221に集合し、この下流側にさらなる排気浄化触媒25が設けられている。   The exhaust branch pipe 216 and the exhaust branch pipe 217 gather in one first exhaust passage 219 immediately after the outlet of the cylinder head, and one flow path of the exhaust purification catalyst 24 is connected thereto. Further, the exhaust branch pipe 215 and the exhaust branch pipe 218 also gather in one second exhaust passage 220 immediately after the outlet of the cylinder head, and the other flow path of the exhaust purification catalyst 24 is connected thereto. In the exhaust purification catalyst 24 shown in the figure, the internal flow path is divided into left and right two, the first exhaust passage 219 is connected to the left flow path, and the second exhaust passage 220 is connected to the right flow path. Has been. The first exhaust passage 219 and the second exhaust passage 220 hold a dual length as it is at a predetermined length on the downstream side of the exhaust purification catalyst 24, and then gather into one third exhaust passage 221. A further exhaust purification catalyst 25 is provided.

本例では、排気浄化触媒24の下流側において第1排気通路219と第2排気通路220とが一つに集合した第3排気通路221に、再循環通路41の基端が接続されている。   In this example, the base end of the recirculation passage 41 is connected to the third exhaust passage 221 in which the first exhaust passage 219 and the second exhaust passage 220 are gathered together on the downstream side of the exhaust purification catalyst 24.

図3は、本例の再循環通路41の構成を示す図であり、再循環通路41に再循環バルブ42と冷却器43とが設けられているが、ヘルムホルツ式レゾネータ60としても機能する。ヘルムホルツ式レゾネータは、ヘルムホルツの共鳴の原理を利用した共鳴器であって、排気の際に発生する排気干渉(排気ガスの脈動)を小さくする機能を司る。このため、密閉された容積室と、これに排気ガスを導く共鳴管部とを備え、ヘルムホルツレゾネータの共振(消音)周波数fは、f=[c/2π][S/{V1(L+1.6a)}]1/2で示される。ただし、音速c、共鳴管部の断面積S、共鳴管部の断面の半径a、共鳴管部の長さL、容積室の容積V1である。 FIG. 3 is a diagram showing the configuration of the recirculation passage 41 of the present example. The recirculation passage 41 is provided with a recirculation valve 42 and a cooler 43, but also functions as a Helmholtz resonator 60. The Helmholtz resonator is a resonator that uses the principle of Helmholtz resonance, and has a function of reducing exhaust interference (exhaust gas pulsation) that occurs during exhaust. For this reason, it has a sealed volume chamber and a resonance tube part that guides exhaust gas to this, and the resonance (silence) frequency f of the Helmholtz resonator is f = [c / 2π] [S / {V1 (L + 1.6a). )}] 1/2 . Here, the speed of sound c, the cross-sectional area S of the resonance tube portion, the radius a of the cross section of the resonance tube portion, the length L of the resonance tube portion, and the volume V1 of the volume chamber.

図3に示す例では、再循環通路41のうち排気通路21との接続部P1から冷却器43との接続部P2までの再循環通路41の一部が、第1再循環通路411と第2再循環通路412の二重管構造とされている。第1再循環通路411は、一端が冷却器43に接続され、他端側に第2再循環通路412の一部が気密に挿入され、第2再循環通路412は、第1再循環通路より小径の通路であって、一端が排気通路21に接続され、他端側が第2再循環通路411に気密に挿通する。そして、本例のヘルムホルツ式レゾネータ60は、冷却器43の内部空間と第1再循環通路411とを容積室(容積V1)とし、第2再循環通路412を共鳴管部(管長L)として構成されている。   In the example shown in FIG. 3, a part of the recirculation passage 41 from the connection portion P <b> 1 to the exhaust passage 21 to the connection portion P <b> 2 to the cooler 43 in the recirculation passage 41 is the first recirculation passage 411 and the second recirculation passage 411. The recirculation passage 412 has a double pipe structure. One end of the first recirculation passage 411 is connected to the cooler 43, and a part of the second recirculation passage 412 is inserted in an airtight manner on the other end side. The second recirculation passage 412 is more than the first recirculation passage. A small-diameter passage, one end of which is connected to the exhaust passage 21 and the other end is hermetically inserted into the second recirculation passage 411. The Helmholtz resonator 60 of this example is configured such that the internal space of the cooler 43 and the first recirculation passage 411 are a volume chamber (volume V1), and the second recirculation passage 412 is a resonance tube portion (tube length L). Has been.

図3に示すような第1再循環通路411と第2再循環通路412との一部を二重管構造にすることで、冷却器43に加えて第1再循環通路411をも容積室として機能させることができるので、共鳴周波数の設定可能範囲が広がり、コンパクトな形状であってもレゾネータ効果を充分に発揮することができる。また、二重管部分の長さを調節することで共鳴周波数を所望の値に設定することができる。   By forming a part of the first recirculation passage 411 and the second recirculation passage 412 as shown in FIG. 3 into a double pipe structure, the first recirculation passage 411 is also used as a volume chamber in addition to the cooler 43. Since it can function, the settable range of the resonance frequency is widened, and the resonator effect can be sufficiently exerted even with a compact shape. Further, the resonance frequency can be set to a desired value by adjusting the length of the double tube portion.

なお、本発明のヘルムホルツ式レゾネータ60は、図3に示す例にのみ限定されず、第1再循環通路411及び第2再循環通路412に代えて、1本の再循環通路としてもよい。この場合は、冷却器43の内部がヘルムホルツ式レゾネータの容積室となり、1本の再循環通路が共鳴管部となる。   The Helmholtz resonator 60 of the present invention is not limited to the example shown in FIG. 3, and may be a single recirculation passage instead of the first recirculation passage 411 and the second recirculation passage 412. In this case, the inside of the cooler 43 becomes the volume chamber of the Helmholtz resonator, and one recirculation passage becomes the resonance tube portion.

また、実際の内燃機関1の本体に再循環通路41を取り廻す場合に、図7に示すように、再循環通路41の途中に蛇腹部(又は球体継ぎ手)44を設けてもよい。排気通路21の下流側は振動が大きいが、再循環通路41に蛇腹部44を設けると、排気通路21の振動を蛇腹部44にて吸収することができる。したがって、振動が大きい排気通路21の下流側に再循環通路41を接続することができ、その結果、第1排気通路219及び第2排気通路220のデュアル長を充分に長く設定できるので、特に低回転領域における排気干渉を抑制する効果が大きい。   Further, when the recirculation passage 41 is arranged around the actual main body of the internal combustion engine 1, a bellows portion (or spherical joint) 44 may be provided in the middle of the recirculation passage 41 as shown in FIG. Although vibrations are great on the downstream side of the exhaust passage 21, if the bellows portion 44 is provided in the recirculation passage 41, vibration of the exhaust passage 21 can be absorbed by the bellows portion 44. Therefore, the recirculation passage 41 can be connected to the downstream side of the exhaust passage 21 where the vibration is large. As a result, the dual lengths of the first exhaust passage 219 and the second exhaust passage 220 can be set to be sufficiently long. The effect of suppressing exhaust interference in the rotation region is great.

以上のとおり、本例の排気装置によれば、再循環バルブ42が閉状態(EGR機能が停止状態)である場合は、再循環通路41がヘルムホルツ式レゾネータ60の作用を奏するので、4気筒内燃機関に特有の隣接する気筒からのブローダウンによる排気干渉が軽減され、気筒内に残留する排気ガス量を低減することができる。また、冷却器43を容積室として利用しているので、ガスが冷却されることにより音速cが低下して圧力脈動到達時間が遅れるので、小さい容積や短い管路でもレゾネータ効果を実現することができる。   As described above, according to the exhaust system of this example, when the recirculation valve 42 is closed (EGR function is stopped), the recirculation passage 41 functions as the Helmholtz resonator 60. Exhaust interference caused by blowdown from an adjacent cylinder specific to the engine is reduced, and the amount of exhaust gas remaining in the cylinder can be reduced. In addition, since the cooler 43 is used as a volume chamber, the sound velocity c decreases and the pressure pulsation arrival time is delayed by cooling the gas, so that the resonator effect can be realized even with a small volume or a short pipeline. it can.

図2に示す実施形態では、再循環通路41を第3排気通路221に接続したが、第1排気通路219又は第2排気通路220に接続してもよい。図4は、本発明に係る排気装置において再循環通路41を第1排気通路219に接続した実施形態を示す模式図である。その他の構成は図2に示す実施形態と同じであるためその説明をここに援用し、省略する。なお、排気ポートから、第1排気通路219と第2排気通路220とが第3排気通路221に合流する点までの排気通路の総合計長さ、すなわち、中央寄りの2気筒に関して言えば、第2気筒32,第3気筒33に接続する排気ブランチ管216,217の長さと、第1排気通路219の長さの合計の長さ、或いは外側寄りの2気筒に関して言えば、第1気筒31,第4気筒34に接続する排気ブランチ管215,218の長さと、第2排気通路220の長さの合計の長さを、デュアル部分の長さと呼ぶとすれば、中央寄りの2気筒に対応する第1排気通路219側は、外側寄りの2気筒に対応する第2排気通路220側に比べてデュアル部分の長さが短いものとする。   In the embodiment shown in FIG. 2, the recirculation passage 41 is connected to the third exhaust passage 221, but may be connected to the first exhaust passage 219 or the second exhaust passage 220. FIG. 4 is a schematic view showing an embodiment in which the recirculation passage 41 is connected to the first exhaust passage 219 in the exhaust device according to the present invention. Since other configurations are the same as those of the embodiment shown in FIG. 2, the description thereof is incorporated herein and omitted. Note that the total length of the exhaust passage from the exhaust port to the point where the first exhaust passage 219 and the second exhaust passage 220 join the third exhaust passage 221, that is, regarding the two cylinders closer to the center, Regarding the total length of the lengths of the exhaust branch pipes 216 and 217 connected to the second cylinder 32 and the third cylinder 33 and the length of the first exhaust passage 219 or the outer two cylinders, the first cylinder 31, If the total length of the exhaust branch pipes 215 and 218 connected to the fourth cylinder 34 and the length of the second exhaust passage 220 is called the length of the dual portion, it corresponds to the two cylinders closer to the center. On the first exhaust passage 219 side, the length of the dual portion is shorter than that on the second exhaust passage 220 side corresponding to the outer two cylinders.

同図に示すように、各気筒からの排気通路については、シリンダブロックから排気浄化触媒までの長さL1はほぼ等しく設定されているが、2つの排気ブランチ管が一つに集合してから排気浄化触媒までの長さL219,L220は異なることがある。たとえば、直列4気筒内燃機関においては第2気筒32及び第3気筒33からの排気通路を集合した第1排気通路219の方が、第1気筒31及び第4気筒34からの排気通路を集合した第2排気通路220より長くなり易く、この結果、第1排気通路219側の排気ブランチ管216,217の長さが短くなって、結局合計の長さであるデュアル部分の長さが短くなることが少なくない。しかし、このようにして合計の長さであるデュアル部分の長さが短いと、特に低回転域における排気干渉が大きくなるため、デュアル部分の長さが短い側の第1排気通路219に再循環通路41を接続することで、排気干渉を抑制する。 As shown in the figure, in the exhaust passage from each cylinder, the length L1 from the cylinder block to the exhaust purification catalyst is set to be approximately equal, but the exhaust gas is exhausted after the two exhaust branch pipes gather together. The lengths L 219 and L 220 to the purification catalyst may be different. For example, in an in-line four-cylinder internal combustion engine, the first exhaust passage 219 that gathers exhaust passages from the second cylinder 32 and the third cylinder 33 gathers exhaust passages from the first cylinder 31 and the fourth cylinder 34. As a result, the length of the exhaust branch pipes 216 and 217 on the first exhaust passage 219 side is shortened, and consequently the length of the dual portion which is the total length is shortened. There are many. However, if the length of the dual portion, which is the total length in this way, is short, exhaust interference particularly in the low rotation range becomes large. By connecting the passage 41, exhaust interference is suppressed.

図5は、さらに他の実施形態を示す模式図であり、図4の排気浄化触媒24に代えて2つの独立した排気浄化触媒24A,24Bを第1排気通路219と第2排気通路220にそれぞれ設けた実施形態である。上述した図2及び図4に示す実施形態では、一つの排気浄化触媒24の内部を2つの領域に仕切っていたが、図5に示すように筐体ごと独立した2つの排気浄化触媒24A,24Bを用いてもよい。   FIG. 5 is a schematic view showing still another embodiment. In place of the exhaust purification catalyst 24 of FIG. 4, two independent exhaust purification catalysts 24A and 24B are provided in the first exhaust passage 219 and the second exhaust passage 220, respectively. It is the provided embodiment. In the embodiment shown in FIG. 2 and FIG. 4 described above, the inside of one exhaust purification catalyst 24 is divided into two regions. However, as shown in FIG. 5, two exhaust purification catalysts 24A, 24B independent of each housing are provided. May be used.

図6は、さらに他の実施形態を示す模式図であり、図5の実施形態に比べてシリンダヘッドから排気浄化触媒24A,24Bまでの構成が相違する。すなわち、図6の内燃機関1では、第2気筒32からの排気ポート212と第3気筒33からの排気ポート213とがシリンダヘッド内で一つの排気ポートに集合し、ここから排気浄化触媒24Aまでが第1排気通路219とされている。こうすることで内燃機関1から排気浄化触媒24までの構成が簡素化され、よりコンパクトな排気装置となる。この様な場合にも、デュアル部分の長さが短い側の第1排気通路219に再循環通路41を接続することで、効果的に排気干渉を抑制することができる。   FIG. 6 is a schematic view showing still another embodiment, and the configuration from the cylinder head to the exhaust purification catalysts 24A and 24B is different from the embodiment of FIG. That is, in the internal combustion engine 1 of FIG. 6, the exhaust port 212 from the second cylinder 32 and the exhaust port 213 from the third cylinder 33 are gathered into one exhaust port in the cylinder head, and from here to the exhaust purification catalyst 24A. Is the first exhaust passage 219. By doing so, the configuration from the internal combustion engine 1 to the exhaust purification catalyst 24 is simplified, and a more compact exhaust device is obtained. Even in such a case, exhaust interference can be effectively suppressed by connecting the recirculation passage 41 to the first exhaust passage 219 on the side where the length of the dual portion is short.

上記蛇腹部44は本発明に係る角度調整機構に相当する。   The bellows portion 44 corresponds to an angle adjustment mechanism according to the present invention.

1…内燃機関
11…吸気通路
12…エアーフィルタ
13…エアフローメータ
14…スロットルバルブ
15…コレクタ
16…燃焼室
17…燃料噴射バルブ
20…点火プラグ
21…排気通路
211,212,213,214…排気ポート
215,216,217,218…排気ブランチ管
219…第1排気通路
220…第2排気通路
221…第3排気通路
23…マフラ
24…排気浄化触媒
25…排気浄化触媒
31…第1気筒
32…第2気筒
33…第3気筒
34…第4気筒
40…排気ガス再循環機構
41…再循環通路
42…再循環バルブ
43…冷却器
44…蛇腹部(角度調整機構)
50…コントロールユニット
60…ヘルムホルツ式レゾネータ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 11 ... Intake passage 12 ... Air filter 13 ... Air flow meter 14 ... Throttle valve 15 ... Collector 16 ... Combustion chamber 17 ... Fuel injection valve 20 ... Spark plug 21 ... Exhaust passage 211, 212, 213, 214 ... Exhaust port 215, 216, 217, 218 ... exhaust branch pipe 219 ... first exhaust passage 220 ... second exhaust passage 221 ... third exhaust passage 23 ... muffler 24 ... exhaust purification catalyst 25 ... exhaust purification catalyst 31 ... first cylinder 32 ... first cylinder 2 cylinder 33 ... 3rd cylinder 34 ... 4th cylinder 40 ... exhaust gas recirculation mechanism 41 ... recirculation passage 42 ... recirculation valve 43 ... cooler 44 ... bellows part (angle adjustment mechanism)
50 ... Control unit 60 ... Helmholtz resonator

Claims (9)

排気通路と、
前記排気通路の排気ガスの一部を吸気通路に再循環させる再循環通路と、
前記再循環通路を開閉する再循環バルブと、
前記再循環通路に再循環する排気ガスを冷却する冷却器と、
前記冷却器を容積室として含むヘルムホルツ式レゾネータと、を備えた内燃機関の排気装置。
An exhaust passage,
A recirculation passage for recirculating a part of the exhaust gas in the exhaust passage to the intake passage;
A recirculation valve for opening and closing the recirculation passage;
A cooler for cooling the exhaust gas recirculated to the recirculation passage;
An exhaust system for an internal combustion engine, comprising: a Helmholtz resonator including the cooler as a volume chamber.
前記排気通路には排気浄化触媒が設けられ、
前記再循環通路の排気通路側端部は、前記排気浄化触媒の下流に接続されている請求項1に記載の内燃機関の排気装置。
The exhaust passage is provided with an exhaust purification catalyst,
The exhaust device for an internal combustion engine according to claim 1, wherein an end of the recirculation passage on the exhaust passage side is connected downstream of the exhaust purification catalyst.
前記内燃機関は、直列4気筒内燃機関であって、
前記排気通路は、前記内燃機関の4つの排気ポートのうち2つの排気ポートが1つに集合した第1排気通路と、他の2つの排気ポートが1つに集合した第2排気通路と、前記第1排気通路及び前記第2排気通路が1つに集合した第3排気通路とを含み、
前記再循環通路の排気通路側端部は、前記第3排気通路に接続されている請求項1又は2に記載の内燃機関の排気装置。
The internal combustion engine is an in-line four-cylinder internal combustion engine,
The exhaust passage includes a first exhaust passage in which two of the four exhaust ports of the internal combustion engine are gathered into one, a second exhaust passage in which the other two exhaust ports are gathered into one, and A first exhaust passage and a third exhaust passage in which the second exhaust passage is assembled into one,
3. The exhaust device for an internal combustion engine according to claim 1, wherein an end portion of the recirculation passage on an exhaust passage side is connected to the third exhaust passage.
前記内燃機関は、直列4気筒内燃機関であって、
前記排気通路は、前記内燃機関の4つの排気ポートのうち2つの排気ポートが1つに集合した第1排気通路と、他の2つの排気ポートが1つに集合した第2排気通路と、前記第1排気通路及び前記第2排気通路が1つに集合した第3排気通路とを含み、
前記内燃機関の排気ポートから、第1排気通路と第2排気通路とが第3排気通路に合流する点までの排気通路の総合計長さが、前記第2排気通路側に比べて第1排気通路側が短く、
前記再循環通路の排気通路側端部は、前記第1排気通路に接続されている請求項1に記載の内燃機関の排気装置。
The internal combustion engine is an in-line four-cylinder internal combustion engine,
The exhaust passage includes a first exhaust passage in which two of the four exhaust ports of the internal combustion engine are gathered into one, a second exhaust passage in which the other two exhaust ports are gathered into one, and A first exhaust passage and a third exhaust passage in which the second exhaust passage is assembled into one,
The total length of the exhaust passage from the exhaust port of the internal combustion engine to the point where the first exhaust passage and the second exhaust passage merge with the third exhaust passage is greater than that of the second exhaust passage. The aisle side is short,
2. The exhaust system for an internal combustion engine according to claim 1, wherein an end portion of the recirculation passage on an exhaust passage side is connected to the first exhaust passage.
前記第1排気通路に第1排気浄化触媒が設けられ、前記第2排気通路に第2排気浄化触媒が設けられ、
前記再循環通路の排気通路側端部は、前記第1排気通路の前記第1排気浄化触媒の下流側に接続されている請求項4に記載の内燃機関の排気装置。
A first exhaust purification catalyst is provided in the first exhaust passage; a second exhaust purification catalyst is provided in the second exhaust passage;
5. The exhaust device for an internal combustion engine according to claim 4, wherein an end portion of the recirculation passage on the exhaust passage side is connected to a downstream side of the first exhaust purification catalyst in the first exhaust passage.
前記第1排気通路は、前記内燃機関の4つの排気ポートのうち排気行程が連続しない中央部の2つの排気ポートがシリンダヘッド内で1つに集合し、シリンダヘッド出口端部から前記第3排気通路までは、1つの排気ブランチ管で構成されている請求項3〜5のいずれか一項に記載の内燃機関の排気装置。   In the first exhaust passage, two exhaust ports in the central portion where the exhaust stroke is not continuous among the four exhaust ports of the internal combustion engine are gathered together in the cylinder head, and the third exhaust gas is discharged from the cylinder head outlet end. The exhaust system for an internal combustion engine according to any one of claims 3 to 5, wherein the exhaust system is constituted by one exhaust branch pipe up to the passage. 前記ヘルムホルツ式レゾネータは、前記再循環通路のうち前記排気通路との接続部から前記冷却器との接続部までを共鳴管部とし、前記冷却器の内部空間を容積室として構成されている請求項1〜6のいずれか一項に記載の内燃機関の排気装置。   The Helmholtz resonator is configured such that a resonance pipe portion is formed from a connection portion of the recirculation passage to the exhaust passage to a connection portion of the cooler, and an internal space of the cooler is a volume chamber. The exhaust device for an internal combustion engine according to any one of claims 1 to 6. 前記再循環通路のうち前記排気通路との接続部から前記冷却器との接続部までの再循環通路は、
一端が前記冷却器に接続された第1再循環通路の他端側の一部と、
一端が前記排気通路に接続され、前記第1再循環通路より小径の第2再循環通路の他端側の一部と、が重なる二重管構造に構成され、
前記ヘルムホルツ式レゾネータは、前記冷却器の内部空間と前記第1再循環通路とを容積室とし、前記第2再循環通路を共鳴管部として構成されている請求項1〜6のいずれか一項に記載の内燃機関の排気装置。
Among the recirculation passages, the recirculation passage from the connection portion with the exhaust passage to the connection portion with the cooler is:
A part of the other end side of the first recirculation passage, one end of which is connected to the cooler;
One end is connected to the exhaust passage, and is configured in a double pipe structure that overlaps with a part on the other end side of the second recirculation passage having a smaller diameter than the first recirculation passage,
The Helmholtz resonator is configured such that the internal space of the cooler and the first recirculation passage are volume chambers, and the second recirculation passage is a resonance tube portion. 2. An exhaust system for an internal combustion engine according to 1.
前記再循環通路に、当該再循環通路の角度を可変とする角度調整機構が設けられている請求項1〜8のいずれか一項に記載の内燃機関の排気装置。   The exhaust system for an internal combustion engine according to any one of claims 1 to 8, wherein an angle adjustment mechanism that makes the angle of the recirculation passage variable is provided in the recirculation passage.
JP2012114197A 2012-05-18 2012-05-18 Exhaust device for internal combustion engine Pending JP2013241849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012114197A JP2013241849A (en) 2012-05-18 2012-05-18 Exhaust device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012114197A JP2013241849A (en) 2012-05-18 2012-05-18 Exhaust device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013241849A true JP2013241849A (en) 2013-12-05

Family

ID=49842966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012114197A Pending JP2013241849A (en) 2012-05-18 2012-05-18 Exhaust device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013241849A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021481A1 (en) * 2016-07-27 2018-02-01 マツダ株式会社 Exhaust system device of vehicle
EP3379069A1 (en) * 2017-03-23 2018-09-26 Volkswagen Aktiengesellschaft Combustion engine and exhaust gas treatment system for a combustion engine
KR102261293B1 (en) * 2019-12-11 2021-06-04 현대자동차 주식회사 Exhaust manifold for vehicle engine
KR102261295B1 (en) * 2019-12-11 2021-06-04 현대자동차 주식회사 Exhaust manifold for vehicle engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209846A (en) * 1996-02-08 1997-08-12 Mazda Motor Corp Exhaust recirculating device of engine
JP2001090591A (en) * 1999-09-24 2001-04-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004124749A (en) * 2002-09-30 2004-04-22 Mazda Motor Corp Exhaust device for turbocharged engine
JP2008038838A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Internal combustion engine
JP2010196524A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Control device for internal combustion engine
JP2012031782A (en) * 2010-07-30 2012-02-16 Toyota Motor Corp Egr pipe connection part structure for exhaust system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209846A (en) * 1996-02-08 1997-08-12 Mazda Motor Corp Exhaust recirculating device of engine
JP2001090591A (en) * 1999-09-24 2001-04-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004124749A (en) * 2002-09-30 2004-04-22 Mazda Motor Corp Exhaust device for turbocharged engine
JP2008038838A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Internal combustion engine
JP2010196524A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Control device for internal combustion engine
JP2012031782A (en) * 2010-07-30 2012-02-16 Toyota Motor Corp Egr pipe connection part structure for exhaust system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021481A1 (en) * 2016-07-27 2018-02-01 マツダ株式会社 Exhaust system device of vehicle
JPWO2018021481A1 (en) * 2016-07-27 2019-01-17 マツダ株式会社 Vehicle exhaust system
CN109477444A (en) * 2016-07-27 2019-03-15 马自达汽车株式会社 The exhaust system device of vehicle
EP3418548A4 (en) * 2016-07-27 2019-03-27 Mazda Motor Corporation Exhaust system device of vehicle
US10746080B2 (en) 2016-07-27 2020-08-18 Mazda Motor Corporation Exhaust system device for vehicle
US10995649B2 (en) 2016-07-27 2021-05-04 Mazda Motor Corporation Vehicle engine
EP3379069A1 (en) * 2017-03-23 2018-09-26 Volkswagen Aktiengesellschaft Combustion engine and exhaust gas treatment system for a combustion engine
KR102261293B1 (en) * 2019-12-11 2021-06-04 현대자동차 주식회사 Exhaust manifold for vehicle engine
KR102261295B1 (en) * 2019-12-11 2021-06-04 현대자동차 주식회사 Exhaust manifold for vehicle engine

Similar Documents

Publication Publication Date Title
JP2011099375A (en) Exhaust reflux device of internal combustion engine
JP2013519028A (en) Cylinder deactivation type internal combustion engine
JP2011214469A (en) Exhaust device of multi-cylinder engine
JP2013241849A (en) Exhaust device for internal combustion engine
JP5891943B2 (en) Exhaust system for multi-cylinder engine
JP6256275B2 (en) Engine intake / exhaust system
JP6156650B2 (en) Exhaust device for internal combustion engine
WO2013172129A1 (en) Exhaust gas discharge device for internal combustion engine
JP2013079609A (en) Exhaust system of multi-cylinder engine
JP5998503B2 (en) Intake and exhaust system for multi-cylinder engine
JP5262863B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
JP2008014250A (en) Exhaust gas recirculation system of internal combustion engine
JP5168268B2 (en) Exhaust gas recirculation device for internal combustion engine
JP5262862B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
CN113906199B (en) catalytic converter
JP5447095B2 (en) Exhaust system for multi-cylinder engine
JP5206604B2 (en) Intake control device for internal combustion engine
JP2002285916A (en) Exhaust gas recirculation apparatus
WO2013140998A1 (en) Internal combustion engine
JP2005232996A (en) Exhaust gas recirculating system
JP2010116870A (en) Internal combustion engine for vehicle
JP2018168785A (en) Intake device for multiple cylinder engine
JP4983144B2 (en) Internal combustion engine equipped with an EGR device
JP6558390B2 (en) Intake device for turbocharged engine
JP6269042B2 (en) engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004