JP2013240590A - Three-dimensional shape acquisition device from stereoscopic endoscopic image - Google Patents

Three-dimensional shape acquisition device from stereoscopic endoscopic image Download PDF

Info

Publication number
JP2013240590A
JP2013240590A JP2013093880A JP2013093880A JP2013240590A JP 2013240590 A JP2013240590 A JP 2013240590A JP 2013093880 A JP2013093880 A JP 2013093880A JP 2013093880 A JP2013093880 A JP 2013093880A JP 2013240590 A JP2013240590 A JP 2013240590A
Authority
JP
Japan
Prior art keywords
image
projection
pattern
inspected
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093880A
Other languages
Japanese (ja)
Other versions
JP6210483B2 (en
Inventor
Katsuaki Mishima
克章 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2013093880A priority Critical patent/JP6210483B2/en
Publication of JP2013240590A publication Critical patent/JP2013240590A/en
Application granted granted Critical
Publication of JP6210483B2 publication Critical patent/JP6210483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0605Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for spatially modulated illumination

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional acquisition device which can acquire a three-dimensional shape for an image photographed by a stereoscopic endoscope with accuracy when a subject to be examined is concavo-convex and makes large movements such as a rhinopharynx.SOLUTION: An insertion portion 1 includes an image acquisition part 10 having a camera where a pair of image pickup devices are disposed on a distal end side and a pattern projection part 20 having a projector lens on a distal end side and is connected to a control processing part 40. The pattern projection part 20 has a projection pattern housing part 20A where a light source for projection and a projection pattern are housed, image light from the projection pattern irradiated with the light source is transmitted to a distal end side by an image fiber and is focused onto a position of a subject to be examined by the projector lens, and a three-dimensional image is acquired by performing stereo-matching processing on an image obtained by photographing the subject to be examined on which the projection pattern is projected by the right and left image pickup devices. The projector lens has an imaging depth of 15 mm or more and projects a pattern image having a size of 20 mm or more on a surface of the subject to be examined.

Description

本発明は、立体内視鏡画像からの3次元画像取得装置に関し、特に鼻咽腔等の医療検査に有効に適用されるパターン照射併用による立体内視鏡画像からの3次元画像取得装置に関する。   The present invention relates to an apparatus for acquiring a three-dimensional image from a stereoscopic endoscope image, and more particularly to an apparatus for acquiring a three-dimensional image from a stereoscopic endoscope image combined with pattern irradiation, which is effectively applied to a medical examination of a nasopharynx or the like.

口蓋裂患者は乳児期に行う手術の後のリハビリテーションの過程で、鼻咽腔閉鎖機能を獲得することにより正常な言語を習得していくが、この鼻咽腔閉鎖機能の獲得状況によって言語治療のアプローチが大きく異なるため、言語治療を効果的に行う上では、正確に鼻咽腔閉鎖機能を評価することが重要になる。臨床では、鼻咽腔の閉鎖状態を判断するために内視鏡を用いて鼻咽腔の動きを観察するのであるが、定性的評価にとどまるものであり、この評価手法では客観性を欠き、詳細な分析ができないという問題がある。   Cleft palate patients acquire normal language by acquiring nasopharyngeal closure function in the rehabilitation process after surgery in infants. Because approaches differ greatly, it is important to accurately evaluate nasopharyngeal closure function for effective speech therapy. In clinical practice, the movement of the nasopharynx is observed using an endoscope to determine the closed state of the nasopharynx, but this is only a qualitative evaluation, and this evaluation method lacks objectivity There is a problem that detailed analysis is not possible.

鼻咽腔の動きを解析するためにCTやMRによる画像を用いることも考えられ、高速撮影可能なCT、MRの開発が進められているが、鼻咽腔の場合には歯の金属や矯正装置の金属によるアーチファクトのために鼻咽腔領域の画像が的確に得られないことが多い。そのため、現状では実際上内視鏡を用いるアプローチに限られる。   CT and MR images may be used to analyze the movement of the nasopharynx, and CT and MR that are capable of high-speed imaging are being developed. Often, nasopharyngeal regions are not accurately imaged due to device metal artifacts. Therefore, at present, the approach is actually limited to an approach using an endoscope.

従来技術における立体内視鏡に関して、特許文献1〜3に示されるようなものがあり、特許文献1に示される内視鏡は、内視鏡の先端構成部に左右像を結像する撮像手段を有し、映像切替手段により左右画像を切替えて表示し立体画像を得るものであり、特許文献2に示される内視鏡は、内視鏡の先端部に配置される左右像の撮像ユニットについて、一方側の撮像ユニットの撮像素子及び基板を他方側の撮像素子及び基板に対して上下方向の反対側に向けて配置する構成として、両ユニットにおける対物レンズの間隔を最適間隔となるように調整可能にするものである。また、特許文献3に示される内視鏡は、2つの視点から被写体を撮像して得られた画像について画像変換を行い、光学系の特性を示す光学データと画像データに基づいて被写体の空間特性を計測するようにしたものである。   With respect to the stereoscopic endoscope in the prior art, there are those shown in Patent Documents 1 to 3, and the endoscope shown in Patent Document 1 is an imaging unit that forms a left and right image on the distal end configuration portion of the endoscope. And the left and right images are switched and displayed by the video switching means to obtain a stereoscopic image. The endoscope shown in Patent Document 2 is an imaging unit for left and right images arranged at the distal end portion of the endoscope. The configuration is such that the imaging element and the substrate of the imaging unit on one side are arranged facing the other side in the vertical direction with respect to the imaging element and the substrate on the other side, and the interval between the objective lenses in both units is adjusted to the optimum interval It is what makes it possible. In addition, the endoscope disclosed in Patent Document 3 performs image conversion on an image obtained by imaging a subject from two viewpoints, and the spatial characteristics of the subject based on the optical data indicating the characteristics of the optical system and the image data. Is to measure.

特許文献1においては、外径が制限される内視鏡において立体視のための撮像素子の配置の好適化がなされ、特許文献2においては、左右像の撮像ユニットの対物レンズ間隔を最適間隔に調整できるようにされ、また、特許文献3においては、三角測量によるステレオ計測を行うために必要な光学系の空間特性についての光学データの計測を必要とせずに被写体の空間特性を計測することができるようにするものであるが、被写体が凹凸のある奥行きを有する形状であり、また動きのある場合に、被写体を的確に、精度よく観察する上では特に有効に対応できなるものではない。   In Patent Document 1, the arrangement of image pickup elements for stereoscopic vision is optimized in an endoscope whose outer diameter is limited, and in Patent Document 2, the objective lens interval of the left and right image pickup units is set to the optimum interval. Further, in Patent Document 3, it is possible to measure the spatial characteristics of a subject without requiring measurement of optical data regarding the spatial characteristics of the optical system necessary for performing stereo measurement by triangulation. However, when the subject has a shape with an uneven depth and moves, the subject is not particularly effective in accurately and accurately observing the subject.

特許文献4に示される内視鏡は、複数の計測点を有するパターン像を観察対象に投影し、これを異なる位置から複数撮影手段により撮影して得られた画像に基づいて各計測点の位置座標を演算して観察対象の立体形状を計測するものである。この内視鏡では、観察対象の立体形状を高速、高精度に計測できるが、観察対象が凹凸を有する場合にその奥行きの範囲内でパターンが鮮明に結像することが保証されないことから、立体形状の計測も精度よくなされるとは限らないものになる。   The endoscope shown in Patent Document 4 projects a pattern image having a plurality of measurement points onto an observation target, and positions of the measurement points based on images obtained by photographing the pattern image by a plurality of photographing means from different positions. The coordinates are calculated to measure the three-dimensional shape of the observation target. With this endoscope, the three-dimensional shape of the observation target can be measured at high speed and with high accuracy, but when the observation target has irregularities, it is not guaranteed that the pattern is clearly imaged within the depth range. The shape measurement is not always performed with high accuracy.

特開平7−163517号公報JP-A-7-163517 特開11−56757号公報JP 11-56757 A 特開2008−29497号公報JP 2008-29497 A 特開2005−287900号公報JP 2005-287900 A

被検査体を立体内視鏡で観察し3次元形状を取得する際に、被検査体として例えば鼻咽腔の閉鎖状況を把握する場合において、被検査体面には模様のような濃淡の変化が少ないことにより指標となるような特徴点がないために、鮮明な画像ないし判別し易い画像が得られないものであった。それに対処する手法として、画像における被検査体の3次元形状取得のためにパターン像を投影し、投影パターンを合わせた被検査体について3次元形状を取得することが行われる。
ところが、鼻咽腔のように被検査体が凹凸形状をなし、加えて大きな動きをとる場合に、被検査体の観察対象範囲内で投影パターンが全体としては鮮明にならず、被検査体の観察、3次元形状の取得が精度よくなされなかった。そのようなことから、凹凸があり、動きの大きな被検査体に対しパターン像を投影して立体内視鏡により画像を生成し、精度よく3次元形状を取得することが求められていた。
When the object to be examined is observed with a stereoscopic endoscope to obtain a three-dimensional shape, for example, when grasping the closed state of the nasopharynx as the object to be inspected, the surface of the object to be inspected changes in shading. Since there are no feature points that serve as indices due to the small amount, a clear image or an image that can be easily discriminated cannot be obtained. As a method for dealing with this, a pattern image is projected to acquire a three-dimensional shape of an object to be inspected in an image, and a three-dimensional shape is acquired for the object to be inspected with the projection pattern combined.
However, when the object to be inspected has a concavo-convex shape like the nasopharynx and takes a large movement, the projection pattern as a whole is not clear within the observation object range of the object to be inspected. Observation and acquisition of a three-dimensional shape were not performed accurately. For this reason, it has been demanded to obtain a three-dimensional shape with high accuracy by projecting a pattern image onto an object to be inspected, which has unevenness, and generates an image with a stereoscopic endoscope.

本発明は、前述した課題を解決すべくなしたものであり、本発明による立体内視鏡画像からの3次元形状取得装置は、先端側に1対の撮像素子を配設したカメラを有する画像取得部及び先端側に投影レンズを有するパターン投影部を備え被検査体に向けて挿入されるように細長形状に形成された挿入部と、挿入部に連接された連結部と、連結部に連接された制御処理部とからなる立体内視鏡画像からの3次元形状取得装置であって、前記パターン投影部は前記挿入部の先端から離れた後方の位置において投影パターン及び該投影パターンをその後方の位置において照明する投影用の光源を配置した投影パターン収容部と、該光源により照射された投影パターンからの像光を前記先端側に伝送するイメージファイバと、伝送された像光を投影する投影レンズとを備え投影パターンの像を被検査体の位置に投影するように構成され、前記制御処理部は投影パターン像が投影された被検査体を1対の撮像素子を有するカメラで撮影して得られた画像についてステレオマッチング処理を行い被検査体の3次元形状を取得するものであり、前記投影レンズは15mm以上の結像深度を有するF値及び焦点距離のものである。   The present invention has been made to solve the above-described problems, and a three-dimensional shape acquisition device for stereoscopic endoscope images according to the present invention has an image having a camera in which a pair of image sensors are arranged on the distal end side. An acquisition portion and a pattern projection portion having a projection lens on the distal end side, an insertion portion formed in an elongated shape so as to be inserted toward the object to be inspected, a connection portion connected to the insertion portion, and a connection portion connected to the connection portion An apparatus for acquiring a three-dimensional shape from a stereoscopic endoscope image comprising a control processing unit, wherein the pattern projection unit is configured to project a projection pattern and the projection pattern at a rear position away from the distal end of the insertion unit. A projection pattern accommodating portion in which a projection light source that illuminates at the position is arranged, an image fiber that transmits image light from the projection pattern irradiated by the light source to the distal end side, and the transmitted image light is projected A projection lens, and configured to project an image of the projection pattern onto a position of the object to be inspected, and the control processing unit photographs the object to be inspected on which the projection pattern image is projected with a camera having a pair of imaging elements. A stereo matching process is performed on the obtained image to obtain a three-dimensional shape of the object to be inspected, and the projection lens has an F value and a focal length having an imaging depth of 15 mm or more.

前記投影レンズは投影パターン像が投影される被検査体面において少なくとも20mm以上の大きさのパターン像を投影するようにするのが好ましく、前記投影パターン配置部において投影パターンを交換可能に収容配置可能にしてもよく、また、前記投影パターン像が投影された被検査体を1対の撮像素子を有するカメラで撮影して得られた画像について、前記制御処理部において被写体に向いた1対の撮像素子の視線軸による画像を仮想的な平行な視線軸による画像に変換するレクティファイ処理を行った後にステレオマッチング処理を行い被検査体の3次元形状を取得するようにしてもよい。   It is preferable that the projection lens project a pattern image having a size of at least 20 mm on the surface of the object to be projected on which the projection pattern image is projected, and the projection pattern placement unit can accommodate and arrange the projection pattern in an exchangeable manner. In addition, for the image obtained by photographing the inspected object on which the projection pattern image is projected with a camera having a pair of imaging elements, a pair of imaging elements facing the subject in the control processing unit After performing a rectifying process for converting an image based on the visual axis into an image based on a virtual parallel visual axis, a stereo matching process may be performed to acquire a three-dimensional shape of the object to be inspected.

本発明では、投影パターン像を投影した被検査体を1対のカメラで撮影し得られた画像から3次元形状を取得するに際し、立体内視鏡の挿入部の先端から離れた後方の位置において投影パターンを配置し、イメージファイバにより投影パターン像を伝送し投影レンズにより被検査体の位置に投影パターンの像を投影し、投影レンズの結像深度を大きくすることにより、凹凸や動きのある被検査体においても鮮明な投影パターンを結像することができる。投影パターンを挿入部の先端から離れた位置に配置することにより、投影パターンの寸法を大きくし、投影用光源として胃内視鏡用などの輝度の高いものを使用することにより、被検査体の位置の広い範囲に明るい投影パターン像を生成することができる。それにより、鼻咽腔のような凹凸や動きのある被検査体についての3次元形状の取得を精度よく行うことが可能になる。   In the present invention, when acquiring a three-dimensional shape from an image obtained by photographing an object to be inspected by projecting a projection pattern image with a pair of cameras, at a rear position away from the distal end of the insertion portion of the stereoscopic endoscope. By arranging the projection pattern, transmitting the projection pattern image by the image fiber, projecting the projection pattern image to the position of the object to be inspected by the projection lens, and increasing the imaging depth of the projection lens, A clear projection pattern can be imaged even on the inspection object. By disposing the projection pattern at a position away from the distal end of the insertion portion, the size of the projection pattern is increased, and by using a high-luminance one such as for a gastroscope as a projection light source, A bright projection pattern image can be generated over a wide range of positions. As a result, it is possible to accurately acquire the three-dimensional shape of the object to be inspected, such as the nasopharynx, which has unevenness and movement.

本発明によるパターン照射併用による立体内視鏡画像からの3次元形状取得装置を概略的に示す図である。It is a figure which shows roughly the three-dimensional shape acquisition apparatus from the stereoscopic endoscope image by combined pattern irradiation by this invention. 内視鏡先端部を示す斜視図である。It is a perspective view which shows an endoscope front-end | tip part. パターン投影部の構成を断面図として示す図である。It is a figure which shows the structure of a pattern projection part as sectional drawing. 画像取得部により画像を取得する状況を示す図である。It is a figure which shows the condition which acquires an image by an image acquisition part. (a)投影パターンの一例を示す図であり、(b)他の投影パターンの例を示す図である。(A) It is a figure which shows an example of a projection pattern, (b) It is a figure which shows the example of another projection pattern. 画像における視差を用いた奥行きの求め方を説明する図である。It is a figure explaining how to obtain | require the depth using the parallax in an image. 左右の画像から3次元形状を求める演算処理のフローを示す図である。It is a figure which shows the flow of the arithmetic processing which calculates | requires three-dimensional shape from the image on either side.

本発明によるパターン照射併用による立体内視鏡画像からの3次元形状取得装置の具体的な形態について以下説明する。
図1は立体内視鏡画像からの3次元形状取得装置の全体的構成を示しており、内視鏡の挿入部1は画像取得部10とパターン投影部20とを一体化して有する。画像取得部10は挿入部先端側に撮影レンズを介して被検査体の画像を撮像する撮像素子が配設され、撮像素子への動作信号、撮像された画像信号を伝送する配線が画像取得部10とこれに連接された連結部30内を通り制御処理部40に接続されている。
The specific form of the three-dimensional shape acquisition apparatus from the stereoscopic endoscope image by combined pattern irradiation according to the present invention will be described below.
FIG. 1 shows an overall configuration of a three-dimensional shape acquisition apparatus from a stereoscopic endoscope image. An endoscope insertion unit 1 has an image acquisition unit 10 and a pattern projection unit 20 integrated. The image acquisition unit 10 is provided with an image pickup device for picking up an image of an object to be inspected via a photographing lens on the distal end side of the insertion unit, and an operation signal to the image pickup device and wiring for transmitting the picked-up image signal are image acquisition units. 10 and the connection part 30 connected to this are connected to the control processing part 40.

パターン投影部20は画像取得部10と先端が同じ位置になるようにして一体的に配設されており、20Aは投影パターン収容部であり、パターン投影部を動作させる電力を供給する配線が連結部30内を通って制御処理部に接続されるように設けられている。なお、内視鏡が視向角を有する場合、パターン投影部20の先端は、内視鏡の視野全体にパターン像が投影されるように、視向角に応じて、画像取得部10の先端より適宜後退させてもよい。このとき、画像取得部10の先端(即ち、後述の撮影レンズ11L.11R)は、画像取得部10にパターン投影部20が連設されている側と同じ方向又はそれとは逆の方向に、内視鏡がその視向角を有することができるように設置される。例えば、図2であれば、画像取得部10の下側にパターン投影部20が適宜後退して連設され、画像取得部10の先端(撮影レンズ11L.11R)は、画像取得部10の下方向(パターン投影部20の連設側と同方向)又は上方向(パターン投影部20の連設側とは逆方向)に、内視鏡がその視向角を有することができるように設置される。   The pattern projection unit 20 is integrally arranged with the image acquisition unit 10 so that the tip is at the same position, 20A is a projection pattern storage unit, and wiring for supplying power for operating the pattern projection unit is connected to the pattern projection unit 20 It is provided so as to be connected to the control processing section through the section 30. Note that when the endoscope has a viewing angle, the tip of the pattern projection unit 20 corresponds to the tip of the image acquisition unit 10 according to the viewing angle so that the pattern image is projected on the entire field of view of the endoscope. You may reverse | retreat suitably. At this time, the tip of the image acquisition unit 10 (that is, a photographic lens 11L and 11R described later) is positioned in the same direction as the side where the pattern projection unit 20 is connected to the image acquisition unit 10 or in the opposite direction. The endoscope is installed so that it can have the viewing angle. For example, in FIG. 2, the pattern projection unit 20 is appropriately retracted and connected to the lower side of the image acquisition unit 10, and the tip of the image acquisition unit 10 (the photographic lenses 11 </ b> L and 11 </ b> R) is located below the image acquisition unit 10. The endoscope is installed in a direction (the same direction as the continuous side of the pattern projection unit 20) or upward (a direction opposite to the continuous side of the pattern projection unit 20) so that the endoscope can have the viewing angle. The

図2は画像取得部10、パターン投影部20を先端側から見た様子を示しており、画像取得部10の先端には左右1対の撮像素子に結像する撮影レンズ11L,11Rが取り付けられ、その背後の結像位置に撮像素子が配設されている。パターン投影部20の先端側には投影レンズ21が取り付けられており、その背後には光伝送用イメージファイバが設けられている。   FIG. 2 shows a state in which the image acquisition unit 10 and the pattern projection unit 20 are viewed from the front end side, and photographing lenses 11L and 11R that form an image on a pair of left and right imaging elements are attached to the front end of the image acquisition unit 10. An image sensor is disposed at the imaging position behind it. A projection lens 21 is attached to the distal end side of the pattern projection unit 20, and an image fiber for light transmission is provided behind the projection lens 21.

図3はパターン投影部20のみの構成を断面図で示している。被検査体の3次元形状を精度よく再現するには、もとになる左右の画像が極力鮮明なものとして取得されることが重要である。被検査体が鼻咽腔等の場合に、動きがあるとともに、凹凸が大きい形状になっており、鼻咽腔の粘膜表面の性状は画像上での特徴が乏しいため、正確な3次元形状取得が難しい。そのため、被検査体上にパターン像を投影し、パターン像が形成された被検査体を撮像して得られた画像をもとに3次元形状を取得するアクティブステレオ法を用いる。   FIG. 3 is a sectional view showing the configuration of only the pattern projection unit 20. In order to accurately reproduce the three-dimensional shape of the object to be inspected, it is important to obtain the original left and right images as clear as possible. When the object to be inspected is a nasopharynx, etc., it has movement and has a large unevenness, and the properties of the mucosal surface of the nasopharynx have poor characteristics on the image, so accurate three-dimensional shape acquisition Is difficult. Therefore, an active stereo method is used in which a pattern image is projected on the object to be inspected, and a three-dimensional shape is acquired based on an image obtained by imaging the object to be inspected on which the pattern image is formed.

図3において、パターン投影部20の後部に連接して設けられた光源収容部20A内に光源L、透過型の投影パターンP、結像レンズ22が配設されており、パターン投影部20の筒状部内で結像レンズ22と先端側の投影レンズ21との間にイメージファイバ23が配置されている。被検査体の検査の際には、投影パターンPは背後から集光レンズ24を介して光源Lにより照射され、結像レンズ22によりイメージファイバ23の入射端に結像し、イメージファイバ23の出射端から先端側の投影レンズ21を介して投影パターンPの像が被検査対象部に投影される。光源Lは配線25を介して電力を供給される。   In FIG. 3, a light source L, a transmissive projection pattern P, and an imaging lens 22 are disposed in a light source housing portion 20 </ b> A connected to the rear portion of the pattern projection portion 20. An image fiber 23 is arranged between the imaging lens 22 and the projection lens 21 on the distal end side in the shape portion. When inspecting the object to be inspected, the projection pattern P is irradiated from behind by the light source L via the condenser lens 24, imaged by the imaging lens 22 on the incident end of the image fiber 23, and emitted from the image fiber 23. An image of the projection pattern P is projected onto the inspection target part through the projection lens 21 on the tip side from the end. The light source L is supplied with power through the wiring 25.

投影パターンは被検査体Sの面上の略正方形の一辺がaの大きさの範囲の像として投影され、この範囲ではパターン像が投影されて明るくなり、観察、撮影がなされるようになる。また、被検査体は内視鏡の光軸方向に最大dの凹凸を有するものとし、このような凹凸の高低の範囲において被検査体の面上に鮮明なパターン像を投影する。   The projection pattern is projected as an image having a side of a substantially square on the surface of the object S to be inspected, and in this range, the pattern image is projected and brightened, and observation and photographing are performed. Further, the object to be inspected has a maximum of d unevenness in the optical axis direction of the endoscope, and a clear pattern image is projected on the surface of the object to be inspected in the range of such unevenness.

投影パターン像が投影された被検査体について、撮影レンズを介して内視鏡先端側の1対の撮像素子により被検査体の画像を取得し、画像信号は画像取得部内から連結部を通して設けられた伝送線を介して制御処理部40における画像信号処理部に伝送される。画像信号処理部においては、取得された左右の画像をもとに画像解析処理を行い、被検査体の3次元形状データを生成する。   With respect to the object to be inspected on which the projection pattern image is projected, an image of the object to be inspected is acquired by a pair of imaging elements on the distal end side of the endoscope via the imaging lens, and the image signal is provided from the inside of the image acquisition unit through the connecting unit. The data is transmitted to the image signal processing unit in the control processing unit 40 via the transmission line. The image signal processing unit performs image analysis processing based on the acquired left and right images, and generates three-dimensional shape data of the object to be inspected.

図4は投影パターン像が投影された被検査体Sを画像取得部10により撮影する状況を示しており、画像取得部10の先端側の1対の撮影レンズ11L,11Rによりそれぞれの撮像素子12L,12R上に視差のある画像が形成される。13L,13Rは画像信号を伝送する配線である。   FIG. 4 shows a situation in which the inspected object S on which the projection pattern image is projected is captured by the image acquisition unit 10, and each imaging element 12L is captured by a pair of imaging lenses 11L and 11R on the distal end side of the image acquisition unit 10. , 12R, an image with parallax is formed. Reference numerals 13L and 13R denote wirings for transmitting image signals.

投影パターンはその被検査体面上に形成された画像をもとに3次元形状の取得に用いるものであり、基本的には図5(a)に示すような格子状の規則的、周期的な形状とし、あるいは、同形の点形状を格子状に配置した図5(b)のようなものとし、透過型投影パターンとして作製する。被検査体面上に鮮明な画像が投影されるために、投影パターンはある程度の大きさをもつように作製するのがよく、また被検査体の種類に応じて投影パターンを交換して用いられるようにするのがよい。   The projection pattern is used for obtaining a three-dimensional shape based on an image formed on the surface of the object to be inspected. Basically, the projection pattern is a lattice-like regular and periodic pattern as shown in FIG. It is made into a shape, or it is made as shown in FIG. 5B in which the same point shape is arranged in a lattice shape, and is produced as a transmissive projection pattern. Since a clear image is projected on the surface of the object to be inspected, the projection pattern should be prepared to have a certain size, and the projection pattern should be exchanged according to the type of object to be inspected. It is good to make it.

鼻咽腔のような凹凸や動きがある表面形状の被検査体上の検査範囲にわたって鮮明な投影パターンの画像を形成するには投影光学系の結像深度を深くすることが重要になる。また、内視鏡先端部側は被検査体側への挿入部であり、寸法が限られるものでもあることから、図3のパターン投影部の構成において、先端側の投影レンズ21は径の小さいものを用い、F値が小さく、投影像の結像深度が深くなるようにする。被検査体を鼻咽腔とした場合、凹凸の程度は10mm以上、あるいは20mm程度に及ぶものであり、また、この動きは内視鏡と平行に30mm程度に及ぶものであり、このような凹凸のある動きの大きな被検査体に対して投影パターン像が鮮明になるようにする必要がある。   In order to form an image with a clear projection pattern over the inspection range of the surface-shaped object to be inspected, such as a nasopharynx, it is important to increase the imaging depth of the projection optical system. Further, since the endoscope distal end side is an insertion portion to the inspected object side and is limited in size, the projection lens 21 on the distal end side has a small diameter in the configuration of the pattern projection unit in FIG. , The F value is small, and the imaging depth of the projected image is increased. When the object to be inspected is a nasopharynx cavity, the degree of unevenness is about 10 mm or more, or about 20 mm, and this movement is about 30 mm parallel to the endoscope. Therefore, it is necessary to make the projected pattern image clear with respect to an object to be inspected with large movement.

イメージファイバ23の径は2mm程度であり、パターン投影部20の先端部における投影レンズ21の径も同程度である。投影レンズ21の有効径としては1.5mm程度にし、F値(焦点距離/有効径)を5.6程度の値にすることにより、イメージファイバ23の出射端面におけるパターン像を投影レンズ21で10倍程度に拡大し、かつ結像深度が15mm以上、好ましくは20mm以上、更に好ましくは20以上から30mm程度の範囲になるようにする形で投影することができる。被検査体画像の観察、3次元形状の取得を的確に行う上では、このような投影光学系により凹凸のある被検査体面上において、20mm以上、好ましくは30mm以上の大きさ範囲にわたり鮮明な投影パターンの像が形成されるようにするのがよい。   The diameter of the image fiber 23 is about 2 mm, and the diameter of the projection lens 21 at the tip of the pattern projection unit 20 is also about the same. By setting the effective diameter of the projection lens 21 to about 1.5 mm and setting the F value (focal length / effective diameter) to a value of about 5.6, a pattern image on the exit end face of the image fiber 23 is 10 by the projection lens 21. The image can be projected in such a manner that the magnification is about double and the imaging depth is 15 mm or more, preferably 20 mm or more, more preferably 20 to 30 mm. In order to accurately observe an inspected object image and acquire a three-dimensional shape, such a projection optical system can provide a clear projection over an uneven inspected object surface over a size range of 20 mm or more, preferably 30 mm or more. A pattern image is preferably formed.

先端側の投影レンズの有効径を小さく、F値を大きくすることから、投影光量が少なくなるので、その分投影パターンを大きくし、投影光源の輝度を高いものにすることが、投影像の鮮明化とともに、投影光量の面からも必要になる。そのため、例えば内視鏡の先端から15mmの位置に被検査体がある場合に、20mm程度の寸法の範囲に明るい投影パターン像を形成し得るように、光源の発光輝度が十分に高いものを備えるようにすることが必要である。   Since the effective diameter of the projection lens on the front end side is reduced and the F-number is increased, the amount of projection light is reduced. Therefore, it is necessary to increase the projection pattern and increase the brightness of the projection light source accordingly. Along with this, it is also necessary in terms of the amount of light projected. Therefore, for example, when the object to be inspected is located at a position 15 mm from the distal end of the endoscope, a light source having sufficiently high light emission luminance is provided so that a bright projection pattern image can be formed in a range of about 20 mm. It is necessary to do so.

〔被検査体画像の撮影、3次元形状の取得〕
本発明によるパターン像投影手段を有する立体内視鏡を用いたパターン像を投影した被検査体を撮影し、3次元形状を取得する過程について説明する。
立体内視鏡は画像取得部10の先端における1対のレンズ11L,11Rにより結像した像を撮影する撮像素子を備えており、立体内視鏡の先端を被検査体に対向する位置に設定し、パターン投影部20によりパターンが投影された状態の被検査体を撮影して左右の画像を生成する。
[Shooting the image of the object to be inspected and acquiring the 3D shape]
A process of acquiring a three-dimensional shape by photographing a test object on which a pattern image is projected using a stereoscopic endoscope having a pattern image projecting unit according to the present invention will be described.
The stereoscopic endoscope includes an image pickup device that captures an image formed by a pair of lenses 11L and 11R at the distal end of the image acquisition unit 10, and the distal end of the stereoscopic endoscope is set at a position facing the object to be inspected. Then, the object to be inspected in a state where the pattern is projected by the pattern projection unit 20 is photographed to generate left and right images.

撮影された左右1対の被検査体の画像について、ステレオマッチング・アルゴリズムを用いて3次元形状の取得を行う。ステレオマッチングにおいては、処理時間を短縮するために3次元復元の前処理としてレクティファイの処理を行う。レクティテァイ処理は、被写体に向いた1対の撮像素子の視線軸による画像を仮想的な平行な視線軸による画像に変換する処理である。レクティファイ処理を行うことで、ステレオマッチングとしては2つの画像の同一水平操作線上の探索問題に単純化され、演算時間が短縮される。   A three-dimensional shape is acquired using a stereo matching algorithm for the captured images of the pair of left and right inspected objects. In stereo matching, rectify processing is performed as preprocessing for three-dimensional restoration in order to reduce processing time. The rectifying process is a process of converting an image based on the visual axis of a pair of imaging elements facing the subject into an image based on a virtual parallel visual axis. By performing the rectifying process, the stereo matching is simplified to a search problem on the same horizontal operation line of two images, and the calculation time is shortened.

レクティファイ処理により補正された平行ステレオ視の画像からステレオ視による視差を求める。これにはいくつかの手法があるが、ここではバーチフィールドの方法を用いる。バーチフィールドの方法では、次の2つの段階の処理を行う。
(1)左右の画像について一致するスキャンラインのペアを対象にマッチング処理を行う。このとき隣接するスキャンラインの影響は受けない。
(2)各スキャンラインで行われたマッチング処理により得られた視差の分布について、視差の信頼度の高い区域から信頼度の低い区域に情報を伝播することで画面全体の視差を整理する。
The parallax due to stereo vision is obtained from the parallel stereo vision image corrected by the rectifying process. There are several methods for this, but here the birch field method is used. In the birch field method, the following two steps are performed.
(1) A matching process is performed on a pair of scan lines that coincide with each other on the left and right images. At this time, it is not affected by the adjacent scan line.
(2) For the disparity distribution obtained by the matching process performed on each scan line, information is propagated from an area with high parallax reliability to an area with low reliability to sort out the parallax of the entire screen.

これにより、左右の撮像素子の画像から視差が求められ、これを距離に変換し、奥行きを求める。図6は視差と奥行きの関係を示している。図6において、被検査体上の1点を注視点とし、VP−L,VP−Rがそれぞれ結像面におけるカメラの左右の撮像素子の中心位置(視点)であるとする。カメラの撮影レンズの主面を射影面とし、左右の撮像素子の中心間の距離をdc、視点から射影面までの距離をfl、実際の奥行きをlとする。視差は、両視点間の距離と射影面における視点から注視点へ向かう視線間距離との差として、射影面上のdsで表される。
と、視差から実際の奥行きは次の式で求められる。
l=dc/ds×fl
Thereby, parallax is calculated | required from the image of a right-and-left image sensor, this is converted into distance and a depth is calculated | required. FIG. 6 shows the relationship between parallax and depth. In FIG. 6, it is assumed that one point on the object to be inspected is a gazing point, and VP-L and VP-R are the center positions (viewpoints) of the left and right imaging elements of the camera on the imaging plane. The main surface of the camera's photographic lens is a projection plane, the distance between the centers of the left and right image sensors is dc, the distance from the viewpoint to the projection plane is fl, and the actual depth is l. The parallax is expressed as ds on the projection plane as the difference between the distance between the two viewpoints and the interline-of-sight distance from the viewpoint to the gazing point on the projection plane.
From the parallax, the actual depth can be obtained by the following equation.
l = dc / ds × fl

左右画像のマッチング処理により視差、奥行きを求め、被検査体についての3次元座標を求めて3Dモデルを生成することができる。3Dモデル生成のフローを示すと図7のようになる。左右の撮像素子で得られた画像について画像の歪み補正を行った後、左右の画像それぞれについてレクティファイ処理により平行化を行う。平行化した左右の画像のマッチング処理により奥行き座標を計算し、さらに3次元座標値から3Dモデルを生成する。   The 3D model can be generated by obtaining the parallax and the depth by the matching process of the left and right images and obtaining the three-dimensional coordinates of the object to be inspected. A flow of 3D model generation is shown in FIG. Image distortion correction is performed on images obtained by the left and right imaging elements, and then parallelization is performed on each of the left and right images by rectifying processing. Depth coordinates are calculated by matching the parallelized left and right images, and a 3D model is generated from the three-dimensional coordinate values.

本発明による立体内視鏡画像からの3次元形状取得においては、鼻咽腔のような凹凸があり、動きの大きな被検査体に対し、投影パターン像を投影して、左右の撮像素子により撮影して得られた画像についてステレオマッチング処理を行って3次元形状を取得する。鼻咽腔のような被検査体の場合、凹凸があり、動きが大きいことが特徴であり、この動きは内視鏡挿入方向と同じ方向、すなわち、内視鏡先端に「近づく・遠ざかる」の前後方向の動きが少なくとも20mmというように大きいものである。本発明においては、投影パターンの投影光学系の結像深度を15mm以上になるようにしており、それにより鼻咽腔のような凹凸や動きがあり、動きの大きな被検査体に対し、内視鏡先端の前後方向に30mm程度になる運動する被検査体について鮮明なパターン像を投影して、ステレオマッチング処理により3次元形状を正確に取得することができる。   In the acquisition of a three-dimensional shape from a stereoscopic endoscope image according to the present invention, projection patterns are projected on a subject to be inspected, which has irregularities such as the nasopharynx and has a large movement, and is photographed by the left and right imaging elements. A stereo matching process is performed on the obtained image to obtain a three-dimensional shape. In the case of an inspected object such as the nasopharynx, it is characterized by unevenness and large movement, and this movement is the same direction as the insertion direction of the endoscope, that is, it “closes or moves away” from the endoscope tip. The movement in the front-rear direction is at least 20 mm. In the present invention, the imaging depth of the projection optical system of the projection pattern is set to 15 mm or more, so that there is unevenness and movement such as the nasopharynx, so that the object to be inspected with large movement can be visualized. A sharp pattern image can be projected on a moving object to be inspected about 30 mm in the front-rear direction of the mirror tip, and a three-dimensional shape can be accurately acquired by stereo matching processing.

1 挿入部
10 画像取得部
11L,11R 撮影レンズ
12L,12R 撮像素子
13L,13R 配線
20 パターン投影部
20A 投影パターン収容部
21 投影レンズ
22 結像レンズ
23 イメージファイバ
24 集光レンズ
25 配線
30 連結部
40 制御処理部
L 光源
P 投影パターン
S 被検査体












1 Insertion section
DESCRIPTION OF SYMBOLS 10 Image acquisition part 11L, 11R Image pickup lens 12L, 12R Image pick-up element 13L, 13R Wiring 20 Pattern projection part 20A Projection pattern accommodating part 21 Projection lens 22 Imaging lens 23 Image fiber 24 Condensing lens 25 Wiring 30 Connection part 40 Control processing part L Light source P Projection pattern S Inspected object












Claims (4)

先端側に1対の撮像素子を配設したカメラを有する画像取得部及び先端側に投影レンズを有するパターン投影部を備え被検査体に向けて挿入されるように細長形状に形成された挿入部と、挿入部に連接された連結部と、連結部に連接された制御処理部とからなる立体内視鏡画像からの3次元形状取得装置であって、前記パターン投影部は前記挿入部の先端から離れた後方の位置において投影パターン及び該投影パターンをその後方の位置において照明する投影用の光源を配置した投影パターン収容部と、該光源により照射された投影パターンからの像光を前記先端側に伝送するイメージファイバと、伝送された像光を投影する投影レンズとを備え投影パターンの像を被検査体の位置に投影するように構成され、前記制御処理部は投影パターン像が投影された被検査体を1対の撮像素子を有するカメラで撮影して得られた画像についてステレオマッチング処理を行い被検査体の3次元形状を取得するものであり、前記投影レンズは15mm以上の結像深度を有するF値及び焦点距離のものであることを特徴とする立体内視鏡画像からの3次元形状取得装置。   An insertion portion formed in an elongated shape so as to be inserted toward the object to be inspected, including an image acquisition unit having a camera having a pair of image pickup devices disposed on the distal end side and a pattern projection unit having a projection lens on the distal end side And a three-dimensional shape acquisition device from a stereoscopic endoscope image, comprising: a connecting portion connected to the inserting portion; and a control processing portion connected to the connecting portion, wherein the pattern projecting portion is a tip of the inserting portion. A projection pattern storage unit in which a projection pattern and a light source for projection that illuminates the projection pattern at a position behind the projection pattern are disposed at a rear position away from the projection pattern; and image light from the projection pattern irradiated by the light source An image fiber that transmits the image light and a projection lens that projects the transmitted image light, and is configured to project an image of the projection pattern onto the position of the object to be inspected. A stereo matching process is performed on an image obtained by photographing the object to be inspected with a camera having a pair of imaging elements to obtain a three-dimensional shape of the object to be inspected, and the projection lens is 15 mm or more Apparatus for obtaining a three-dimensional shape from a stereoscopic endoscope image, having an F-number and a focal length having an imaging depth of 前記投影レンズは投影パターン像が投影される被検査体面において少なくとも20mm以上の大きさのパターン像を投影するものであることを特徴とする請求項1に記載の立体内視鏡画像からの3次元形状取得装置。   2. The three-dimensional image from the stereoscopic endoscope image according to claim 1, wherein the projection lens projects a pattern image having a size of at least 20 mm or more on the surface of the object to be examined on which the projection pattern image is projected. Shape acquisition device. 前記投影パターン配置部において投影パターンを交換可能に収容配置可能にしたことを特徴とする請求項1または2のいずれかに記載の立体内視鏡画像からの3次元形状取得装置。   The apparatus for acquiring a three-dimensional shape from a stereoscopic endoscope image according to any one of claims 1 and 2, wherein the projection pattern arrangement unit can accommodate and arrange the projection patterns in an exchangeable manner. 前記投影パターン像が投影された被検査体を1対の撮像素子を有するカメラで撮影して得られた画像について、前記制御処理部において被写体に向いた1対の撮像素子の視線軸による画像を仮想的な平行な視線軸による画像に変換するレクティファイ処理を行った後にステレオマッチング処理を行い被検査体の3次元形状を取得するようにしたことを特徴とする請求項1ないし3のいずれかに記載の立体内視鏡画像からの3次元形状取得装置。







With respect to an image obtained by photographing the object to be inspected on which the projection pattern image is projected with a camera having a pair of image sensors, an image of the pair of image sensors facing the subject in the control processing unit is obtained by the visual axis. 4. A three-dimensional shape of an object to be inspected is obtained by performing stereo matching after performing a rectification process for converting into an image with a virtual parallel line of sight axis. A three-dimensional shape acquisition apparatus from the described stereoscopic endoscope image.







JP2013093880A 2012-04-26 2013-04-26 3D shape acquisition device from stereoscopic endoscope image Active JP6210483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093880A JP6210483B2 (en) 2012-04-26 2013-04-26 3D shape acquisition device from stereoscopic endoscope image

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012101311 2012-04-26
JP2012101311 2012-04-26
JP2013093880A JP6210483B2 (en) 2012-04-26 2013-04-26 3D shape acquisition device from stereoscopic endoscope image

Publications (2)

Publication Number Publication Date
JP2013240590A true JP2013240590A (en) 2013-12-05
JP6210483B2 JP6210483B2 (en) 2017-10-11

Family

ID=49842081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093880A Active JP6210483B2 (en) 2012-04-26 2013-04-26 3D shape acquisition device from stereoscopic endoscope image

Country Status (1)

Country Link
JP (1) JP6210483B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191888A (en) * 2015-03-31 2016-11-10 オリンパス株式会社 Pattern projection optical system for stereo measurement and stereo measurement endoscope device including the same
JP2017074178A (en) * 2015-10-14 2017-04-20 株式会社 オルタステクノロジー Imaging apparatus and endoscope apparatus using the same
JP2020535547A (en) * 2018-02-01 2020-12-03 シェンチェン センスタイム テクノロジー カンパニー リミテッドShenzhen Sensetime Technology Co.,Ltd Depth estimation methods and devices, electronics, programs and media
WO2022218851A1 (en) * 2021-04-12 2022-10-20 Universiteit Antwerpen An endoscope system and a method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201337A (en) * 1992-12-28 1994-07-19 Hitachi Ltd Surface shape detection device and its method
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
JP2005287900A (en) * 2004-04-01 2005-10-20 Hamamatsu Univ School Of Medicine Endoscope
JP2011163988A (en) * 2010-02-12 2011-08-25 Emi Yasui Pattern light projection device
JP2011186868A (en) * 2010-03-10 2011-09-22 Omron Corp Common image plane determination program, common image plane determining method, and common image plane determination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201337A (en) * 1992-12-28 1994-07-19 Hitachi Ltd Surface shape detection device and its method
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
JP2005287900A (en) * 2004-04-01 2005-10-20 Hamamatsu Univ School Of Medicine Endoscope
JP2011163988A (en) * 2010-02-12 2011-08-25 Emi Yasui Pattern light projection device
JP2011186868A (en) * 2010-03-10 2011-09-22 Omron Corp Common image plane determination program, common image plane determining method, and common image plane determination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191888A (en) * 2015-03-31 2016-11-10 オリンパス株式会社 Pattern projection optical system for stereo measurement and stereo measurement endoscope device including the same
JP2017074178A (en) * 2015-10-14 2017-04-20 株式会社 オルタステクノロジー Imaging apparatus and endoscope apparatus using the same
JP2020535547A (en) * 2018-02-01 2020-12-03 シェンチェン センスタイム テクノロジー カンパニー リミテッドShenzhen Sensetime Technology Co.,Ltd Depth estimation methods and devices, electronics, programs and media
US11308638B2 (en) 2018-02-01 2022-04-19 Shenzhen Sensetime Technology Co., Ltd. Depth estimation method and apparatus, electronic device, program, and medium
WO2022218851A1 (en) * 2021-04-12 2022-10-20 Universiteit Antwerpen An endoscope system and a method thereof

Also Published As

Publication number Publication date
JP6210483B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP4343341B2 (en) Endoscope device
JP6475311B1 (en) Optical tracking system and optical tracking method
JP2017508529A (en) Endoscope measurement system and method
WO2013138077A2 (en) Otoscanner with pressure sensor for compliance measurement
KR20140067970A (en) Optical scanning device
KR20110105720A (en) 3-d imaging using telecentric defocus
CN103654699B (en) A kind of formation method of fluorescence excitation binocular endoscope system
JPWO2012077713A1 (en) Gaze point detection method and gaze point detection device
EP2549226A1 (en) Endoscope and endoscope system
US20150237325A1 (en) Method and apparatus for converting 2d images to 3d images
JP6210483B2 (en) 3D shape acquisition device from stereoscopic endoscope image
CN113240726B (en) Real-time measurement method for optical target size under endoscope
CN109091099A (en) The high definition miniature electronic endoscopic system of binocular vision
CN100443041C (en) Endoscope system with measuring function and measuring method thereof
JP5336325B2 (en) Image processing method
JP2014228851A5 (en)
JP4750197B2 (en) Endoscope device
JP2004333691A (en) Lens position detecting method and device
Aoki et al. Proposal on 3-D endoscope by using grid-based active stereo
Hasegawa et al. Electronic endoscope system for shape measurement
KR101010533B1 (en) Living body surface morphological measuring system
JP2019045249A (en) Measuring device and method for operating measuring device
Muyshondt et al. A calibrated 3D dual-barrel otoendoscope based on fringe-projection profilometry
KR101269128B1 (en) Surface roughness measurement apparatus and method having intermediate view generator
KR101372496B1 (en) Apparatus for acquiring three-dimensional image information of laryngoscope using stereo camera and a method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6210483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250