JP2013241581A - Method of manufacturing polyether - Google Patents

Method of manufacturing polyether Download PDF

Info

Publication number
JP2013241581A
JP2013241581A JP2013089223A JP2013089223A JP2013241581A JP 2013241581 A JP2013241581 A JP 2013241581A JP 2013089223 A JP2013089223 A JP 2013089223A JP 2013089223 A JP2013089223 A JP 2013089223A JP 2013241581 A JP2013241581 A JP 2013241581A
Authority
JP
Japan
Prior art keywords
polyether
ring
opening addition
catalyst
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013089223A
Other languages
Japanese (ja)
Inventor
Tadau Atsumi
忠伺 厚味
Hisanori Murata
久典 村田
Ippei Noda
一平 野田
Fumiyoshi Ishikawa
文義 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2013089223A priority Critical patent/JP2013241581A/en
Publication of JP2013241581A publication Critical patent/JP2013241581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing polyether that can manufacture the polyether in which a primary ratio of a terminal hydroxy group is high and an unsaturation degree is low, that can give excellent moldability to a modified resin using the same, and that can give excellent physical properties in strength, elongation and water resistance or the like to a molding obtained from the resin.SOLUTION: An initiator having at least one hydroxyl group in a molecule is made to perform ring-opening addition of propylene oxide in the existence of a composite metal cyanide catalyst, continuously ethylene oxide is performed by ring-opening addition in the existence of a non-nucleophilic basic catalyst, or the initiator having at least one hydroxyl group in a molecule is made to perform ring-opening addition of the propylene oxide in the existence of the composite metal cyanide catalyst, continuously the propylene oxide and the ethylene oxide are performed by random ring-opening addition in the existence of the composite metal cyanide catalyst and the non-nucleophilic basic catalyst, and further continuously the ethylene oxide is performed by ring-opening addition in the existence of the non-nucleophilic basic catalyst.

Description

本発明は、ポリエーテルの製造方法に関する。活性水素化合物にアルキレンオキサイドを開環付加させて得られるポリエーテルは、ポリウレタンやポリエステル等の樹脂原料、界面活性剤、潤滑剤等に広く用いられている。特に、芳香族ポリエステル樹脂、不飽和ポリエステル樹脂、熱可塑性ポリエステルエラストマー、熱硬化性ウレタン樹脂、熱可塑性ポリウレタンエラストマー、アクリル系樹脂に、可撓性、柔軟性、低温ゴム弾性等の特性を付与する目的で、ポリエーテルの利用が注目されている。本発明は、かかるポリエーテルの製造方法の改良に関し、更に詳しくは末端水酸基の1級化率が高く、不飽和度が低いポリエーテルの製造方法に関する。   The present invention relates to a method for producing a polyether. Polyethers obtained by ring-opening addition of alkylene oxide to active hydrogen compounds are widely used for resin raw materials such as polyurethane and polyester, surfactants, lubricants and the like. In particular, to impart properties such as flexibility, flexibility, and low temperature rubber elasticity to aromatic polyester resins, unsaturated polyester resins, thermoplastic polyester elastomers, thermosetting urethane resins, thermoplastic polyurethane elastomers, and acrylic resins Thus, the use of polyethers has attracted attention. The present invention relates to an improvement in a method for producing such a polyether, and more particularly to a method for producing a polyether having a high degree of primary hydroxyl group terminalization and a low degree of unsaturation.

従来一般に、ポリエーテルは、多価アルコール等の開始剤に、水酸化ナトリウム等のナトリウム系触媒や水酸化カリウム等のカリウム系触媒の存在下で、プロピレンオキサイド等のアルキレンオキサイドを開環付加させて製造されている。しかし、かかる従来一般の製造方法では、副生物として不飽和モノオールが生成し、その生成量がポリエーテルの分子量の増大と共に増加するという問題があり、またアルキレンオキサイドとしてプロピレンオキサイドのみを開環付加させた場合、得られるポリエーテルの末端水酸基の大部分が2級水酸基となり、該ポリエーテルの反応性が低いという問題がある。   In general, polyethers are obtained by ring-opening addition of an alkylene oxide such as propylene oxide to an initiator such as a polyhydric alcohol in the presence of a sodium catalyst such as sodium hydroxide or a potassium catalyst such as potassium hydroxide. It is manufactured. However, this conventional production method has a problem that unsaturated monool is produced as a by-product, and the production amount increases with an increase in the molecular weight of the polyether, and only propylene oxide is added as an alkylene oxide by ring-opening addition. In such a case, most of the terminal hydroxyl groups of the obtained polyether are secondary hydroxyl groups, and there is a problem that the reactivity of the polyether is low.

そこで従来、開始剤に、複合金属シアン化物触媒(複合金属シアン化物錯体触媒ともいう)の存在下でエチレンオキサイドとその他のアルキレンオキサイドとの混合物を開環付加させ、分子中にエチレンオキサイドとその他のアルキレンオキサイドとのランダム付加構造を導入し、末端水酸基の1級化率の高いポリエーテルを製造する方法が提案されている(特許文献1及び2参照)。しかし、これらの従来法でも、実際のところ、得られるポリエーテルの末端水酸基の1級化率がなお低いという問題がある。   Therefore, conventionally, a mixture of ethylene oxide and another alkylene oxide is subjected to ring-opening addition in the presence of a double metal cyanide catalyst (also referred to as double metal cyanide complex catalyst). There has been proposed a method for producing a polyether having a high primary ratio of terminal hydroxyl groups by introducing a random addition structure with an alkylene oxide (see Patent Documents 1 and 2). However, even in these conventional methods, there is actually a problem that the primary hydroxyl group conversion rate of the obtained polyether is still low.

また従来、末端水酸基の1級化率が高いポリエーテルを製造する方法として、第1工程において、開始剤に、複合金属シアン化物触媒の存在下で、プロピレンオキサイドを開環付加させ、次に第2工程において、エチレンオキサイドとプロピレンオキサイドとをランダムに開環付加させ、最後に第3工程において、アルカリ金属触媒存在下で、エチレンオキサイドを開環付加させる方法が提案されている(例えば特許文献3及び4参照)。しかし、これらの従来法には、アルカリ金属触媒存在下での副反応により水が生じ、この水により高分子量のポリエチレングリコールが生成して、この高分子量のポリエチレングリコールが得られる樹脂成形品の物性を著しく悪化させるという問題がある。   Conventionally, as a method for producing a polyether having a high primary hydroxyl group-termination rate, in the first step, the initiator is subjected to ring-opening addition of propylene oxide in the presence of a double metal cyanide catalyst, and then the second step. In the second step, ethylene oxide and propylene oxide are randomly ring-opened and added, and finally in the third step, ethylene oxide is ring-opened and added in the presence of an alkali metal catalyst (for example, Patent Document 3). And 4). However, in these conventional methods, water is generated by a side reaction in the presence of an alkali metal catalyst, and this water produces high molecular weight polyethylene glycol, and the physical properties of the resin molded product from which this high molecular weight polyethylene glycol is obtained. There is a problem of remarkably worsening.

特開平3−244632号公報JP-A-3-244632 特表2002−543228号公報JP-T-2002-543228 特開2003−301041号公報JP 2003-301041 A 特表2007−533809号公報Special table 2007-533809 gazette

本発明が解決しようとする課題は、末端水酸基の1級化率が高く、不飽和度が低いポリエーテルを製造することができる方法を提供するところにあり、また実用的にはそれを用いて改質した樹脂に良好な成形性を与え、かかる樹脂から得られる成形品に強度、伸び、耐水性等において良好な物性を与える改良されたポリエーテルの製造方法を提供するところにある。   The problem to be solved by the present invention is to provide a method capable of producing a polyether having a high terminal hydroxyl group primary ratio and a low degree of unsaturation, and practically using it. An object of the present invention is to provide an improved method for producing a polyether, which imparts good moldability to the modified resin, and gives good properties such as strength, elongation and water resistance to a molded product obtained from such resin.

前記の課題を解決する本発明は、分子中に少なくとも1個の水酸基を有する開始剤に、複合金属シアン化物触媒の存在下でプロピレンオキサイドを開環付加させ、引き続き非求核塩基性触媒の存在下でエチレンオキサイドを開環付加させて、末端水酸基の1級化率が60〜100%、ポリスチレン換算の数平均分子量が2000〜20000及び不飽和度が0.10以下のポリエーテルを得ることを特徴とするポリエーテルの製造方法に係る。   The present invention that solves the above-mentioned problems involves the ring-opening addition of propylene oxide to an initiator having at least one hydroxyl group in the molecule in the presence of a double metal cyanide catalyst, followed by the presence of a non-nucleophilic basic catalyst. Under the condition of ring-opening addition of ethylene oxide, a polyether having a terminal hydroxyl group primary ratio of 60 to 100%, a polystyrene-equivalent number average molecular weight of 2000 to 20000 and an unsaturation degree of 0.10 or less is obtained. The present invention relates to a method for producing a featured polyether.

また本発明は、分子中に少なくとも1個の水酸基を有する開始剤に、複合金属シアン化物触媒の存在下でプロピレンオキサイドを開環付加させ、引き続き複合金属シアン化物触媒及び/又は非求核塩基性触媒の存在下でプロピレンオキサイド及びエチレンオキサイドをランダムに開環付加させ、更に引き続き非求核塩基性触媒の存在下でエチレンオキサイドを開環付加させて、末端水酸基の1級化率が60〜100%、ポリスチレン換算の数平均分子量が2000〜20000及び不飽和度が0.10以下のポリエーテルを得ることを特徴とするポリエーテルの製造方法に係る。   The present invention also provides propylene oxide ring-opening addition to an initiator having at least one hydroxyl group in the molecule in the presence of a double metal cyanide catalyst, followed by double metal cyanide catalyst and / or non-nucleophilic basicity. Propylene oxide and ethylene oxide are randomly subjected to ring-opening addition in the presence of a catalyst, and further ethylene oxide is subjected to ring-opening addition in the presence of a non-nucleophilic basic catalyst so that the terminal hydroxyl group primary ratio is 60 to 100. %, A polyether having a polystyrene-equivalent number average molecular weight of 2000 to 20000 and an unsaturation degree of 0.10 or less.

本発明に係るポリエーテルの製造方法(以下、単に本発明の製造方法という)では、分子中に少なくとも1個の水酸基を有する開始剤に、複合金属シアン化物触媒(以下、DMC触媒と略記する)の存在下で、プロピレンオキサイド(以下、POと略記する)を開環付加させる。   In the method for producing a polyether according to the present invention (hereinafter simply referred to as the production method of the present invention), a double metal cyanide catalyst (hereinafter abbreviated as DMC catalyst) is added to an initiator having at least one hydroxyl group in the molecule. In the presence of propylene oxide (hereinafter abbreviated as PO).

DMC触媒は、例えばtert−ブタノールを配位させたものが使用できる。かかるDMC触媒の有機錯化リガンドとしては、複合金属シアン化物と錯体を形成し得るヘテロ原子(例えば、酸素、窒素、リン又は硫黄)を有する水溶性有機化合物が挙げられる。有機錯化リガンドとして好ましいものは、アルコール、アルデヒド、ケトン、エーテル、エステル、アミド、尿素、ニトリル、スルフィド及びそれらの混合物である。より好ましい有機錯化リガンドは、水溶性脂肪族アルコール、例えば、エタノール、イソプロパノール、n−ブタノール、イソ−ブタノール、sec−ブタノール、tert−ブタノール及びそれらの混合物であるが、tert−ブタノールが最も好ましい。   As the DMC catalyst, for example, a coordinated tert-butanol can be used. Examples of the organic complexing ligand of the DMC catalyst include water-soluble organic compounds having a hetero atom (for example, oxygen, nitrogen, phosphorus, or sulfur) that can form a complex with a double metal cyanide. Preferred as organic complexing ligands are alcohols, aldehydes, ketones, ethers, esters, amides, ureas, nitriles, sulfides and mixtures thereof. More preferred organic complexing ligands are water-soluble fatty alcohols such as ethanol, isopropanol, n-butanol, iso-butanol, sec-butanol, tert-butanol and mixtures thereof, with tert-butanol being most preferred.

分子中に少なくとも1個の水酸基を有する開始剤に、以上説明したようなDMC触媒の存在下で、POを開環付加させると、DMC触媒は副反応による不飽和化が起こり難いため、水酸化カリウム等のアルカリ金属触媒を用いる場合に比べて、不飽和度の低いポリエーテルを得ることができる。しかし、この段階では、得られるポリエーテルは末端水酸基の2級化率が高いものとなる。   When PO is ring-opened and added to an initiator having at least one hydroxyl group in the molecule in the presence of the DMC catalyst as described above, the DMC catalyst is unlikely to be unsaturated due to side reactions. A polyether having a low degree of unsaturation can be obtained as compared with the case of using an alkali metal catalyst such as potassium. However, at this stage, the obtained polyether has a high degree of secondaryization of terminal hydroxyl groups.

そこで本発明の製造方法では、引き続き非求核塩基性触媒の存在下でエチレンオキサイド(以下、EOと略記する)を開環付加させるか、又は引き続きDMC触媒及び/又は非求核塩基性触媒の存在下でPO及びEOを付加させた後に非求核塩基性触媒の存在下でEOを開環付加させる。中間にてDMC触媒及び/又は非求核塩基性触媒の存在下でPO及びEOを開環付加させるか否かを別にして、いずれにしても本発明の製造方法では、分子中に少なくとも1個の水酸基を有する開始剤に対し、先にDMC触媒の存在下でPOを開環付加させ、後で非求核塩基性触媒の存在下でEOを開環付加させる。   Therefore, in the production method of the present invention, ring-opening addition of ethylene oxide (hereinafter abbreviated as EO) is continued in the presence of a non-nucleophilic basic catalyst, or a DMC catalyst and / or a non-nucleophilic basic catalyst is subsequently added. After the addition of PO and EO in the presence, EO is ring-opened in the presence of a non-nucleophilic basic catalyst. In any case, in the production method of the present invention, at least 1 in the molecule, with or without the ring-opening addition of PO and EO in the presence of a DMC catalyst and / or a non-nucleophilic basic catalyst in the middle. To an initiator having one hydroxyl group, PO is first subjected to ring-opening addition in the presence of a DMC catalyst, and then EO is subjected to ring-opening addition in the presence of a non-nucleophilic basic catalyst.

非求核塩基性触媒としては、嵩高いアルキル基を有するアルカリ金属非求核塩基性触媒を使用でき、具体的にはアルカリ金属イソプロポキシド、アルカリ金属tert−ブトキシド、アルカリ金属1−アダマントキシド、アルカリ金属2,4,α−トリフェニルベンジルオキシド及びアルカリ金属トリフェニルメトキシドから選ばれる一つ又は二つ以上を使用できる。   As the non-nucleophilic basic catalyst, an alkali metal non-nucleophilic basic catalyst having a bulky alkyl group can be used. Specifically, alkali metal isopropoxide, alkali metal tert-butoxide, alkali metal 1-adamantoxide, One or more selected from alkali metal 2,4, α-triphenylbenzyl oxide and alkali metal triphenylmethoxide can be used.

また他の非求核塩基性触媒としては、トリエチルアミン、N,N−ジイソプロピルエチルアミン及びジアザビシクロウンデセンから選ばれる一つ又は二つ以上を使用できる。   As other non-nucleophilic basic catalysts, one or more selected from triethylamine, N, N-diisopropylethylamine and diazabicycloundecene can be used.

非求核塩基性触媒のうちで、共役酸のpKaが10〜13周辺であるものとしては、N,N−ジイソプロピルエチルアミン、ジアザビシクロウンデセン等が挙げられるが、これらは塩基性が弱いため、ヘキサメチルリン酸トリアミド及び/又はジメチルスルホオキサイド等の極性物質を加えて使用するのが好ましい。   Among non-nucleophilic basic catalysts, N, N-diisopropylethylamine, diazabicycloundecene and the like are exemplified as those having a pKa of the conjugate acid around 10 to 13, but these are weakly basic. It is preferable to add a polar substance such as hexamethylphosphoric triamide and / or dimethyl sulfoxide.

また非求核塩基性触媒のうちで、共役酸のpKaが35〜40周辺であるものとしては、リチウムジイソプロピルアミド、ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、リチウムテトラメチルピペリジド等が挙げられるが、これらは塩基性が非常に強いため、反応を制御することが難しくなるので、好ましくない。但し、唯一リチウムジイソプロピルアミドは使用することができる。   Among the non-nucleophilic basic catalysts, those having a pKa of the conjugate acid around 35-40 include lithium diisopropylamide, sodium bis (trimethylsilyl) amide, potassium bis (trimethylsilyl) amide, lithium tetramethylpiperidide. These are not preferred because they are extremely basic and difficult to control the reaction. However, only lithium diisopropylamide can be used.

更に共役酸のpKaが17周辺である非求核塩基性触媒としては、カリウムtert−ブトキシド、ナトリウムtert−ブトキシド、リチウムtert−ブトキシド、カリウム1−アダマントキシド、ナトリウム1−アダマントキシド、ナトリウム2,4,α−トリフェニルベンジルオキシド、カリウム2,4,α−トリフェニルベンジルオキシド、リチウム2,4,α−トリフェニルベンジルオキシド、ナトリウムトリフェニルメトキシド、カリウムトリフェニルメトキシド、リチウムトリフェニルメトキシド等が挙げられ、これらは塩基性が程好く強いため、非求核塩基性触媒として好ましい。   Further, as a non-nucleophilic basic catalyst having a pKa of conjugate acid of around 17, potassium tert-butoxide, sodium tert-butoxide, lithium tert-butoxide, potassium 1-adamantoxide, sodium 1-adamantoxide, sodium 2,4 , Α-triphenylbenzyl oxide, potassium 2,4, α-triphenylbenzyl oxide, lithium 2,4, α-triphenylbenzyl oxide, sodium triphenyl methoxide, potassium triphenyl methoxide, lithium triphenyl methoxide, etc. These are preferable as non-nucleophilic basic catalysts because of their favorable basic and strong basicity.

共役酸のpKaが17周辺である非求核塩基性触媒のなかでも、カリウムtert−ブトキシド、ナトリウムtert−ブトキシド、リチウムtert−ブトキシド、カリウム1−アダマントキシド、ナトリウム1−アダマントキシド及びリチウム1−アダマントキシドから選ばれる一つ又は二つ以上がコスト的にもより好ましい。   Among non-nucleophilic basic catalysts in which the pKa of the conjugate acid is around 17, potassium tert-butoxide, sodium tert-butoxide, lithium tert-butoxide, potassium 1-adamantoxide, sodium 1-adamantoxide and lithium 1-adamant One or two or more selected from xoxides are more preferable in terms of cost.

分子中に少なくとも1個の水酸基を有する開始剤に、DMC触媒の存在下でPOを開環付加させ、引き続きDMC触媒及び以上説明したような非求核塩基性触媒の存在下でPO及びEOを開環付加させるか又はさせないで、更に引き続き非求核塩基性触媒の存在下でEOを開環付加させると、末端水酸基の1級化率が60〜100%、ポリスチレン換算の数平均分子量が2000〜20000及び不飽和度が0.10以下のポリエーテルを得ることができる。なかでも、末端水酸基の1級化率が70〜100%、ポリスチレン換算の数平均分子量が3000〜15000及び不飽和度が0.05以下のポリエーテルが好ましく、更にポリスチレン換算の分子量分布(質量平均分子量Mw/数平均分子量Mnの比、以下同じ)が1.15〜1.00のポリエーテルがより好ましい。これらのポリエーテルは、反応条件の設定によって任意に得ることができる。   An initiator having at least one hydroxyl group in the molecule is subjected to ring-opening addition of PO in the presence of a DMC catalyst, followed by PO and EO in the presence of a DMC catalyst and a non-nucleophilic basic catalyst as described above. If EO is further subjected to ring-opening addition in the presence of a non-nucleophilic basic catalyst with or without ring-opening addition, the terminal hydroxyl group primary ratio is 60 to 100% and the polystyrene-equivalent number average molecular weight is 2000. A polyether having ˜20000 and an unsaturation degree of 0.10 or less can be obtained. Among these, polyethers having a terminal hydroxyl group primary conversion ratio of 70 to 100%, polystyrene-equivalent number average molecular weight of 3000 to 15000 and unsaturation degree of 0.05 or less are preferred, and polystyrene-equivalent molecular weight distribution (mass average) A polyether having a ratio of molecular weight Mw / number average molecular weight Mn (hereinafter the same) is preferably 1.15 to 1.00. These polyethers can be arbitrarily obtained by setting reaction conditions.

前記した従来法のように、分子中に少なくとも1個の水酸基を有する開始剤に、DMC触媒の存在下で、POを開環付加させ、引き続いてEOを開環付加させようとしても、EOは殆ど開環付加されず、得られるポリエーテルの末端水酸基の1級化率は殆ど変わらない。   As in the conventional method described above, even if an initiator having at least one hydroxyl group in the molecule is subjected to ring-opening addition of PO in the presence of a DMC catalyst and subsequently ring-opening addition of EO, EO Almost no ring-opening addition is carried out, and the primary hydroxylation rate of the terminal polyether of the obtained polyether is hardly changed.

また分子中に少なくとも1個の水酸基を有する開始剤に、DMC触媒の存在下で、POを開環付加させた後、DMC触媒を吸着剤を用いて除去し、新たに水酸化カリウム等のアルカリ金属触媒を加えて、EOを開環付加させても、末端水酸基の1級化率の低い白濁したポリエーテルしか得られない。その理由は、水酸化カリウムのようなアルカリ金属触媒は求核性の強い塩基性触媒であるため、カチオニックな末端炭素への求核攻撃を行なって水分子を引き抜いてしまう結果、形成されるビニル化合物へのEOの開環付加を行なうことができなくなるものと思われる。   Further, after ring-opening addition of PO to an initiator having at least one hydroxyl group in the molecule in the presence of a DMC catalyst, the DMC catalyst is removed using an adsorbent, and an alkali such as potassium hydroxide is newly added. Even when a metal catalyst is added and EO is subjected to ring-opening addition, only a cloudy polyether having a low primary hydroxyl group-termination rate can be obtained. The reason is that an alkali metal catalyst such as potassium hydroxide is a basic catalyst with strong nucleophilicity, and as a result, a nucleophilic attack on the cationic terminal carbon is carried out to pull out water molecules. It appears that ring-opening addition of EO to the compound cannot be performed.

本発明の製造方法では、相応に強い塩基性を有する非求核塩基性触媒を用いるため、カチオニックな末端炭素への求核攻撃が起きず、水を引き抜くという前記のような副反応が抑えられ、水による高分子量のポリエチレングリコールの生成を抑えることができ、その結果、末端の酸素原子のみが活性化されて、初期の通りにEOの開環付加が起こるものと考えられる。   In the production method of the present invention, a non-nucleophilic basic catalyst having a correspondingly strong basicity is used, so that a nucleophilic attack on the cationic terminal carbon does not occur, and the above side reaction of drawing water is suppressed. It is considered that the production of high molecular weight polyethylene glycol by water can be suppressed, and as a result, only the terminal oxygen atom is activated and EO ring-opening addition occurs as in the initial stage.

本発明の製造方法では、前記のようにDMC触媒の存在下でPOを開環付加させ、そのまま引き続き非求核塩基性触媒を加えてその存在下にEOを開環付加させることもできるが、POを開環付加させた後、DMC触媒を例えば吸着剤処理により除去してから、非求核塩基性触媒を加えてその存在下にEOを開環付加させることもできる。   In the production method of the present invention, as described above, PO can be ring-opened and added in the presence of a DMC catalyst, and a non-nucleophilic basic catalyst can be added as it is, and EO can be ring-opened and added in the presence thereof. After the ring-opening addition of PO, the DMC catalyst can be removed by, for example, adsorbent treatment, and then a non-nucleophilic basic catalyst can be added to ring-add the EO in the presence thereof.

また本発明の製造方法では、前記のようにDMC触媒の存在下でPOを開環付加させ、そのまま引き続きPO及びEOをランダムに開環付加させて、更にそのまま引き続き非求核塩基性触媒を加えてその存在下にEOを開環付加させることもできるが、POを開環付加させた後、DMC触媒を例えば吸着剤処理により除去してから、非求核塩基性触媒を加えてその存在下にPO及びEOをランダムに開環付加させ、更にそのまま引き続きEOを開環付加させることもできる。   In the production method of the present invention, as described above, PO is subjected to ring-opening addition in the presence of a DMC catalyst, PO and EO are subsequently subjected to random ring-opening addition, and a non-nucleophilic basic catalyst is further added as it is. In the presence of EO, ring-opening addition can also be carried out. However, after ring-opening addition of PO, the DMC catalyst is removed by, for example, adsorbent treatment, and then a non-nucleophilic basic catalyst is added to the presence of the EO. PO and EO can be randomly ring-opened and added, and EO can be further ring-opened and added as it is.

本発明の製造方法により得られるポリエーテルは、ポリオール成分、ジフェニルメタンジイソシアネート系ポリイソシアネートやトリレンジイソシアネート系ポリイソシアネート等のポリイソシアネート成分及び架橋剤を、触媒の存在下で反応させることによってポリウレタン樹脂を得る際のポリオール成分として有用である。   The polyether obtained by the production method of the present invention obtains a polyurethane resin by reacting a polyol component, a polyisocyanate component such as diphenylmethane diisocyanate polyisocyanate or tolylene diisocyanate polyisocyanate, and a crosslinking agent in the presence of a catalyst. It is useful as a polyol component.

本発明の製造方法により得られるポリエーテルを用いてポリウレタン樹脂を得る際には、必要に応じて、非植物油系(すなわち石油化学由来の)ポリオール、例えばポリエーテル、ポリエステル、ポリアセタール、ポリカーボネート、ポリエステルエーテル、ポリエステルカーボネート、ポリチオエーテル、ポリアミド、ポリエステルアミド、ポリシロキサン、ポリブタジエン及びポリアセトンから選ばれるものを併用することができる。   When a polyurethane resin is obtained using the polyether obtained by the production method of the present invention, a non-vegetable oil-based (that is, petrochemical-derived) polyol such as polyether, polyester, polyacetal, polycarbonate, polyester ether is optionally used. , Polyester carbonate, polythioether, polyamide, polyester amide, polysiloxane, polybutadiene, and polyacetone can be used in combination.

本発明の製造方法によると、末端水酸基の1級化率が高く、不飽和度が低いポリエーテルを製造することができ、それを用いて改質した樹脂に良好な成形性を与え、かかる樹脂から得られる成形品に強度、伸び、耐水性等において良好な物性を与えるという効果がある。   According to the production method of the present invention, it is possible to produce a polyether having a high terminal hydroxyl group primary ratio and a low degree of unsaturation, and give good moldability to a resin modified using such a polyether. The molded product obtained from the above has an effect of giving good physical properties in strength, elongation, water resistance and the like.

以下、本発明の製造方法の構成及び効果をより明らかにするため、本発明の実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例等において、別に記載しない限り、部は質量部を、また%は質量%をあらわす。   Examples of the present invention will be described below in order to clarify the structure and effects of the production method of the present invention, but the present invention is not limited to these examples. In the following examples and the like, unless otherwise indicated, parts represent parts by mass and% represents mass%.

試験区分1(DMC触媒の製造)
500mlのフラスコ中で、塩化亜鉛10.2gと、蒸留水10gと、tert−ブチルアルコール10gとからなり、50℃に保温された第1の水溶液に、カリウムヘキサシアノコバルテート(KCo(CN))4.2gと、蒸留水70gと、tert−ブチルアルコール10gとからなる第2の水溶液を、30分かけて滴下した。滴下終了後、tert−ブチルアルコール80g及び蒸留水80gの混合物を添加して、tert−ブチルアルコールを38.5質量%の濃度で含有する反応溶液を得た。この反応溶液を70℃に昇温し、90分撹拌して熟成を行なった後、加圧下(196kPa)で加圧濾過した。得られたケーキに、tert−ブチルアルコール40g及び蒸留水70gを加えて再分散し、室温(20℃、以下同様)で30分撹拌して洗浄を行なった後、前記と同様に加圧濾過した。更に、得られたケーキにtert−ブチルアルコール100gを加えて再分散し、室温で30分撹拌した後、前記と同様に加圧濾過した。そして、得られたケーキを、50℃の減圧下で3時間乾燥し、粉砕して、DMC触媒を得た。
Test Category 1 (Manufacturing DMC catalyst)
In a 500 ml flask, potassium hexacyanocobaltate (K 3 Co (CN)) was added to a first aqueous solution consisting of 10.2 g of zinc chloride, 10 g of distilled water and 10 g of tert-butyl alcohol and kept at 50 ° C. 6 ) A second aqueous solution consisting of 4.2 g, 70 g of distilled water and 10 g of tert-butyl alcohol was added dropwise over 30 minutes. After completion of dropping, a mixture of 80 g of tert-butyl alcohol and 80 g of distilled water was added to obtain a reaction solution containing 38.5% by mass of tert-butyl alcohol. The reaction solution was heated to 70 ° C., stirred for 90 minutes and aged, and then filtered under pressure (196 kPa) under pressure. To the obtained cake, 40 g of tert-butyl alcohol and 70 g of distilled water were added and redispersed. After washing at room temperature (20 ° C., hereinafter the same) for 30 minutes, washing was performed, followed by pressure filtration as described above. . Further, 100 g of tert-butyl alcohol was added to the obtained cake for redispersion, and the mixture was stirred at room temperature for 30 minutes, and then pressure filtered as described above. The obtained cake was dried under reduced pressure at 50 ° C. for 3 hours and pulverized to obtain a DMC catalyst.

試験区分2(ポリエーテルの合成)
実施例1(ポリエーテル(P−1)の合成)
開始剤としてグリセリンPO開環付加物2040g(2.0モル、水酸基価165、分子量1000)を、試験区分1で製造したDMC触媒0.51gと共にオートクレーブに仕込み、窒素置換後、120℃に昇温し、POの152g(2.62モル、分子量58.1)を投入してDMC触媒を活性化させた。その後、オートクレーブ内を130℃に保ちながら徐々にPOを投入し、全量で2642.6g(45.5モル)のPOを投入して、グリセリンポリエーテルポリオール(水酸基価70.3mgKOH/g)を得た。オートクレーブ内の温度を120℃に保ちながら熟成した後、同温度を保ち、オートクレーブ内を2時間減圧にして、揮発物を完全に除去した。次いで、オートクレーブ内の温度を80℃まで冷却し、非求核塩基性触媒としてカリウムtert−ブトキシドを34.7g(0.31モル、分子量112.2)を仕込み、オートクレーブ内を120℃に保ちながら徐々にEOの793.8g(18モル、分子量44.1)を投入し、130℃で2時間熟成した。得られたポリエーテルの水酸基価は55.8mgKOH/g、分子量分布(Mw/Mn)は1.05、不飽和度は0.005meq/g、末端水酸基の1級化率は87%であった。
Test category 2 (polyether synthesis)
Example 1 (Synthesis of polyether (P-1))
As an initiator, 2040 g (2.0 mol, hydroxyl value 165, molecular weight 1000) of glycerin PO ring-opening adduct was charged into an autoclave together with 0.51 g of the DMC catalyst produced in Test Category 1, and after nitrogen substitution, the temperature was raised to 120 ° C. Then, 152 g (2.62 mol, molecular weight 58.1) of PO was added to activate the DMC catalyst. Thereafter, PO was gradually added while maintaining the inside of the autoclave at 130 ° C., and 2642.6 g (45.5 mol) of PO was added in total to obtain glycerin polyether polyol (hydroxyl value 70.3 mg KOH / g). It was. After aging while maintaining the temperature in the autoclave at 120 ° C., the same temperature was maintained, and the pressure in the autoclave was reduced for 2 hours to completely remove volatiles. Next, the temperature in the autoclave is cooled to 80 ° C., and 34.7 g (0.31 mol, molecular weight 112.2) of potassium tert-butoxide is charged as a non-nucleophilic basic catalyst while maintaining the temperature in the autoclave at 120 ° C. Gradually, 793.8 g (18 mol, molecular weight 44.1) of EO was added and aged at 130 ° C. for 2 hours. The obtained polyether had a hydroxyl value of 55.8 mgKOH / g, a molecular weight distribution (Mw / Mn) of 1.05, an unsaturation degree of 0.005 meq / g, and a terminal hydroxyl group primary conversion of 87%. .

実施例2〜5(ポリエーテル(P−2)〜(P−5)の合成)
実施例1のポリエーテル(P−1)と同様にして、実施例2〜5のポリエーテル(P−2)〜(P−5)を合成した。以上で合成した各例のポリエーテルの内容を表1及び表4にまとめて示した。
Examples 2 to 5 (Synthesis of polyethers (P-2) to (P-5))
Polyethers (P-2) to (P-5) of Examples 2 to 5 were synthesized in the same manner as the polyether (P-1) of Example 1. The contents of the polyethers synthesized in the above examples are summarized in Tables 1 and 4.

実施例6(ポリエーテル(P−6)の合成)
開始剤としてグリセリンPO開環付加物2040g(2.0モル、水酸基価165、分子量1000)を、試験区分1で製造したDMC触媒0.48gと共にオートクレーブに仕込み、窒素置換後、120℃に昇温し、POの152g(2.6モル、分子量58.1)を投入して、DMC触媒を活性化させた。その後、オートクレーブ内を130℃に保ちながら徐々にPOを投入し、全量で9841.2g(169.4モル)のPOを投入して、グリセリンポリエーテルポリオール(水酸基価28.0mgKOH/g)を得た。オートクレーブ内の温度を120℃に保ちながら熟成した後、吸着剤処理により、DMC触媒の吸着除去を行なった。吸着剤を除去した後、グリセリンポリエーテルポリオールを再びオートクレーブに仕込み、非求核塩基性触媒としてナトリウム1−アダマントキシド61.0g(0.35モル、分子量174.2)を添加し、オートクレーブ内を120℃に保ちながら徐々にEOの2000g(45.4モル、分子量44.1)を投入し、130℃で2時間熟成した。得られたポリエーテルの水酸基価は24.1mgKOH/g、GPCによるポリスチレン換算の数平均分子量は7000、分子量分布(Mw/Mn)は1.04、不飽和度は0.010meq/g、末端水酸基の1級化率は91%であった。
Example 6 (Synthesis of Polyether (P-6))
As an initiator, 2040 g (2.0 mol, hydroxyl value 165, molecular weight 1000) of glycerin PO ring-opening adduct was charged into an autoclave together with 0.48 g of the DMC catalyst produced in Test Category 1, and after nitrogen substitution, the temperature was raised to 120 ° C. Then, 152 g (2.6 mol, molecular weight 58.1) of PO was added to activate the DMC catalyst. Thereafter, PO was gradually added while maintaining the inside of the autoclave at 130 ° C., and 9841.2 g (169.4 mol) of PO was added in total to obtain a glycerin polyether polyol (hydroxyl value 28.0 mgKOH / g). It was. After aging while maintaining the temperature in the autoclave at 120 ° C., the DMC catalyst was adsorbed and removed by adsorbent treatment. After removing the adsorbent, the glycerol polyether polyol was charged again into the autoclave, and 61.0 g (0.35 mol, molecular weight 174.2) of sodium 1-adamantoxide was added as a non-nucleophilic basic catalyst, and the inside of the autoclave was added. While maintaining the temperature at 120 ° C., 2000 g (45.4 mol, molecular weight 44.1) of EO was gradually added, followed by aging at 130 ° C. for 2 hours. The polyether obtained had a hydroxyl value of 24.1 mgKOH / g, a polystyrene-equivalent number average molecular weight of 7000, a molecular weight distribution (Mw / Mn) of 1.04, an unsaturation of 0.010 meq / g, and a terminal hydroxyl group. The primary conversion rate was 91%.

実施例7〜11(ポリエーテル(P−7)〜(P−11)の合成)
実施例6のポリエーテル(P−6)と同様にして、実施例7〜11のポリエーテル(P−7)〜(P−11)を合成した。以上で合成した各例のポリエーテルの内容を表1及び表4にまとめて示した。
Examples 7 to 11 (Synthesis of polyethers (P-7) to (P-11))
Polyethers (P-7) to (P-11) of Examples 7 to 11 were synthesized in the same manner as the polyether (P-6) of Example 6. The contents of the polyethers synthesized in the above examples are summarized in Tables 1 and 4.

実施例12(ポリエーテル(P−12)の合成)
開始剤としてグリセリンPO開環付加物900g(0.90モル、水酸基価165、分子量1000)を、試験区分1で製造したDMC触媒0.60gと共にオートクレーブに仕込み、窒素置換後、120℃に昇温し、POの152g(2.62モル、分子量58.1)を投入してDMC触媒を活性化させた。その後、オートクレーブ内を130℃に保ちながら徐々にPOを投入し、全量で3517g(60.5モル)のPOを投入して、130℃で2時間熟成した。熟成終了後、オートクレーブ内を130℃に保ちながら徐々にEOの207g(4.7モル、分子量44.1)とPOの830g(14.3モル)をランダムに投入して、グリセリンポリエーテルポリオール(水酸基価26.7mgKOH/g)を得た。オートクレーブ内の温度を120℃に保ちながら熟成した後、同温度を保ち、オートクレーブ内を2時間減圧にして、揮発物を完全に除去した。次いで、オートクレーブ内の温度を80℃まで冷却し、非求核塩基性触媒としてカリウムtert−ブトキシドを14g(0.12モル、分子量112.2)を仕込み、オートクレーブ内を120℃に保ちながら徐々にEOの828g(18.8モル)を投入し、130℃で2時間熟成した。得られたポリエーテルの水酸基価は23.2mgKOH/g、分子量分布(Mw/Mn)は1.11、不飽和度は0.012meq/g、末端水酸基の1級化率は77%であった。
Example 12 (Synthesis of Polyether (P-12))
As an initiator, 900 g (0.90 mol, hydroxyl value 165, molecular weight 1000) of glycerin PO ring-opening adduct was charged into an autoclave together with 0.60 g of the DMC catalyst produced in Test Category 1, and after nitrogen substitution, the temperature was raised to 120 ° C. Then, 152 g (2.62 mol, molecular weight 58.1) of PO was added to activate the DMC catalyst. Thereafter, PO was gradually added while maintaining the inside of the autoclave at 130 ° C., 3517 g (60.5 mol) of PO was added in total, and the mixture was aged at 130 ° C. for 2 hours. After completion of the aging, 207 g (4.7 mol, molecular weight 44.1) of EO and 830 g (14.3 mol) of PO and 830 g (14.3 mol) of PO were gradually added while maintaining the inside of the autoclave at 130 ° C., and glycerin polyether polyol ( A hydroxyl value of 26.7 mgKOH / g) was obtained. After aging while maintaining the temperature in the autoclave at 120 ° C., the same temperature was maintained, and the pressure in the autoclave was reduced for 2 hours to completely remove volatiles. Next, the temperature in the autoclave is cooled to 80 ° C., 14 g (0.12 mol, molecular weight 112.2) of potassium tert-butoxide is charged as a non-nucleophilic basic catalyst, and the autoclave is gradually kept at 120 ° C. 828 g (18.8 mol) of EO was added and aged at 130 ° C. for 2 hours. The obtained polyether had a hydroxyl value of 23.2 mgKOH / g, a molecular weight distribution (Mw / Mn) of 1.11, an unsaturation of 0.012 meq / g, and a terminal hydroxyl group primary conversion of 77%. .

実施例13(ポリエーテル(P−13)の合成)
開始剤としてグリセリンPO開環付加物900g(0.90モル、水酸基価165、分子量1000)を、試験区分1で製造したDMC触媒0.60gと共にオートクレーブに仕込み、窒素置換後、120℃に昇温し、POの152g(2.62モル、分子量58.1)を投入してDMC触媒を活性化させた。その後、オートクレーブ内を130℃に保ちながら徐々にPOを投入し、全量で3932g(67.7モル)のPOを投入して、グリセリンポリエーテルポリオール(水酸基価30.0mgKOH/g)を得た。オートクレーブ内の温度を120℃に保ちながら熟成した後、同温度を保ち、オートクレーブ内を2時間減圧にして、揮発物を完全に除去した。次いで、オートクレーブ内の温度を80℃まで冷却し、非求核塩基性触媒としてカリウムtert−ブトキシドを14g(0.12モル、分子量112.2)を仕込み、オートクレーブ内を120℃に保ちながら徐々にEOの630g(14.3モル、分子量44.1)とPOの415g(7.1モル)をランダムに投入し、130℃で2時間熟成した。次いで、オートクレーブ内を120℃に保ちながら徐々にEOの405g(9.2モル)を投入し、130℃で2時間熟成した。得られたポリエーテルの水酸基価は25.0mgKOH/g、分子量分布(Mw/Mn)は1.06、不飽和度は0.014meq/g、末端水酸基の1級化率は62%であった。
Example 13 (Synthesis of Polyether (P-13))
As an initiator, 900 g (0.90 mol, hydroxyl value 165, molecular weight 1000) of glycerin PO ring-opening adduct was charged into an autoclave together with 0.60 g of the DMC catalyst produced in Test Category 1, and after nitrogen substitution, the temperature was raised to 120 ° C. Then, 152 g (2.62 mol, molecular weight 58.1) of PO was added to activate the DMC catalyst. Thereafter, PO was gradually added while maintaining the inside of the autoclave at 130 ° C., and 3932 g (67.7 mol) of PO was added in total to obtain a glycerin polyether polyol (hydroxyl value: 30.0 mgKOH / g). After aging while maintaining the temperature in the autoclave at 120 ° C., the same temperature was maintained, and the pressure in the autoclave was reduced for 2 hours to completely remove volatiles. Next, the temperature in the autoclave is cooled to 80 ° C., 14 g (0.12 mol, molecular weight 112.2) of potassium tert-butoxide is charged as a non-nucleophilic basic catalyst, and the autoclave is gradually kept at 120 ° C. 630 g (14.3 mol, molecular weight 44.1) of EO and 415 g (7.1 mol) of PO were randomly added and aged at 130 ° C. for 2 hours. Next, 405 g (9.2 mol) of EO was gradually added while maintaining the inside of the autoclave at 120 ° C., and aged at 130 ° C. for 2 hours. The obtained polyether had a hydroxyl value of 25.0 mgKOH / g, a molecular weight distribution (Mw / Mn) of 1.06, an unsaturation of 0.014 meq / g, and a terminal hydroxyl group primary conversion of 62%. .

実施例14及び15(ポリエーテル(P−14)及び(P−15)の合成)
実施例13のポリエーテル(P−13)と同様にして、実施例14及び15のポリエーテル(P−14)及び(P−15)を合成した。以上で合成した各例のポリエーテルの内容を表2〜4にまとめて示した。










Examples 14 and 15 (Synthesis of polyethers (P-14) and (P-15))
The polyethers (P-14) and (P-15) of Examples 14 and 15 were synthesized in the same manner as the polyether (P-13) of Example 13. The contents of the polyethers synthesized in the above examples are summarized in Tables 2 to 4.










Figure 2013241581
Figure 2013241581

Figure 2013241581
Figure 2013241581

Figure 2013241581
Figure 2013241581







Figure 2013241581
Figure 2013241581

表1〜表4において、
水酸基価:JIS−K1557−1に準拠した方法で測定した。
数平均分子量(Mn):GPCによるポリスチレン換算の数平均分子量
分子量分布(Mw/Mn):GPCによるポリスチレン換算の質量平均分子量/GPCによるポリスチレン換算の数平均分子量の比
不飽和度:JIS−K1557−3に準拠した方法により測定した。
末端水酸基の1級化率:トリフロロ酢酸によるエステル化によって、末端水酸基の消失量から算出した。
In Tables 1 to 4,
Hydroxyl value: measured by a method based on JIS-K1557-1.
Number average molecular weight (Mn): number average molecular weight in terms of polystyrene by GPC Molecular weight distribution (Mw / Mn): ratio of mass average molecular weight in terms of polystyrene by GPC / number average molecular weight in terms of polystyrene by GPC Unsaturation degree: JIS-K1557- It was measured by the method based on 3.
Primary hydroxyl ratio of terminal hydroxyl group: Calculated from the amount of terminal hydroxyl group lost by esterification with trifluoroacetic acid.

A−1:グリセリンにPOを開環付加したもの(竹本油脂社製、数平均分子量(Mn)1000、水酸基価168)
A−2:トリメチロールプロパンにPOを開環付加したもの(竹本油脂社製、数平均分子量(Mn)1000、水酸基価169)
A−3:グリセリンにPOとEOをPO/EO=50/50(質量比)の割合でランダムに開環付加したもの(竹本油脂社製、数平均分子量(Mn)800、水酸基価210)
A−4:プロピレングリコールにPOを開環付加したもの(竹本油脂社製、数平均分子量(Mn)1200、水酸基価93)
A−5:エチレングリコールにEOを開環付加したもの(竹本油脂社製、数平均分子量(Mn)1000、水酸基価112)
A−6:ラウリルアルコールにPOを開環付加したもの(竹本油脂社製、数平均分子量(Mn)800、水酸基価70)
A-1: Ring-opening addition of PO to glycerin (manufactured by Takemoto Yushi Co., Ltd., number average molecular weight (Mn) 1000, hydroxyl value 168)
A-2: Trimethylolpropane with ring-opening addition of PO (manufactured by Takemoto Yushi Co., Ltd., number average molecular weight (Mn) 1000, hydroxyl value 169)
A-3: PO and EO randomly added at a ratio of PO / EO = 50/50 (mass ratio) to glycerin (manufactured by Takemoto Yushi Co., Ltd., number average molecular weight (Mn) 800, hydroxyl value 210)
A-4: Ring-opening addition of PO to propylene glycol (manufactured by Takemoto Yushi Co., Ltd., number average molecular weight (Mn) 1200, hydroxyl value 93)
A-5: EO ring-opening addition to ethylene glycol (manufactured by Takemoto Yushi Co., Ltd., number average molecular weight (Mn) 1000, hydroxyl value 112)
A-6: Ring-opening addition of PO to lauryl alcohol (manufactured by Takemoto Yushi Co., Ltd., number average molecular weight (Mn) 800, hydroxyl value 70)

B−1:カリウムtert−ブトキシド(和光純薬社製)
B−2:N,N−ジイソプロピルエチルアミン(東京化成工業社製、1級品)をジメチルスルホキシド(試薬グレード)に分散した分散体(有効濃度20%)
B−3:1−アダマンタンノール(ハイケム社製)に金属ナトリウムを反応させたもの
B−4:tert−ブチルアルコール(和光純薬社製、1級品)にナトリウムハイドライドを反応させたもの
B−5:1−アダマンタンノール(ハイケム社製)に金属カリウムを反応させたもの
*1:PO開環付加時のDMC触媒をそのまま利用した。
*2:PO及びEO開環付加時の非求核塩基性触媒B−1をそのまま利用した。
B-1: Potassium tert-butoxide (Wako Pure Chemical Industries, Ltd.)
B-2: Dispersion in which N, N-diisopropylethylamine (manufactured by Tokyo Chemical Industry Co., Ltd., primary product) is dispersed in dimethyl sulfoxide (reagent grade) (effective concentration 20%)
B-3: 1-adamantanol (manufactured by Hychem) reacted with sodium metal B-4: tert-butyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., primary product) reacted with sodium hydride B- 5: 1-adamantanol (manufactured by Hichem) reacted with metal potassium * 1: The DMC catalyst at the time of PO ring-opening addition was used as it was.
* 2: Non-nucleophilic basic catalyst B-1 at the time of PO and EO ring-opening addition was used as it was.

試験区分3(ポリエーテルの評価)
評価例1
合成皮革用ポリウレタン樹脂の製造及び評価
表5に記載した処方で混合したウレタン溶液をカップに入れ、減圧乾燥機中にて脱溶媒させながら重合を行なった。得られたポリウレタン樹脂を所定の大きさに切り出し、その引張強度及び伸びを万能試験機により測定し、結果を表5にまとめて示した。
Test category 3 (Evaluation of polyether)
Evaluation Example 1
Production and Evaluation of Polyurethane Resin for Synthetic Leather A urethane solution mixed according to the formulation described in Table 5 was put in a cup and polymerized while removing the solvent in a vacuum dryer. The obtained polyurethane resin was cut into a predetermined size, its tensile strength and elongation were measured with a universal testing machine, and the results are summarized in Table 5.

Figure 2013241581
Figure 2013241581

表5において、
P−8,P−11〜P−15:表1〜4に記載のポリエーテル
G−1:エチレングリコールに水酸化カリウム触媒の存在下でEOとPOをEO/PO=30/70(質量比)の割合でランダムに開環付加したものを開始剤とし、これにDMC触媒の存在下でEOとPOをEO/PO=30/70(質量比)の割合でランダムに開環付加した数平均分子量が4000、末端水酸基の1級化率が26%のポリエーテル。
G−2:プロピレングリコールに水酸化カリウム触媒の存在下でPOを開環付加した数平均分子量が4000、末端水酸基の1級化率が2%、不飽和度が0.17のポリエーテル。
In Table 5,
P-8, P-11 to P-15: Polyethers described in Tables 1 to 4 G-1: EO and PO in ethylene glycol in the presence of a potassium hydroxide catalyst EO / PO = 30/70 (mass ratio) ) And a number average obtained by randomly opening and adding EO and PO at a ratio of EO / PO = 30/70 (mass ratio) in the presence of a DMC catalyst. Polyether having a molecular weight of 4000 and a terminal hydroxyl group primary conversion of 26%.
G-2: A polyether obtained by ring-opening addition of PO to propylene glycol in the presence of a potassium hydroxide catalyst having a number average molecular weight of 4000, a terminal hydroxyl group primary conversion of 2%, and an unsaturation degree of 0.17.

表5の結果からも明らかなように、従来法により得られたポリエーテル(G−1,G−2)を用いた試験例7及び8に対して、本発明の製造方法により得られた末端水酸基の1級化率が高く且つ不飽和度が低いポリエーテル(P−8及びP−11〜P−15)を用いた試験例1〜6では、引張強度及び伸びの優れたポリウレタン樹脂が得られている。   As is clear from the results in Table 5, with respect to Test Examples 7 and 8 using the polyether (G-1, G-2) obtained by the conventional method, the terminal obtained by the production method of the present invention was used. In Test Examples 1 to 6 using polyethers (P-8 and P-11 to P-15) having a high hydroxyl primary ratio and a low degree of unsaturation, polyurethane resins having excellent tensile strength and elongation are obtained. It has been.

評価例2
シーラント用ポリエーテルの製造及び評価
表6に記載した処方で混合したウレタン溶液をカップに入れ、表6に記載した硬化時間、常温硬化させ、得られたポリウレタン樹脂を所定の大きさに切り出し、その引張強度を万能試験機により測定した。その一方で、同じポリウレタン樹脂を、温度150℃、湿度95%で7日間静置した後、同様にしてその引張強度を測定した。直後の引張強度と比較して、どの程度引張強度が保持されているかを示す引張強度保持率(%)を求めた。結果を表6にまとめて示した。尚、ウレタン溶液の硬化時間は、JIS−K6401に準じた方法により測定した。
Evaluation example 2
Manufacture and evaluation of polyether for sealant The urethane solution mixed by the formulation described in Table 6 is put in a cup, cured at room temperature described in Table 6, and the polyurethane resin obtained is cut into a predetermined size, Tensile strength was measured with a universal testing machine. On the other hand, after the same polyurethane resin was allowed to stand at a temperature of 150 ° C. and a humidity of 95% for 7 days, its tensile strength was measured in the same manner. The tensile strength retention rate (%) indicating how much the tensile strength is retained was determined as compared with the tensile strength immediately after. The results are summarized in Table 6. The curing time of the urethane solution was measured by a method according to JIS-K6401.

Figure 2013241581
Figure 2013241581

表6において、
P−1,P−5,P−12〜P−15:表1〜4に記載のポリエーテル
G−3:エチレングリコールに水酸化カリウム触媒の存在下でPOを開環付加した数平均分子量が1000のものを開始剤とし、これにDMC触媒の存在下でPOを開環付加し、更に水酸化カリウム触媒の存在下でEOを開環付加した数平均分子量が2800、末端水酸基の1級化率が38%のポリエーテル。
G−4:エチレングリコールに水酸化カリウム触媒の存在下でPOを開環付加した数平均分子量が1000のものを開始剤とし、これにDMC触媒の存在下でPOを開環付加した数平均分子量が3200、末端水酸基の1級化率が1%以下のポリエーテル。
In Table 6,
P-1, P-5, P-12 to P-15: Polyethers described in Tables 1 to 4 G-3: Number average molecular weight obtained by ring-opening addition of PO to ethylene glycol in the presence of a potassium hydroxide catalyst 1000 is used as an initiator, and PO is subjected to ring-opening addition in the presence of a DMC catalyst, and EO is further subjected to ring-opening addition in the presence of a potassium hydroxide catalyst. The number average molecular weight is 2800, and terminal hydroxyl groups are primaryized. Polyether with a rate of 38%.
G-4: Number average molecular weight obtained by ring-opening addition of PO to ethylene glycol in the presence of a potassium hydroxide catalyst having a number average molecular weight of 1000, and PO by ring-opening addition in the presence of a DMC catalyst Is a polyether having a terminal hydroxyl group primary ratio of 1% or less.

表6の結果からも明らかなように、従来法により得られたポリエーテル(G−3,G−4)を用いた試験例15及び16に対し、本発明の製造方法により得られた末端水酸基の1級化率が高く且つ不飽和度が低いポリエーテル(P−1,P−5及びP−12〜P−15)を用いた試験例9〜14では、硬化時間が短く、しかも耐水性に優れたポリウレタン樹脂が得られている。   As is apparent from the results in Table 6, terminal hydroxyl groups obtained by the production method of the present invention were compared with Test Examples 15 and 16 using polyethers (G-3, G-4) obtained by the conventional method. In Test Examples 9 to 14 using polyethers (P-1, P-5 and P-12 to P-15) having a high degree of primary conversion and low unsaturation, the curing time was short and the water resistance was high. An excellent polyurethane resin is obtained.

Claims (8)

分子中に少なくとも1個の水酸基を有する開始剤に、複合金属シアン化物触媒の存在下でプロピレンオキサイドを開環付加させ、引き続き非求核塩基性触媒の存在下でエチレンオキサイドを開環付加させて、末端水酸基の1級化率が60〜100%、ポリスチレン換算の数平均分子量が2000〜20000及び不飽和度が0.10以下のポリエーテルを得ることを特徴とするポリエーテルの製造方法。   Propylene oxide is subjected to ring-opening addition in the presence of a double metal cyanide catalyst to an initiator having at least one hydroxyl group in the molecule, followed by ring-opening addition of ethylene oxide in the presence of a non-nucleophilic basic catalyst. A method for producing a polyether comprising obtaining a polyether having a terminal hydroxyl group primary ratio of 60 to 100%, a polystyrene-equivalent number average molecular weight of 2000 to 20000, and an unsaturation degree of 0.10 or less. 分子中に少なくとも1個の水酸基を有する開始剤に、複合金属シアン化物触媒の存在下でプロピレンオキサイドを開環付加させ、引き続き複合金属シアン化物触媒及び/又は非求核塩基性触媒の存在下でプロピレンオキサイド及びエチレンオキサイドをランダムに開環付加させ、更に引き続き非求核塩基性触媒の存在下でエチレンオキサイドを開環付加させて、末端水酸基の1級化率が60〜100%、ポリスチレン換算の数平均分子量が2000〜20000及び不飽和度が0.10以下のポリエーテルを得ることを特徴とするポリエーテルの製造方法。   Propylene oxide is subjected to ring-opening addition to an initiator having at least one hydroxyl group in the molecule in the presence of a double metal cyanide catalyst, and subsequently in the presence of a double metal cyanide catalyst and / or a non-nucleophilic basic catalyst. Propylene oxide and ethylene oxide are randomly subjected to ring-opening addition, and then ethylene oxide is further subjected to ring-opening addition in the presence of a non-nucleophilic basic catalyst, so that the terminal hydroxyl group primary ratio is 60 to 100% in terms of polystyrene. A method for producing a polyether, comprising obtaining a polyether having a number average molecular weight of 2,000 to 20,000 and an unsaturation degree of 0.10 or less. 非求核塩基性触媒が、アルカリ金属tert−ブトキシド、アルカリ金属1−アダマントキシド、アルカリ金属2,4,α−トリフェニルベンジルオキシド及びアルカリ金属トリフェニルメトキシドから選ばれる一つ又は二つ以上である請求項1又は2記載のポリエーテルの製造方法。   The non-nucleophilic basic catalyst is one or more selected from alkali metal tert-butoxide, alkali metal 1-adamantoxide, alkali metal 2,4, α-triphenylbenzyl oxide and alkali metal triphenylmethoxide. A method for producing a polyether according to claim 1 or 2. 非求核塩基性触媒が、カリウムtert−ブトキシド、ナトリウムtert−ブトキシド、リチウムtert−ブトキシド、カリウム1−アダマントキシド、ナトリウム1−アダマントキシド及びリチウム1−アダマントキシドから選ばれる一つ又は二つ以上である請求項1又は2記載のポリエーテルの製造方法。   The non-nucleophilic basic catalyst is one or more selected from potassium tert-butoxide, sodium tert-butoxide, lithium tert-butoxide, potassium 1-adamantoxide, sodium 1-adamantoxide and lithium 1-adamantoxide A method for producing a polyether according to claim 1 or 2. 非求核塩基性触媒が、トリエチルアミン、N,N−ジイソプロピルエチルアミン及びジアザビシクロウンデセンから選ばれる一つ又は二つ以上である請求項1又は2記載のポリエーテルの製造方法。   The method for producing a polyether according to claim 1 or 2, wherein the non-nucleophilic basic catalyst is one or more selected from triethylamine, N, N-diisopropylethylamine and diazabicycloundecene. 非求核塩基性触媒が、N,N−ジイソプロピルエチルアミン及び/又はジアザビシクロウンデセンにヘキサメチルリン酸トリアミド及び/又はジメチルスルホキシドを加えたものである請求項1又は2記載のポリエーテルの製造方法。   The polyether according to claim 1 or 2, wherein the non-nucleophilic basic catalyst is a product obtained by adding hexamethylphosphoric triamide and / or dimethyl sulfoxide to N, N-diisopropylethylamine and / or diazabicycloundecene. Method. ポリスチレン換算の分子量分布(Mw/Mn)が1.15〜1.00のポリエーテルを得る請求項1〜6のいずれか一つの項記載のポリエーテルの製造方法。   The method for producing a polyether according to any one of claims 1 to 6, wherein a polyether having a polystyrene-equivalent molecular weight distribution (Mw / Mn) of 1.15 to 1.00 is obtained. 末端水酸基の1級化率が70〜100%、ポリスチレン換算の数平均分子量が3000〜15000及び不飽和度が0.05以下のポリエーテルを得る請求項1〜7のいずれか一つの項記載のポリエーテルの製造方法。   8. The polyether according to claim 1, wherein a polyether having a terminal hydroxyl group primary ratio of 70 to 100%, a polystyrene-equivalent number average molecular weight of 3000 to 15000 and an unsaturation degree of 0.05 or less is obtained. A method for producing a polyether.
JP2013089223A 2012-04-23 2013-04-22 Method of manufacturing polyether Pending JP2013241581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089223A JP2013241581A (en) 2012-04-23 2013-04-22 Method of manufacturing polyether

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012097253 2012-04-23
JP2012097253 2012-04-23
JP2013089223A JP2013241581A (en) 2012-04-23 2013-04-22 Method of manufacturing polyether

Publications (1)

Publication Number Publication Date
JP2013241581A true JP2013241581A (en) 2013-12-05

Family

ID=49842784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089223A Pending JP2013241581A (en) 2012-04-23 2013-04-22 Method of manufacturing polyether

Country Status (1)

Country Link
JP (1) JP2013241581A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141358A (en) * 2016-02-10 2017-08-17 東ソー株式会社 Polyalkylene oxide
JP2017141359A (en) * 2016-02-10 2017-08-17 東ソー株式会社 Polyalkylene oxide composition
JP2017190394A (en) * 2016-04-13 2017-10-19 東ソー株式会社 Polyurethane elastomer forming composition
JP2017206602A (en) * 2016-05-17 2017-11-24 東ソー株式会社 Urethane prepolymer composition and cured product of the same
JP2018002954A (en) * 2016-07-07 2018-01-11 東ソー株式会社 Urethane formative composition, and urethane adhesive using the same
WO2020153223A1 (en) * 2019-01-21 2020-07-30 日油株式会社 Alkylene oxide derivative, defoaming agent, lubricant, cosmetic base material and cosmetics containing same, hair cleaning agent composition, and body cleaning agent composition
JP2020117448A (en) * 2019-01-21 2020-08-06 日油株式会社 Alkylene oxide derivative, lubricant, defoaming agent, and cosmetic base material and cosmetic containing the same
JP2021085000A (en) * 2019-11-29 2021-06-03 Agc株式会社 Polyol, two-part polyurethane composition, reaction injection molding and reaction injection molding method
CN114672011A (en) * 2020-12-24 2022-06-28 辽宁奥克化学股份有限公司 High molecular weight polyethylene glycol bulk polymerization method
CN115650828A (en) * 2022-12-15 2023-01-31 山东一诺威新材料有限公司 Butanol polyether and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141359A (en) * 2016-02-10 2017-08-17 東ソー株式会社 Polyalkylene oxide composition
JP2017141358A (en) * 2016-02-10 2017-08-17 東ソー株式会社 Polyalkylene oxide
JP7185386B2 (en) 2016-04-13 2022-12-07 東ソー株式会社 Polyurethane elastomer-forming composition
JP2017190394A (en) * 2016-04-13 2017-10-19 東ソー株式会社 Polyurethane elastomer forming composition
JP2017206602A (en) * 2016-05-17 2017-11-24 東ソー株式会社 Urethane prepolymer composition and cured product of the same
JP2018002954A (en) * 2016-07-07 2018-01-11 東ソー株式会社 Urethane formative composition, and urethane adhesive using the same
JP7202524B2 (en) 2019-01-21 2023-01-12 日油株式会社 Alkylene oxide derivatives, lubricants, antifoaming agents, base materials for cosmetics and cosmetics containing the same
JP6799788B1 (en) * 2019-01-21 2020-12-16 日油株式会社 Alkylene oxide derivatives, defoamers, lubricants, cosmetic substrates and cosmetics containing them, hair cleansing compositions and body cleansing compositions
CN113348196A (en) * 2019-01-21 2021-09-03 日油株式会社 Alkylene oxide derivative, antifoaming agent, lubricant, cosmetic base material, and cosmetic, hair cleanser composition and body cleanser composition containing the cosmetic base material
JP2020117448A (en) * 2019-01-21 2020-08-06 日油株式会社 Alkylene oxide derivative, lubricant, defoaming agent, and cosmetic base material and cosmetic containing the same
WO2020153223A1 (en) * 2019-01-21 2020-07-30 日油株式会社 Alkylene oxide derivative, defoaming agent, lubricant, cosmetic base material and cosmetics containing same, hair cleaning agent composition, and body cleaning agent composition
CN113348196B (en) * 2019-01-21 2023-09-15 日油株式会社 Alkylene oxide derivative, antifoaming agent, lubricant, cosmetic base material, and cosmetic and cleaning agent composition containing the same
JP2021085000A (en) * 2019-11-29 2021-06-03 Agc株式会社 Polyol, two-part polyurethane composition, reaction injection molding and reaction injection molding method
JP7392230B2 (en) 2019-11-29 2023-12-06 Agc株式会社 Two-component polyurethane composition, reaction injection molded article, and reaction injection molding method
CN114672011A (en) * 2020-12-24 2022-06-28 辽宁奥克化学股份有限公司 High molecular weight polyethylene glycol bulk polymerization method
CN114672011B (en) * 2020-12-24 2024-01-26 辽宁奥克化学股份有限公司 High molecular weight polyethylene glycol bulk polymerization method
CN115650828A (en) * 2022-12-15 2023-01-31 山东一诺威新材料有限公司 Butanol polyether and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2013241581A (en) Method of manufacturing polyether
TWI302155B (en)
JP2017515958A (en) Production of ethoxylates using highly active double metal cyanate catalysts
JP5979152B2 (en) Method for producing polyether, method for producing prepolymer, and method for producing modified silicone polymer
JP7265630B2 (en) Method for preparing reactive sealant resin
DE202010017915U1 (en) Novel silicone polyether copolymers
JPH0347825A (en) Moisture-curing resin composition
CN109337060B (en) Alkylene oxide polymerization catalyst and method for manufacturing polyalkylene oxide using the same
CN1221430A (en) Polyisocyanate modified isomonoolefin-paraalkylstyrene elastomeric compositions
CN110023374B (en) High molecular weight polyether carbonate polyols
CN112029083A (en) Polyether carbonate polyol and preparation method thereof
TWI326616B (en)
JP2008501812A (en) Method for producing polyether polyol
Huang et al. Efficient synthesis of zwitterionic sulfobetaine group functional polyurethanes via “click” reaction
JP2019519650A (en) Process for producing polyether diol
JP2019035085A (en) Process for producing polyetherester polyols based mainly on natural oils and process for use thereof in rigid polyurethane foams
CN107636074B (en) Novel formulations for polyurethane applications
JP2005068292A (en) Polyether monool or polyether polyol and method for producing the same
CN105121484A (en) Photochemical preparation of hydroxyl-terminated polyisobutylenes and related methods and uses
US6927252B2 (en) Process to produce unsaturated polyester polyols
CN109988279B (en) Molecular chain soft segment flame-retardant polyurethane foam
WO2014073580A1 (en) Method for producing hydroxyl group-containing polyether, method for producing hydrolyzable silyl group-containing polyether, and method for producing urethane prepolymer
CN111378107A (en) Preparation method of reactive sealant resin
JP2017171813A (en) Polyol and urethane resin prepared therewith
JP2012072254A (en) Polyol composition, and method for producing polyurethane using the same