JP2013241674A - Method for manufacturing bearing steel - Google Patents

Method for manufacturing bearing steel Download PDF

Info

Publication number
JP2013241674A
JP2013241674A JP2013077893A JP2013077893A JP2013241674A JP 2013241674 A JP2013241674 A JP 2013241674A JP 2013077893 A JP2013077893 A JP 2013077893A JP 2013077893 A JP2013077893 A JP 2013077893A JP 2013241674 A JP2013241674 A JP 2013241674A
Authority
JP
Japan
Prior art keywords
mass
bearing steel
steel
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013077893A
Other languages
Japanese (ja)
Other versions
JP5991254B2 (en
Inventor
Yuta Imanami
祐太 今浪
Katsuyuki Ichinomiya
克行 一宮
Seishi Uei
清史 上井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013077893A priority Critical patent/JP5991254B2/en
Publication of JP2013241674A publication Critical patent/JP2013241674A/en
Application granted granted Critical
Publication of JP5991254B2 publication Critical patent/JP5991254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for softening-annealing a bearing steel, by which an enough saw property can be made to appear by a simple softening-annealing process for a short time.SOLUTION: A rolled material of a bearing steel is composed, by mass, of 0.7-1.3% C, 0.2-1.0% Si, 0.1-1.5% Mn, 0.01-0.2% Al, 0.5-2.5% Cr and the balance Fe with inevitable impurities. The rolled material is heated to 720-850°C temperature zone with heating speed in the temperature zone of ≥700°C as 10-100°C/h, and successively, is cooled at a 0.02-0.2°C/s speed to the temperature of a pearlite transformation point or lower.

Description

本発明は、軸受鋼なかでも高炭素クロム軸受鋼の製造方法に関し、特に軟化焼鈍工程における処理時間の短縮化と同時に、鋸切性の向上を図ろうとするものである。
ここに、鋸切性とは、鋸切作業に要する作業工数の低さのことを意味し、また作業工数とは、鋸切に要する時間および鋸刃の劣化に伴う鋸刃交換作業時間を意味する。この鋸切性は、鋼材の硬度と強い相関があり、鋼材のビッカース硬度Hvが270以下であれば十分な鋸切性を有していると言える。
The present invention relates to a method for producing a high carbon chromium bearing steel among bearing steels, and in particular, aims to improve the sawing ability at the same time as shortening the processing time in the soft annealing process.
Here, sawability means the low man-hour required for the sawing operation, and the man-hour means the time required for saw cutting and the time for replacing the saw blade due to the deterioration of the saw blade. To do. This saw cutting property has a strong correlation with the hardness of the steel material. If the Vickers hardness Hv of the steel material is 270 or less, it can be said that the saw cutting property is sufficient.

従来、軸受鋼の軟化のための球状化焼鈍に際しては、例えば特許文献1に記載されているように、12時間近くもの高温保持が必要であった。そのため、処理時間の短縮化が望まれていた。
特許文献1では、圧延温度を制御することによって処理時間の短縮化を図っている。
Conventionally, in spheroidizing annealing for softening of bearing steel, for example, as described in Patent Document 1, it has been necessary to maintain a high temperature for nearly 12 hours. Therefore, it has been desired to shorten the processing time.
In Patent Document 1, the processing time is shortened by controlling the rolling temperature.

また、特許文献2には、Mo含有量が0.08質量%以下の高炭素クロム軸受鋼に対し、第一次球状化処理に引き続いて三回以上の第二次球状化処理を比較的速い加熱速度と冷却速度で実施することにより、合計の処理時間を短縮する方法が提案されている。   Patent Document 2 discloses that a high carbon chromium bearing steel having a Mo content of 0.08% by mass or less is subjected to a secondary spheroidizing treatment three or more times following the primary spheroidizing treatment at a relatively high heating rate. A method for reducing the total processing time by implementing the cooling rate is proposed.

さらに、特許文献3には、軸受鋼線材コイルを球状化焼鈍するに当たり、炉内雰囲気を強制的に対流可能な炉を使用し、炭化物の粗大化を均一に行わせることによって加工時間のばらつきを低減する方法が提案されている。   Furthermore, in Patent Document 3, when a bearing steel wire coil is spheroidized and annealed, a furnace capable of forcibly convection of the atmosphere in the furnace is used, and variation in processing time is caused by uniformizing coarsening of carbides. A reduction method has been proposed.

特開平11−286724号公報Japanese Patent Laid-Open No. 11-286724 特公平6−2898号公報Japanese Patent Publication No.6-2898 特開平6−73437号公報JP-A-6-73437

しかしながら、前述した従来技術には、以下に述べるような問題を残していた。
すなわち、特許文献1では、圧延温度が低温になるため圧延機に大きな負荷がかかり、また既存の圧延機の能力が不足している場合には、巨額の設備費用が必要になるため、事実上実現することが困難であった。加えて、熱追従性の観点から直径が60mmまでの比較的細径の棒鋼のみが適用対象となっており、さらなる適用範囲の拡大が望まれていた。
However, the above-described conventional technique has the following problems.
That is, in Patent Document 1, since the rolling temperature is low, a heavy load is applied to the rolling mill, and when the capacity of the existing rolling mill is insufficient, a large amount of equipment costs are required. It was difficult to realize. In addition, from the viewpoint of thermal followability, only relatively small steel bars having a diameter of up to 60 mm are applicable, and further expansion of the application range has been desired.

一方、特許文献2では、合計四回以上の加熱保持が必要であり、直径が90mmを上回るような比較的太径の棒鋼では、材料表層部と内部との温度差が著しく、熱の追従を待つ必要が生じるため、結果として非効率的な製造方法となってしまう。
さらに、例えばJIS G 4805に規定されるSUJ4やSUJ5の場合、0.1〜0.25質量%のMoを含有していることから、特許文献2で記載されているような比較的速い加熱速度と冷却速度では、正常な球状化組織が得られず、結果として硬度が軟化しないという問題があった。
On the other hand, in Patent Document 2, it is necessary to hold the heat four times or more in total, and in the case of a relatively large diameter steel bar having a diameter exceeding 90 mm, the temperature difference between the material surface layer part and the inside is remarkable, and the heat follow-up The need to wait results in an inefficient manufacturing method.
Furthermore, for example, in the case of SUJ4 or SUJ5 defined in JIS G 4805, since 0.1 to 0.25 mass% of Mo is contained, the relatively high heating rate and cooling rate described in Patent Document 2 are used. There is a problem that a normal spheroidized structure cannot be obtained, and as a result, the hardness does not soften.

また、特許文献3は、790℃で4時間保持後、660℃まで20℃/h(0.006℃/s)で冷却していることから、軟化焼鈍処理に長時間を要しており、そのため製造可能量に限りがあり、大量生産に不向きである、といった問題があった。   In addition, since Patent Document 3 is held at 790 ° C. for 4 hours and then cooled to 660 ° C. at 20 ° C./h (0.006 ° C./s), it takes a long time for the softening annealing process. There was a problem that the possible amount was limited and it was not suitable for mass production.

近年では、風力発電用の大型軸受部品の需要が高まっており、そのような部品は大型であるため、冷間鍛造ではなく熱間鍛造で製造されるのが一般的であり、この熱間鍛造前には、丸棒の長さを調節するための鋸切断が行われる。この鋸切断の如き加工を行う場合は、上記の特許文献1〜3に記載のような冷間鍛造性を担保するために厳密な条件下で行う、球状化焼鈍を必ずしも必要としていない。むしろ、高まる鋼材需要に対応するために大量生産性が要求され、かような要求と鋸切断性とを両立させることの方が重要になっている。   In recent years, the demand for large-sized bearing parts for wind power generation has increased, and since such parts are large, they are generally manufactured by hot forging instead of cold forging. Previously, a saw cut is made to adjust the length of the round bar. When processing such as sawing is performed, spheroidizing annealing performed under strict conditions is not necessarily required to ensure cold forgeability as described in Patent Documents 1 to 3 above. Rather, mass productivity is required in order to meet the increasing demand for steel materials, and it is more important to balance such requirements with sawability.

本発明は、上記の現状に鑑み開発されたもので、簡便で短時間の軟化焼鈍処理により、十分な鋸切性を発現させることができる高炭素クロム軸受鋼の製造方法を提案することを目的とする。   The present invention was developed in view of the above-described present situation, and an object thereof is to propose a method for producing a high carbon chromium bearing steel capable of expressing sufficient sawing properties by a simple and short-time softening annealing treatment. And

さて、発明者らは、上記の目的を達成すべく、高炭素クロム軸受鋼の軟化焼鈍処理について鋭意研究を重ねた結果、二段加熱処理および制御冷却処理を実施することによって、所期した目的が有利に達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, in order to achieve the above object, the inventors have conducted intensive research on soft annealing treatment of high carbon chromium bearing steel. As a result, the intended purpose is achieved by carrying out two-stage heat treatment and controlled cooling treatment. Has been found to be advantageously achieved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
(1)C:0.7〜1.3質量%、
Si:0.2〜1.0質量%、
Mn:0.1〜1.5質量%、
Al:0.01〜0.2質量%および
Cr:0.5〜2.5質量%
を含有し、残部はFeおよび不可避的不純物からなる軸受鋼の圧延材に対して、700℃以上の温度域での加熱速度を10〜100℃/hとして720〜850℃の温度域まで加熱し、ついでパーライト変態点以下の温度まで0.02〜0.2℃/sの速度で冷却する、軟化焼鈍を施すことを特徴とする軸受鋼の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) C: 0.7 to 1.3% by mass,
Si: 0.2 to 1.0 mass%,
Mn: 0.1 to 1.5% by mass,
Al: 0.01 to 0.2% by mass and
Cr: 0.5-2.5% by mass
The balance is heated to a temperature range of 720 to 850 ° C. at a heating rate of 10 to 100 ° C./h with respect to the rolling material of the bearing steel consisting of Fe and inevitable impurities. Then, softening annealing is performed to cool to a temperature below the pearlite transformation point at a rate of 0.02 to 0.2 ° C./s.

(2)前記圧延材が、直径:90〜450mmの棒鋼であることを特徴とする前記(1)に記載の軸受鋼の製造方法。 (2) The method for manufacturing a bearing steel according to (1), wherein the rolled material is a steel bar having a diameter of 90 to 450 mm.

(3)前記軸受鋼が、さらに
Cu:0.5質量%以下、
Ni:0.5質量%以下および
Mo:0.5質量%以下
のうちから選んだ1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の軸受鋼の製造方法。
(3) The bearing steel further
Cu: 0.5% by mass or less,
Ni: 0.5 mass% or less and
Mo: 1 or 2 types or more selected from 0.5 mass% or less are contained, The manufacturing method of the bearing steel as described in said (1) or (2) characterized by the above-mentioned.

(4)前記軸受鋼が、さらに
Sb:0.005質量%以下
を含有することを特徴とする前記(1)〜(3)のいずれかに記載の軸受鋼の製造方法。
(4) The bearing steel further
Sb: 0.005 mass% or less is contained, The manufacturing method of the bearing steel in any one of said (1)-(3) characterized by the above-mentioned.

本発明に従い、高炭素クロム軸受鋼の軟化焼鈍処理を、適正な条件下での二段加熱処理および制御冷却処理とすることにより、短時間の軟化焼鈍時間で、良好な鋸切性を得るのに必要な硬度を確保することができ、その結果、軸受鋼の生産効率を格段に向上させることができる。   According to the present invention, the soft annealing treatment of the high carbon chromium bearing steel is made into a two-stage heating treatment and a controlled cooling treatment under appropriate conditions, so that a good sawing property can be obtained in a short softening annealing time. As a result, the production efficiency of bearing steel can be remarkably improved.

以下、本発明を具体的に説明する。
まず、本発明において、高炭素クロム軸受鋼の成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%は、特に断らない限り質量%を意味するものとする。
C:0.7〜1.3%
軸受鋼として必要な十分な強度を確保するためには、0.7%以上のCが必要である。一方1.3%を超えてCを添加した場合には、焼入れ後の残留オーステナイト量が増加して強度の低下を招く。そこで、C量は0.7〜1.3%の範囲とする。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the high carbon chromium bearing steel is limited to the above range in the present invention will be described. In addition,% showing the following component composition shall mean the mass% unless there is particular notice.
C: 0.7 to 1.3%
In order to ensure sufficient strength necessary for bearing steel, C of 0.7% or more is necessary. On the other hand, when C is added exceeding 1.3%, the amount of retained austenite after quenching increases, leading to a decrease in strength. Therefore, the C amount is set to a range of 0.7 to 1.3%.

Si:0.2〜1.0%
Siは、脱酸剤として、また固溶強化により鋼の強度を高め、鋼の耐転動疲労特性を向上させるために添加される元素であり、本発明では0.2%以上含有させる。しかし、1.0%を超える添加は、鋼の被削性や鍛造性を劣化させる。また、Siは鋼中の酸素と結合し、酸化物として鋼中に存在することにより転造疲労寿命特性の劣化を招く。さらに、Siが偏析部に濃化した場合には、共晶炭化物を生成し易くする。以上のことから、本発明ではSiの上限は1.0%とする。好ましくは0.3〜0.9%の範囲、さらに好ましくは0.4〜0.8%の範囲である。
Si: 0.2-1.0%
Si is an element added as a deoxidizer and to enhance the strength of the steel by solid solution strengthening and to improve the rolling fatigue resistance of the steel. In the present invention, Si is contained in an amount of 0.2% or more. However, addition exceeding 1.0% deteriorates the machinability and forgeability of steel. Moreover, Si combines with oxygen in the steel and causes deterioration of the rolling fatigue life characteristics by being present in the steel as an oxide. Further, when Si is concentrated in the segregation part, eutectic carbide is easily generated. From the above, in the present invention, the upper limit of Si is 1.0%. Preferably it is 0.3 to 0.9% of range, More preferably, it is 0.4 to 0.8% of range.

Mn:0.1〜1.5%
Mnは、焼入れ性を向上させ、鋼の靱性を高め、鋼の耐転動疲労特性を向上させるために添加される元素であり、本発明では0.1%以上含有させる。しかし、1.5%を超える添加は、被削性を低下させるだけでなく、焼入れ性が高くなりすぎて冷延後の空冷において硬質のマルテンサイト組織が生成する場合があり、軟化焼鈍を実施しても高度が下がらなくなるおそれがある。以上のことから、本発明ではMnの上限は1.5%とする。好ましくは0.15〜1.4%の範囲、さらに好ましくは0.2〜1.3%の範囲である。
Mn: 0.1-1.5%
Mn is an element added to improve hardenability, increase the toughness of the steel, and improve the rolling fatigue resistance of the steel, and is contained in an amount of 0.1% or more in the present invention. However, addition over 1.5% not only lowers the machinability, but also hardenability becomes too high, and a hard martensite structure may be formed in air cooling after cold rolling. However, the altitude may not be lowered. From the above, in the present invention, the upper limit of Mn is 1.5%. Preferably it is 0.15 to 1.4% of range, More preferably, it is 0.2 to 1.3% of range.

Al:0.01〜0.2%
Alは、脱酸に有効な元素であり、本発明では0.01%以上含有させる。しかし、0.2%を超えて添加すると、粗大な酸化物系介在物が鋼中に存在するようになり、鋼の転動疲労寿命の低下を招く。以上のことから、本発明ではAlの上限は0.2%とする。好ましくは0.012〜0.1%の範囲、さらに好ましくは0.015〜0.05%の範囲である。
Al: 0.01-0.2%
Al is an element effective for deoxidation, and is contained by 0.01% or more in the present invention. However, if added over 0.2%, coarse oxide inclusions are present in the steel, leading to a reduction in the rolling fatigue life of the steel. From the above, in the present invention, the upper limit of Al is 0.2%. Preferably it is 0.012 to 0.1% of range, more preferably 0.015 to 0.05% of range.

Cr:0.5〜2.5%
Crは、焼入れ性を高めると共に、軟化焼鈍時には炭化物の球状化を促進するので、本発明では少なくとも0.5%含有させるものとした。しかしながら、2.5%を超えて過剰に添加すると焼入性が高くなり過ぎ、圧延後の空冷において硬質のマルテンサイト組織が生成し、軟化焼鈍を実施しても硬度が下がらなくなる。この観点から、Cr量は0.5〜2.5%の範囲とする。好ましくは0.6〜2.4%の範囲である。
Cr: 0.5-2.5%
Cr enhances hardenability and promotes spheroidization of carbides during soft annealing, so at least 0.5% is included in the present invention. However, if over 2.5% is added in excess, the hardenability becomes too high, a hard martensite structure is formed in air cooling after rolling, and the hardness does not decrease even when soft annealing is performed. From this viewpoint, the Cr content is in the range of 0.5 to 2.5%. Preferably it is 0.6 to 2.4% of range.

以上、基本成分について説明したが、本発明では、必要に応じて、以下に述べる元素を適宜含有させることができる。
Cu:0.5%以下、Ni:0.5%以下およびMo:0.5%以下のうちから選んだ1種または2種以上
Cu、NiおよびMoはいずれも、焼入れ性や焼戻し後の強度を高め、鋼の転動疲労寿命を向上させる元素であり、必要とする強度に応じて適宜選択して添加することができる。このような効果を得るためには、CuおよびNiは0.005%以上、またMoは0.01%以上含有させることが好ましい。しかし、Cu、NiおよびMoはそれぞれ0.5%を超えて添加すると、却って鋼の鍛造性が劣化するため、含有量の上限値はいずれも0.5%とする。より好ましい上限値は0.4%である。
The basic components have been described above. In the present invention, the following elements can be appropriately contained as necessary.
One or more selected from Cu: 0.5% or less, Ni: 0.5% or less, and Mo: 0.5% or less
Cu, Ni and Mo are all elements that increase the hardenability and strength after tempering and improve the rolling fatigue life of steel, and can be appropriately selected and added according to the required strength. In order to obtain such an effect, it is preferable to contain Cu and Ni in an amount of 0.005% or more and Mo in an amount of 0.01% or more. However, if Cu, Ni, and Mo are added in excess of 0.5%, the forgeability of the steel deteriorates, so the upper limit of the content is 0.5%. A more preferred upper limit is 0.4%.

Sb:0.005%以下
Sbは、熱処理時の表層脱炭を抑制するために、必要に応じて添加することができる。この効果を得るためには、0.0001%以上含有させることが好ましい。しかし、0.005%を超えて添加しても表層脱炭の抑制効果は飽和するので、Sbは0.005%以下で含有させることが好ましい。より好ましくは0.0004〜0.004%の範囲、さらに好ましくは0.001〜0.0035%の範囲である。
Sb: 0.005% or less
Sb can be added as necessary to suppress surface decarburization during heat treatment. In order to acquire this effect, it is preferable to make it contain 0.0001% or more. However, even if added over 0.005%, the effect of suppressing surface decarburization is saturated, so Sb is preferably contained at 0.005% or less. More preferably, it is in the range of 0.0004 to 0.004%, and further preferably in the range of 0.001 to 0.0035%.

上記以外の残部組成は、Feおよび不可避的不純物である。   The balance composition other than the above is Fe and inevitable impurities.

次に、本発明の熱処理条件の限定理由について説明する。
700℃までの加熱速度
高炭素クロム軸受鋼を加熱する際、材料表層部と内部との温度差が大きいと円周方向にわたって熱応力が発生し、割れの懸念が発生する。特に熱応力が高くなる温度は変態温度付近であるため、当該温度付近では徐加熱により、表面温度と内部温度との差を小さくしなければならない。この点、700℃までの温度域は大きな熱応力は発生せず割れのおそれはない。従って、700℃までの加熱速度は特に制限されることはなく、急速加熱を実施することもできる。ここに、700℃までは20〜150℃/hの速度で昇熱することが好ましい。より好ましくは50〜150℃/hの速度範囲である。なお、加熱速度は、平均の加熱速度である。
Next, the reason for limiting the heat treatment conditions of the present invention will be described.
Heating rate up to 700 ° C When heating high-carbon chromium bearing steel, if the temperature difference between the material surface layer and the inside is large, thermal stress is generated in the circumferential direction, which may cause cracking. In particular, since the temperature at which the thermal stress increases is near the transformation temperature, the difference between the surface temperature and the internal temperature must be reduced by gradual heating near the temperature. In this respect, a large thermal stress does not occur in the temperature range up to 700 ° C. and there is no risk of cracking. Accordingly, the heating rate up to 700 ° C. is not particularly limited, and rapid heating can be performed. Here, it is preferable to heat up to 700 ° C. at a rate of 20 to 150 ° C./h. More preferably, the speed range is 50 to 150 ° C./h. The heating rate is an average heating rate.

700℃以上の温度域を10〜100℃/hの速度で徐熱し、720〜850℃の温度域まで加熱
高炭素クロム軸受鋼を軟化するには、層状パーライトラメラーを崩して球状化を促進させる必要があり、そのための好適温度範囲は720〜850℃である。また、700℃から当該温度範囲は変態温度域でもあるため、熱応力が高くなる 。そこで、700℃以上の温度域での加熱速度を10〜100℃/hとし、720〜850℃の温度域まで徐熱を行う。球状化促進および熱応力の観点から、より好ましくは10〜80℃/hの加熱速度で720〜830℃まで徐熱する処理である。なお、加熱速度は、平均の加熱速度である。
Slowly heat a temperature range of 700 ° C or higher at a rate of 10-100 ° C / h and heat it to a temperature range of 720-850 ° C. To soften high-carbon chromium bearing steel, the layered pearlite lamellar is broken to promote spheroidization. The preferred temperature range for this is 720-850 ° C. Further, since the temperature range from 700 ° C. is also a transformation temperature range, the thermal stress becomes high. Therefore, the heating rate in the temperature range of 700 ° C. or higher is set to 10 to 100 ° C./h, and the heating is performed gradually to the temperature range of 720 to 850 ° C. From the viewpoint of promoting spheroidization and thermal stress, it is more preferably a treatment of gradually heating from 720 to 830 ° C. at a heating rate of 10 to 80 ° C./h. The heating rate is an average heating rate.

720〜850℃の温度域での保持
上述したように、層状パーライトラメラーを崩して球状化を促進させるために、720〜850℃の温度域まで10〜100℃/hの徐加熱を行い、かかる徐加熱により所望の球状化は達成される。より球状化を促進させるためには、この温度域で保持処理を行っても良い。
Holding in a temperature range of 720 to 850 ° C. As described above, in order to break down the layered pearlite lamellar and promote spheroidization, gradually heat to 10 to 100 ° C./h to the temperature range of 720 to 850 ° C. The desired spheroidization is achieved by slow heating. In order to further promote the spheroidization, the holding treatment may be performed in this temperature range.

パーライト変態点以下の温度まで0.02〜0.2℃/sの速度で徐冷
上記の徐熱処理または保持処理によって、パーライトラメラーは崩れて球状化が促進されるが、その後の冷却速度が速くなり過ぎると、新たなパーライトラメラーが再び生成し、硬度を高めてしまう。一方、冷却速度が過度に遅いと冷却処理に膨大な時間を要し、非効率的な操業となってしまう。そこで、徐冷速度は0.02〜0.2℃/sの範囲に限定する。より好ましくは0.05〜0.15℃/sの速度範囲である。なお、冷却速度は、平均の冷却速度である。
また、変態が終了した後は組織変化がないため、硬度も変化しない。従って、徐冷停止温度はパーライト変態点以下とする。好ましくは700℃以下である。さらに好ましくは680℃以下である。
Slow cooling at a rate of 0.02 to 0.2 ° C./s to a temperature below the pearlite transformation point. By the above gradual heat treatment or holding treatment, the pearlite lamellar collapses and spheroidization is promoted, but if the subsequent cooling rate becomes too fast, A new pearlite lamella is generated again, increasing the hardness. On the other hand, if the cooling rate is excessively slow, a huge amount of time is required for the cooling process, resulting in inefficient operation. Therefore, the slow cooling rate is limited to a range of 0.02 to 0.2 ° C./s. More preferably, the speed range is 0.05 to 0.15 ° C./s. The cooling rate is an average cooling rate.
Further, since the structure does not change after the transformation is completed, the hardness does not change. Therefore, the slow cooling stop temperature is set to the pearlite transformation point or lower. Preferably it is 700 degrees C or less. More preferably, it is 680 degrees C or less.

上記の制御冷却によってパーライト変態点以下まで徐冷したのち冷却処理については、特に制限はなく、そのままの速度で冷却してもよいが、処理時間の短縮化のためには高速で冷却することが好ましい。但し、あまりに高速だと鋼材に反りや曲がりが生じるおそれがあるので、冷却速度の上限は100℃/sとすることが好ましい。なお、冷却速度は、平均の冷却速度である。   There is no particular limitation on the cooling process after the cooling to the pearlite transformation point or less by the controlled cooling described above, and the cooling process may be performed at the same speed. preferable. However, if the speed is too high, the steel material may be warped or bent, so the upper limit of the cooling rate is preferably 100 ° C./s. The cooling rate is an average cooling rate.

以下、実施例に従って、本発明の構成および作用効果をより具体的に説明する。なお、本発明は以下に述べる実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲内にて適宜変更することも可能であり、これらは何れも本発明の技術的範囲に含まれる。   Hereinafter, according to an Example, the structure and effect of this invention are demonstrated more concretely. It should be noted that the present invention is not limited by the examples described below, and can be appropriately changed within a range that can be adapted to the gist of the present invention, all of which fall within the technical scope of the present invention. included.

表1に示す成分組成(残部はFeおよび不可避的不純物)からなる鋼片を、加熱(鋼片加熱)して90〜450mm丸断面の棒鋼に熱間圧延して、軟化焼鈍用の試料とした。ついで、得られた試料に対し、表2に示す条件で軟化焼鈍を実施したのち、ビッカース硬度を測定した。軟化焼鈍の際の加熱は、常温の試料を第1の加熱温度まで第1の加熱速度で加熱する第1の加熱処理を行い、ついで第1の加熱温度から第2の加熱温度まで第2の加熱速度で加熱する第2の加熱処理を行った。硬度の測定は9.8N(10kgf)の荷重にて20点実施し、その平均値をビッカース硬度Hvとした。
なお、表2中のいずれの実験例についてもパーライト変態温度は700〜650℃の範囲である。
得られた結果を表2に併せて示す。
A steel slab comprising the composition shown in Table 1 (the balance is Fe and inevitable impurities) is heated (steel slab heating) and hot-rolled into a steel bar having a 90 to 450 mm round cross section to obtain a sample for soft annealing. . Subsequently, after softening annealing was performed on the obtained sample under the conditions shown in Table 2, Vickers hardness was measured. The softening annealing is performed by performing a first heat treatment for heating a normal temperature sample to the first heating temperature at the first heating rate, and then performing the second heating from the first heating temperature to the second heating temperature. A second heat treatment for heating at a heating rate was performed. The hardness was measured at 20 points with a load of 9.8 N (10 kgf), and the average value was defined as Vickers hardness Hv.
In all the experimental examples in Table 2, the pearlite transformation temperature is in the range of 700 to 650 ° C.
The obtained results are also shown in Table 2.

Figure 2013241674
Figure 2013241674

Figure 2013241674
Figure 2013241674

表2に示したとおり、本発明に従う発明例はいずれも、簡便な方法で軟化焼鈍後のビッカース硬度Hvが270以下まで低減しており、鋸切性に優れていることが分かる。   As shown in Table 2, it can be seen that all of the inventive examples according to the present invention are excellent in sawing ability because the Vickers hardness Hv after softening annealing is reduced to 270 or less by a simple method.

Claims (4)

C:0.7〜1.3質量%、
Si:0.2〜1.0質量%、
Mn:0.1〜1.5質量%、
Al:0.01〜0.2質量%および
Cr:0.5〜2.5質量%
を含有し、残部はFeおよび不可避的不純物からなる軸受鋼の圧延材に対して、700℃以上の温度域での加熱速度を10〜100℃/hとして720〜850℃の温度域まで加熱し、ついでパーライト変態点以下の温度まで0.02〜0.2℃/sの速度で冷却する、軟化焼鈍を施すことを特徴とする軸受鋼の製造方法。
C: 0.7 to 1.3% by mass,
Si: 0.2 to 1.0 mass%,
Mn: 0.1 to 1.5% by mass,
Al: 0.01 to 0.2% by mass and
Cr: 0.5-2.5% by mass
The balance is heated to a temperature range of 720 to 850 ° C. at a heating rate of 10 to 100 ° C./h with respect to the rolling material of the bearing steel composed of Fe and inevitable impurities. Then, softening annealing is performed to cool to a temperature below the pearlite transformation point at a rate of 0.02 to 0.2 ° C./s.
前記圧延材が、直径:90〜450mmの棒鋼であることを特徴とする請求項1に記載の軸受鋼の製造方法。   The method for producing bearing steel according to claim 1, wherein the rolled material is a steel bar having a diameter of 90 to 450 mm. 前記軸受鋼が、さらに
Cu:0.5質量%以下、
Ni:0.5質量%以下および
Mo:0.5質量%以下
のうちから選んだ1種または2種以上を含有することを特徴とする請求項1または2に記載の軸受鋼の製造方法。
The bearing steel further
Cu: 0.5% by mass or less,
Ni: 0.5 mass% or less and
Mo: 1 or 2 types or more selected from 0.5 mass% or less are contained, The manufacturing method of the bearing steel of Claim 1 or 2 characterized by the above-mentioned.
前記軸受鋼が、さらに
Sb:0.005質量%以下
を含有することを特徴とする請求項1〜3のいずれかに記載の軸受鋼の製造方法。
The bearing steel further
Sb: 0.005 mass% or less is contained, The manufacturing method of the bearing steel in any one of Claims 1-3 characterized by the above-mentioned.
JP2013077893A 2012-04-25 2013-04-03 Manufacturing method of bearing steel Active JP5991254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077893A JP5991254B2 (en) 2012-04-25 2013-04-03 Manufacturing method of bearing steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012100260 2012-04-25
JP2012100260 2012-04-25
JP2013077893A JP5991254B2 (en) 2012-04-25 2013-04-03 Manufacturing method of bearing steel

Publications (2)

Publication Number Publication Date
JP2013241674A true JP2013241674A (en) 2013-12-05
JP5991254B2 JP5991254B2 (en) 2016-09-14

Family

ID=49842831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077893A Active JP5991254B2 (en) 2012-04-25 2013-04-03 Manufacturing method of bearing steel

Country Status (1)

Country Link
JP (1) JP5991254B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878297A (en) * 2015-05-19 2015-09-02 本钢板材股份有限公司 Production method of low-titanium bearing steel GCr15
WO2018103090A1 (en) * 2016-12-09 2018-06-14 张康 High-nitrogen stainless bearing steel heat treatment process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173921A (en) * 1990-11-02 1992-06-22 Kawasaki Steel Corp Production of steel wire rod or bar steel having spheroidized structure
JPH05271866A (en) * 1992-03-25 1993-10-19 Kawasaki Steel Corp Bearing steel
JP2004315890A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Steel having excellent rolling fatigue life, and its production method
JP2007077432A (en) * 2005-09-13 2007-03-29 Sanyo Special Steel Co Ltd Method for producing ball screw or one-way clutch component
WO2011065593A1 (en) * 2009-11-30 2011-06-03 Jfeスチール株式会社 Ingot for bearing, and process for producing bearing steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173921A (en) * 1990-11-02 1992-06-22 Kawasaki Steel Corp Production of steel wire rod or bar steel having spheroidized structure
JPH05271866A (en) * 1992-03-25 1993-10-19 Kawasaki Steel Corp Bearing steel
JP2004315890A (en) * 2003-04-16 2004-11-11 Jfe Steel Kk Steel having excellent rolling fatigue life, and its production method
JP2007077432A (en) * 2005-09-13 2007-03-29 Sanyo Special Steel Co Ltd Method for producing ball screw or one-way clutch component
WO2011065593A1 (en) * 2009-11-30 2011-06-03 Jfeスチール株式会社 Ingot for bearing, and process for producing bearing steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104878297A (en) * 2015-05-19 2015-09-02 本钢板材股份有限公司 Production method of low-titanium bearing steel GCr15
WO2018103090A1 (en) * 2016-12-09 2018-06-14 张康 High-nitrogen stainless bearing steel heat treatment process

Also Published As

Publication number Publication date
JP5991254B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5723232B2 (en) Steel for bearings with excellent rolling fatigue life
CN101910440A (en) Wire rods having superior strength and ductility for drawing and method for manufacturing the same
JP5723233B2 (en) Steel material for spheroidized heat-treated bearings with excellent rolling fatigue life
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP5093010B2 (en) Hot working mold
JP5700174B2 (en) Induction hardening steel
JP2012214832A (en) Steel for machine structure and method for producing the same
JP5521931B2 (en) Soft medium carbon steel plate with excellent induction hardenability
JP2015531823A (en) Steel wire rod excellent in strength and ductility and manufacturing method thereof
JP2015183265A (en) Method for producing steel material excellent in cold workability or machinability
JP5549450B2 (en) High carbon hot-rolled steel sheet excellent in fine blanking property and manufacturing method thereof
JP6295665B2 (en) Carburized bearing steel
JP6056647B2 (en) Bearing steel manufacturing method and bearing steel obtained by the manufacturing method
JP5991254B2 (en) Manufacturing method of bearing steel
JP2016191098A (en) Method for producing heat-treated steel wire excellent in workability
JP2008202078A (en) Hot-working die steel
JP2018165408A (en) Production method of steel material excellent in cold workability or machinability
JP2009256769A (en) Method for producing steel material for carburizing
JP2010285643A (en) Steel for heat-treatment
CN113811625A (en) Electric resistance welded steel pipe for hollow stabilizer
JP2016074951A (en) Manufacturing method of case hardened steel
KR101657795B1 (en) Method for manufacturing wire rod having excellent cold deformation characteristics and a wire rod manufactured by using the same
CN115612935B (en) High-performance sector plate of hot-rolled winding drum and manufacturing method thereof
JP6059570B2 (en) Manufacturing method of steel with excellent cold workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250